| // SPDX-License-Identifier: GPL-2.0 |
| #include <linux/kernel.h> |
| #include <linux/pgtable.h> |
| |
| #include <linux/string.h> |
| #include <linux/bitops.h> |
| #include <linux/smp.h> |
| #include <linux/sched.h> |
| #include <linux/sched/clock.h> |
| #include <linux/thread_info.h> |
| #include <linux/init.h> |
| #include <linux/uaccess.h> |
| |
| #include <asm/cpufeature.h> |
| #include <asm/msr.h> |
| #include <asm/bugs.h> |
| #include <asm/cpu.h> |
| #include <asm/intel-family.h> |
| #include <asm/microcode_intel.h> |
| #include <asm/hwcap2.h> |
| #include <asm/elf.h> |
| #include <asm/cpu_device_id.h> |
| #include <asm/cmdline.h> |
| #include <asm/traps.h> |
| #include <asm/resctrl.h> |
| |
| #ifdef CONFIG_X86_64 |
| #include <linux/topology.h> |
| #endif |
| |
| #include "cpu.h" |
| |
| #ifdef CONFIG_X86_LOCAL_APIC |
| #include <asm/mpspec.h> |
| #include <asm/apic.h> |
| #endif |
| |
| enum split_lock_detect_state { |
| sld_off = 0, |
| sld_warn, |
| sld_fatal, |
| }; |
| |
| /* |
| * Default to sld_off because most systems do not support split lock detection |
| * split_lock_setup() will switch this to sld_warn on systems that support |
| * split lock detect, unless there is a command line override. |
| */ |
| static enum split_lock_detect_state sld_state __ro_after_init = sld_off; |
| static u64 msr_test_ctrl_cache __ro_after_init; |
| |
| /* |
| * With a name like MSR_TEST_CTL it should go without saying, but don't touch |
| * MSR_TEST_CTL unless the CPU is one of the whitelisted models. Writing it |
| * on CPUs that do not support SLD can cause fireworks, even when writing '0'. |
| */ |
| static bool cpu_model_supports_sld __ro_after_init; |
| |
| /* |
| * Processors which have self-snooping capability can handle conflicting |
| * memory type across CPUs by snooping its own cache. However, there exists |
| * CPU models in which having conflicting memory types still leads to |
| * unpredictable behavior, machine check errors, or hangs. Clear this |
| * feature to prevent its use on machines with known erratas. |
| */ |
| static void check_memory_type_self_snoop_errata(struct cpuinfo_x86 *c) |
| { |
| switch (c->x86_model) { |
| case INTEL_FAM6_CORE_YONAH: |
| case INTEL_FAM6_CORE2_MEROM: |
| case INTEL_FAM6_CORE2_MEROM_L: |
| case INTEL_FAM6_CORE2_PENRYN: |
| case INTEL_FAM6_CORE2_DUNNINGTON: |
| case INTEL_FAM6_NEHALEM: |
| case INTEL_FAM6_NEHALEM_G: |
| case INTEL_FAM6_NEHALEM_EP: |
| case INTEL_FAM6_NEHALEM_EX: |
| case INTEL_FAM6_WESTMERE: |
| case INTEL_FAM6_WESTMERE_EP: |
| case INTEL_FAM6_SANDYBRIDGE: |
| setup_clear_cpu_cap(X86_FEATURE_SELFSNOOP); |
| } |
| } |
| |
| static bool ring3mwait_disabled __read_mostly; |
| |
| static int __init ring3mwait_disable(char *__unused) |
| { |
| ring3mwait_disabled = true; |
| return 0; |
| } |
| __setup("ring3mwait=disable", ring3mwait_disable); |
| |
| static void probe_xeon_phi_r3mwait(struct cpuinfo_x86 *c) |
| { |
| /* |
| * Ring 3 MONITOR/MWAIT feature cannot be detected without |
| * cpu model and family comparison. |
| */ |
| if (c->x86 != 6) |
| return; |
| switch (c->x86_model) { |
| case INTEL_FAM6_XEON_PHI_KNL: |
| case INTEL_FAM6_XEON_PHI_KNM: |
| break; |
| default: |
| return; |
| } |
| |
| if (ring3mwait_disabled) |
| return; |
| |
| set_cpu_cap(c, X86_FEATURE_RING3MWAIT); |
| this_cpu_or(msr_misc_features_shadow, |
| 1UL << MSR_MISC_FEATURES_ENABLES_RING3MWAIT_BIT); |
| |
| if (c == &boot_cpu_data) |
| ELF_HWCAP2 |= HWCAP2_RING3MWAIT; |
| } |
| |
| /* |
| * Early microcode releases for the Spectre v2 mitigation were broken. |
| * Information taken from; |
| * - https://newsroom.intel.com/wp-content/uploads/sites/11/2018/03/microcode-update-guidance.pdf |
| * - https://kb.vmware.com/s/article/52345 |
| * - Microcode revisions observed in the wild |
| * - Release note from 20180108 microcode release |
| */ |
| struct sku_microcode { |
| u8 model; |
| u8 stepping; |
| u32 microcode; |
| }; |
| static const struct sku_microcode spectre_bad_microcodes[] = { |
| { INTEL_FAM6_KABYLAKE, 0x0B, 0x80 }, |
| { INTEL_FAM6_KABYLAKE, 0x0A, 0x80 }, |
| { INTEL_FAM6_KABYLAKE, 0x09, 0x80 }, |
| { INTEL_FAM6_KABYLAKE_L, 0x0A, 0x80 }, |
| { INTEL_FAM6_KABYLAKE_L, 0x09, 0x80 }, |
| { INTEL_FAM6_SKYLAKE_X, 0x03, 0x0100013e }, |
| { INTEL_FAM6_SKYLAKE_X, 0x04, 0x0200003c }, |
| { INTEL_FAM6_BROADWELL, 0x04, 0x28 }, |
| { INTEL_FAM6_BROADWELL_G, 0x01, 0x1b }, |
| { INTEL_FAM6_BROADWELL_D, 0x02, 0x14 }, |
| { INTEL_FAM6_BROADWELL_D, 0x03, 0x07000011 }, |
| { INTEL_FAM6_BROADWELL_X, 0x01, 0x0b000025 }, |
| { INTEL_FAM6_HASWELL_L, 0x01, 0x21 }, |
| { INTEL_FAM6_HASWELL_G, 0x01, 0x18 }, |
| { INTEL_FAM6_HASWELL, 0x03, 0x23 }, |
| { INTEL_FAM6_HASWELL_X, 0x02, 0x3b }, |
| { INTEL_FAM6_HASWELL_X, 0x04, 0x10 }, |
| { INTEL_FAM6_IVYBRIDGE_X, 0x04, 0x42a }, |
| /* Observed in the wild */ |
| { INTEL_FAM6_SANDYBRIDGE_X, 0x06, 0x61b }, |
| { INTEL_FAM6_SANDYBRIDGE_X, 0x07, 0x712 }, |
| }; |
| |
| static bool bad_spectre_microcode(struct cpuinfo_x86 *c) |
| { |
| int i; |
| |
| /* |
| * We know that the hypervisor lie to us on the microcode version so |
| * we may as well hope that it is running the correct version. |
| */ |
| if (cpu_has(c, X86_FEATURE_HYPERVISOR)) |
| return false; |
| |
| if (c->x86 != 6) |
| return false; |
| |
| for (i = 0; i < ARRAY_SIZE(spectre_bad_microcodes); i++) { |
| if (c->x86_model == spectre_bad_microcodes[i].model && |
| c->x86_stepping == spectre_bad_microcodes[i].stepping) |
| return (c->microcode <= spectre_bad_microcodes[i].microcode); |
| } |
| return false; |
| } |
| |
| static void early_init_intel(struct cpuinfo_x86 *c) |
| { |
| u64 misc_enable; |
| |
| /* Unmask CPUID levels if masked: */ |
| if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) { |
| if (msr_clear_bit(MSR_IA32_MISC_ENABLE, |
| MSR_IA32_MISC_ENABLE_LIMIT_CPUID_BIT) > 0) { |
| c->cpuid_level = cpuid_eax(0); |
| get_cpu_cap(c); |
| } |
| } |
| |
| if ((c->x86 == 0xf && c->x86_model >= 0x03) || |
| (c->x86 == 0x6 && c->x86_model >= 0x0e)) |
| set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC); |
| |
| if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64)) |
| c->microcode = intel_get_microcode_revision(); |
| |
| /* Now if any of them are set, check the blacklist and clear the lot */ |
| if ((cpu_has(c, X86_FEATURE_SPEC_CTRL) || |
| cpu_has(c, X86_FEATURE_INTEL_STIBP) || |
| cpu_has(c, X86_FEATURE_IBRS) || cpu_has(c, X86_FEATURE_IBPB) || |
| cpu_has(c, X86_FEATURE_STIBP)) && bad_spectre_microcode(c)) { |
| pr_warn("Intel Spectre v2 broken microcode detected; disabling Speculation Control\n"); |
| setup_clear_cpu_cap(X86_FEATURE_IBRS); |
| setup_clear_cpu_cap(X86_FEATURE_IBPB); |
| setup_clear_cpu_cap(X86_FEATURE_STIBP); |
| setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL); |
| setup_clear_cpu_cap(X86_FEATURE_MSR_SPEC_CTRL); |
| setup_clear_cpu_cap(X86_FEATURE_INTEL_STIBP); |
| setup_clear_cpu_cap(X86_FEATURE_SSBD); |
| setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL_SSBD); |
| } |
| |
| /* |
| * Atom erratum AAE44/AAF40/AAG38/AAH41: |
| * |
| * A race condition between speculative fetches and invalidating |
| * a large page. This is worked around in microcode, but we |
| * need the microcode to have already been loaded... so if it is |
| * not, recommend a BIOS update and disable large pages. |
| */ |
| if (c->x86 == 6 && c->x86_model == 0x1c && c->x86_stepping <= 2 && |
| c->microcode < 0x20e) { |
| pr_warn("Atom PSE erratum detected, BIOS microcode update recommended\n"); |
| clear_cpu_cap(c, X86_FEATURE_PSE); |
| } |
| |
| #ifdef CONFIG_X86_64 |
| set_cpu_cap(c, X86_FEATURE_SYSENTER32); |
| #else |
| /* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */ |
| if (c->x86 == 15 && c->x86_cache_alignment == 64) |
| c->x86_cache_alignment = 128; |
| #endif |
| |
| /* CPUID workaround for 0F33/0F34 CPU */ |
| if (c->x86 == 0xF && c->x86_model == 0x3 |
| && (c->x86_stepping == 0x3 || c->x86_stepping == 0x4)) |
| c->x86_phys_bits = 36; |
| |
| /* |
| * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate |
| * with P/T states and does not stop in deep C-states. |
| * |
| * It is also reliable across cores and sockets. (but not across |
| * cabinets - we turn it off in that case explicitly.) |
| */ |
| if (c->x86_power & (1 << 8)) { |
| set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC); |
| set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC); |
| } |
| |
| /* Penwell and Cloverview have the TSC which doesn't sleep on S3 */ |
| if (c->x86 == 6) { |
| switch (c->x86_model) { |
| case INTEL_FAM6_ATOM_SALTWELL_MID: |
| case INTEL_FAM6_ATOM_SALTWELL_TABLET: |
| case INTEL_FAM6_ATOM_SILVERMONT_MID: |
| case INTEL_FAM6_ATOM_AIRMONT_NP: |
| set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC_S3); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| /* |
| * There is a known erratum on Pentium III and Core Solo |
| * and Core Duo CPUs. |
| * " Page with PAT set to WC while associated MTRR is UC |
| * may consolidate to UC " |
| * Because of this erratum, it is better to stick with |
| * setting WC in MTRR rather than using PAT on these CPUs. |
| * |
| * Enable PAT WC only on P4, Core 2 or later CPUs. |
| */ |
| if (c->x86 == 6 && c->x86_model < 15) |
| clear_cpu_cap(c, X86_FEATURE_PAT); |
| |
| /* |
| * If fast string is not enabled in IA32_MISC_ENABLE for any reason, |
| * clear the fast string and enhanced fast string CPU capabilities. |
| */ |
| if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) { |
| rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable); |
| if (!(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) { |
| pr_info("Disabled fast string operations\n"); |
| setup_clear_cpu_cap(X86_FEATURE_REP_GOOD); |
| setup_clear_cpu_cap(X86_FEATURE_ERMS); |
| } |
| } |
| |
| /* |
| * Intel Quark Core DevMan_001.pdf section 6.4.11 |
| * "The operating system also is required to invalidate (i.e., flush) |
| * the TLB when any changes are made to any of the page table entries. |
| * The operating system must reload CR3 to cause the TLB to be flushed" |
| * |
| * As a result, boot_cpu_has(X86_FEATURE_PGE) in arch/x86/include/asm/tlbflush.h |
| * should be false so that __flush_tlb_all() causes CR3 insted of CR4.PGE |
| * to be modified. |
| */ |
| if (c->x86 == 5 && c->x86_model == 9) { |
| pr_info("Disabling PGE capability bit\n"); |
| setup_clear_cpu_cap(X86_FEATURE_PGE); |
| } |
| |
| if (c->cpuid_level >= 0x00000001) { |
| u32 eax, ebx, ecx, edx; |
| |
| cpuid(0x00000001, &eax, &ebx, &ecx, &edx); |
| /* |
| * If HTT (EDX[28]) is set EBX[16:23] contain the number of |
| * apicids which are reserved per package. Store the resulting |
| * shift value for the package management code. |
| */ |
| if (edx & (1U << 28)) |
| c->x86_coreid_bits = get_count_order((ebx >> 16) & 0xff); |
| } |
| |
| check_memory_type_self_snoop_errata(c); |
| |
| /* |
| * Get the number of SMT siblings early from the extended topology |
| * leaf, if available. Otherwise try the legacy SMT detection. |
| */ |
| if (detect_extended_topology_early(c) < 0) |
| detect_ht_early(c); |
| } |
| |
| static void bsp_init_intel(struct cpuinfo_x86 *c) |
| { |
| resctrl_cpu_detect(c); |
| } |
| |
| #ifdef CONFIG_X86_32 |
| /* |
| * Early probe support logic for ppro memory erratum #50 |
| * |
| * This is called before we do cpu ident work |
| */ |
| |
| int ppro_with_ram_bug(void) |
| { |
| /* Uses data from early_cpu_detect now */ |
| if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL && |
| boot_cpu_data.x86 == 6 && |
| boot_cpu_data.x86_model == 1 && |
| boot_cpu_data.x86_stepping < 8) { |
| pr_info("Pentium Pro with Errata#50 detected. Taking evasive action.\n"); |
| return 1; |
| } |
| return 0; |
| } |
| |
| static void intel_smp_check(struct cpuinfo_x86 *c) |
| { |
| /* calling is from identify_secondary_cpu() ? */ |
| if (!c->cpu_index) |
| return; |
| |
| /* |
| * Mask B, Pentium, but not Pentium MMX |
| */ |
| if (c->x86 == 5 && |
| c->x86_stepping >= 1 && c->x86_stepping <= 4 && |
| c->x86_model <= 3) { |
| /* |
| * Remember we have B step Pentia with bugs |
| */ |
| WARN_ONCE(1, "WARNING: SMP operation may be unreliable" |
| "with B stepping processors.\n"); |
| } |
| } |
| |
| static int forcepae; |
| static int __init forcepae_setup(char *__unused) |
| { |
| forcepae = 1; |
| return 1; |
| } |
| __setup("forcepae", forcepae_setup); |
| |
| static void intel_workarounds(struct cpuinfo_x86 *c) |
| { |
| #ifdef CONFIG_X86_F00F_BUG |
| /* |
| * All models of Pentium and Pentium with MMX technology CPUs |
| * have the F0 0F bug, which lets nonprivileged users lock up the |
| * system. Announce that the fault handler will be checking for it. |
| * The Quark is also family 5, but does not have the same bug. |
| */ |
| clear_cpu_bug(c, X86_BUG_F00F); |
| if (c->x86 == 5 && c->x86_model < 9) { |
| static int f00f_workaround_enabled; |
| |
| set_cpu_bug(c, X86_BUG_F00F); |
| if (!f00f_workaround_enabled) { |
| pr_notice("Intel Pentium with F0 0F bug - workaround enabled.\n"); |
| f00f_workaround_enabled = 1; |
| } |
| } |
| #endif |
| |
| /* |
| * SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until |
| * model 3 mask 3 |
| */ |
| if ((c->x86<<8 | c->x86_model<<4 | c->x86_stepping) < 0x633) |
| clear_cpu_cap(c, X86_FEATURE_SEP); |
| |
| /* |
| * PAE CPUID issue: many Pentium M report no PAE but may have a |
| * functionally usable PAE implementation. |
| * Forcefully enable PAE if kernel parameter "forcepae" is present. |
| */ |
| if (forcepae) { |
| pr_warn("PAE forced!\n"); |
| set_cpu_cap(c, X86_FEATURE_PAE); |
| add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE); |
| } |
| |
| /* |
| * P4 Xeon erratum 037 workaround. |
| * Hardware prefetcher may cause stale data to be loaded into the cache. |
| */ |
| if ((c->x86 == 15) && (c->x86_model == 1) && (c->x86_stepping == 1)) { |
| if (msr_set_bit(MSR_IA32_MISC_ENABLE, |
| MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE_BIT) > 0) { |
| pr_info("CPU: C0 stepping P4 Xeon detected.\n"); |
| pr_info("CPU: Disabling hardware prefetching (Erratum 037)\n"); |
| } |
| } |
| |
| /* |
| * See if we have a good local APIC by checking for buggy Pentia, |
| * i.e. all B steppings and the C2 stepping of P54C when using their |
| * integrated APIC (see 11AP erratum in "Pentium Processor |
| * Specification Update"). |
| */ |
| if (boot_cpu_has(X86_FEATURE_APIC) && (c->x86<<8 | c->x86_model<<4) == 0x520 && |
| (c->x86_stepping < 0x6 || c->x86_stepping == 0xb)) |
| set_cpu_bug(c, X86_BUG_11AP); |
| |
| |
| #ifdef CONFIG_X86_INTEL_USERCOPY |
| /* |
| * Set up the preferred alignment for movsl bulk memory moves |
| */ |
| switch (c->x86) { |
| case 4: /* 486: untested */ |
| break; |
| case 5: /* Old Pentia: untested */ |
| break; |
| case 6: /* PII/PIII only like movsl with 8-byte alignment */ |
| movsl_mask.mask = 7; |
| break; |
| case 15: /* P4 is OK down to 8-byte alignment */ |
| movsl_mask.mask = 7; |
| break; |
| } |
| #endif |
| |
| intel_smp_check(c); |
| } |
| #else |
| static void intel_workarounds(struct cpuinfo_x86 *c) |
| { |
| } |
| #endif |
| |
| static void srat_detect_node(struct cpuinfo_x86 *c) |
| { |
| #ifdef CONFIG_NUMA |
| unsigned node; |
| int cpu = smp_processor_id(); |
| |
| /* Don't do the funky fallback heuristics the AMD version employs |
| for now. */ |
| node = numa_cpu_node(cpu); |
| if (node == NUMA_NO_NODE || !node_online(node)) { |
| /* reuse the value from init_cpu_to_node() */ |
| node = cpu_to_node(cpu); |
| } |
| numa_set_node(cpu, node); |
| #endif |
| } |
| |
| #define MSR_IA32_TME_ACTIVATE 0x982 |
| |
| /* Helpers to access TME_ACTIVATE MSR */ |
| #define TME_ACTIVATE_LOCKED(x) (x & 0x1) |
| #define TME_ACTIVATE_ENABLED(x) (x & 0x2) |
| |
| #define TME_ACTIVATE_POLICY(x) ((x >> 4) & 0xf) /* Bits 7:4 */ |
| #define TME_ACTIVATE_POLICY_AES_XTS_128 0 |
| |
| #define TME_ACTIVATE_KEYID_BITS(x) ((x >> 32) & 0xf) /* Bits 35:32 */ |
| |
| #define TME_ACTIVATE_CRYPTO_ALGS(x) ((x >> 48) & 0xffff) /* Bits 63:48 */ |
| #define TME_ACTIVATE_CRYPTO_AES_XTS_128 1 |
| |
| /* Values for mktme_status (SW only construct) */ |
| #define MKTME_ENABLED 0 |
| #define MKTME_DISABLED 1 |
| #define MKTME_UNINITIALIZED 2 |
| static int mktme_status = MKTME_UNINITIALIZED; |
| |
| static void detect_tme(struct cpuinfo_x86 *c) |
| { |
| u64 tme_activate, tme_policy, tme_crypto_algs; |
| int keyid_bits = 0, nr_keyids = 0; |
| static u64 tme_activate_cpu0 = 0; |
| |
| rdmsrl(MSR_IA32_TME_ACTIVATE, tme_activate); |
| |
| if (mktme_status != MKTME_UNINITIALIZED) { |
| if (tme_activate != tme_activate_cpu0) { |
| /* Broken BIOS? */ |
| pr_err_once("x86/tme: configuration is inconsistent between CPUs\n"); |
| pr_err_once("x86/tme: MKTME is not usable\n"); |
| mktme_status = MKTME_DISABLED; |
| |
| /* Proceed. We may need to exclude bits from x86_phys_bits. */ |
| } |
| } else { |
| tme_activate_cpu0 = tme_activate; |
| } |
| |
| if (!TME_ACTIVATE_LOCKED(tme_activate) || !TME_ACTIVATE_ENABLED(tme_activate)) { |
| pr_info_once("x86/tme: not enabled by BIOS\n"); |
| mktme_status = MKTME_DISABLED; |
| return; |
| } |
| |
| if (mktme_status != MKTME_UNINITIALIZED) |
| goto detect_keyid_bits; |
| |
| pr_info("x86/tme: enabled by BIOS\n"); |
| |
| tme_policy = TME_ACTIVATE_POLICY(tme_activate); |
| if (tme_policy != TME_ACTIVATE_POLICY_AES_XTS_128) |
| pr_warn("x86/tme: Unknown policy is active: %#llx\n", tme_policy); |
| |
| tme_crypto_algs = TME_ACTIVATE_CRYPTO_ALGS(tme_activate); |
| if (!(tme_crypto_algs & TME_ACTIVATE_CRYPTO_AES_XTS_128)) { |
| pr_err("x86/mktme: No known encryption algorithm is supported: %#llx\n", |
| tme_crypto_algs); |
| mktme_status = MKTME_DISABLED; |
| } |
| detect_keyid_bits: |
| keyid_bits = TME_ACTIVATE_KEYID_BITS(tme_activate); |
| nr_keyids = (1UL << keyid_bits) - 1; |
| if (nr_keyids) { |
| pr_info_once("x86/mktme: enabled by BIOS\n"); |
| pr_info_once("x86/mktme: %d KeyIDs available\n", nr_keyids); |
| } else { |
| pr_info_once("x86/mktme: disabled by BIOS\n"); |
| } |
| |
| if (mktme_status == MKTME_UNINITIALIZED) { |
| /* MKTME is usable */ |
| mktme_status = MKTME_ENABLED; |
| } |
| |
| /* |
| * KeyID bits effectively lower the number of physical address |
| * bits. Update cpuinfo_x86::x86_phys_bits accordingly. |
| */ |
| c->x86_phys_bits -= keyid_bits; |
| } |
| |
| static void init_cpuid_fault(struct cpuinfo_x86 *c) |
| { |
| u64 msr; |
| |
| if (!rdmsrl_safe(MSR_PLATFORM_INFO, &msr)) { |
| if (msr & MSR_PLATFORM_INFO_CPUID_FAULT) |
| set_cpu_cap(c, X86_FEATURE_CPUID_FAULT); |
| } |
| } |
| |
| static void init_intel_misc_features(struct cpuinfo_x86 *c) |
| { |
| u64 msr; |
| |
| if (rdmsrl_safe(MSR_MISC_FEATURES_ENABLES, &msr)) |
| return; |
| |
| /* Clear all MISC features */ |
| this_cpu_write(msr_misc_features_shadow, 0); |
| |
| /* Check features and update capabilities and shadow control bits */ |
| init_cpuid_fault(c); |
| probe_xeon_phi_r3mwait(c); |
| |
| msr = this_cpu_read(msr_misc_features_shadow); |
| wrmsrl(MSR_MISC_FEATURES_ENABLES, msr); |
| } |
| |
| static void split_lock_init(void); |
| |
| static void init_intel(struct cpuinfo_x86 *c) |
| { |
| early_init_intel(c); |
| |
| intel_workarounds(c); |
| |
| /* |
| * Detect the extended topology information if available. This |
| * will reinitialise the initial_apicid which will be used |
| * in init_intel_cacheinfo() |
| */ |
| detect_extended_topology(c); |
| |
| if (!cpu_has(c, X86_FEATURE_XTOPOLOGY)) { |
| /* |
| * let's use the legacy cpuid vector 0x1 and 0x4 for topology |
| * detection. |
| */ |
| detect_num_cpu_cores(c); |
| #ifdef CONFIG_X86_32 |
| detect_ht(c); |
| #endif |
| } |
| |
| init_intel_cacheinfo(c); |
| |
| if (c->cpuid_level > 9) { |
| unsigned eax = cpuid_eax(10); |
| /* Check for version and the number of counters */ |
| if ((eax & 0xff) && (((eax>>8) & 0xff) > 1)) |
| set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON); |
| } |
| |
| if (cpu_has(c, X86_FEATURE_XMM2)) |
| set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC); |
| |
| if (boot_cpu_has(X86_FEATURE_DS)) { |
| unsigned int l1, l2; |
| |
| rdmsr(MSR_IA32_MISC_ENABLE, l1, l2); |
| if (!(l1 & (1<<11))) |
| set_cpu_cap(c, X86_FEATURE_BTS); |
| if (!(l1 & (1<<12))) |
| set_cpu_cap(c, X86_FEATURE_PEBS); |
| } |
| |
| if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_CLFLUSH) && |
| (c->x86_model == 29 || c->x86_model == 46 || c->x86_model == 47)) |
| set_cpu_bug(c, X86_BUG_CLFLUSH_MONITOR); |
| |
| if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_MWAIT) && |
| ((c->x86_model == INTEL_FAM6_ATOM_GOLDMONT))) |
| set_cpu_bug(c, X86_BUG_MONITOR); |
| |
| #ifdef CONFIG_X86_64 |
| if (c->x86 == 15) |
| c->x86_cache_alignment = c->x86_clflush_size * 2; |
| if (c->x86 == 6) |
| set_cpu_cap(c, X86_FEATURE_REP_GOOD); |
| #else |
| /* |
| * Names for the Pentium II/Celeron processors |
| * detectable only by also checking the cache size. |
| * Dixon is NOT a Celeron. |
| */ |
| if (c->x86 == 6) { |
| unsigned int l2 = c->x86_cache_size; |
| char *p = NULL; |
| |
| switch (c->x86_model) { |
| case 5: |
| if (l2 == 0) |
| p = "Celeron (Covington)"; |
| else if (l2 == 256) |
| p = "Mobile Pentium II (Dixon)"; |
| break; |
| |
| case 6: |
| if (l2 == 128) |
| p = "Celeron (Mendocino)"; |
| else if (c->x86_stepping == 0 || c->x86_stepping == 5) |
| p = "Celeron-A"; |
| break; |
| |
| case 8: |
| if (l2 == 128) |
| p = "Celeron (Coppermine)"; |
| break; |
| } |
| |
| if (p) |
| strcpy(c->x86_model_id, p); |
| } |
| |
| if (c->x86 == 15) |
| set_cpu_cap(c, X86_FEATURE_P4); |
| if (c->x86 == 6) |
| set_cpu_cap(c, X86_FEATURE_P3); |
| #endif |
| |
| /* Work around errata */ |
| srat_detect_node(c); |
| |
| init_ia32_feat_ctl(c); |
| |
| if (cpu_has(c, X86_FEATURE_TME)) |
| detect_tme(c); |
| |
| init_intel_misc_features(c); |
| |
| if (tsx_ctrl_state == TSX_CTRL_ENABLE) |
| tsx_enable(); |
| if (tsx_ctrl_state == TSX_CTRL_DISABLE) |
| tsx_disable(); |
| |
| split_lock_init(); |
| } |
| |
| #ifdef CONFIG_X86_32 |
| static unsigned int intel_size_cache(struct cpuinfo_x86 *c, unsigned int size) |
| { |
| /* |
| * Intel PIII Tualatin. This comes in two flavours. |
| * One has 256kb of cache, the other 512. We have no way |
| * to determine which, so we use a boottime override |
| * for the 512kb model, and assume 256 otherwise. |
| */ |
| if ((c->x86 == 6) && (c->x86_model == 11) && (size == 0)) |
| size = 256; |
| |
| /* |
| * Intel Quark SoC X1000 contains a 4-way set associative |
| * 16K cache with a 16 byte cache line and 256 lines per tag |
| */ |
| if ((c->x86 == 5) && (c->x86_model == 9)) |
| size = 16; |
| return size; |
| } |
| #endif |
| |
| #define TLB_INST_4K 0x01 |
| #define TLB_INST_4M 0x02 |
| #define TLB_INST_2M_4M 0x03 |
| |
| #define TLB_INST_ALL 0x05 |
| #define TLB_INST_1G 0x06 |
| |
| #define TLB_DATA_4K 0x11 |
| #define TLB_DATA_4M 0x12 |
| #define TLB_DATA_2M_4M 0x13 |
| #define TLB_DATA_4K_4M 0x14 |
| |
| #define TLB_DATA_1G 0x16 |
| |
| #define TLB_DATA0_4K 0x21 |
| #define TLB_DATA0_4M 0x22 |
| #define TLB_DATA0_2M_4M 0x23 |
| |
| #define STLB_4K 0x41 |
| #define STLB_4K_2M 0x42 |
| |
| static const struct _tlb_table intel_tlb_table[] = { |
| { 0x01, TLB_INST_4K, 32, " TLB_INST 4 KByte pages, 4-way set associative" }, |
| { 0x02, TLB_INST_4M, 2, " TLB_INST 4 MByte pages, full associative" }, |
| { 0x03, TLB_DATA_4K, 64, " TLB_DATA 4 KByte pages, 4-way set associative" }, |
| { 0x04, TLB_DATA_4M, 8, " TLB_DATA 4 MByte pages, 4-way set associative" }, |
| { 0x05, TLB_DATA_4M, 32, " TLB_DATA 4 MByte pages, 4-way set associative" }, |
| { 0x0b, TLB_INST_4M, 4, " TLB_INST 4 MByte pages, 4-way set associative" }, |
| { 0x4f, TLB_INST_4K, 32, " TLB_INST 4 KByte pages" }, |
| { 0x50, TLB_INST_ALL, 64, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" }, |
| { 0x51, TLB_INST_ALL, 128, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" }, |
| { 0x52, TLB_INST_ALL, 256, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" }, |
| { 0x55, TLB_INST_2M_4M, 7, " TLB_INST 2-MByte or 4-MByte pages, fully associative" }, |
| { 0x56, TLB_DATA0_4M, 16, " TLB_DATA0 4 MByte pages, 4-way set associative" }, |
| { 0x57, TLB_DATA0_4K, 16, " TLB_DATA0 4 KByte pages, 4-way associative" }, |
| { 0x59, TLB_DATA0_4K, 16, " TLB_DATA0 4 KByte pages, fully associative" }, |
| { 0x5a, TLB_DATA0_2M_4M, 32, " TLB_DATA0 2-MByte or 4 MByte pages, 4-way set associative" }, |
| { 0x5b, TLB_DATA_4K_4M, 64, " TLB_DATA 4 KByte and 4 MByte pages" }, |
| { 0x5c, TLB_DATA_4K_4M, 128, " TLB_DATA 4 KByte and 4 MByte pages" }, |
| { 0x5d, TLB_DATA_4K_4M, 256, " TLB_DATA 4 KByte and 4 MByte pages" }, |
| { 0x61, TLB_INST_4K, 48, " TLB_INST 4 KByte pages, full associative" }, |
| { 0x63, TLB_DATA_1G, 4, " TLB_DATA 1 GByte pages, 4-way set associative" }, |
| { 0x6b, TLB_DATA_4K, 256, " TLB_DATA 4 KByte pages, 8-way associative" }, |
| { 0x6c, TLB_DATA_2M_4M, 128, " TLB_DATA 2 MByte or 4 MByte pages, 8-way associative" }, |
| { 0x6d, TLB_DATA_1G, 16, " TLB_DATA 1 GByte pages, fully associative" }, |
| { 0x76, TLB_INST_2M_4M, 8, " TLB_INST 2-MByte or 4-MByte pages, fully associative" }, |
| { 0xb0, TLB_INST_4K, 128, " TLB_INST 4 KByte pages, 4-way set associative" }, |
| { 0xb1, TLB_INST_2M_4M, 4, " TLB_INST 2M pages, 4-way, 8 entries or 4M pages, 4-way entries" }, |
| { 0xb2, TLB_INST_4K, 64, " TLB_INST 4KByte pages, 4-way set associative" }, |
| { 0xb3, TLB_DATA_4K, 128, " TLB_DATA 4 KByte pages, 4-way set associative" }, |
| { 0xb4, TLB_DATA_4K, 256, " TLB_DATA 4 KByte pages, 4-way associative" }, |
| { 0xb5, TLB_INST_4K, 64, " TLB_INST 4 KByte pages, 8-way set associative" }, |
| { 0xb6, TLB_INST_4K, 128, " TLB_INST 4 KByte pages, 8-way set associative" }, |
| { 0xba, TLB_DATA_4K, 64, " TLB_DATA 4 KByte pages, 4-way associative" }, |
| { 0xc0, TLB_DATA_4K_4M, 8, " TLB_DATA 4 KByte and 4 MByte pages, 4-way associative" }, |
| { 0xc1, STLB_4K_2M, 1024, " STLB 4 KByte and 2 MByte pages, 8-way associative" }, |
| { 0xc2, TLB_DATA_2M_4M, 16, " TLB_DATA 2 MByte/4MByte pages, 4-way associative" }, |
| { 0xca, STLB_4K, 512, " STLB 4 KByte pages, 4-way associative" }, |
| { 0x00, 0, 0 } |
| }; |
| |
| static void intel_tlb_lookup(const unsigned char desc) |
| { |
| unsigned char k; |
| if (desc == 0) |
| return; |
| |
| /* look up this descriptor in the table */ |
| for (k = 0; intel_tlb_table[k].descriptor != desc && |
| intel_tlb_table[k].descriptor != 0; k++) |
| ; |
| |
| if (intel_tlb_table[k].tlb_type == 0) |
| return; |
| |
| switch (intel_tlb_table[k].tlb_type) { |
| case STLB_4K: |
| if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries) |
| tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries; |
| if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries) |
| tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries; |
| break; |
| case STLB_4K_2M: |
| if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries) |
| tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries; |
| if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries) |
| tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries; |
| if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries) |
| tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries; |
| if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries) |
| tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries; |
| if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries) |
| tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries; |
| if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries) |
| tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries; |
| break; |
| case TLB_INST_ALL: |
| if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries) |
| tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries; |
| if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries) |
| tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries; |
| if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries) |
| tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries; |
| break; |
| case TLB_INST_4K: |
| if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries) |
| tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries; |
| break; |
| case TLB_INST_4M: |
| if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries) |
| tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries; |
| break; |
| case TLB_INST_2M_4M: |
| if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries) |
| tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries; |
| if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries) |
| tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries; |
| break; |
| case TLB_DATA_4K: |
| case TLB_DATA0_4K: |
| if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries) |
| tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries; |
| break; |
| case TLB_DATA_4M: |
| case TLB_DATA0_4M: |
| if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries) |
| tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries; |
| break; |
| case TLB_DATA_2M_4M: |
| case TLB_DATA0_2M_4M: |
| if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries) |
| tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries; |
| if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries) |
| tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries; |
| break; |
| case TLB_DATA_4K_4M: |
| if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries) |
| tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries; |
| if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries) |
| tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries; |
| break; |
| case TLB_DATA_1G: |
| if (tlb_lld_1g[ENTRIES] < intel_tlb_table[k].entries) |
| tlb_lld_1g[ENTRIES] = intel_tlb_table[k].entries; |
| break; |
| } |
| } |
| |
| static void intel_detect_tlb(struct cpuinfo_x86 *c) |
| { |
| int i, j, n; |
| unsigned int regs[4]; |
| unsigned char *desc = (unsigned char *)regs; |
| |
| if (c->cpuid_level < 2) |
| return; |
| |
| /* Number of times to iterate */ |
| n = cpuid_eax(2) & 0xFF; |
| |
| for (i = 0 ; i < n ; i++) { |
| cpuid(2, ®s[0], ®s[1], ®s[2], ®s[3]); |
| |
| /* If bit 31 is set, this is an unknown format */ |
| for (j = 0 ; j < 3 ; j++) |
| if (regs[j] & (1 << 31)) |
| regs[j] = 0; |
| |
| /* Byte 0 is level count, not a descriptor */ |
| for (j = 1 ; j < 16 ; j++) |
| intel_tlb_lookup(desc[j]); |
| } |
| } |
| |
| static const struct cpu_dev intel_cpu_dev = { |
| .c_vendor = "Intel", |
| .c_ident = { "GenuineIntel" }, |
| #ifdef CONFIG_X86_32 |
| .legacy_models = { |
| { .family = 4, .model_names = |
| { |
| [0] = "486 DX-25/33", |
| [1] = "486 DX-50", |
| [2] = "486 SX", |
| [3] = "486 DX/2", |
| [4] = "486 SL", |
| [5] = "486 SX/2", |
| [7] = "486 DX/2-WB", |
| [8] = "486 DX/4", |
| [9] = "486 DX/4-WB" |
| } |
| }, |
| { .family = 5, .model_names = |
| { |
| [0] = "Pentium 60/66 A-step", |
| [1] = "Pentium 60/66", |
| [2] = "Pentium 75 - 200", |
| [3] = "OverDrive PODP5V83", |
| [4] = "Pentium MMX", |
| [7] = "Mobile Pentium 75 - 200", |
| [8] = "Mobile Pentium MMX", |
| [9] = "Quark SoC X1000", |
| } |
| }, |
| { .family = 6, .model_names = |
| { |
| [0] = "Pentium Pro A-step", |
| [1] = "Pentium Pro", |
| [3] = "Pentium II (Klamath)", |
| [4] = "Pentium II (Deschutes)", |
| [5] = "Pentium II (Deschutes)", |
| [6] = "Mobile Pentium II", |
| [7] = "Pentium III (Katmai)", |
| [8] = "Pentium III (Coppermine)", |
| [10] = "Pentium III (Cascades)", |
| [11] = "Pentium III (Tualatin)", |
| } |
| }, |
| { .family = 15, .model_names = |
| { |
| [0] = "Pentium 4 (Unknown)", |
| [1] = "Pentium 4 (Willamette)", |
| [2] = "Pentium 4 (Northwood)", |
| [4] = "Pentium 4 (Foster)", |
| [5] = "Pentium 4 (Foster)", |
| } |
| }, |
| }, |
| .legacy_cache_size = intel_size_cache, |
| #endif |
| .c_detect_tlb = intel_detect_tlb, |
| .c_early_init = early_init_intel, |
| .c_bsp_init = bsp_init_intel, |
| .c_init = init_intel, |
| .c_x86_vendor = X86_VENDOR_INTEL, |
| }; |
| |
| cpu_dev_register(intel_cpu_dev); |
| |
| #undef pr_fmt |
| #define pr_fmt(fmt) "x86/split lock detection: " fmt |
| |
| static const struct { |
| const char *option; |
| enum split_lock_detect_state state; |
| } sld_options[] __initconst = { |
| { "off", sld_off }, |
| { "warn", sld_warn }, |
| { "fatal", sld_fatal }, |
| }; |
| |
| static inline bool match_option(const char *arg, int arglen, const char *opt) |
| { |
| int len = strlen(opt); |
| |
| return len == arglen && !strncmp(arg, opt, len); |
| } |
| |
| static bool split_lock_verify_msr(bool on) |
| { |
| u64 ctrl, tmp; |
| |
| if (rdmsrl_safe(MSR_TEST_CTRL, &ctrl)) |
| return false; |
| if (on) |
| ctrl |= MSR_TEST_CTRL_SPLIT_LOCK_DETECT; |
| else |
| ctrl &= ~MSR_TEST_CTRL_SPLIT_LOCK_DETECT; |
| if (wrmsrl_safe(MSR_TEST_CTRL, ctrl)) |
| return false; |
| rdmsrl(MSR_TEST_CTRL, tmp); |
| return ctrl == tmp; |
| } |
| |
| static void __init split_lock_setup(void) |
| { |
| enum split_lock_detect_state state = sld_warn; |
| char arg[20]; |
| int i, ret; |
| |
| if (!split_lock_verify_msr(false)) { |
| pr_info("MSR access failed: Disabled\n"); |
| return; |
| } |
| |
| ret = cmdline_find_option(boot_command_line, "split_lock_detect", |
| arg, sizeof(arg)); |
| if (ret >= 0) { |
| for (i = 0; i < ARRAY_SIZE(sld_options); i++) { |
| if (match_option(arg, ret, sld_options[i].option)) { |
| state = sld_options[i].state; |
| break; |
| } |
| } |
| } |
| |
| switch (state) { |
| case sld_off: |
| pr_info("disabled\n"); |
| return; |
| case sld_warn: |
| pr_info("warning about user-space split_locks\n"); |
| break; |
| case sld_fatal: |
| pr_info("sending SIGBUS on user-space split_locks\n"); |
| break; |
| } |
| |
| rdmsrl(MSR_TEST_CTRL, msr_test_ctrl_cache); |
| |
| if (!split_lock_verify_msr(true)) { |
| pr_info("MSR access failed: Disabled\n"); |
| return; |
| } |
| |
| sld_state = state; |
| setup_force_cpu_cap(X86_FEATURE_SPLIT_LOCK_DETECT); |
| } |
| |
| /* |
| * MSR_TEST_CTRL is per core, but we treat it like a per CPU MSR. Locking |
| * is not implemented as one thread could undo the setting of the other |
| * thread immediately after dropping the lock anyway. |
| */ |
| static void sld_update_msr(bool on) |
| { |
| u64 test_ctrl_val = msr_test_ctrl_cache; |
| |
| if (on) |
| test_ctrl_val |= MSR_TEST_CTRL_SPLIT_LOCK_DETECT; |
| |
| wrmsrl(MSR_TEST_CTRL, test_ctrl_val); |
| } |
| |
| static void split_lock_init(void) |
| { |
| if (cpu_model_supports_sld) |
| split_lock_verify_msr(sld_state != sld_off); |
| } |
| |
| static void split_lock_warn(unsigned long ip) |
| { |
| pr_warn_ratelimited("#AC: %s/%d took a split_lock trap at address: 0x%lx\n", |
| current->comm, current->pid, ip); |
| |
| /* |
| * Disable the split lock detection for this task so it can make |
| * progress and set TIF_SLD so the detection is re-enabled via |
| * switch_to_sld() when the task is scheduled out. |
| */ |
| sld_update_msr(false); |
| set_tsk_thread_flag(current, TIF_SLD); |
| } |
| |
| bool handle_guest_split_lock(unsigned long ip) |
| { |
| if (sld_state == sld_warn) { |
| split_lock_warn(ip); |
| return true; |
| } |
| |
| pr_warn_once("#AC: %s/%d %s split_lock trap at address: 0x%lx\n", |
| current->comm, current->pid, |
| sld_state == sld_fatal ? "fatal" : "bogus", ip); |
| |
| current->thread.error_code = 0; |
| current->thread.trap_nr = X86_TRAP_AC; |
| force_sig_fault(SIGBUS, BUS_ADRALN, NULL); |
| return false; |
| } |
| EXPORT_SYMBOL_GPL(handle_guest_split_lock); |
| |
| bool handle_user_split_lock(struct pt_regs *regs, long error_code) |
| { |
| if ((regs->flags & X86_EFLAGS_AC) || sld_state == sld_fatal) |
| return false; |
| split_lock_warn(regs->ip); |
| return true; |
| } |
| |
| /* |
| * This function is called only when switching between tasks with |
| * different split-lock detection modes. It sets the MSR for the |
| * mode of the new task. This is right most of the time, but since |
| * the MSR is shared by hyperthreads on a physical core there can |
| * be glitches when the two threads need different modes. |
| */ |
| void switch_to_sld(unsigned long tifn) |
| { |
| sld_update_msr(!(tifn & _TIF_SLD)); |
| } |
| |
| /* |
| * Bits in the IA32_CORE_CAPABILITIES are not architectural, so they should |
| * only be trusted if it is confirmed that a CPU model implements a |
| * specific feature at a particular bit position. |
| * |
| * The possible driver data field values: |
| * |
| * - 0: CPU models that are known to have the per-core split-lock detection |
| * feature even though they do not enumerate IA32_CORE_CAPABILITIES. |
| * |
| * - 1: CPU models which may enumerate IA32_CORE_CAPABILITIES and if so use |
| * bit 5 to enumerate the per-core split-lock detection feature. |
| */ |
| static const struct x86_cpu_id split_lock_cpu_ids[] __initconst = { |
| X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, 0), |
| X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_L, 0), |
| X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, 0), |
| X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT, 1), |
| X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_D, 1), |
| X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_L, 1), |
| X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE_L, 1), |
| X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE, 1), |
| {} |
| }; |
| |
| void __init cpu_set_core_cap_bits(struct cpuinfo_x86 *c) |
| { |
| const struct x86_cpu_id *m; |
| u64 ia32_core_caps; |
| |
| if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) |
| return; |
| |
| m = x86_match_cpu(split_lock_cpu_ids); |
| if (!m) |
| return; |
| |
| switch (m->driver_data) { |
| case 0: |
| break; |
| case 1: |
| if (!cpu_has(c, X86_FEATURE_CORE_CAPABILITIES)) |
| return; |
| rdmsrl(MSR_IA32_CORE_CAPS, ia32_core_caps); |
| if (!(ia32_core_caps & MSR_IA32_CORE_CAPS_SPLIT_LOCK_DETECT)) |
| return; |
| break; |
| default: |
| return; |
| } |
| |
| cpu_model_supports_sld = true; |
| split_lock_setup(); |
| } |