blob: 25a3e2485cc2e9572943638d1975f678fbc26e38 [file] [log] [blame]
/*
* Copyright 2008 Jerome Glisse.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* Authors:
* Jerome Glisse <glisse@freedesktop.org>
*/
#include <linux/list_sort.h>
#include <drm/drmP.h>
#include <drm/amdgpu_drm.h>
#include "amdgpu.h"
#include "amdgpu_trace.h"
#define AMDGPU_CS_MAX_PRIORITY 32u
#define AMDGPU_CS_NUM_BUCKETS (AMDGPU_CS_MAX_PRIORITY + 1)
/* This is based on the bucket sort with O(n) time complexity.
* An item with priority "i" is added to bucket[i]. The lists are then
* concatenated in descending order.
*/
struct amdgpu_cs_buckets {
struct list_head bucket[AMDGPU_CS_NUM_BUCKETS];
};
static void amdgpu_cs_buckets_init(struct amdgpu_cs_buckets *b)
{
unsigned i;
for (i = 0; i < AMDGPU_CS_NUM_BUCKETS; i++)
INIT_LIST_HEAD(&b->bucket[i]);
}
static void amdgpu_cs_buckets_add(struct amdgpu_cs_buckets *b,
struct list_head *item, unsigned priority)
{
/* Since buffers which appear sooner in the relocation list are
* likely to be used more often than buffers which appear later
* in the list, the sort mustn't change the ordering of buffers
* with the same priority, i.e. it must be stable.
*/
list_add_tail(item, &b->bucket[min(priority, AMDGPU_CS_MAX_PRIORITY)]);
}
static void amdgpu_cs_buckets_get_list(struct amdgpu_cs_buckets *b,
struct list_head *out_list)
{
unsigned i;
/* Connect the sorted buckets in the output list. */
for (i = 0; i < AMDGPU_CS_NUM_BUCKETS; i++) {
list_splice(&b->bucket[i], out_list);
}
}
int amdgpu_cs_get_ring(struct amdgpu_device *adev, u32 ip_type,
u32 ip_instance, u32 ring,
struct amdgpu_ring **out_ring)
{
/* Right now all IPs have only one instance - multiple rings. */
if (ip_instance != 0) {
DRM_ERROR("invalid ip instance: %d\n", ip_instance);
return -EINVAL;
}
switch (ip_type) {
default:
DRM_ERROR("unknown ip type: %d\n", ip_type);
return -EINVAL;
case AMDGPU_HW_IP_GFX:
if (ring < adev->gfx.num_gfx_rings) {
*out_ring = &adev->gfx.gfx_ring[ring];
} else {
DRM_ERROR("only %d gfx rings are supported now\n",
adev->gfx.num_gfx_rings);
return -EINVAL;
}
break;
case AMDGPU_HW_IP_COMPUTE:
if (ring < adev->gfx.num_compute_rings) {
*out_ring = &adev->gfx.compute_ring[ring];
} else {
DRM_ERROR("only %d compute rings are supported now\n",
adev->gfx.num_compute_rings);
return -EINVAL;
}
break;
case AMDGPU_HW_IP_DMA:
if (ring < adev->sdma.num_instances) {
*out_ring = &adev->sdma.instance[ring].ring;
} else {
DRM_ERROR("only %d SDMA rings are supported\n",
adev->sdma.num_instances);
return -EINVAL;
}
break;
case AMDGPU_HW_IP_UVD:
*out_ring = &adev->uvd.ring;
break;
case AMDGPU_HW_IP_VCE:
if (ring < 2){
*out_ring = &adev->vce.ring[ring];
} else {
DRM_ERROR("only two VCE rings are supported\n");
return -EINVAL;
}
break;
}
return 0;
}
static int amdgpu_cs_user_fence_chunk(struct amdgpu_cs_parser *p,
struct drm_amdgpu_cs_chunk_fence *fence_data)
{
struct drm_gem_object *gobj;
uint32_t handle;
handle = fence_data->handle;
gobj = drm_gem_object_lookup(p->adev->ddev, p->filp,
fence_data->handle);
if (gobj == NULL)
return -EINVAL;
p->uf.bo = amdgpu_bo_ref(gem_to_amdgpu_bo(gobj));
p->uf.offset = fence_data->offset;
if (amdgpu_ttm_tt_has_userptr(p->uf.bo->tbo.ttm)) {
drm_gem_object_unreference_unlocked(gobj);
return -EINVAL;
}
p->uf_entry.robj = amdgpu_bo_ref(p->uf.bo);
p->uf_entry.prefered_domains = AMDGPU_GEM_DOMAIN_GTT;
p->uf_entry.allowed_domains = AMDGPU_GEM_DOMAIN_GTT;
p->uf_entry.priority = 0;
p->uf_entry.tv.bo = &p->uf_entry.robj->tbo;
p->uf_entry.tv.shared = true;
drm_gem_object_unreference_unlocked(gobj);
return 0;
}
int amdgpu_cs_parser_init(struct amdgpu_cs_parser *p, void *data)
{
union drm_amdgpu_cs *cs = data;
uint64_t *chunk_array_user;
uint64_t *chunk_array;
struct amdgpu_fpriv *fpriv = p->filp->driver_priv;
unsigned size;
int i;
int ret;
if (cs->in.num_chunks == 0)
return 0;
chunk_array = kmalloc_array(cs->in.num_chunks, sizeof(uint64_t), GFP_KERNEL);
if (!chunk_array)
return -ENOMEM;
p->ctx = amdgpu_ctx_get(fpriv, cs->in.ctx_id);
if (!p->ctx) {
ret = -EINVAL;
goto free_chunk;
}
p->bo_list = amdgpu_bo_list_get(fpriv, cs->in.bo_list_handle);
/* get chunks */
INIT_LIST_HEAD(&p->validated);
chunk_array_user = (uint64_t __user *)(unsigned long)(cs->in.chunks);
if (copy_from_user(chunk_array, chunk_array_user,
sizeof(uint64_t)*cs->in.num_chunks)) {
ret = -EFAULT;
goto put_bo_list;
}
p->nchunks = cs->in.num_chunks;
p->chunks = kmalloc_array(p->nchunks, sizeof(struct amdgpu_cs_chunk),
GFP_KERNEL);
if (!p->chunks) {
ret = -ENOMEM;
goto put_bo_list;
}
for (i = 0; i < p->nchunks; i++) {
struct drm_amdgpu_cs_chunk __user **chunk_ptr = NULL;
struct drm_amdgpu_cs_chunk user_chunk;
uint32_t __user *cdata;
chunk_ptr = (void __user *)(unsigned long)chunk_array[i];
if (copy_from_user(&user_chunk, chunk_ptr,
sizeof(struct drm_amdgpu_cs_chunk))) {
ret = -EFAULT;
i--;
goto free_partial_kdata;
}
p->chunks[i].chunk_id = user_chunk.chunk_id;
p->chunks[i].length_dw = user_chunk.length_dw;
size = p->chunks[i].length_dw;
cdata = (void __user *)(unsigned long)user_chunk.chunk_data;
p->chunks[i].user_ptr = cdata;
p->chunks[i].kdata = drm_malloc_ab(size, sizeof(uint32_t));
if (p->chunks[i].kdata == NULL) {
ret = -ENOMEM;
i--;
goto free_partial_kdata;
}
size *= sizeof(uint32_t);
if (copy_from_user(p->chunks[i].kdata, cdata, size)) {
ret = -EFAULT;
goto free_partial_kdata;
}
switch (p->chunks[i].chunk_id) {
case AMDGPU_CHUNK_ID_IB:
p->num_ibs++;
break;
case AMDGPU_CHUNK_ID_FENCE:
size = sizeof(struct drm_amdgpu_cs_chunk_fence);
if (p->chunks[i].length_dw * sizeof(uint32_t) < size) {
ret = -EINVAL;
goto free_partial_kdata;
}
ret = amdgpu_cs_user_fence_chunk(p, (void *)p->chunks[i].kdata);
if (ret)
goto free_partial_kdata;
break;
case AMDGPU_CHUNK_ID_DEPENDENCIES:
break;
default:
ret = -EINVAL;
goto free_partial_kdata;
}
}
p->ibs = kcalloc(p->num_ibs, sizeof(struct amdgpu_ib), GFP_KERNEL);
if (!p->ibs) {
ret = -ENOMEM;
goto free_all_kdata;
}
kfree(chunk_array);
return 0;
free_all_kdata:
i = p->nchunks - 1;
free_partial_kdata:
for (; i >= 0; i--)
drm_free_large(p->chunks[i].kdata);
kfree(p->chunks);
put_bo_list:
if (p->bo_list)
amdgpu_bo_list_put(p->bo_list);
amdgpu_ctx_put(p->ctx);
free_chunk:
kfree(chunk_array);
return ret;
}
/* Returns how many bytes TTM can move per IB.
*/
static u64 amdgpu_cs_get_threshold_for_moves(struct amdgpu_device *adev)
{
u64 real_vram_size = adev->mc.real_vram_size;
u64 vram_usage = atomic64_read(&adev->vram_usage);
/* This function is based on the current VRAM usage.
*
* - If all of VRAM is free, allow relocating the number of bytes that
* is equal to 1/4 of the size of VRAM for this IB.
* - If more than one half of VRAM is occupied, only allow relocating
* 1 MB of data for this IB.
*
* - From 0 to one half of used VRAM, the threshold decreases
* linearly.
* __________________
* 1/4 of -|\ |
* VRAM | \ |
* | \ |
* | \ |
* | \ |
* | \ |
* | \ |
* | \________|1 MB
* |----------------|
* VRAM 0 % 100 %
* used used
*
* Note: It's a threshold, not a limit. The threshold must be crossed
* for buffer relocations to stop, so any buffer of an arbitrary size
* can be moved as long as the threshold isn't crossed before
* the relocation takes place. We don't want to disable buffer
* relocations completely.
*
* The idea is that buffers should be placed in VRAM at creation time
* and TTM should only do a minimum number of relocations during
* command submission. In practice, you need to submit at least
* a dozen IBs to move all buffers to VRAM if they are in GTT.
*
* Also, things can get pretty crazy under memory pressure and actual
* VRAM usage can change a lot, so playing safe even at 50% does
* consistently increase performance.
*/
u64 half_vram = real_vram_size >> 1;
u64 half_free_vram = vram_usage >= half_vram ? 0 : half_vram - vram_usage;
u64 bytes_moved_threshold = half_free_vram >> 1;
return max(bytes_moved_threshold, 1024*1024ull);
}
int amdgpu_cs_list_validate(struct amdgpu_device *adev,
struct amdgpu_vm *vm,
struct list_head *validated)
{
struct amdgpu_bo_list_entry *lobj;
struct amdgpu_bo *bo;
u64 bytes_moved = 0, initial_bytes_moved;
u64 bytes_moved_threshold = amdgpu_cs_get_threshold_for_moves(adev);
int r;
list_for_each_entry(lobj, validated, tv.head) {
bo = lobj->robj;
if (!bo->pin_count) {
u32 domain = lobj->prefered_domains;
u32 current_domain =
amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type);
/* Check if this buffer will be moved and don't move it
* if we have moved too many buffers for this IB already.
*
* Note that this allows moving at least one buffer of
* any size, because it doesn't take the current "bo"
* into account. We don't want to disallow buffer moves
* completely.
*/
if ((lobj->allowed_domains & current_domain) != 0 &&
(domain & current_domain) == 0 && /* will be moved */
bytes_moved > bytes_moved_threshold) {
/* don't move it */
domain = current_domain;
}
retry:
amdgpu_ttm_placement_from_domain(bo, domain);
initial_bytes_moved = atomic64_read(&adev->num_bytes_moved);
r = ttm_bo_validate(&bo->tbo, &bo->placement, true, false);
bytes_moved += atomic64_read(&adev->num_bytes_moved) -
initial_bytes_moved;
if (unlikely(r)) {
if (r != -ERESTARTSYS && domain != lobj->allowed_domains) {
domain = lobj->allowed_domains;
goto retry;
}
return r;
}
}
lobj->bo_va = amdgpu_vm_bo_find(vm, bo);
}
return 0;
}
static int amdgpu_cs_parser_relocs(struct amdgpu_cs_parser *p)
{
struct amdgpu_fpriv *fpriv = p->filp->driver_priv;
struct amdgpu_cs_buckets buckets;
struct list_head duplicates;
bool need_mmap_lock = false;
int i, r;
if (p->bo_list) {
need_mmap_lock = p->bo_list->has_userptr;
amdgpu_cs_buckets_init(&buckets);
for (i = 0; i < p->bo_list->num_entries; i++)
amdgpu_cs_buckets_add(&buckets, &p->bo_list->array[i].tv.head,
p->bo_list->array[i].priority);
amdgpu_cs_buckets_get_list(&buckets, &p->validated);
}
p->vm_bos = amdgpu_vm_get_bos(p->adev, &fpriv->vm,
&p->validated);
if (p->uf.bo)
list_add(&p->uf_entry.tv.head, &p->validated);
if (need_mmap_lock)
down_read(&current->mm->mmap_sem);
INIT_LIST_HEAD(&duplicates);
r = ttm_eu_reserve_buffers(&p->ticket, &p->validated, true, &duplicates);
if (unlikely(r != 0))
goto error_reserve;
r = amdgpu_cs_list_validate(p->adev, &fpriv->vm, &p->validated);
if (r)
goto error_validate;
r = amdgpu_cs_list_validate(p->adev, &fpriv->vm, &duplicates);
error_validate:
if (r)
ttm_eu_backoff_reservation(&p->ticket, &p->validated);
error_reserve:
if (need_mmap_lock)
up_read(&current->mm->mmap_sem);
return r;
}
static int amdgpu_cs_sync_rings(struct amdgpu_cs_parser *p)
{
struct amdgpu_bo_list_entry *e;
int r;
list_for_each_entry(e, &p->validated, tv.head) {
struct reservation_object *resv = e->robj->tbo.resv;
r = amdgpu_sync_resv(p->adev, &p->ibs[0].sync, resv, p->filp);
if (r)
return r;
}
return 0;
}
static int cmp_size_smaller_first(void *priv, struct list_head *a,
struct list_head *b)
{
struct amdgpu_bo_list_entry *la = list_entry(a, struct amdgpu_bo_list_entry, tv.head);
struct amdgpu_bo_list_entry *lb = list_entry(b, struct amdgpu_bo_list_entry, tv.head);
/* Sort A before B if A is smaller. */
return (int)la->robj->tbo.num_pages - (int)lb->robj->tbo.num_pages;
}
/**
* cs_parser_fini() - clean parser states
* @parser: parser structure holding parsing context.
* @error: error number
*
* If error is set than unvalidate buffer, otherwise just free memory
* used by parsing context.
**/
static void amdgpu_cs_parser_fini(struct amdgpu_cs_parser *parser, int error, bool backoff)
{
unsigned i;
if (!error) {
/* Sort the buffer list from the smallest to largest buffer,
* which affects the order of buffers in the LRU list.
* This assures that the smallest buffers are added first
* to the LRU list, so they are likely to be later evicted
* first, instead of large buffers whose eviction is more
* expensive.
*
* This slightly lowers the number of bytes moved by TTM
* per frame under memory pressure.
*/
list_sort(NULL, &parser->validated, cmp_size_smaller_first);
ttm_eu_fence_buffer_objects(&parser->ticket,
&parser->validated,
parser->fence);
} else if (backoff) {
ttm_eu_backoff_reservation(&parser->ticket,
&parser->validated);
}
fence_put(parser->fence);
if (parser->ctx)
amdgpu_ctx_put(parser->ctx);
if (parser->bo_list)
amdgpu_bo_list_put(parser->bo_list);
drm_free_large(parser->vm_bos);
for (i = 0; i < parser->nchunks; i++)
drm_free_large(parser->chunks[i].kdata);
kfree(parser->chunks);
if (parser->ibs)
for (i = 0; i < parser->num_ibs; i++)
amdgpu_ib_free(parser->adev, &parser->ibs[i]);
kfree(parser->ibs);
amdgpu_bo_unref(&parser->uf.bo);
amdgpu_bo_unref(&parser->uf_entry.robj);
}
static int amdgpu_bo_vm_update_pte(struct amdgpu_cs_parser *p,
struct amdgpu_vm *vm)
{
struct amdgpu_device *adev = p->adev;
struct amdgpu_bo_va *bo_va;
struct amdgpu_bo *bo;
int i, r;
r = amdgpu_vm_update_page_directory(adev, vm);
if (r)
return r;
r = amdgpu_sync_fence(adev, &p->ibs[0].sync, vm->page_directory_fence);
if (r)
return r;
r = amdgpu_vm_clear_freed(adev, vm);
if (r)
return r;
if (p->bo_list) {
for (i = 0; i < p->bo_list->num_entries; i++) {
struct fence *f;
/* ignore duplicates */
bo = p->bo_list->array[i].robj;
if (!bo)
continue;
bo_va = p->bo_list->array[i].bo_va;
if (bo_va == NULL)
continue;
r = amdgpu_vm_bo_update(adev, bo_va, &bo->tbo.mem);
if (r)
return r;
f = bo_va->last_pt_update;
r = amdgpu_sync_fence(adev, &p->ibs[0].sync, f);
if (r)
return r;
}
}
r = amdgpu_vm_clear_invalids(adev, vm, &p->ibs[0].sync);
if (amdgpu_vm_debug && p->bo_list) {
/* Invalidate all BOs to test for userspace bugs */
for (i = 0; i < p->bo_list->num_entries; i++) {
/* ignore duplicates */
bo = p->bo_list->array[i].robj;
if (!bo)
continue;
amdgpu_vm_bo_invalidate(adev, bo);
}
}
return r;
}
static int amdgpu_cs_ib_vm_chunk(struct amdgpu_device *adev,
struct amdgpu_cs_parser *parser)
{
struct amdgpu_fpriv *fpriv = parser->filp->driver_priv;
struct amdgpu_vm *vm = &fpriv->vm;
struct amdgpu_ring *ring;
int i, r;
if (parser->num_ibs == 0)
return 0;
/* Only for UVD/VCE VM emulation */
for (i = 0; i < parser->num_ibs; i++) {
ring = parser->ibs[i].ring;
if (ring->funcs->parse_cs) {
r = amdgpu_ring_parse_cs(ring, parser, i);
if (r)
return r;
}
}
r = amdgpu_bo_vm_update_pte(parser, vm);
if (!r)
amdgpu_cs_sync_rings(parser);
return r;
}
static int amdgpu_cs_handle_lockup(struct amdgpu_device *adev, int r)
{
if (r == -EDEADLK) {
r = amdgpu_gpu_reset(adev);
if (!r)
r = -EAGAIN;
}
return r;
}
static int amdgpu_cs_ib_fill(struct amdgpu_device *adev,
struct amdgpu_cs_parser *parser)
{
struct amdgpu_fpriv *fpriv = parser->filp->driver_priv;
struct amdgpu_vm *vm = &fpriv->vm;
int i, j;
int r;
for (i = 0, j = 0; i < parser->nchunks && j < parser->num_ibs; i++) {
struct amdgpu_cs_chunk *chunk;
struct amdgpu_ib *ib;
struct drm_amdgpu_cs_chunk_ib *chunk_ib;
struct amdgpu_ring *ring;
chunk = &parser->chunks[i];
ib = &parser->ibs[j];
chunk_ib = (struct drm_amdgpu_cs_chunk_ib *)chunk->kdata;
if (chunk->chunk_id != AMDGPU_CHUNK_ID_IB)
continue;
r = amdgpu_cs_get_ring(adev, chunk_ib->ip_type,
chunk_ib->ip_instance, chunk_ib->ring,
&ring);
if (r)
return r;
if (ring->funcs->parse_cs) {
struct amdgpu_bo_va_mapping *m;
struct amdgpu_bo *aobj = NULL;
uint64_t offset;
uint8_t *kptr;
m = amdgpu_cs_find_mapping(parser, chunk_ib->va_start,
&aobj);
if (!aobj) {
DRM_ERROR("IB va_start is invalid\n");
return -EINVAL;
}
if ((chunk_ib->va_start + chunk_ib->ib_bytes) >
(m->it.last + 1) * AMDGPU_GPU_PAGE_SIZE) {
DRM_ERROR("IB va_start+ib_bytes is invalid\n");
return -EINVAL;
}
/* the IB should be reserved at this point */
r = amdgpu_bo_kmap(aobj, (void **)&kptr);
if (r) {
return r;
}
offset = ((uint64_t)m->it.start) * AMDGPU_GPU_PAGE_SIZE;
kptr += chunk_ib->va_start - offset;
r = amdgpu_ib_get(ring, NULL, chunk_ib->ib_bytes, ib);
if (r) {
DRM_ERROR("Failed to get ib !\n");
return r;
}
memcpy(ib->ptr, kptr, chunk_ib->ib_bytes);
amdgpu_bo_kunmap(aobj);
} else {
r = amdgpu_ib_get(ring, vm, 0, ib);
if (r) {
DRM_ERROR("Failed to get ib !\n");
return r;
}
ib->gpu_addr = chunk_ib->va_start;
}
ib->length_dw = chunk_ib->ib_bytes / 4;
ib->flags = chunk_ib->flags;
ib->ctx = parser->ctx;
j++;
}
if (!parser->num_ibs)
return 0;
/* add GDS resources to first IB */
if (parser->bo_list) {
struct amdgpu_bo *gds = parser->bo_list->gds_obj;
struct amdgpu_bo *gws = parser->bo_list->gws_obj;
struct amdgpu_bo *oa = parser->bo_list->oa_obj;
struct amdgpu_ib *ib = &parser->ibs[0];
if (gds) {
ib->gds_base = amdgpu_bo_gpu_offset(gds);
ib->gds_size = amdgpu_bo_size(gds);
}
if (gws) {
ib->gws_base = amdgpu_bo_gpu_offset(gws);
ib->gws_size = amdgpu_bo_size(gws);
}
if (oa) {
ib->oa_base = amdgpu_bo_gpu_offset(oa);
ib->oa_size = amdgpu_bo_size(oa);
}
}
/* wrap the last IB with user fence */
if (parser->uf.bo) {
struct amdgpu_ib *ib = &parser->ibs[parser->num_ibs - 1];
/* UVD & VCE fw doesn't support user fences */
if (ib->ring->type == AMDGPU_RING_TYPE_UVD ||
ib->ring->type == AMDGPU_RING_TYPE_VCE)
return -EINVAL;
ib->user = &parser->uf;
}
return 0;
}
static int amdgpu_cs_dependencies(struct amdgpu_device *adev,
struct amdgpu_cs_parser *p)
{
struct amdgpu_fpriv *fpriv = p->filp->driver_priv;
struct amdgpu_ib *ib;
int i, j, r;
if (!p->num_ibs)
return 0;
/* Add dependencies to first IB */
ib = &p->ibs[0];
for (i = 0; i < p->nchunks; ++i) {
struct drm_amdgpu_cs_chunk_dep *deps;
struct amdgpu_cs_chunk *chunk;
unsigned num_deps;
chunk = &p->chunks[i];
if (chunk->chunk_id != AMDGPU_CHUNK_ID_DEPENDENCIES)
continue;
deps = (struct drm_amdgpu_cs_chunk_dep *)chunk->kdata;
num_deps = chunk->length_dw * 4 /
sizeof(struct drm_amdgpu_cs_chunk_dep);
for (j = 0; j < num_deps; ++j) {
struct amdgpu_ring *ring;
struct amdgpu_ctx *ctx;
struct fence *fence;
r = amdgpu_cs_get_ring(adev, deps[j].ip_type,
deps[j].ip_instance,
deps[j].ring, &ring);
if (r)
return r;
ctx = amdgpu_ctx_get(fpriv, deps[j].ctx_id);
if (ctx == NULL)
return -EINVAL;
fence = amdgpu_ctx_get_fence(ctx, ring,
deps[j].handle);
if (IS_ERR(fence)) {
r = PTR_ERR(fence);
amdgpu_ctx_put(ctx);
return r;
} else if (fence) {
r = amdgpu_sync_fence(adev, &ib->sync, fence);
fence_put(fence);
amdgpu_ctx_put(ctx);
if (r)
return r;
}
}
}
return 0;
}
static int amdgpu_cs_free_job(struct amdgpu_job *job)
{
int i;
if (job->ibs)
for (i = 0; i < job->num_ibs; i++)
amdgpu_ib_free(job->adev, &job->ibs[i]);
kfree(job->ibs);
if (job->uf.bo)
amdgpu_bo_unref(&job->uf.bo);
return 0;
}
int amdgpu_cs_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
{
struct amdgpu_device *adev = dev->dev_private;
union drm_amdgpu_cs *cs = data;
struct amdgpu_cs_parser parser = {};
bool reserved_buffers = false;
int i, r;
if (!adev->accel_working)
return -EBUSY;
parser.adev = adev;
parser.filp = filp;
r = amdgpu_cs_parser_init(&parser, data);
if (r) {
DRM_ERROR("Failed to initialize parser !\n");
amdgpu_cs_parser_fini(&parser, r, false);
r = amdgpu_cs_handle_lockup(adev, r);
return r;
}
r = amdgpu_cs_parser_relocs(&parser);
if (r == -ENOMEM)
DRM_ERROR("Not enough memory for command submission!\n");
else if (r && r != -ERESTARTSYS)
DRM_ERROR("Failed to process the buffer list %d!\n", r);
else if (!r) {
reserved_buffers = true;
r = amdgpu_cs_ib_fill(adev, &parser);
}
if (!r) {
r = amdgpu_cs_dependencies(adev, &parser);
if (r)
DRM_ERROR("Failed in the dependencies handling %d!\n", r);
}
if (r)
goto out;
for (i = 0; i < parser.num_ibs; i++)
trace_amdgpu_cs(&parser, i);
r = amdgpu_cs_ib_vm_chunk(adev, &parser);
if (r)
goto out;
if (amdgpu_enable_scheduler && parser.num_ibs) {
struct amdgpu_ring * ring = parser.ibs->ring;
struct amd_sched_fence *fence;
struct amdgpu_job *job;
job = kzalloc(sizeof(struct amdgpu_job), GFP_KERNEL);
if (!job) {
r = -ENOMEM;
goto out;
}
job->base.sched = &ring->sched;
job->base.s_entity = &parser.ctx->rings[ring->idx].entity;
job->adev = parser.adev;
job->owner = parser.filp;
job->free_job = amdgpu_cs_free_job;
job->ibs = parser.ibs;
job->num_ibs = parser.num_ibs;
parser.ibs = NULL;
parser.num_ibs = 0;
if (job->ibs[job->num_ibs - 1].user) {
job->uf = parser.uf;
job->ibs[job->num_ibs - 1].user = &job->uf;
parser.uf.bo = NULL;
}
fence = amd_sched_fence_create(job->base.s_entity,
parser.filp);
if (!fence) {
r = -ENOMEM;
amdgpu_cs_free_job(job);
kfree(job);
goto out;
}
job->base.s_fence = fence;
parser.fence = fence_get(&fence->base);
cs->out.handle = amdgpu_ctx_add_fence(parser.ctx, ring,
&fence->base);
job->ibs[job->num_ibs - 1].sequence = cs->out.handle;
trace_amdgpu_cs_ioctl(job);
amd_sched_entity_push_job(&job->base);
} else {
struct amdgpu_fence *fence;
r = amdgpu_ib_schedule(adev, parser.num_ibs, parser.ibs,
parser.filp);
fence = parser.ibs[parser.num_ibs - 1].fence;
parser.fence = fence_get(&fence->base);
cs->out.handle = parser.ibs[parser.num_ibs - 1].sequence;
}
out:
amdgpu_cs_parser_fini(&parser, r, reserved_buffers);
r = amdgpu_cs_handle_lockup(adev, r);
return r;
}
/**
* amdgpu_cs_wait_ioctl - wait for a command submission to finish
*
* @dev: drm device
* @data: data from userspace
* @filp: file private
*
* Wait for the command submission identified by handle to finish.
*/
int amdgpu_cs_wait_ioctl(struct drm_device *dev, void *data,
struct drm_file *filp)
{
union drm_amdgpu_wait_cs *wait = data;
struct amdgpu_device *adev = dev->dev_private;
unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout);
struct amdgpu_ring *ring = NULL;
struct amdgpu_ctx *ctx;
struct fence *fence;
long r;
r = amdgpu_cs_get_ring(adev, wait->in.ip_type, wait->in.ip_instance,
wait->in.ring, &ring);
if (r)
return r;
ctx = amdgpu_ctx_get(filp->driver_priv, wait->in.ctx_id);
if (ctx == NULL)
return -EINVAL;
fence = amdgpu_ctx_get_fence(ctx, ring, wait->in.handle);
if (IS_ERR(fence))
r = PTR_ERR(fence);
else if (fence) {
r = fence_wait_timeout(fence, true, timeout);
fence_put(fence);
} else
r = 1;
amdgpu_ctx_put(ctx);
if (r < 0)
return r;
memset(wait, 0, sizeof(*wait));
wait->out.status = (r == 0);
return 0;
}
/**
* amdgpu_cs_find_bo_va - find bo_va for VM address
*
* @parser: command submission parser context
* @addr: VM address
* @bo: resulting BO of the mapping found
*
* Search the buffer objects in the command submission context for a certain
* virtual memory address. Returns allocation structure when found, NULL
* otherwise.
*/
struct amdgpu_bo_va_mapping *
amdgpu_cs_find_mapping(struct amdgpu_cs_parser *parser,
uint64_t addr, struct amdgpu_bo **bo)
{
struct amdgpu_bo_list_entry *reloc;
struct amdgpu_bo_va_mapping *mapping;
addr /= AMDGPU_GPU_PAGE_SIZE;
list_for_each_entry(reloc, &parser->validated, tv.head) {
if (!reloc->bo_va)
continue;
list_for_each_entry(mapping, &reloc->bo_va->valids, list) {
if (mapping->it.start > addr ||
addr > mapping->it.last)
continue;
*bo = reloc->bo_va->bo;
return mapping;
}
list_for_each_entry(mapping, &reloc->bo_va->invalids, list) {
if (mapping->it.start > addr ||
addr > mapping->it.last)
continue;
*bo = reloc->bo_va->bo;
return mapping;
}
}
return NULL;
}