blob: 8e3aa9e8618ed8262357edaf550a10425fa95828 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* mm/truncate.c - code for taking down pages from address_spaces
*
* Copyright (C) 2002, Linus Torvalds
*
* 10Sep2002 Andrew Morton
* Initial version.
*/
#include <linux/kernel.h>
#include <linux/backing-dev.h>
#include <linux/dax.h>
#include <linux/gfp.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/export.h>
#include <linux/pagemap.h>
#include <linux/highmem.h>
#include <linux/pagevec.h>
#include <linux/task_io_accounting_ops.h>
#include <linux/shmem_fs.h>
#include <linux/rmap.h>
#include "internal.h"
/*
* Regular page slots are stabilized by the page lock even without the tree
* itself locked. These unlocked entries need verification under the tree
* lock.
*/
static inline void __clear_shadow_entry(struct address_space *mapping,
pgoff_t index, void *entry)
{
XA_STATE(xas, &mapping->i_pages, index);
xas_set_update(&xas, workingset_update_node);
if (xas_load(&xas) != entry)
return;
xas_store(&xas, NULL);
}
static void clear_shadow_entry(struct address_space *mapping, pgoff_t index,
void *entry)
{
spin_lock(&mapping->host->i_lock);
xa_lock_irq(&mapping->i_pages);
__clear_shadow_entry(mapping, index, entry);
xa_unlock_irq(&mapping->i_pages);
if (mapping_shrinkable(mapping))
inode_add_lru(mapping->host);
spin_unlock(&mapping->host->i_lock);
}
/*
* Unconditionally remove exceptional entries. Usually called from truncate
* path. Note that the folio_batch may be altered by this function by removing
* exceptional entries similar to what folio_batch_remove_exceptionals() does.
*/
static void truncate_folio_batch_exceptionals(struct address_space *mapping,
struct folio_batch *fbatch, pgoff_t *indices)
{
int i, j;
bool dax;
/* Handled by shmem itself */
if (shmem_mapping(mapping))
return;
for (j = 0; j < folio_batch_count(fbatch); j++)
if (xa_is_value(fbatch->folios[j]))
break;
if (j == folio_batch_count(fbatch))
return;
dax = dax_mapping(mapping);
if (!dax) {
spin_lock(&mapping->host->i_lock);
xa_lock_irq(&mapping->i_pages);
}
for (i = j; i < folio_batch_count(fbatch); i++) {
struct folio *folio = fbatch->folios[i];
pgoff_t index = indices[i];
if (!xa_is_value(folio)) {
fbatch->folios[j++] = folio;
continue;
}
if (unlikely(dax)) {
dax_delete_mapping_entry(mapping, index);
continue;
}
__clear_shadow_entry(mapping, index, folio);
}
if (!dax) {
xa_unlock_irq(&mapping->i_pages);
if (mapping_shrinkable(mapping))
inode_add_lru(mapping->host);
spin_unlock(&mapping->host->i_lock);
}
fbatch->nr = j;
}
/*
* Invalidate exceptional entry if easily possible. This handles exceptional
* entries for invalidate_inode_pages().
*/
static int invalidate_exceptional_entry(struct address_space *mapping,
pgoff_t index, void *entry)
{
/* Handled by shmem itself, or for DAX we do nothing. */
if (shmem_mapping(mapping) || dax_mapping(mapping))
return 1;
clear_shadow_entry(mapping, index, entry);
return 1;
}
/*
* Invalidate exceptional entry if clean. This handles exceptional entries for
* invalidate_inode_pages2() so for DAX it evicts only clean entries.
*/
static int invalidate_exceptional_entry2(struct address_space *mapping,
pgoff_t index, void *entry)
{
/* Handled by shmem itself */
if (shmem_mapping(mapping))
return 1;
if (dax_mapping(mapping))
return dax_invalidate_mapping_entry_sync(mapping, index);
clear_shadow_entry(mapping, index, entry);
return 1;
}
/**
* folio_invalidate - Invalidate part or all of a folio.
* @folio: The folio which is affected.
* @offset: start of the range to invalidate
* @length: length of the range to invalidate
*
* folio_invalidate() is called when all or part of the folio has become
* invalidated by a truncate operation.
*
* folio_invalidate() does not have to release all buffers, but it must
* ensure that no dirty buffer is left outside @offset and that no I/O
* is underway against any of the blocks which are outside the truncation
* point. Because the caller is about to free (and possibly reuse) those
* blocks on-disk.
*/
void folio_invalidate(struct folio *folio, size_t offset, size_t length)
{
const struct address_space_operations *aops = folio->mapping->a_ops;
if (aops->invalidate_folio)
aops->invalidate_folio(folio, offset, length);
}
EXPORT_SYMBOL_GPL(folio_invalidate);
/*
* If truncate cannot remove the fs-private metadata from the page, the page
* becomes orphaned. It will be left on the LRU and may even be mapped into
* user pagetables if we're racing with filemap_fault().
*
* We need to bail out if page->mapping is no longer equal to the original
* mapping. This happens a) when the VM reclaimed the page while we waited on
* its lock, b) when a concurrent invalidate_mapping_pages got there first and
* c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
*/
static void truncate_cleanup_folio(struct folio *folio)
{
if (folio_mapped(folio))
unmap_mapping_folio(folio);
if (folio_has_private(folio))
folio_invalidate(folio, 0, folio_size(folio));
/*
* Some filesystems seem to re-dirty the page even after
* the VM has canceled the dirty bit (eg ext3 journaling).
* Hence dirty accounting check is placed after invalidation.
*/
folio_cancel_dirty(folio);
folio_clear_mappedtodisk(folio);
}
int truncate_inode_folio(struct address_space *mapping, struct folio *folio)
{
if (folio->mapping != mapping)
return -EIO;
truncate_cleanup_folio(folio);
filemap_remove_folio(folio);
return 0;
}
/*
* Handle partial folios. The folio may be entirely within the
* range if a split has raced with us. If not, we zero the part of the
* folio that's within the [start, end] range, and then split the folio if
* it's large. split_page_range() will discard pages which now lie beyond
* i_size, and we rely on the caller to discard pages which lie within a
* newly created hole.
*
* Returns false if splitting failed so the caller can avoid
* discarding the entire folio which is stubbornly unsplit.
*/
bool truncate_inode_partial_folio(struct folio *folio, loff_t start, loff_t end)
{
loff_t pos = folio_pos(folio);
unsigned int offset, length;
if (pos < start)
offset = start - pos;
else
offset = 0;
length = folio_size(folio);
if (pos + length <= (u64)end)
length = length - offset;
else
length = end + 1 - pos - offset;
folio_wait_writeback(folio);
if (length == folio_size(folio)) {
truncate_inode_folio(folio->mapping, folio);
return true;
}
/*
* We may be zeroing pages we're about to discard, but it avoids
* doing a complex calculation here, and then doing the zeroing
* anyway if the page split fails.
*/
folio_zero_range(folio, offset, length);
if (folio_has_private(folio))
folio_invalidate(folio, offset, length);
if (!folio_test_large(folio))
return true;
if (split_folio(folio) == 0)
return true;
if (folio_test_dirty(folio))
return false;
truncate_inode_folio(folio->mapping, folio);
return true;
}
/*
* Used to get rid of pages on hardware memory corruption.
*/
int generic_error_remove_page(struct address_space *mapping, struct page *page)
{
VM_BUG_ON_PAGE(PageTail(page), page);
if (!mapping)
return -EINVAL;
/*
* Only punch for normal data pages for now.
* Handling other types like directories would need more auditing.
*/
if (!S_ISREG(mapping->host->i_mode))
return -EIO;
return truncate_inode_folio(mapping, page_folio(page));
}
EXPORT_SYMBOL(generic_error_remove_page);
static long mapping_evict_folio(struct address_space *mapping,
struct folio *folio)
{
if (folio_test_dirty(folio) || folio_test_writeback(folio))
return 0;
/* The refcount will be elevated if any page in the folio is mapped */
if (folio_ref_count(folio) >
folio_nr_pages(folio) + folio_has_private(folio) + 1)
return 0;
if (!filemap_release_folio(folio, 0))
return 0;
return remove_mapping(mapping, folio);
}
/**
* invalidate_inode_page() - Remove an unused page from the pagecache.
* @page: The page to remove.
*
* Safely invalidate one page from its pagecache mapping.
* It only drops clean, unused pages.
*
* Context: Page must be locked.
* Return: The number of pages successfully removed.
*/
long invalidate_inode_page(struct page *page)
{
struct folio *folio = page_folio(page);
struct address_space *mapping = folio_mapping(folio);
/* The page may have been truncated before it was locked */
if (!mapping)
return 0;
return mapping_evict_folio(mapping, folio);
}
/**
* truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
* @mapping: mapping to truncate
* @lstart: offset from which to truncate
* @lend: offset to which to truncate (inclusive)
*
* Truncate the page cache, removing the pages that are between
* specified offsets (and zeroing out partial pages
* if lstart or lend + 1 is not page aligned).
*
* Truncate takes two passes - the first pass is nonblocking. It will not
* block on page locks and it will not block on writeback. The second pass
* will wait. This is to prevent as much IO as possible in the affected region.
* The first pass will remove most pages, so the search cost of the second pass
* is low.
*
* We pass down the cache-hot hint to the page freeing code. Even if the
* mapping is large, it is probably the case that the final pages are the most
* recently touched, and freeing happens in ascending file offset order.
*
* Note that since ->invalidate_folio() accepts range to invalidate
* truncate_inode_pages_range is able to handle cases where lend + 1 is not
* page aligned properly.
*/
void truncate_inode_pages_range(struct address_space *mapping,
loff_t lstart, loff_t lend)
{
pgoff_t start; /* inclusive */
pgoff_t end; /* exclusive */
struct folio_batch fbatch;
pgoff_t indices[PAGEVEC_SIZE];
pgoff_t index;
int i;
struct folio *folio;
bool same_folio;
if (mapping_empty(mapping))
return;
/*
* 'start' and 'end' always covers the range of pages to be fully
* truncated. Partial pages are covered with 'partial_start' at the
* start of the range and 'partial_end' at the end of the range.
* Note that 'end' is exclusive while 'lend' is inclusive.
*/
start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
if (lend == -1)
/*
* lend == -1 indicates end-of-file so we have to set 'end'
* to the highest possible pgoff_t and since the type is
* unsigned we're using -1.
*/
end = -1;
else
end = (lend + 1) >> PAGE_SHIFT;
folio_batch_init(&fbatch);
index = start;
while (index < end && find_lock_entries(mapping, &index, end - 1,
&fbatch, indices)) {
truncate_folio_batch_exceptionals(mapping, &fbatch, indices);
for (i = 0; i < folio_batch_count(&fbatch); i++)
truncate_cleanup_folio(fbatch.folios[i]);
delete_from_page_cache_batch(mapping, &fbatch);
for (i = 0; i < folio_batch_count(&fbatch); i++)
folio_unlock(fbatch.folios[i]);
folio_batch_release(&fbatch);
cond_resched();
}
same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
folio = __filemap_get_folio(mapping, lstart >> PAGE_SHIFT, FGP_LOCK, 0);
if (!IS_ERR(folio)) {
same_folio = lend < folio_pos(folio) + folio_size(folio);
if (!truncate_inode_partial_folio(folio, lstart, lend)) {
start = folio_next_index(folio);
if (same_folio)
end = folio->index;
}
folio_unlock(folio);
folio_put(folio);
folio = NULL;
}
if (!same_folio) {
folio = __filemap_get_folio(mapping, lend >> PAGE_SHIFT,
FGP_LOCK, 0);
if (!IS_ERR(folio)) {
if (!truncate_inode_partial_folio(folio, lstart, lend))
end = folio->index;
folio_unlock(folio);
folio_put(folio);
}
}
index = start;
while (index < end) {
cond_resched();
if (!find_get_entries(mapping, &index, end - 1, &fbatch,
indices)) {
/* If all gone from start onwards, we're done */
if (index == start)
break;
/* Otherwise restart to make sure all gone */
index = start;
continue;
}
for (i = 0; i < folio_batch_count(&fbatch); i++) {
struct folio *folio = fbatch.folios[i];
/* We rely upon deletion not changing page->index */
if (xa_is_value(folio))
continue;
folio_lock(folio);
VM_BUG_ON_FOLIO(!folio_contains(folio, indices[i]), folio);
folio_wait_writeback(folio);
truncate_inode_folio(mapping, folio);
folio_unlock(folio);
}
truncate_folio_batch_exceptionals(mapping, &fbatch, indices);
folio_batch_release(&fbatch);
}
}
EXPORT_SYMBOL(truncate_inode_pages_range);
/**
* truncate_inode_pages - truncate *all* the pages from an offset
* @mapping: mapping to truncate
* @lstart: offset from which to truncate
*
* Called under (and serialised by) inode->i_rwsem and
* mapping->invalidate_lock.
*
* Note: When this function returns, there can be a page in the process of
* deletion (inside __filemap_remove_folio()) in the specified range. Thus
* mapping->nrpages can be non-zero when this function returns even after
* truncation of the whole mapping.
*/
void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
{
truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
}
EXPORT_SYMBOL(truncate_inode_pages);
/**
* truncate_inode_pages_final - truncate *all* pages before inode dies
* @mapping: mapping to truncate
*
* Called under (and serialized by) inode->i_rwsem.
*
* Filesystems have to use this in the .evict_inode path to inform the
* VM that this is the final truncate and the inode is going away.
*/
void truncate_inode_pages_final(struct address_space *mapping)
{
/*
* Page reclaim can not participate in regular inode lifetime
* management (can't call iput()) and thus can race with the
* inode teardown. Tell it when the address space is exiting,
* so that it does not install eviction information after the
* final truncate has begun.
*/
mapping_set_exiting(mapping);
if (!mapping_empty(mapping)) {
/*
* As truncation uses a lockless tree lookup, cycle
* the tree lock to make sure any ongoing tree
* modification that does not see AS_EXITING is
* completed before starting the final truncate.
*/
xa_lock_irq(&mapping->i_pages);
xa_unlock_irq(&mapping->i_pages);
}
truncate_inode_pages(mapping, 0);
}
EXPORT_SYMBOL(truncate_inode_pages_final);
/**
* mapping_try_invalidate - Invalidate all the evictable folios of one inode
* @mapping: the address_space which holds the folios to invalidate
* @start: the offset 'from' which to invalidate
* @end: the offset 'to' which to invalidate (inclusive)
* @nr_failed: How many folio invalidations failed
*
* This function is similar to invalidate_mapping_pages(), except that it
* returns the number of folios which could not be evicted in @nr_failed.
*/
unsigned long mapping_try_invalidate(struct address_space *mapping,
pgoff_t start, pgoff_t end, unsigned long *nr_failed)
{
pgoff_t indices[PAGEVEC_SIZE];
struct folio_batch fbatch;
pgoff_t index = start;
unsigned long ret;
unsigned long count = 0;
int i;
folio_batch_init(&fbatch);
while (find_lock_entries(mapping, &index, end, &fbatch, indices)) {
for (i = 0; i < folio_batch_count(&fbatch); i++) {
struct folio *folio = fbatch.folios[i];
/* We rely upon deletion not changing folio->index */
if (xa_is_value(folio)) {
count += invalidate_exceptional_entry(mapping,
indices[i], folio);
continue;
}
ret = mapping_evict_folio(mapping, folio);
folio_unlock(folio);
/*
* Invalidation is a hint that the folio is no longer
* of interest and try to speed up its reclaim.
*/
if (!ret) {
deactivate_file_folio(folio);
/* Likely in the lru cache of a remote CPU */
if (nr_failed)
(*nr_failed)++;
}
count += ret;
}
folio_batch_remove_exceptionals(&fbatch);
folio_batch_release(&fbatch);
cond_resched();
}
return count;
}
/**
* invalidate_mapping_pages - Invalidate all clean, unlocked cache of one inode
* @mapping: the address_space which holds the cache to invalidate
* @start: the offset 'from' which to invalidate
* @end: the offset 'to' which to invalidate (inclusive)
*
* This function removes pages that are clean, unmapped and unlocked,
* as well as shadow entries. It will not block on IO activity.
*
* If you want to remove all the pages of one inode, regardless of
* their use and writeback state, use truncate_inode_pages().
*
* Return: The number of indices that had their contents invalidated
*/
unsigned long invalidate_mapping_pages(struct address_space *mapping,
pgoff_t start, pgoff_t end)
{
return mapping_try_invalidate(mapping, start, end, NULL);
}
EXPORT_SYMBOL(invalidate_mapping_pages);
/*
* This is like invalidate_inode_page(), except it ignores the page's
* refcount. We do this because invalidate_inode_pages2() needs stronger
* invalidation guarantees, and cannot afford to leave pages behind because
* shrink_page_list() has a temp ref on them, or because they're transiently
* sitting in the folio_add_lru() caches.
*/
static int invalidate_complete_folio2(struct address_space *mapping,
struct folio *folio)
{
if (folio->mapping != mapping)
return 0;
if (!filemap_release_folio(folio, GFP_KERNEL))
return 0;
spin_lock(&mapping->host->i_lock);
xa_lock_irq(&mapping->i_pages);
if (folio_test_dirty(folio))
goto failed;
BUG_ON(folio_has_private(folio));
__filemap_remove_folio(folio, NULL);
xa_unlock_irq(&mapping->i_pages);
if (mapping_shrinkable(mapping))
inode_add_lru(mapping->host);
spin_unlock(&mapping->host->i_lock);
filemap_free_folio(mapping, folio);
return 1;
failed:
xa_unlock_irq(&mapping->i_pages);
spin_unlock(&mapping->host->i_lock);
return 0;
}
static int folio_launder(struct address_space *mapping, struct folio *folio)
{
if (!folio_test_dirty(folio))
return 0;
if (folio->mapping != mapping || mapping->a_ops->launder_folio == NULL)
return 0;
return mapping->a_ops->launder_folio(folio);
}
/**
* invalidate_inode_pages2_range - remove range of pages from an address_space
* @mapping: the address_space
* @start: the page offset 'from' which to invalidate
* @end: the page offset 'to' which to invalidate (inclusive)
*
* Any pages which are found to be mapped into pagetables are unmapped prior to
* invalidation.
*
* Return: -EBUSY if any pages could not be invalidated.
*/
int invalidate_inode_pages2_range(struct address_space *mapping,
pgoff_t start, pgoff_t end)
{
pgoff_t indices[PAGEVEC_SIZE];
struct folio_batch fbatch;
pgoff_t index;
int i;
int ret = 0;
int ret2 = 0;
int did_range_unmap = 0;
if (mapping_empty(mapping))
return 0;
folio_batch_init(&fbatch);
index = start;
while (find_get_entries(mapping, &index, end, &fbatch, indices)) {
for (i = 0; i < folio_batch_count(&fbatch); i++) {
struct folio *folio = fbatch.folios[i];
/* We rely upon deletion not changing folio->index */
if (xa_is_value(folio)) {
if (!invalidate_exceptional_entry2(mapping,
indices[i], folio))
ret = -EBUSY;
continue;
}
if (!did_range_unmap && folio_mapped(folio)) {
/*
* If folio is mapped, before taking its lock,
* zap the rest of the file in one hit.
*/
unmap_mapping_pages(mapping, indices[i],
(1 + end - indices[i]), false);
did_range_unmap = 1;
}
folio_lock(folio);
if (unlikely(folio->mapping != mapping)) {
folio_unlock(folio);
continue;
}
VM_BUG_ON_FOLIO(!folio_contains(folio, indices[i]), folio);
folio_wait_writeback(folio);
if (folio_mapped(folio))
unmap_mapping_folio(folio);
BUG_ON(folio_mapped(folio));
ret2 = folio_launder(mapping, folio);
if (ret2 == 0) {
if (!invalidate_complete_folio2(mapping, folio))
ret2 = -EBUSY;
}
if (ret2 < 0)
ret = ret2;
folio_unlock(folio);
}
folio_batch_remove_exceptionals(&fbatch);
folio_batch_release(&fbatch);
cond_resched();
}
/*
* For DAX we invalidate page tables after invalidating page cache. We
* could invalidate page tables while invalidating each entry however
* that would be expensive. And doing range unmapping before doesn't
* work as we have no cheap way to find whether page cache entry didn't
* get remapped later.
*/
if (dax_mapping(mapping)) {
unmap_mapping_pages(mapping, start, end - start + 1, false);
}
return ret;
}
EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
/**
* invalidate_inode_pages2 - remove all pages from an address_space
* @mapping: the address_space
*
* Any pages which are found to be mapped into pagetables are unmapped prior to
* invalidation.
*
* Return: -EBUSY if any pages could not be invalidated.
*/
int invalidate_inode_pages2(struct address_space *mapping)
{
return invalidate_inode_pages2_range(mapping, 0, -1);
}
EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
/**
* truncate_pagecache - unmap and remove pagecache that has been truncated
* @inode: inode
* @newsize: new file size
*
* inode's new i_size must already be written before truncate_pagecache
* is called.
*
* This function should typically be called before the filesystem
* releases resources associated with the freed range (eg. deallocates
* blocks). This way, pagecache will always stay logically coherent
* with on-disk format, and the filesystem would not have to deal with
* situations such as writepage being called for a page that has already
* had its underlying blocks deallocated.
*/
void truncate_pagecache(struct inode *inode, loff_t newsize)
{
struct address_space *mapping = inode->i_mapping;
loff_t holebegin = round_up(newsize, PAGE_SIZE);
/*
* unmap_mapping_range is called twice, first simply for
* efficiency so that truncate_inode_pages does fewer
* single-page unmaps. However after this first call, and
* before truncate_inode_pages finishes, it is possible for
* private pages to be COWed, which remain after
* truncate_inode_pages finishes, hence the second
* unmap_mapping_range call must be made for correctness.
*/
unmap_mapping_range(mapping, holebegin, 0, 1);
truncate_inode_pages(mapping, newsize);
unmap_mapping_range(mapping, holebegin, 0, 1);
}
EXPORT_SYMBOL(truncate_pagecache);
/**
* truncate_setsize - update inode and pagecache for a new file size
* @inode: inode
* @newsize: new file size
*
* truncate_setsize updates i_size and performs pagecache truncation (if
* necessary) to @newsize. It will be typically be called from the filesystem's
* setattr function when ATTR_SIZE is passed in.
*
* Must be called with a lock serializing truncates and writes (generally
* i_rwsem but e.g. xfs uses a different lock) and before all filesystem
* specific block truncation has been performed.
*/
void truncate_setsize(struct inode *inode, loff_t newsize)
{
loff_t oldsize = inode->i_size;
i_size_write(inode, newsize);
if (newsize > oldsize)
pagecache_isize_extended(inode, oldsize, newsize);
truncate_pagecache(inode, newsize);
}
EXPORT_SYMBOL(truncate_setsize);
/**
* pagecache_isize_extended - update pagecache after extension of i_size
* @inode: inode for which i_size was extended
* @from: original inode size
* @to: new inode size
*
* Handle extension of inode size either caused by extending truncate or by
* write starting after current i_size. We mark the page straddling current
* i_size RO so that page_mkwrite() is called on the nearest write access to
* the page. This way filesystem can be sure that page_mkwrite() is called on
* the page before user writes to the page via mmap after the i_size has been
* changed.
*
* The function must be called after i_size is updated so that page fault
* coming after we unlock the page will already see the new i_size.
* The function must be called while we still hold i_rwsem - this not only
* makes sure i_size is stable but also that userspace cannot observe new
* i_size value before we are prepared to store mmap writes at new inode size.
*/
void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to)
{
int bsize = i_blocksize(inode);
loff_t rounded_from;
struct page *page;
pgoff_t index;
WARN_ON(to > inode->i_size);
if (from >= to || bsize == PAGE_SIZE)
return;
/* Page straddling @from will not have any hole block created? */
rounded_from = round_up(from, bsize);
if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1)))
return;
index = from >> PAGE_SHIFT;
page = find_lock_page(inode->i_mapping, index);
/* Page not cached? Nothing to do */
if (!page)
return;
/*
* See clear_page_dirty_for_io() for details why set_page_dirty()
* is needed.
*/
if (page_mkclean(page))
set_page_dirty(page);
unlock_page(page);
put_page(page);
}
EXPORT_SYMBOL(pagecache_isize_extended);
/**
* truncate_pagecache_range - unmap and remove pagecache that is hole-punched
* @inode: inode
* @lstart: offset of beginning of hole
* @lend: offset of last byte of hole
*
* This function should typically be called before the filesystem
* releases resources associated with the freed range (eg. deallocates
* blocks). This way, pagecache will always stay logically coherent
* with on-disk format, and the filesystem would not have to deal with
* situations such as writepage being called for a page that has already
* had its underlying blocks deallocated.
*/
void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
{
struct address_space *mapping = inode->i_mapping;
loff_t unmap_start = round_up(lstart, PAGE_SIZE);
loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
/*
* This rounding is currently just for example: unmap_mapping_range
* expands its hole outwards, whereas we want it to contract the hole
* inwards. However, existing callers of truncate_pagecache_range are
* doing their own page rounding first. Note that unmap_mapping_range
* allows holelen 0 for all, and we allow lend -1 for end of file.
*/
/*
* Unlike in truncate_pagecache, unmap_mapping_range is called only
* once (before truncating pagecache), and without "even_cows" flag:
* hole-punching should not remove private COWed pages from the hole.
*/
if ((u64)unmap_end > (u64)unmap_start)
unmap_mapping_range(mapping, unmap_start,
1 + unmap_end - unmap_start, 0);
truncate_inode_pages_range(mapping, lstart, lend);
}
EXPORT_SYMBOL(truncate_pagecache_range);