blob: fe54764caea9c7d6253de215fb198c2ab5333b40 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* New driver for Marvell Yukon 2 chipset.
* Based on earlier sk98lin, and skge driver.
*
* This driver intentionally does not support all the features
* of the original driver such as link fail-over and link management because
* those should be done at higher levels.
*
* Copyright (C) 2005 Stephen Hemminger <shemminger@osdl.org>
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/crc32.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/dma-mapping.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/pci.h>
#include <linux/interrupt.h>
#include <linux/ip.h>
#include <linux/slab.h>
#include <net/ip.h>
#include <linux/tcp.h>
#include <linux/in.h>
#include <linux/delay.h>
#include <linux/workqueue.h>
#include <linux/if_vlan.h>
#include <linux/prefetch.h>
#include <linux/debugfs.h>
#include <linux/mii.h>
#include <linux/of_device.h>
#include <linux/of_net.h>
#include <linux/dmi.h>
#include <asm/irq.h>
#include "sky2.h"
#define DRV_NAME "sky2"
#define DRV_VERSION "1.30"
/*
* The Yukon II chipset takes 64 bit command blocks (called list elements)
* that are organized into three (receive, transmit, status) different rings
* similar to Tigon3.
*/
#define RX_LE_SIZE 1024
#define RX_LE_BYTES (RX_LE_SIZE*sizeof(struct sky2_rx_le))
#define RX_MAX_PENDING (RX_LE_SIZE/6 - 2)
#define RX_DEF_PENDING RX_MAX_PENDING
/* This is the worst case number of transmit list elements for a single skb:
VLAN:GSO + CKSUM + Data + skb_frags * DMA */
#define MAX_SKB_TX_LE (2 + (sizeof(dma_addr_t)/sizeof(u32))*(MAX_SKB_FRAGS+1))
#define TX_MIN_PENDING (MAX_SKB_TX_LE+1)
#define TX_MAX_PENDING 1024
#define TX_DEF_PENDING 63
#define TX_WATCHDOG (5 * HZ)
#define NAPI_WEIGHT 64
#define PHY_RETRIES 1000
#define SKY2_EEPROM_MAGIC 0x9955aabb
#define RING_NEXT(x, s) (((x)+1) & ((s)-1))
static const u32 default_msg =
NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK
| NETIF_MSG_TIMER | NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR
| NETIF_MSG_IFUP | NETIF_MSG_IFDOWN;
static int debug = -1; /* defaults above */
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
static int copybreak __read_mostly = 128;
module_param(copybreak, int, 0);
MODULE_PARM_DESC(copybreak, "Receive copy threshold");
static int disable_msi = -1;
module_param(disable_msi, int, 0);
MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
static int legacy_pme = 0;
module_param(legacy_pme, int, 0);
MODULE_PARM_DESC(legacy_pme, "Legacy power management");
static const struct pci_device_id sky2_id_table[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x9000) }, /* SK-9Sxx */
{ PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x9E00) }, /* SK-9Exx */
{ PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x9E01) }, /* SK-9E21M */
{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b00) }, /* DGE-560T */
{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4001) }, /* DGE-550SX */
{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4B02) }, /* DGE-560SX */
{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4B03) }, /* DGE-550T */
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4340) }, /* 88E8021 */
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4341) }, /* 88E8022 */
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4342) }, /* 88E8061 */
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4343) }, /* 88E8062 */
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4344) }, /* 88E8021 */
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4345) }, /* 88E8022 */
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4346) }, /* 88E8061 */
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4347) }, /* 88E8062 */
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4350) }, /* 88E8035 */
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4351) }, /* 88E8036 */
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4352) }, /* 88E8038 */
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4353) }, /* 88E8039 */
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4354) }, /* 88E8040 */
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4355) }, /* 88E8040T */
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4356) }, /* 88EC033 */
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4357) }, /* 88E8042 */
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x435A) }, /* 88E8048 */
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4360) }, /* 88E8052 */
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4361) }, /* 88E8050 */
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4362) }, /* 88E8053 */
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4363) }, /* 88E8055 */
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4364) }, /* 88E8056 */
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4365) }, /* 88E8070 */
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4366) }, /* 88EC036 */
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4367) }, /* 88EC032 */
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4368) }, /* 88EC034 */
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4369) }, /* 88EC042 */
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x436A) }, /* 88E8058 */
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x436B) }, /* 88E8071 */
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x436C) }, /* 88E8072 */
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x436D) }, /* 88E8055 */
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4370) }, /* 88E8075 */
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4380) }, /* 88E8057 */
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4381) }, /* 88E8059 */
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4382) }, /* 88E8079 */
{ 0 }
};
MODULE_DEVICE_TABLE(pci, sky2_id_table);
/* Avoid conditionals by using array */
static const unsigned txqaddr[] = { Q_XA1, Q_XA2 };
static const unsigned rxqaddr[] = { Q_R1, Q_R2 };
static const u32 portirq_msk[] = { Y2_IS_PORT_1, Y2_IS_PORT_2 };
static void sky2_set_multicast(struct net_device *dev);
static irqreturn_t sky2_intr(int irq, void *dev_id);
/* Access to PHY via serial interconnect */
static int gm_phy_write(struct sky2_hw *hw, unsigned port, u16 reg, u16 val)
{
int i;
gma_write16(hw, port, GM_SMI_DATA, val);
gma_write16(hw, port, GM_SMI_CTRL,
GM_SMI_CT_PHY_AD(PHY_ADDR_MARV) | GM_SMI_CT_REG_AD(reg));
for (i = 0; i < PHY_RETRIES; i++) {
u16 ctrl = gma_read16(hw, port, GM_SMI_CTRL);
if (ctrl == 0xffff)
goto io_error;
if (!(ctrl & GM_SMI_CT_BUSY))
return 0;
udelay(10);
}
dev_warn(&hw->pdev->dev, "%s: phy write timeout\n", hw->dev[port]->name);
return -ETIMEDOUT;
io_error:
dev_err(&hw->pdev->dev, "%s: phy I/O error\n", hw->dev[port]->name);
return -EIO;
}
static int __gm_phy_read(struct sky2_hw *hw, unsigned port, u16 reg, u16 *val)
{
int i;
gma_write16(hw, port, GM_SMI_CTRL, GM_SMI_CT_PHY_AD(PHY_ADDR_MARV)
| GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
for (i = 0; i < PHY_RETRIES; i++) {
u16 ctrl = gma_read16(hw, port, GM_SMI_CTRL);
if (ctrl == 0xffff)
goto io_error;
if (ctrl & GM_SMI_CT_RD_VAL) {
*val = gma_read16(hw, port, GM_SMI_DATA);
return 0;
}
udelay(10);
}
dev_warn(&hw->pdev->dev, "%s: phy read timeout\n", hw->dev[port]->name);
return -ETIMEDOUT;
io_error:
dev_err(&hw->pdev->dev, "%s: phy I/O error\n", hw->dev[port]->name);
return -EIO;
}
static inline u16 gm_phy_read(struct sky2_hw *hw, unsigned port, u16 reg)
{
u16 v = 0;
__gm_phy_read(hw, port, reg, &v);
return v;
}
static void sky2_power_on(struct sky2_hw *hw)
{
/* switch power to VCC (WA for VAUX problem) */
sky2_write8(hw, B0_POWER_CTRL,
PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
/* disable Core Clock Division, */
sky2_write32(hw, B2_Y2_CLK_CTRL, Y2_CLK_DIV_DIS);
if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev > CHIP_REV_YU_XL_A1)
/* enable bits are inverted */
sky2_write8(hw, B2_Y2_CLK_GATE,
Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS);
else
sky2_write8(hw, B2_Y2_CLK_GATE, 0);
if (hw->flags & SKY2_HW_ADV_POWER_CTL) {
u32 reg;
sky2_pci_write32(hw, PCI_DEV_REG3, 0);
reg = sky2_pci_read32(hw, PCI_DEV_REG4);
/* set all bits to 0 except bits 15..12 and 8 */
reg &= P_ASPM_CONTROL_MSK;
sky2_pci_write32(hw, PCI_DEV_REG4, reg);
reg = sky2_pci_read32(hw, PCI_DEV_REG5);
/* set all bits to 0 except bits 28 & 27 */
reg &= P_CTL_TIM_VMAIN_AV_MSK;
sky2_pci_write32(hw, PCI_DEV_REG5, reg);
sky2_pci_write32(hw, PCI_CFG_REG_1, 0);
sky2_write16(hw, B0_CTST, Y2_HW_WOL_ON);
/* Enable workaround for dev 4.107 on Yukon-Ultra & Extreme */
reg = sky2_read32(hw, B2_GP_IO);
reg |= GLB_GPIO_STAT_RACE_DIS;
sky2_write32(hw, B2_GP_IO, reg);
sky2_read32(hw, B2_GP_IO);
}
/* Turn on "driver loaded" LED */
sky2_write16(hw, B0_CTST, Y2_LED_STAT_ON);
}
static void sky2_power_aux(struct sky2_hw *hw)
{
if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev > CHIP_REV_YU_XL_A1)
sky2_write8(hw, B2_Y2_CLK_GATE, 0);
else
/* enable bits are inverted */
sky2_write8(hw, B2_Y2_CLK_GATE,
Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS);
/* switch power to VAUX if supported and PME from D3cold */
if ( (sky2_read32(hw, B0_CTST) & Y2_VAUX_AVAIL) &&
pci_pme_capable(hw->pdev, PCI_D3cold))
sky2_write8(hw, B0_POWER_CTRL,
(PC_VAUX_ENA | PC_VCC_ENA |
PC_VAUX_ON | PC_VCC_OFF));
/* turn off "driver loaded LED" */
sky2_write16(hw, B0_CTST, Y2_LED_STAT_OFF);
}
static void sky2_gmac_reset(struct sky2_hw *hw, unsigned port)
{
u16 reg;
/* disable all GMAC IRQ's */
sky2_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
gma_write16(hw, port, GM_MC_ADDR_H2, 0);
gma_write16(hw, port, GM_MC_ADDR_H3, 0);
gma_write16(hw, port, GM_MC_ADDR_H4, 0);
reg = gma_read16(hw, port, GM_RX_CTRL);
reg |= GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA;
gma_write16(hw, port, GM_RX_CTRL, reg);
}
/* flow control to advertise bits */
static const u16 copper_fc_adv[] = {
[FC_NONE] = 0,
[FC_TX] = PHY_M_AN_ASP,
[FC_RX] = PHY_M_AN_PC,
[FC_BOTH] = PHY_M_AN_PC | PHY_M_AN_ASP,
};
/* flow control to advertise bits when using 1000BaseX */
static const u16 fiber_fc_adv[] = {
[FC_NONE] = PHY_M_P_NO_PAUSE_X,
[FC_TX] = PHY_M_P_ASYM_MD_X,
[FC_RX] = PHY_M_P_SYM_MD_X,
[FC_BOTH] = PHY_M_P_BOTH_MD_X,
};
/* flow control to GMA disable bits */
static const u16 gm_fc_disable[] = {
[FC_NONE] = GM_GPCR_FC_RX_DIS | GM_GPCR_FC_TX_DIS,
[FC_TX] = GM_GPCR_FC_RX_DIS,
[FC_RX] = GM_GPCR_FC_TX_DIS,
[FC_BOTH] = 0,
};
static void sky2_phy_init(struct sky2_hw *hw, unsigned port)
{
struct sky2_port *sky2 = netdev_priv(hw->dev[port]);
u16 ctrl, ct1000, adv, pg, ledctrl, ledover, reg;
if ( (sky2->flags & SKY2_FLAG_AUTO_SPEED) &&
!(hw->flags & SKY2_HW_NEWER_PHY)) {
u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
PHY_M_EC_MAC_S_MSK);
ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
/* on PHY 88E1040 Rev.D0 (and newer) downshift control changed */
if (hw->chip_id == CHIP_ID_YUKON_EC)
/* set downshift counter to 3x and enable downshift */
ectrl |= PHY_M_EC_DSC_2(2) | PHY_M_EC_DOWN_S_ENA;
else
/* set master & slave downshift counter to 1x */
ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
}
ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
if (sky2_is_copper(hw)) {
if (!(hw->flags & SKY2_HW_GIGABIT)) {
/* enable automatic crossover */
ctrl |= PHY_M_PC_MDI_XMODE(PHY_M_PC_ENA_AUTO) >> 1;
if (hw->chip_id == CHIP_ID_YUKON_FE_P &&
hw->chip_rev == CHIP_REV_YU_FE2_A0) {
u16 spec;
/* Enable Class A driver for FE+ A0 */
spec = gm_phy_read(hw, port, PHY_MARV_FE_SPEC_2);
spec |= PHY_M_FESC_SEL_CL_A;
gm_phy_write(hw, port, PHY_MARV_FE_SPEC_2, spec);
}
} else {
/* disable energy detect */
ctrl &= ~PHY_M_PC_EN_DET_MSK;
/* enable automatic crossover */
ctrl |= PHY_M_PC_MDI_XMODE(PHY_M_PC_ENA_AUTO);
/* downshift on PHY 88E1112 and 88E1149 is changed */
if ( (sky2->flags & SKY2_FLAG_AUTO_SPEED) &&
(hw->flags & SKY2_HW_NEWER_PHY)) {
/* set downshift counter to 3x and enable downshift */
ctrl &= ~PHY_M_PC_DSC_MSK;
ctrl |= PHY_M_PC_DSC(2) | PHY_M_PC_DOWN_S_ENA;
}
}
} else {
/* workaround for deviation #4.88 (CRC errors) */
/* disable Automatic Crossover */
ctrl &= ~PHY_M_PC_MDIX_MSK;
}
gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
/* special setup for PHY 88E1112 Fiber */
if (hw->chip_id == CHIP_ID_YUKON_XL && (hw->flags & SKY2_HW_FIBRE_PHY)) {
pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
/* Fiber: select 1000BASE-X only mode MAC Specific Ctrl Reg. */
gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 2);
ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
ctrl &= ~PHY_M_MAC_MD_MSK;
ctrl |= PHY_M_MAC_MODE_SEL(PHY_M_MAC_MD_1000BX);
gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
if (hw->pmd_type == 'P') {
/* select page 1 to access Fiber registers */
gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 1);
/* for SFP-module set SIGDET polarity to low */
ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
ctrl |= PHY_M_FIB_SIGD_POL;
gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
}
gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
}
ctrl = PHY_CT_RESET;
ct1000 = 0;
adv = PHY_AN_CSMA;
reg = 0;
if (sky2->flags & SKY2_FLAG_AUTO_SPEED) {
if (sky2_is_copper(hw)) {
if (sky2->advertising & ADVERTISED_1000baseT_Full)
ct1000 |= PHY_M_1000C_AFD;
if (sky2->advertising & ADVERTISED_1000baseT_Half)
ct1000 |= PHY_M_1000C_AHD;
if (sky2->advertising & ADVERTISED_100baseT_Full)
adv |= PHY_M_AN_100_FD;
if (sky2->advertising & ADVERTISED_100baseT_Half)
adv |= PHY_M_AN_100_HD;
if (sky2->advertising & ADVERTISED_10baseT_Full)
adv |= PHY_M_AN_10_FD;
if (sky2->advertising & ADVERTISED_10baseT_Half)
adv |= PHY_M_AN_10_HD;
} else { /* special defines for FIBER (88E1040S only) */
if (sky2->advertising & ADVERTISED_1000baseT_Full)
adv |= PHY_M_AN_1000X_AFD;
if (sky2->advertising & ADVERTISED_1000baseT_Half)
adv |= PHY_M_AN_1000X_AHD;
}
/* Restart Auto-negotiation */
ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
} else {
/* forced speed/duplex settings */
ct1000 = PHY_M_1000C_MSE;
/* Disable auto update for duplex flow control and duplex */
reg |= GM_GPCR_AU_DUP_DIS | GM_GPCR_AU_SPD_DIS;
switch (sky2->speed) {
case SPEED_1000:
ctrl |= PHY_CT_SP1000;
reg |= GM_GPCR_SPEED_1000;
break;
case SPEED_100:
ctrl |= PHY_CT_SP100;
reg |= GM_GPCR_SPEED_100;
break;
}
if (sky2->duplex == DUPLEX_FULL) {
reg |= GM_GPCR_DUP_FULL;
ctrl |= PHY_CT_DUP_MD;
} else if (sky2->speed < SPEED_1000)
sky2->flow_mode = FC_NONE;
}
if (sky2->flags & SKY2_FLAG_AUTO_PAUSE) {
if (sky2_is_copper(hw))
adv |= copper_fc_adv[sky2->flow_mode];
else
adv |= fiber_fc_adv[sky2->flow_mode];
} else {
reg |= GM_GPCR_AU_FCT_DIS;
reg |= gm_fc_disable[sky2->flow_mode];
/* Forward pause packets to GMAC? */
if (sky2->flow_mode & FC_RX)
sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
else
sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
}
gma_write16(hw, port, GM_GP_CTRL, reg);
if (hw->flags & SKY2_HW_GIGABIT)
gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
/* Setup Phy LED's */
ledctrl = PHY_M_LED_PULS_DUR(PULS_170MS);
ledover = 0;
switch (hw->chip_id) {
case CHIP_ID_YUKON_FE:
/* on 88E3082 these bits are at 11..9 (shifted left) */
ledctrl |= PHY_M_LED_BLINK_RT(BLINK_84MS) << 1;
ctrl = gm_phy_read(hw, port, PHY_MARV_FE_LED_PAR);
/* delete ACT LED control bits */
ctrl &= ~PHY_M_FELP_LED1_MSK;
/* change ACT LED control to blink mode */
ctrl |= PHY_M_FELP_LED1_CTRL(LED_PAR_CTRL_ACT_BL);
gm_phy_write(hw, port, PHY_MARV_FE_LED_PAR, ctrl);
break;
case CHIP_ID_YUKON_FE_P:
/* Enable Link Partner Next Page */
ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
ctrl |= PHY_M_PC_ENA_LIP_NP;
/* disable Energy Detect and enable scrambler */
ctrl &= ~(PHY_M_PC_ENA_ENE_DT | PHY_M_PC_DIS_SCRAMB);
gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
/* set LED2 -> ACT, LED1 -> LINK, LED0 -> SPEED */
ctrl = PHY_M_FELP_LED2_CTRL(LED_PAR_CTRL_ACT_BL) |
PHY_M_FELP_LED1_CTRL(LED_PAR_CTRL_LINK) |
PHY_M_FELP_LED0_CTRL(LED_PAR_CTRL_SPEED);
gm_phy_write(hw, port, PHY_MARV_FE_LED_PAR, ctrl);
break;
case CHIP_ID_YUKON_XL:
pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
/* select page 3 to access LED control register */
gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
/* set LED Function Control register */
gm_phy_write(hw, port, PHY_MARV_PHY_CTRL,
(PHY_M_LEDC_LOS_CTRL(1) | /* LINK/ACT */
PHY_M_LEDC_INIT_CTRL(7) | /* 10 Mbps */
PHY_M_LEDC_STA1_CTRL(7) | /* 100 Mbps */
PHY_M_LEDC_STA0_CTRL(7))); /* 1000 Mbps */
/* set Polarity Control register */
gm_phy_write(hw, port, PHY_MARV_PHY_STAT,
(PHY_M_POLC_LS1_P_MIX(4) |
PHY_M_POLC_IS0_P_MIX(4) |
PHY_M_POLC_LOS_CTRL(2) |
PHY_M_POLC_INIT_CTRL(2) |
PHY_M_POLC_STA1_CTRL(2) |
PHY_M_POLC_STA0_CTRL(2)));
/* restore page register */
gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
break;
case CHIP_ID_YUKON_EC_U:
case CHIP_ID_YUKON_EX:
case CHIP_ID_YUKON_SUPR:
pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
/* select page 3 to access LED control register */
gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
/* set LED Function Control register */
gm_phy_write(hw, port, PHY_MARV_PHY_CTRL,
(PHY_M_LEDC_LOS_CTRL(1) | /* LINK/ACT */
PHY_M_LEDC_INIT_CTRL(8) | /* 10 Mbps */
PHY_M_LEDC_STA1_CTRL(7) | /* 100 Mbps */
PHY_M_LEDC_STA0_CTRL(7)));/* 1000 Mbps */
/* set Blink Rate in LED Timer Control Register */
gm_phy_write(hw, port, PHY_MARV_INT_MASK,
ledctrl | PHY_M_LED_BLINK_RT(BLINK_84MS));
/* restore page register */
gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
break;
default:
/* set Tx LED (LED_TX) to blink mode on Rx OR Tx activity */
ledctrl |= PHY_M_LED_BLINK_RT(BLINK_84MS) | PHY_M_LEDC_TX_CTRL;
/* turn off the Rx LED (LED_RX) */
ledover |= PHY_M_LED_MO_RX(MO_LED_OFF);
}
if (hw->chip_id == CHIP_ID_YUKON_EC_U || hw->chip_id == CHIP_ID_YUKON_UL_2) {
/* apply fixes in PHY AFE */
gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 255);
/* increase differential signal amplitude in 10BASE-T */
gm_phy_write(hw, port, 0x18, 0xaa99);
gm_phy_write(hw, port, 0x17, 0x2011);
if (hw->chip_id == CHIP_ID_YUKON_EC_U) {
/* fix for IEEE A/B Symmetry failure in 1000BASE-T */
gm_phy_write(hw, port, 0x18, 0xa204);
gm_phy_write(hw, port, 0x17, 0x2002);
}
/* set page register to 0 */
gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 0);
} else if (hw->chip_id == CHIP_ID_YUKON_FE_P &&
hw->chip_rev == CHIP_REV_YU_FE2_A0) {
/* apply workaround for integrated resistors calibration */
gm_phy_write(hw, port, PHY_MARV_PAGE_ADDR, 17);
gm_phy_write(hw, port, PHY_MARV_PAGE_DATA, 0x3f60);
} else if (hw->chip_id == CHIP_ID_YUKON_OPT && hw->chip_rev == 0) {
/* apply fixes in PHY AFE */
gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 0x00ff);
/* apply RDAC termination workaround */
gm_phy_write(hw, port, 24, 0x2800);
gm_phy_write(hw, port, 23, 0x2001);
/* set page register back to 0 */
gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 0);
} else if (hw->chip_id != CHIP_ID_YUKON_EX &&
hw->chip_id < CHIP_ID_YUKON_SUPR) {
/* no effect on Yukon-XL */
gm_phy_write(hw, port, PHY_MARV_LED_CTRL, ledctrl);
if (!(sky2->flags & SKY2_FLAG_AUTO_SPEED) ||
sky2->speed == SPEED_100) {
/* turn on 100 Mbps LED (LED_LINK100) */
ledover |= PHY_M_LED_MO_100(MO_LED_ON);
}
if (ledover)
gm_phy_write(hw, port, PHY_MARV_LED_OVER, ledover);
} else if (hw->chip_id == CHIP_ID_YUKON_PRM &&
(sky2_read8(hw, B2_MAC_CFG) & 0xf) == 0x7) {
int i;
/* This a phy register setup workaround copied from vendor driver. */
static const struct {
u16 reg, val;
} eee_afe[] = {
{ 0x156, 0x58ce },
{ 0x153, 0x99eb },
{ 0x141, 0x8064 },
/* { 0x155, 0x130b },*/
{ 0x000, 0x0000 },
{ 0x151, 0x8433 },
{ 0x14b, 0x8c44 },
{ 0x14c, 0x0f90 },
{ 0x14f, 0x39aa },
/* { 0x154, 0x2f39 },*/
{ 0x14d, 0xba33 },
{ 0x144, 0x0048 },
{ 0x152, 0x2010 },
/* { 0x158, 0x1223 },*/
{ 0x140, 0x4444 },
{ 0x154, 0x2f3b },
{ 0x158, 0xb203 },
{ 0x157, 0x2029 },
};
/* Start Workaround for OptimaEEE Rev.Z0 */
gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 0x00fb);
gm_phy_write(hw, port, 1, 0x4099);
gm_phy_write(hw, port, 3, 0x1120);
gm_phy_write(hw, port, 11, 0x113c);
gm_phy_write(hw, port, 14, 0x8100);
gm_phy_write(hw, port, 15, 0x112a);
gm_phy_write(hw, port, 17, 0x1008);
gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 0x00fc);
gm_phy_write(hw, port, 1, 0x20b0);
gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 0x00ff);
for (i = 0; i < ARRAY_SIZE(eee_afe); i++) {
/* apply AFE settings */
gm_phy_write(hw, port, 17, eee_afe[i].val);
gm_phy_write(hw, port, 16, eee_afe[i].reg | 1u<<13);
}
/* End Workaround for OptimaEEE */
gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 0);
/* Enable 10Base-Te (EEE) */
if (hw->chip_id >= CHIP_ID_YUKON_PRM) {
reg = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
gm_phy_write(hw, port, PHY_MARV_EXT_CTRL,
reg | PHY_M_10B_TE_ENABLE);
}
}
/* Enable phy interrupt on auto-negotiation complete (or link up) */
if (sky2->flags & SKY2_FLAG_AUTO_SPEED)
gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_COMPL);
else
gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_DEF_MSK);
}
static const u32 phy_power[] = { PCI_Y2_PHY1_POWD, PCI_Y2_PHY2_POWD };
static const u32 coma_mode[] = { PCI_Y2_PHY1_COMA, PCI_Y2_PHY2_COMA };
static void sky2_phy_power_up(struct sky2_hw *hw, unsigned port)
{
u32 reg1;
sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
reg1 = sky2_pci_read32(hw, PCI_DEV_REG1);
reg1 &= ~phy_power[port];
if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev > CHIP_REV_YU_XL_A1)
reg1 |= coma_mode[port];
sky2_pci_write32(hw, PCI_DEV_REG1, reg1);
sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
sky2_pci_read32(hw, PCI_DEV_REG1);
if (hw->chip_id == CHIP_ID_YUKON_FE)
gm_phy_write(hw, port, PHY_MARV_CTRL, PHY_CT_ANE);
else if (hw->flags & SKY2_HW_ADV_POWER_CTL)
sky2_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_CLR);
}
static void sky2_phy_power_down(struct sky2_hw *hw, unsigned port)
{
u32 reg1;
u16 ctrl;
/* release GPHY Control reset */
sky2_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_CLR);
/* release GMAC reset */
sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
if (hw->flags & SKY2_HW_NEWER_PHY) {
/* select page 2 to access MAC control register */
gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 2);
ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
/* allow GMII Power Down */
ctrl &= ~PHY_M_MAC_GMIF_PUP;
gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
/* set page register back to 0 */
gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 0);
}
/* setup General Purpose Control Register */
gma_write16(hw, port, GM_GP_CTRL,
GM_GPCR_FL_PASS | GM_GPCR_SPEED_100 |
GM_GPCR_AU_DUP_DIS | GM_GPCR_AU_FCT_DIS |
GM_GPCR_AU_SPD_DIS);
if (hw->chip_id != CHIP_ID_YUKON_EC) {
if (hw->chip_id == CHIP_ID_YUKON_EC_U) {
/* select page 2 to access MAC control register */
gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 2);
ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
/* enable Power Down */
ctrl |= PHY_M_PC_POW_D_ENA;
gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
/* set page register back to 0 */
gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 0);
}
/* set IEEE compatible Power Down Mode (dev. #4.99) */
gm_phy_write(hw, port, PHY_MARV_CTRL, PHY_CT_PDOWN);
}
sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
reg1 = sky2_pci_read32(hw, PCI_DEV_REG1);
reg1 |= phy_power[port]; /* set PHY to PowerDown/COMA Mode */
sky2_pci_write32(hw, PCI_DEV_REG1, reg1);
sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
}
/* configure IPG according to used link speed */
static void sky2_set_ipg(struct sky2_port *sky2)
{
u16 reg;
reg = gma_read16(sky2->hw, sky2->port, GM_SERIAL_MODE);
reg &= ~GM_SMOD_IPG_MSK;
if (sky2->speed > SPEED_100)
reg |= IPG_DATA_VAL(IPG_DATA_DEF_1000);
else
reg |= IPG_DATA_VAL(IPG_DATA_DEF_10_100);
gma_write16(sky2->hw, sky2->port, GM_SERIAL_MODE, reg);
}
/* Enable Rx/Tx */
static void sky2_enable_rx_tx(struct sky2_port *sky2)
{
struct sky2_hw *hw = sky2->hw;
unsigned port = sky2->port;
u16 reg;
reg = gma_read16(hw, port, GM_GP_CTRL);
reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
gma_write16(hw, port, GM_GP_CTRL, reg);
}
/* Force a renegotiation */
static void sky2_phy_reinit(struct sky2_port *sky2)
{
spin_lock_bh(&sky2->phy_lock);
sky2_phy_init(sky2->hw, sky2->port);
sky2_enable_rx_tx(sky2);
spin_unlock_bh(&sky2->phy_lock);
}
/* Put device in state to listen for Wake On Lan */
static void sky2_wol_init(struct sky2_port *sky2)
{
struct sky2_hw *hw = sky2->hw;
unsigned port = sky2->port;
enum flow_control save_mode;
u16 ctrl;
/* Bring hardware out of reset */
sky2_write16(hw, B0_CTST, CS_RST_CLR);
sky2_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR);
sky2_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_CLR);
sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
/* Force to 10/100
* sky2_reset will re-enable on resume
*/
save_mode = sky2->flow_mode;
ctrl = sky2->advertising;
sky2->advertising &= ~(ADVERTISED_1000baseT_Half|ADVERTISED_1000baseT_Full);
sky2->flow_mode = FC_NONE;
spin_lock_bh(&sky2->phy_lock);
sky2_phy_power_up(hw, port);
sky2_phy_init(hw, port);
spin_unlock_bh(&sky2->phy_lock);
sky2->flow_mode = save_mode;
sky2->advertising = ctrl;
/* Set GMAC to no flow control and auto update for speed/duplex */
gma_write16(hw, port, GM_GP_CTRL,
GM_GPCR_FC_TX_DIS|GM_GPCR_TX_ENA|GM_GPCR_RX_ENA|
GM_GPCR_DUP_FULL|GM_GPCR_FC_RX_DIS|GM_GPCR_AU_FCT_DIS);
/* Set WOL address */
memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR),
sky2->netdev->dev_addr, ETH_ALEN);
/* Turn on appropriate WOL control bits */
sky2_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT);
ctrl = 0;
if (sky2->wol & WAKE_PHY)
ctrl |= WOL_CTL_ENA_PME_ON_LINK_CHG|WOL_CTL_ENA_LINK_CHG_UNIT;
else
ctrl |= WOL_CTL_DIS_PME_ON_LINK_CHG|WOL_CTL_DIS_LINK_CHG_UNIT;
if (sky2->wol & WAKE_MAGIC)
ctrl |= WOL_CTL_ENA_PME_ON_MAGIC_PKT|WOL_CTL_ENA_MAGIC_PKT_UNIT;
else
ctrl |= WOL_CTL_DIS_PME_ON_MAGIC_PKT|WOL_CTL_DIS_MAGIC_PKT_UNIT;
ctrl |= WOL_CTL_DIS_PME_ON_PATTERN|WOL_CTL_DIS_PATTERN_UNIT;
sky2_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl);
/* Disable PiG firmware */
sky2_write16(hw, B0_CTST, Y2_HW_WOL_OFF);
/* Needed by some broken BIOSes, use PCI rather than PCI-e for WOL */
if (legacy_pme) {
u32 reg1 = sky2_pci_read32(hw, PCI_DEV_REG1);
reg1 |= PCI_Y2_PME_LEGACY;
sky2_pci_write32(hw, PCI_DEV_REG1, reg1);
}
/* block receiver */
sky2_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
sky2_read32(hw, B0_CTST);
}
static void sky2_set_tx_stfwd(struct sky2_hw *hw, unsigned port)
{
struct net_device *dev = hw->dev[port];
if ( (hw->chip_id == CHIP_ID_YUKON_EX &&
hw->chip_rev != CHIP_REV_YU_EX_A0) ||
hw->chip_id >= CHIP_ID_YUKON_FE_P) {
/* Yukon-Extreme B0 and further Extreme devices */
sky2_write32(hw, SK_REG(port, TX_GMF_CTRL_T), TX_STFW_ENA);
} else if (dev->mtu > ETH_DATA_LEN) {
/* set Tx GMAC FIFO Almost Empty Threshold */
sky2_write32(hw, SK_REG(port, TX_GMF_AE_THR),
(ECU_JUMBO_WM << 16) | ECU_AE_THR);
sky2_write32(hw, SK_REG(port, TX_GMF_CTRL_T), TX_STFW_DIS);
} else
sky2_write32(hw, SK_REG(port, TX_GMF_CTRL_T), TX_STFW_ENA);
}
static void sky2_mac_init(struct sky2_hw *hw, unsigned port)
{
struct sky2_port *sky2 = netdev_priv(hw->dev[port]);
u16 reg;
u32 rx_reg;
int i;
const u8 *addr = hw->dev[port]->dev_addr;
sky2_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
sky2_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_CLR);
sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
if (hw->chip_id == CHIP_ID_YUKON_XL &&
hw->chip_rev == CHIP_REV_YU_XL_A0 &&
port == 1) {
/* WA DEV_472 -- looks like crossed wires on port 2 */
/* clear GMAC 1 Control reset */
sky2_write8(hw, SK_REG(0, GMAC_CTRL), GMC_RST_CLR);
do {
sky2_write8(hw, SK_REG(1, GMAC_CTRL), GMC_RST_SET);
sky2_write8(hw, SK_REG(1, GMAC_CTRL), GMC_RST_CLR);
} while (gm_phy_read(hw, 1, PHY_MARV_ID0) != PHY_MARV_ID0_VAL ||
gm_phy_read(hw, 1, PHY_MARV_ID1) != PHY_MARV_ID1_Y2 ||
gm_phy_read(hw, 1, PHY_MARV_INT_MASK) != 0);
}
sky2_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
/* Enable Transmit FIFO Underrun */
sky2_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
spin_lock_bh(&sky2->phy_lock);
sky2_phy_power_up(hw, port);
sky2_phy_init(hw, port);
spin_unlock_bh(&sky2->phy_lock);
/* MIB clear */
reg = gma_read16(hw, port, GM_PHY_ADDR);
gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
for (i = GM_MIB_CNT_BASE; i <= GM_MIB_CNT_END; i += 4)
gma_read16(hw, port, i);
gma_write16(hw, port, GM_PHY_ADDR, reg);
/* transmit control */
gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
/* receive control reg: unicast + multicast + no FCS */
gma_write16(hw, port, GM_RX_CTRL,
GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
/* transmit flow control */
gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
/* transmit parameter */
gma_write16(hw, port, GM_TX_PARAM,
TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
TX_IPG_JAM_DATA(TX_IPG_JAM_DEF) |
TX_BACK_OFF_LIM(TX_BOF_LIM_DEF));
/* serial mode register */
reg = DATA_BLIND_VAL(DATA_BLIND_DEF) |
GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF_1000);
if (hw->dev[port]->mtu > ETH_DATA_LEN)
reg |= GM_SMOD_JUMBO_ENA;
if (hw->chip_id == CHIP_ID_YUKON_EC_U &&
hw->chip_rev == CHIP_REV_YU_EC_U_B1)
reg |= GM_NEW_FLOW_CTRL;
gma_write16(hw, port, GM_SERIAL_MODE, reg);
/* virtual address for data */
gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
/* physical address: used for pause frames */
gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
/* ignore counter overflows */
gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
/* Configure Rx MAC FIFO */
sky2_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
rx_reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
if (hw->chip_id == CHIP_ID_YUKON_EX ||
hw->chip_id == CHIP_ID_YUKON_FE_P)
rx_reg |= GMF_RX_OVER_ON;
sky2_write32(hw, SK_REG(port, RX_GMF_CTRL_T), rx_reg);
if (hw->chip_id == CHIP_ID_YUKON_XL) {
/* Hardware errata - clear flush mask */
sky2_write16(hw, SK_REG(port, RX_GMF_FL_MSK), 0);
} else {
/* Flush Rx MAC FIFO on any flow control or error */
sky2_write16(hw, SK_REG(port, RX_GMF_FL_MSK), GMR_FS_ANY_ERR);
}
/* Set threshold to 0xa (64 bytes) + 1 to workaround pause bug */
reg = RX_GMF_FL_THR_DEF + 1;
/* Another magic mystery workaround from sk98lin */
if (hw->chip_id == CHIP_ID_YUKON_FE_P &&
hw->chip_rev == CHIP_REV_YU_FE2_A0)
reg = 0x178;
sky2_write16(hw, SK_REG(port, RX_GMF_FL_THR), reg);
/* Configure Tx MAC FIFO */
sky2_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
sky2_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
/* On chips without ram buffer, pause is controlled by MAC level */
if (!(hw->flags & SKY2_HW_RAM_BUFFER)) {
/* Pause threshold is scaled by 8 in bytes */
if (hw->chip_id == CHIP_ID_YUKON_FE_P &&
hw->chip_rev == CHIP_REV_YU_FE2_A0)
reg = 1568 / 8;
else
reg = 1024 / 8;
sky2_write16(hw, SK_REG(port, RX_GMF_UP_THR), reg);
sky2_write16(hw, SK_REG(port, RX_GMF_LP_THR), 768 / 8);
sky2_set_tx_stfwd(hw, port);
}
if (hw->chip_id == CHIP_ID_YUKON_FE_P &&
hw->chip_rev == CHIP_REV_YU_FE2_A0) {
/* disable dynamic watermark */
reg = sky2_read16(hw, SK_REG(port, TX_GMF_EA));
reg &= ~TX_DYN_WM_ENA;
sky2_write16(hw, SK_REG(port, TX_GMF_EA), reg);
}
}
/* Assign Ram Buffer allocation to queue */
static void sky2_ramset(struct sky2_hw *hw, u16 q, u32 start, u32 space)
{
u32 end;
/* convert from K bytes to qwords used for hw register */
start *= 1024/8;
space *= 1024/8;
end = start + space - 1;
sky2_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
sky2_write32(hw, RB_ADDR(q, RB_START), start);
sky2_write32(hw, RB_ADDR(q, RB_END), end);
sky2_write32(hw, RB_ADDR(q, RB_WP), start);
sky2_write32(hw, RB_ADDR(q, RB_RP), start);
if (q == Q_R1 || q == Q_R2) {
u32 tp = space - space/4;
/* On receive queue's set the thresholds
* give receiver priority when > 3/4 full
* send pause when down to 2K
*/
sky2_write32(hw, RB_ADDR(q, RB_RX_UTHP), tp);
sky2_write32(hw, RB_ADDR(q, RB_RX_LTHP), space/2);
tp = space - 8192/8;
sky2_write32(hw, RB_ADDR(q, RB_RX_UTPP), tp);
sky2_write32(hw, RB_ADDR(q, RB_RX_LTPP), space/4);
} else {
/* Enable store & forward on Tx queue's because
* Tx FIFO is only 1K on Yukon
*/
sky2_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
}
sky2_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
sky2_read8(hw, RB_ADDR(q, RB_CTRL));
}
/* Setup Bus Memory Interface */
static void sky2_qset(struct sky2_hw *hw, u16 q)
{
sky2_write32(hw, Q_ADDR(q, Q_CSR), BMU_CLR_RESET);
sky2_write32(hw, Q_ADDR(q, Q_CSR), BMU_OPER_INIT);
sky2_write32(hw, Q_ADDR(q, Q_CSR), BMU_FIFO_OP_ON);
sky2_write32(hw, Q_ADDR(q, Q_WM), BMU_WM_DEFAULT);
}
/* Setup prefetch unit registers. This is the interface between
* hardware and driver list elements
*/
static void sky2_prefetch_init(struct sky2_hw *hw, u32 qaddr,
dma_addr_t addr, u32 last)
{
sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_CTRL), PREF_UNIT_RST_SET);
sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_CTRL), PREF_UNIT_RST_CLR);
sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_ADDR_HI), upper_32_bits(addr));
sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_ADDR_LO), lower_32_bits(addr));
sky2_write16(hw, Y2_QADDR(qaddr, PREF_UNIT_LAST_IDX), last);
sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_CTRL), PREF_UNIT_OP_ON);
sky2_read32(hw, Y2_QADDR(qaddr, PREF_UNIT_CTRL));
}
static inline struct sky2_tx_le *get_tx_le(struct sky2_port *sky2, u16 *slot)
{
struct sky2_tx_le *le = sky2->tx_le + *slot;
*slot = RING_NEXT(*slot, sky2->tx_ring_size);
le->ctrl = 0;
return le;
}
static void tx_init(struct sky2_port *sky2)
{
struct sky2_tx_le *le;
sky2->tx_prod = sky2->tx_cons = 0;
sky2->tx_tcpsum = 0;
sky2->tx_last_mss = 0;
netdev_reset_queue(sky2->netdev);
le = get_tx_le(sky2, &sky2->tx_prod);
le->addr = 0;
le->opcode = OP_ADDR64 | HW_OWNER;
sky2->tx_last_upper = 0;
}
/* Update chip's next pointer */
static inline void sky2_put_idx(struct sky2_hw *hw, unsigned q, u16 idx)
{
/* Make sure write' to descriptors are complete before we tell hardware */
wmb();
sky2_write16(hw, Y2_QADDR(q, PREF_UNIT_PUT_IDX), idx);
}
static inline struct sky2_rx_le *sky2_next_rx(struct sky2_port *sky2)
{
struct sky2_rx_le *le = sky2->rx_le + sky2->rx_put;
sky2->rx_put = RING_NEXT(sky2->rx_put, RX_LE_SIZE);
le->ctrl = 0;
return le;
}
static unsigned sky2_get_rx_threshold(struct sky2_port *sky2)
{
unsigned size;
/* Space needed for frame data + headers rounded up */
size = roundup(sky2->netdev->mtu + ETH_HLEN + VLAN_HLEN, 8);
/* Stopping point for hardware truncation */
return (size - 8) / sizeof(u32);
}
static unsigned sky2_get_rx_data_size(struct sky2_port *sky2)
{
struct rx_ring_info *re;
unsigned size;
/* Space needed for frame data + headers rounded up */
size = roundup(sky2->netdev->mtu + ETH_HLEN + VLAN_HLEN, 8);
sky2->rx_nfrags = size >> PAGE_SHIFT;
BUG_ON(sky2->rx_nfrags > ARRAY_SIZE(re->frag_addr));
/* Compute residue after pages */
size -= sky2->rx_nfrags << PAGE_SHIFT;
/* Optimize to handle small packets and headers */
if (size < copybreak)
size = copybreak;
if (size < ETH_HLEN)
size = ETH_HLEN;
return size;
}
/* Build description to hardware for one receive segment */
static void sky2_rx_add(struct sky2_port *sky2, u8 op,
dma_addr_t map, unsigned len)
{
struct sky2_rx_le *le;
if (sizeof(dma_addr_t) > sizeof(u32)) {
le = sky2_next_rx(sky2);
le->addr = cpu_to_le32(upper_32_bits(map));
le->opcode = OP_ADDR64 | HW_OWNER;
}
le = sky2_next_rx(sky2);
le->addr = cpu_to_le32(lower_32_bits(map));
le->length = cpu_to_le16(len);
le->opcode = op | HW_OWNER;
}
/* Build description to hardware for one possibly fragmented skb */
static void sky2_rx_submit(struct sky2_port *sky2,
const struct rx_ring_info *re)
{
int i;
sky2_rx_add(sky2, OP_PACKET, re->data_addr, sky2->rx_data_size);
for (i = 0; i < skb_shinfo(re->skb)->nr_frags; i++)
sky2_rx_add(sky2, OP_BUFFER, re->frag_addr[i], PAGE_SIZE);
}
static int sky2_rx_map_skb(struct pci_dev *pdev, struct rx_ring_info *re,
unsigned size)
{
struct sk_buff *skb = re->skb;
int i;
re->data_addr = pci_map_single(pdev, skb->data, size, PCI_DMA_FROMDEVICE);
if (pci_dma_mapping_error(pdev, re->data_addr))
goto mapping_error;
dma_unmap_len_set(re, data_size, size);
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
re->frag_addr[i] = skb_frag_dma_map(&pdev->dev, frag, 0,
skb_frag_size(frag),
DMA_FROM_DEVICE);
if (dma_mapping_error(&pdev->dev, re->frag_addr[i]))
goto map_page_error;
}
return 0;
map_page_error:
while (--i >= 0) {
pci_unmap_page(pdev, re->frag_addr[i],
skb_frag_size(&skb_shinfo(skb)->frags[i]),
PCI_DMA_FROMDEVICE);
}
pci_unmap_single(pdev, re->data_addr, dma_unmap_len(re, data_size),
PCI_DMA_FROMDEVICE);
mapping_error:
if (net_ratelimit())
dev_warn(&pdev->dev, "%s: rx mapping error\n",
skb->dev->name);
return -EIO;
}
static void sky2_rx_unmap_skb(struct pci_dev *pdev, struct rx_ring_info *re)
{
struct sk_buff *skb = re->skb;
int i;
pci_unmap_single(pdev, re->data_addr, dma_unmap_len(re, data_size),
PCI_DMA_FROMDEVICE);
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
pci_unmap_page(pdev, re->frag_addr[i],
skb_frag_size(&skb_shinfo(skb)->frags[i]),
PCI_DMA_FROMDEVICE);
}
/* Tell chip where to start receive checksum.
* Actually has two checksums, but set both same to avoid possible byte
* order problems.
*/
static void rx_set_checksum(struct sky2_port *sky2)
{
struct sky2_rx_le *le = sky2_next_rx(sky2);
le->addr = cpu_to_le32((ETH_HLEN << 16) | ETH_HLEN);
le->ctrl = 0;
le->opcode = OP_TCPSTART | HW_OWNER;
sky2_write32(sky2->hw,
Q_ADDR(rxqaddr[sky2->port], Q_CSR),
(sky2->netdev->features & NETIF_F_RXCSUM)
? BMU_ENA_RX_CHKSUM : BMU_DIS_RX_CHKSUM);
}
/* Enable/disable receive hash calculation (RSS) */
static void rx_set_rss(struct net_device *dev, netdev_features_t features)
{
struct sky2_port *sky2 = netdev_priv(dev);
struct sky2_hw *hw = sky2->hw;
int i, nkeys = 4;
/* Supports IPv6 and other modes */
if (hw->flags & SKY2_HW_NEW_LE) {
nkeys = 10;
sky2_write32(hw, SK_REG(sky2->port, RSS_CFG), HASH_ALL);
}
/* Program RSS initial values */
if (features & NETIF_F_RXHASH) {
u32 rss_key[10];
netdev_rss_key_fill(rss_key, sizeof(rss_key));
for (i = 0; i < nkeys; i++)
sky2_write32(hw, SK_REG(sky2->port, RSS_KEY + i * 4),
rss_key[i]);
/* Need to turn on (undocumented) flag to make hashing work */
sky2_write32(hw, SK_REG(sky2->port, RX_GMF_CTRL_T),
RX_STFW_ENA);
sky2_write32(hw, Q_ADDR(rxqaddr[sky2->port], Q_CSR),
BMU_ENA_RX_RSS_HASH);
} else
sky2_write32(hw, Q_ADDR(rxqaddr[sky2->port], Q_CSR),
BMU_DIS_RX_RSS_HASH);
}
/*
* The RX Stop command will not work for Yukon-2 if the BMU does not
* reach the end of packet and since we can't make sure that we have
* incoming data, we must reset the BMU while it is not doing a DMA
* transfer. Since it is possible that the RX path is still active,
* the RX RAM buffer will be stopped first, so any possible incoming
* data will not trigger a DMA. After the RAM buffer is stopped, the
* BMU is polled until any DMA in progress is ended and only then it
* will be reset.
*/
static void sky2_rx_stop(struct sky2_port *sky2)
{
struct sky2_hw *hw = sky2->hw;
unsigned rxq = rxqaddr[sky2->port];
int i;
/* disable the RAM Buffer receive queue */
sky2_write8(hw, RB_ADDR(rxq, RB_CTRL), RB_DIS_OP_MD);
for (i = 0; i < 0xffff; i++)
if (sky2_read8(hw, RB_ADDR(rxq, Q_RSL))
== sky2_read8(hw, RB_ADDR(rxq, Q_RL)))
goto stopped;
netdev_warn(sky2->netdev, "receiver stop failed\n");
stopped:
sky2_write32(hw, Q_ADDR(rxq, Q_CSR), BMU_RST_SET | BMU_FIFO_RST);
/* reset the Rx prefetch unit */
sky2_write32(hw, Y2_QADDR(rxq, PREF_UNIT_CTRL), PREF_UNIT_RST_SET);
}
/* Clean out receive buffer area, assumes receiver hardware stopped */
static void sky2_rx_clean(struct sky2_port *sky2)
{
unsigned i;
if (sky2->rx_le)
memset(sky2->rx_le, 0, RX_LE_BYTES);
for (i = 0; i < sky2->rx_pending; i++) {
struct rx_ring_info *re = sky2->rx_ring + i;
if (re->skb) {
sky2_rx_unmap_skb(sky2->hw->pdev, re);
kfree_skb(re->skb);
re->skb = NULL;
}
}
}
/* Basic MII support */
static int sky2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
struct mii_ioctl_data *data = if_mii(ifr);
struct sky2_port *sky2 = netdev_priv(dev);
struct sky2_hw *hw = sky2->hw;
int err = -EOPNOTSUPP;
if (!netif_running(dev))
return -ENODEV; /* Phy still in reset */
switch (cmd) {
case SIOCGMIIPHY:
data->phy_id = PHY_ADDR_MARV;
/* fallthru */
case SIOCGMIIREG: {
u16 val = 0;
spin_lock_bh(&sky2->phy_lock);
err = __gm_phy_read(hw, sky2->port, data->reg_num & 0x1f, &val);
spin_unlock_bh(&sky2->phy_lock);
data->val_out = val;
break;
}
case SIOCSMIIREG:
spin_lock_bh(&sky2->phy_lock);
err = gm_phy_write(hw, sky2->port, data->reg_num & 0x1f,
data->val_in);
spin_unlock_bh(&sky2->phy_lock);
break;
}
return err;
}
#define SKY2_VLAN_OFFLOADS (NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_TSO)
static void sky2_vlan_mode(struct net_device *dev, netdev_features_t features)
{
struct sky2_port *sky2 = netdev_priv(dev);
struct sky2_hw *hw = sky2->hw;
u16 port = sky2->port;
if (features & NETIF_F_HW_VLAN_CTAG_RX)
sky2_write32(hw, SK_REG(port, RX_GMF_CTRL_T),
RX_VLAN_STRIP_ON);
else
sky2_write32(hw, SK_REG(port, RX_GMF_CTRL_T),
RX_VLAN_STRIP_OFF);
if (features & NETIF_F_HW_VLAN_CTAG_TX) {
sky2_write32(hw, SK_REG(port, TX_GMF_CTRL_T),
TX_VLAN_TAG_ON);
dev->vlan_features |= SKY2_VLAN_OFFLOADS;
} else {
sky2_write32(hw, SK_REG(port, TX_GMF_CTRL_T),
TX_VLAN_TAG_OFF);
/* Can't do transmit offload of vlan without hw vlan */
dev->vlan_features &= ~SKY2_VLAN_OFFLOADS;
}
}
/* Amount of required worst case padding in rx buffer */
static inline unsigned sky2_rx_pad(const struct sky2_hw *hw)
{
return (hw->flags & SKY2_HW_RAM_BUFFER) ? 8 : 2;
}
/*
* Allocate an skb for receiving. If the MTU is large enough
* make the skb non-linear with a fragment list of pages.
*/
static struct sk_buff *sky2_rx_alloc(struct sky2_port *sky2, gfp_t gfp)
{
struct sk_buff *skb;
int i;
skb = __netdev_alloc_skb(sky2->netdev,
sky2->rx_data_size + sky2_rx_pad(sky2->hw),
gfp);
if (!skb)
goto nomem;
if (sky2->hw->flags & SKY2_HW_RAM_BUFFER) {
unsigned char *start;
/*
* Workaround for a bug in FIFO that cause hang
* if the FIFO if the receive buffer is not 64 byte aligned.
* The buffer returned from netdev_alloc_skb is
* aligned except if slab debugging is enabled.
*/
start = PTR_ALIGN(skb->data, 8);
skb_reserve(skb, start - skb->data);
} else
skb_reserve(skb, NET_IP_ALIGN);
for (i = 0; i < sky2->rx_nfrags; i++) {
struct page *page = alloc_page(gfp);
if (!page)
goto free_partial;
skb_fill_page_desc(skb, i, page, 0, PAGE_SIZE);
}
return skb;
free_partial:
kfree_skb(skb);
nomem:
return NULL;
}
static inline void sky2_rx_update(struct sky2_port *sky2, unsigned rxq)
{
sky2_put_idx(sky2->hw, rxq, sky2->rx_put);
}
static int sky2_alloc_rx_skbs(struct sky2_port *sky2)
{
struct sky2_hw *hw = sky2->hw;
unsigned i;
sky2->rx_data_size = sky2_get_rx_data_size(sky2);
/* Fill Rx ring */
for (i = 0; i < sky2->rx_pending; i++) {
struct rx_ring_info *re = sky2->rx_ring + i;
re->skb = sky2_rx_alloc(sky2, GFP_KERNEL);
if (!re->skb)
return -ENOMEM;
if (sky2_rx_map_skb(hw->pdev, re, sky2->rx_data_size)) {
dev_kfree_skb(re->skb);
re->skb = NULL;
return -ENOMEM;
}
}
return 0;
}
/*
* Setup receiver buffer pool.
* Normal case this ends up creating one list element for skb
* in the receive ring. Worst case if using large MTU and each
* allocation falls on a different 64 bit region, that results
* in 6 list elements per ring entry.
* One element is used for checksum enable/disable, and one
* extra to avoid wrap.
*/
static void sky2_rx_start(struct sky2_port *sky2)
{
struct sky2_hw *hw = sky2->hw;
struct rx_ring_info *re;
unsigned rxq = rxqaddr[sky2->port];
unsigned i, thresh;
sky2->rx_put = sky2->rx_next = 0;
sky2_qset(hw, rxq);
/* On PCI express lowering the watermark gives better performance */
if (pci_is_pcie(hw->pdev))
sky2_write32(hw, Q_ADDR(rxq, Q_WM), BMU_WM_PEX);
/* These chips have no ram buffer?
* MAC Rx RAM Read is controlled by hardware */
if (hw->chip_id == CHIP_ID_YUKON_EC_U &&
hw->chip_rev > CHIP_REV_YU_EC_U_A0)
sky2_write32(hw, Q_ADDR(rxq, Q_TEST), F_M_RX_RAM_DIS);
sky2_prefetch_init(hw, rxq, sky2->rx_le_map, RX_LE_SIZE - 1);
if (!(hw->flags & SKY2_HW_NEW_LE))
rx_set_checksum(sky2);
if (!(hw->flags & SKY2_HW_RSS_BROKEN))
rx_set_rss(sky2->netdev, sky2->netdev->features);
/* submit Rx ring */
for (i = 0; i < sky2->rx_pending; i++) {
re = sky2->rx_ring + i;
sky2_rx_submit(sky2, re);
}
/*
* The receiver hangs if it receives frames larger than the
* packet buffer. As a workaround, truncate oversize frames, but
* the register is limited to 9 bits, so if you do frames > 2052
* you better get the MTU right!
*/
thresh = sky2_get_rx_threshold(sky2);
if (thresh > 0x1ff)
sky2_write32(hw, SK_REG(sky2->port, RX_GMF_CTRL_T), RX_TRUNC_OFF);
else {
sky2_write16(hw, SK_REG(sky2->port, RX_GMF_TR_THR), thresh);
sky2_write32(hw, SK_REG(sky2->port, RX_GMF_CTRL_T), RX_TRUNC_ON);
}
/* Tell chip about available buffers */
sky2_rx_update(sky2, rxq);
if (hw->chip_id == CHIP_ID_YUKON_EX ||
hw->chip_id == CHIP_ID_YUKON_SUPR) {
/*
* Disable flushing of non ASF packets;
* must be done after initializing the BMUs;
* drivers without ASF support should do this too, otherwise
* it may happen that they cannot run on ASF devices;
* remember that the MAC FIFO isn't reset during initialization.
*/
sky2_write32(hw, SK_REG(sky2->port, RX_GMF_CTRL_T), RX_MACSEC_FLUSH_OFF);
}
if (hw->chip_id >= CHIP_ID_YUKON_SUPR) {
/* Enable RX Home Address & Routing Header checksum fix */
sky2_write16(hw, SK_REG(sky2->port, RX_GMF_FL_CTRL),
RX_IPV6_SA_MOB_ENA | RX_IPV6_DA_MOB_ENA);
/* Enable TX Home Address & Routing Header checksum fix */
sky2_write32(hw, Q_ADDR(txqaddr[sky2->port], Q_TEST),
TBMU_TEST_HOME_ADD_FIX_EN | TBMU_TEST_ROUTING_ADD_FIX_EN);
}
}
static int sky2_alloc_buffers(struct sky2_port *sky2)
{
struct sky2_hw *hw = sky2->hw;
/* must be power of 2 */
sky2->tx_le = pci_alloc_consistent(hw->pdev,
sky2->tx_ring_size *
sizeof(struct sky2_tx_le),
&sky2->tx_le_map);
if (!sky2->tx_le)
goto nomem;
sky2->tx_ring = kcalloc(sky2->tx_ring_size, sizeof(struct tx_ring_info),
GFP_KERNEL);
if (!sky2->tx_ring)
goto nomem;
sky2->rx_le = pci_zalloc_consistent(hw->pdev, RX_LE_BYTES,
&sky2->rx_le_map);
if (!sky2->rx_le)
goto nomem;
sky2->rx_ring = kcalloc(sky2->rx_pending, sizeof(struct rx_ring_info),
GFP_KERNEL);
if (!sky2->rx_ring)
goto nomem;
return sky2_alloc_rx_skbs(sky2);
nomem:
return -ENOMEM;
}
static void sky2_free_buffers(struct sky2_port *sky2)
{
struct sky2_hw *hw = sky2->hw;
sky2_rx_clean(sky2);
if (sky2->rx_le) {
pci_free_consistent(hw->pdev, RX_LE_BYTES,
sky2->rx_le, sky2->rx_le_map);
sky2->rx_le = NULL;
}
if (sky2->tx_le) {
pci_free_consistent(hw->pdev,
sky2->tx_ring_size * sizeof(struct sky2_tx_le),
sky2->tx_le, sky2->tx_le_map);
sky2->tx_le = NULL;
}
kfree(sky2->tx_ring);
kfree(sky2->rx_ring);
sky2->tx_ring = NULL;
sky2->rx_ring = NULL;
}
static void sky2_hw_up(struct sky2_port *sky2)
{
struct sky2_hw *hw = sky2->hw;
unsigned port = sky2->port;
u32 ramsize;
int cap;
struct net_device *otherdev = hw->dev[sky2->port^1];
tx_init(sky2);
/*
* On dual port PCI-X card, there is an problem where status
* can be received out of order due to split transactions
*/
if (otherdev && netif_running(otherdev) &&
(cap = pci_find_capability(hw->pdev, PCI_CAP_ID_PCIX))) {
u16 cmd;
cmd = sky2_pci_read16(hw, cap + PCI_X_CMD);
cmd &= ~PCI_X_CMD_MAX_SPLIT;
sky2_pci_write16(hw, cap + PCI_X_CMD, cmd);
}
sky2_mac_init(hw, port);
/* Register is number of 4K blocks on internal RAM buffer. */
ramsize = sky2_read8(hw, B2_E_0) * 4;
if (ramsize > 0) {
u32 rxspace;
netdev_dbg(sky2->netdev, "ram buffer %dK\n", ramsize);
if (ramsize < 16)
rxspace = ramsize / 2;
else
rxspace = 8 + (2*(ramsize - 16))/3;
sky2_ramset(hw, rxqaddr[port], 0, rxspace);
sky2_ramset(hw, txqaddr[port], rxspace, ramsize - rxspace);
/* Make sure SyncQ is disabled */
sky2_write8(hw, RB_ADDR(port == 0 ? Q_XS1 : Q_XS2, RB_CTRL),
RB_RST_SET);
}
sky2_qset(hw, txqaddr[port]);
/* This is copied from sk98lin 10.0.5.3; no one tells me about erratta's */
if (hw->chip_id == CHIP_ID_YUKON_EX && hw->chip_rev == CHIP_REV_YU_EX_B0)
sky2_write32(hw, Q_ADDR(txqaddr[port], Q_TEST), F_TX_CHK_AUTO_OFF);
/* Set almost empty threshold */
if (hw->chip_id == CHIP_ID_YUKON_EC_U &&
hw->chip_rev == CHIP_REV_YU_EC_U_A0)
sky2_write16(hw, Q_ADDR(txqaddr[port], Q_AL), ECU_TXFF_LEV);
sky2_prefetch_init(hw, txqaddr[port], sky2->tx_le_map,
sky2->tx_ring_size - 1);
sky2_vlan_mode(sky2->netdev, sky2->netdev->features);
netdev_update_features(sky2->netdev);
sky2_rx_start(sky2);
}
/* Setup device IRQ and enable napi to process */
static int sky2_setup_irq(struct sky2_hw *hw, const char *name)
{
struct pci_dev *pdev = hw->pdev;
int err;
err = request_irq(pdev->irq, sky2_intr,
(hw->flags & SKY2_HW_USE_MSI) ? 0 : IRQF_SHARED,
name, hw);
if (err)
dev_err(&pdev->dev, "cannot assign irq %d\n", pdev->irq);
else {
hw->flags |= SKY2_HW_IRQ_SETUP;
napi_enable(&hw->napi);
sky2_write32(hw, B0_IMSK, Y2_IS_BASE);
sky2_read32(hw, B0_IMSK);
}
return err;
}
/* Bring up network interface. */
static int sky2_open(struct net_device *dev)
{
struct sky2_port *sky2 = netdev_priv(dev);
struct sky2_hw *hw = sky2->hw;
unsigned port = sky2->port;
u32 imask;
int err;
netif_carrier_off(dev);
err = sky2_alloc_buffers(sky2);
if (err)
goto err_out;
/* With single port, IRQ is setup when device is brought up */
if (hw->ports == 1 && (err = sky2_setup_irq(hw, dev->name)))
goto err_out;
sky2_hw_up(sky2);
/* Enable interrupts from phy/mac for port */
imask = sky2_read32(hw, B0_IMSK);
if (hw->chip_id == CHIP_ID_YUKON_OPT ||
hw->chip_id == CHIP_ID_YUKON_PRM ||
hw->chip_id == CHIP_ID_YUKON_OP_2)
imask |= Y2_IS_PHY_QLNK; /* enable PHY Quick Link */
imask |= portirq_msk[port];
sky2_write32(hw, B0_IMSK, imask);
sky2_read32(hw, B0_IMSK);
netif_info(sky2, ifup, dev, "enabling interface\n");
return 0;
err_out:
sky2_free_buffers(sky2);
return err;
}
/* Modular subtraction in ring */
static inline int tx_inuse(const struct sky2_port *sky2)
{
return (sky2->tx_prod - sky2->tx_cons) & (sky2->tx_ring_size - 1);
}
/* Number of list elements available for next tx */
static inline int tx_avail(const struct sky2_port *sky2)
{
return sky2->tx_pending - tx_inuse(sky2);
}
/* Estimate of number of transmit list elements required */
static unsigned tx_le_req(const struct sk_buff *skb)
{
unsigned count;
count = (skb_shinfo(skb)->nr_frags + 1)
* (sizeof(dma_addr_t) / sizeof(u32));
if (skb_is_gso(skb))
++count;
else if (sizeof(dma_addr_t) == sizeof(u32))
++count; /* possible vlan */
if (skb->ip_summed == CHECKSUM_PARTIAL)
++count;
return count;
}
static void sky2_tx_unmap(struct pci_dev *pdev, struct tx_ring_info *re)
{
if (re->flags & TX_MAP_SINGLE)
pci_unmap_single(pdev, dma_unmap_addr(re, mapaddr),
dma_unmap_len(re, maplen),
PCI_DMA_TODEVICE);
else if (re->flags & TX_MAP_PAGE)
pci_unmap_page(pdev, dma_unmap_addr(re, mapaddr),
dma_unmap_len(re, maplen),
PCI_DMA_TODEVICE);
re->flags = 0;
}
/*
* Put one packet in ring for transmit.
* A single packet can generate multiple list elements, and
* the number of ring elements will probably be less than the number
* of list elements used.
*/
static netdev_tx_t sky2_xmit_frame(struct sk_buff *skb,
struct net_device *dev)
{
struct sky2_port *sky2 = netdev_priv(dev);
struct sky2_hw *hw = sky2->hw;
struct sky2_tx_le *le = NULL;
struct tx_ring_info *re;
unsigned i, len;
dma_addr_t mapping;
u32 upper;
u16 slot;
u16 mss;
u8 ctrl;
if (unlikely(tx_avail(sky2) < tx_le_req(skb)))
return NETDEV_TX_BUSY;
len = skb_headlen(skb);
mapping = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
if (pci_dma_mapping_error(hw->pdev, mapping))
goto mapping_error;
slot = sky2->tx_prod;
netif_printk(sky2, tx_queued, KERN_DEBUG, dev,
"tx queued, slot %u, len %d\n", slot, skb->len);
/* Send high bits if needed */
upper = upper_32_bits(mapping);
if (upper != sky2->tx_last_upper) {
le = get_tx_le(sky2, &slot);
le->addr = cpu_to_le32(upper);
sky2->tx_last_upper = upper;
le->opcode = OP_ADDR64 | HW_OWNER;
}
/* Check for TCP Segmentation Offload */
mss = skb_shinfo(skb)->gso_size;
if (mss != 0) {
if (!(hw->flags & SKY2_HW_NEW_LE))
mss += ETH_HLEN + ip_hdrlen(skb) + tcp_hdrlen(skb);
if (mss != sky2->tx_last_mss) {
le = get_tx_le(sky2, &slot);
le->addr = cpu_to_le32(mss);
if (hw->flags & SKY2_HW_NEW_LE)
le->opcode = OP_MSS | HW_OWNER;
else
le->opcode = OP_LRGLEN | HW_OWNER;
sky2->tx_last_mss = mss;
}
}
ctrl = 0;
/* Add VLAN tag, can piggyback on LRGLEN or ADDR64 */
if (skb_vlan_tag_present(skb)) {
if (!le) {
le = get_tx_le(sky2, &slot);
le->addr = 0;
le->opcode = OP_VLAN|HW_OWNER;
} else
le->opcode |= OP_VLAN;
le->length = cpu_to_be16(skb_vlan_tag_get(skb));
ctrl |= INS_VLAN;
}
/* Handle TCP checksum offload */
if (skb->ip_summed == CHECKSUM_PARTIAL) {
/* On Yukon EX (some versions) encoding change. */
if (hw->flags & SKY2_HW_AUTO_TX_SUM)
ctrl |= CALSUM; /* auto checksum */
else {
const unsigned offset = skb_transport_offset(skb);
u32 tcpsum;
tcpsum = offset << 16; /* sum start */
tcpsum |= offset + skb->csum_offset; /* sum write */
ctrl |= CALSUM | WR_SUM | INIT_SUM | LOCK_SUM;
if (ip_hdr(skb)->protocol == IPPROTO_UDP)
ctrl |= UDPTCP;
if (tcpsum != sky2->tx_tcpsum) {
sky2->tx_tcpsum = tcpsum;
le = get_tx_le(sky2, &slot);
le->addr = cpu_to_le32(tcpsum);
le->length = 0; /* initial checksum value */
le->ctrl = 1; /* one packet */
le->opcode = OP_TCPLISW | HW_OWNER;
}
}
}
re = sky2->tx_ring + slot;
re->flags = TX_MAP_SINGLE;
dma_unmap_addr_set(re, mapaddr, mapping);
dma_unmap_len_set(re, maplen, len);
le = get_tx_le(sky2, &slot);
le->addr = cpu_to_le32(lower_32_bits(mapping));
le->length = cpu_to_le16(len);
le->ctrl = ctrl;
le->opcode = mss ? (OP_LARGESEND | HW_OWNER) : (OP_PACKET | HW_OWNER);
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
mapping = skb_frag_dma_map(&hw->pdev->dev, frag, 0,
skb_frag_size(frag), DMA_TO_DEVICE);
if (dma_mapping_error(&hw->pdev->dev, mapping))
goto mapping_unwind;
upper = upper_32_bits(mapping);
if (upper != sky2->tx_last_upper) {
le = get_tx_le(sky2, &slot);
le->addr = cpu_to_le32(upper);
sky2->tx_last_upper = upper;
le->opcode = OP_ADDR64 | HW_OWNER;
}
re = sky2->tx_ring + slot;
re->flags = TX_MAP_PAGE;
dma_unmap_addr_set(re, mapaddr, mapping);
dma_unmap_len_set(re, maplen, skb_frag_size(frag));
le = get_tx_le(sky2, &slot);
le->addr = cpu_to_le32(lower_32_bits(mapping));
le->length = cpu_to_le16(skb_frag_size(frag));
le->ctrl = ctrl;
le->opcode = OP_BUFFER | HW_OWNER;
}
re->skb = skb;
le->ctrl |= EOP;
sky2->tx_prod = slot;
if (tx_avail(sky2) <= MAX_SKB_TX_LE)
netif_stop_queue(dev);
netdev_sent_queue(dev, skb->len);
sky2_put_idx(hw, txqaddr[sky2->port], sky2->tx_prod);
return NETDEV_TX_OK;
mapping_unwind:
for (i = sky2->tx_prod; i != slot; i = RING_NEXT(i, sky2->tx_ring_size)) {
re = sky2->tx_ring + i;
sky2_tx_unmap(hw->pdev, re);
}
mapping_error:
if (net_ratelimit())
dev_warn(&hw->pdev->dev, "%s: tx mapping error\n", dev->name);
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
/*
* Free ring elements from starting at tx_cons until "done"
*
* NB:
* 1. The hardware will tell us about partial completion of multi-part
* buffers so make sure not to free skb to early.
* 2. This may run in parallel start_xmit because the it only
* looks at the tail of the queue of FIFO (tx_cons), not
* the head (tx_prod)
*/
static void sky2_tx_complete(struct sky2_port *sky2, u16 done)
{
struct net_device *dev = sky2->netdev;
u16 idx;
unsigned int bytes_compl = 0, pkts_compl = 0;
BUG_ON(done >= sky2->tx_ring_size);
for (idx = sky2->tx_cons; idx != done;
idx = RING_NEXT(idx, sky2->tx_ring_size)) {
struct tx_ring_info *re = sky2->tx_ring + idx;
struct sk_buff *skb = re->skb;
sky2_tx_unmap(sky2->hw->pdev, re);
if (skb) {
netif_printk(sky2, tx_done, KERN_DEBUG, dev,
"tx done %u\n", idx);
pkts_compl++;
bytes_compl += skb->len;
re->skb = NULL;
dev_kfree_skb_any(skb);
sky2->tx_next = RING_NEXT(idx, sky2->tx_ring_size);
}
}
sky2->tx_cons = idx;
smp_mb();
netdev_completed_queue(dev, pkts_compl, bytes_compl);
u64_stats_update_begin(&sky2->tx_stats.syncp);
sky2->tx_stats.packets += pkts_compl;
sky2->tx_stats.bytes += bytes_compl;
u64_stats_update_end(&sky2->tx_stats.syncp);
}
static void sky2_tx_reset(struct sky2_hw *hw, unsigned port)
{
/* Disable Force Sync bit and Enable Alloc bit */
sky2_write8(hw, SK_REG(port, TXA_CTRL),
TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
/* Stop Interval Timer and Limit Counter of Tx Arbiter */
sky2_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
sky2_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
/* Reset the PCI FIFO of the async Tx queue */
sky2_write32(hw, Q_ADDR(txqaddr[port], Q_CSR),
BMU_RST_SET | BMU_FIFO_RST);
/* Reset the Tx prefetch units */
sky2_write32(hw, Y2_QADDR(txqaddr[port], PREF_UNIT_CTRL),
PREF_UNIT_RST_SET);
sky2_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
sky2_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
sky2_read32(hw, B0_CTST);
}
static void sky2_hw_down(struct sky2_port *sky2)
{
struct sky2_hw *hw = sky2->hw;
unsigned port = sky2->port;
u16 ctrl;
/* Force flow control off */
sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
/* Stop transmitter */
sky2_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), BMU_STOP);
sky2_read32(hw, Q_ADDR(txqaddr[port], Q_CSR));
sky2_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
RB_RST_SET | RB_DIS_OP_MD);
ctrl = gma_read16(hw, port, GM_GP_CTRL);
ctrl &= ~(GM_GPCR_TX_ENA | GM_GPCR_RX_ENA);
gma_write16(hw, port, GM_GP_CTRL, ctrl);
sky2_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
/* Workaround shared GMAC reset */
if (!(hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev == 0 &&
port == 0 && hw->dev[1] && netif_running(hw->dev[1])))
sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
sky2_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
/* Force any delayed status interrupt and NAPI */
sky2_write32(hw, STAT_LEV_TIMER_CNT, 0);
sky2_write32(hw, STAT_TX_TIMER_CNT, 0);
sky2_write32(hw, STAT_ISR_TIMER_CNT, 0);
sky2_read8(hw, STAT_ISR_TIMER_CTRL);
sky2_rx_stop(sky2);
spin_lock_bh(&sky2->phy_lock);
sky2_phy_power_down(hw, port);
spin_unlock_bh(&sky2->phy_lock);
sky2_tx_reset(hw, port);
/* Free any pending frames stuck in HW queue */
sky2_tx_complete(sky2, sky2->tx_prod);
}
/* Network shutdown */
static int sky2_close(struct net_device *dev)
{
struct sky2_port *sky2 = netdev_priv(dev);
struct sky2_hw *hw = sky2->hw;
/* Never really got started! */
if (!sky2->tx_le)
return 0;
netif_info(sky2, ifdown, dev, "disabling interface\n");
if (hw->ports == 1) {
sky2_write32(hw, B0_IMSK, 0);
sky2_read32(hw, B0_IMSK);
napi_disable(&hw->napi);
free_irq(hw->pdev->irq, hw);
hw->flags &= ~SKY2_HW_IRQ_SETUP;
} else {
u32 imask;
/* Disable port IRQ */
imask = sky2_read32(hw, B0_IMSK);
imask &= ~portirq_msk[sky2->port];
sky2_write32(hw, B0_IMSK, imask);
sky2_read32(hw, B0_IMSK);
synchronize_irq(hw->pdev->irq);
napi_synchronize(&hw->napi);
}
sky2_hw_down(sky2);
sky2_free_buffers(sky2);
return 0;
}
static u16 sky2_phy_speed(const struct sky2_hw *hw, u16 aux)
{
if (hw->flags & SKY2_HW_FIBRE_PHY)
return SPEED_1000;
if (!(hw->flags & SKY2_HW_GIGABIT)) {
if (aux & PHY_M_PS_SPEED_100)
return SPEED_100;
else
return SPEED_10;
}
switch (aux & PHY_M_PS_SPEED_MSK) {
case PHY_M_PS_SPEED_1000:
return SPEED_1000;
case PHY_M_PS_SPEED_100:
return SPEED_100;
default:
return SPEED_10;
}
}
static void sky2_link_up(struct sky2_port *sky2)
{
struct sky2_hw *hw = sky2->hw;
unsigned port = sky2->port;
static const char *fc_name[] = {
[FC_NONE] = "none",
[FC_TX] = "tx",
[FC_RX] = "rx",
[FC_BOTH] = "both",
};
sky2_set_ipg(sky2);
sky2_enable_rx_tx(sky2);
gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_DEF_MSK);
netif_carrier_on(sky2->netdev);
mod_timer(&hw->watchdog_timer, jiffies + 1);
/* Turn on link LED */
sky2_write8(hw, SK_REG(port, LNK_LED_REG),
LINKLED_ON | LINKLED_BLINK_OFF | LINKLED_LINKSYNC_OFF);
netif_info(sky2, link, sky2->netdev,
"Link is up at %d Mbps, %s duplex, flow control %s\n",
sky2->speed,
sky2->duplex == DUPLEX_FULL ? "full" : "half",
fc_name[sky2->flow_status]);
}
static void sky2_link_down(struct sky2_port *sky2)
{
struct sky2_hw *hw = sky2->hw;
unsigned port = sky2->port;
u16 reg;
gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);
reg = gma_read16(hw, port, GM_GP_CTRL);
reg &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
gma_write16(hw, port, GM_GP_CTRL, reg);
netif_carrier_off(sky2->netdev);
/* Turn off link LED */
sky2_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
netif_info(sky2, link, sky2->netdev, "Link is down\n");
sky2_phy_init(hw, port);
}
static enum flow_control sky2_flow(int rx, int tx)
{
if (rx)
return tx ? FC_BOTH : FC_RX;
else
return tx ? FC_TX : FC_NONE;
}
static int sky2_autoneg_done(struct sky2_port *sky2, u16 aux)
{
struct sky2_hw *hw = sky2->hw;
unsigned port = sky2->port;
u16 advert, lpa;
advert = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
lpa = gm_phy_read(hw, port, PHY_MARV_AUNE_LP);
if (lpa & PHY_M_AN_RF) {
netdev_err(sky2->netdev, "remote fault\n");
return -1;
}
if (!(aux & PHY_M_PS_SPDUP_RES)) {
netdev_err(sky2->netdev, "speed/duplex mismatch\n");
return -1;
}
sky2->speed = sky2_phy_speed(hw, aux);
sky2->duplex = (aux & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
/* Since the pause result bits seem to in different positions on
* different chips. look at registers.
*/
if (hw->flags & SKY2_HW_FIBRE_PHY) {
/* Shift for bits in fiber PHY */
advert &= ~(ADVERTISE_PAUSE_CAP|ADVERTISE_PAUSE_ASYM);
lpa &= ~(LPA_PAUSE_CAP|LPA_PAUSE_ASYM);
if (advert & ADVERTISE_1000XPAUSE)
advert |= ADVERTISE_PAUSE_CAP;
if (advert & ADVERTISE_1000XPSE_ASYM)
advert |= ADVERTISE_PAUSE_ASYM;
if (lpa & LPA_1000XPAUSE)
lpa |= LPA_PAUSE_CAP;
if (lpa & LPA_1000XPAUSE_ASYM)
lpa |= LPA_PAUSE_ASYM;
}
sky2->flow_status = FC_NONE;
if (advert & ADVERTISE_PAUSE_CAP) {
if (lpa & LPA_PAUSE_CAP)
sky2->flow_status = FC_BOTH;
else if (advert & ADVERTISE_PAUSE_ASYM)
sky2->flow_status = FC_RX;
} else if (advert & ADVERTISE_PAUSE_ASYM) {
if ((lpa & LPA_PAUSE_CAP) && (lpa & LPA_PAUSE_ASYM))
sky2->flow_status = FC_TX;
}
if (sky2->duplex == DUPLEX_HALF && sky2->speed < SPEED_1000 &&
!(hw->chip_id == CHIP_ID_YUKON_EC_U || hw->chip_id == CHIP_ID_YUKON_EX))
sky2->flow_status = FC_NONE;
if (sky2->flow_status & FC_TX)
sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
else
sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
return 0;
}
/* Interrupt from PHY */
static void sky2_phy_intr(struct sky2_hw *hw, unsigned port)
{
struct net_device *dev = hw->dev[port];
struct sky2_port *sky2 = netdev_priv(dev);
u16 istatus, phystat;
if (!netif_running(dev))
return;
spin_lock(&sky2->phy_lock);
istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
netif_info(sky2, intr, sky2->netdev, "phy interrupt status 0x%x 0x%x\n",
istatus, phystat);
if (istatus & PHY_M_IS_AN_COMPL) {
if (sky2_autoneg_done(sky2, phystat) == 0 &&
!netif_carrier_ok(dev))
sky2_link_up(sky2);
goto out;
}
if (istatus & PHY_M_IS_LSP_CHANGE)
sky2->speed = sky2_phy_speed(hw, phystat);
if (istatus & PHY_M_IS_DUP_CHANGE)
sky2->duplex =
(phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
if (istatus & PHY_M_IS_LST_CHANGE) {
if (phystat & PHY_M_PS_LINK_UP)
sky2_link_up(sky2);
else
sky2_link_down(sky2);
}
out:
spin_unlock(&sky2->phy_lock);
}
/* Special quick link interrupt (Yukon-2 Optima only) */
static void sky2_qlink_intr(struct sky2_hw *hw)
{
struct sky2_port *sky2 = netdev_priv(hw->dev[0]);
u32 imask;
u16 phy;
/* disable irq */
imask = sky2_read32(hw, B0_IMSK);
imask &= ~Y2_IS_PHY_QLNK;
sky2_write32(hw, B0_IMSK, imask);
/* reset PHY Link Detect */
phy = sky2_pci_read16(hw, PSM_CONFIG_REG4);
sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
sky2_pci_write16(hw, PSM_CONFIG_REG4, phy | 1);
sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
sky2_link_up(sky2);
}
/* Transmit timeout is only called if we are running, carrier is up
* and tx queue is full (stopped).
*/
static void sky2_tx_timeout(struct net_device *dev, unsigned int txqueue)
{
struct sky2_port *sky2 = netdev_priv(dev);
struct sky2_hw *hw = sky2->hw;
netif_err(sky2, timer, dev, "tx timeout\n");
netdev_printk(KERN_DEBUG, dev, "transmit ring %u .. %u report=%u done=%u\n",
sky2->tx_cons, sky2->tx_prod,
sky2_read16(hw, sky2->port == 0 ? STAT_TXA1_RIDX : STAT_TXA2_RIDX),
sky2_read16(hw, Q_ADDR(txqaddr[sky2->port], Q_DONE)));
/* can't restart safely under softirq */
schedule_work(&hw->restart_work);
}
static int sky2_change_mtu(struct net_device *dev, int new_mtu)
{
struct sky2_port *sky2 = netdev_priv(dev);
struct sky2_hw *hw = sky2->hw;
unsigned port = sky2->port;
int err;
u16 ctl, mode;
u32 imask;
if (!netif_running(dev)) {
dev->mtu = new_mtu;
netdev_update_features(dev);
return 0;
}
imask = sky2_read32(hw, B0_IMSK);
sky2_write32(hw, B0_IMSK, 0);
sky2_read32(hw, B0_IMSK);
netif_trans_update(dev); /* prevent tx timeout */
napi_disable(&hw->napi);
netif_tx_disable(dev);
synchronize_irq(hw->pdev->irq);
if (!(hw->flags & SKY2_HW_RAM_BUFFER))
sky2_set_tx_stfwd(hw, port);
ctl = gma_read16(hw, port, GM_GP_CTRL);
gma_write16(hw, port, GM_GP_CTRL, ctl & ~GM_GPCR_RX_ENA);
sky2_rx_stop(sky2);
sky2_rx_clean(sky2);
dev->mtu = new_mtu;
netdev_update_features(dev);
mode = DATA_BLIND_VAL(DATA_BLIND_DEF) | GM_SMOD_VLAN_ENA;
if (sky2->speed > SPEED_100)
mode |= IPG_DATA_VAL(IPG_DATA_DEF_1000);
else
mode |= IPG_DATA_VAL(IPG_DATA_DEF_10_100);
if (dev->mtu > ETH_DATA_LEN)
mode |= GM_SMOD_JUMBO_ENA;
gma_write16(hw, port, GM_SERIAL_MODE, mode);
sky2_write8(hw, RB_ADDR(rxqaddr[port], RB_CTRL), RB_ENA_OP_MD);
err = sky2_alloc_rx_skbs(sky2);
if (!err)
sky2_rx_start(sky2);
else
sky2_rx_clean(sky2);
sky2_write32(hw, B0_IMSK, imask);
sky2_read32(hw, B0_Y2_SP_LISR);
napi_enable(&hw->napi);
if (err)
dev_close(dev);
else {
gma_write16(hw, port, GM_GP_CTRL, ctl);
netif_wake_queue(dev);
}
return err;
}
static inline bool needs_copy(const struct rx_ring_info *re,
unsigned length)
{
#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
/* Some architectures need the IP header to be aligned */
if (!IS_ALIGNED(re->data_addr + ETH_HLEN, sizeof(u32)))
return true;
#endif
return length < copybreak;
}
/* For small just reuse existing skb for next receive */
static struct sk_buff *receive_copy(struct sky2_port *sky2,
const struct rx_ring_info *re,
unsigned length)
{
struct sk_buff *skb;
skb = netdev_alloc_skb_ip_align(sky2->netdev, length);
if (likely(skb)) {
pci_dma_sync_single_for_cpu(sky2->hw->pdev, re->data_addr,
length, PCI_DMA_FROMDEVICE);
skb_copy_from_linear_data(re->skb, skb->data, length);
skb->ip_summed = re->skb->ip_summed;
skb->csum = re->skb->csum;
skb_copy_hash(skb, re->skb);
__vlan_hwaccel_copy_tag(skb, re->skb);
pci_dma_sync_single_for_device(sky2->hw->pdev, re->data_addr,
length, PCI_DMA_FROMDEVICE);
__vlan_hwaccel_clear_tag(re->skb);
skb_clear_hash(re->skb);
re->skb->ip_summed = CHECKSUM_NONE;
skb_put(skb, length);
}
return skb;
}
/* Adjust length of skb with fragments to match received data */
static void skb_put_frags(struct sk_buff *skb, unsigned int hdr_space,
unsigned int length)
{
int i, num_frags;
unsigned int size;
/* put header into skb */
size = min(length, hdr_space);
skb->tail += size;
skb->len += size;
length -= size;
num_frags = skb_shinfo(skb)->nr_frags;
for (i = 0; i < num_frags; i++) {
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
if (length == 0) {
/* don't need this page */
__skb_frag_unref(frag);
--skb_shinfo(skb)->nr_frags;
} else {
size = min(length, (unsigned) PAGE_SIZE);
skb_frag_size_set(frag, size);
skb->data_len += size;
skb->truesize += PAGE_SIZE;
skb->len += size;
length -= size;
}
}
}
/* Normal packet - take skb from ring element and put in a new one */
static struct sk_buff *receive_new(struct sky2_port *sky2,
struct rx_ring_info *re,
unsigned int length)
{
struct sk_buff *skb;
struct rx_ring_info nre;
unsigned hdr_space = sky2->rx_data_size;
nre.skb = sky2_rx_alloc(sky2, GFP_ATOMIC);
if (unlikely(!nre.skb))
goto nobuf;
if (sky2_rx_map_skb(sky2->hw->pdev, &nre, hdr_space))
goto nomap;
skb = re->skb;
sky2_rx_unmap_skb(sky2->hw->pdev, re);
prefetch(skb->data);
*re = nre;
if (skb_shinfo(skb)->nr_frags)
skb_put_frags(skb, hdr_space, length);
else
skb_put(skb, length);
return skb;
nomap:
dev_kfree_skb(nre.skb);
nobuf:
return NULL;
}
/*
* Receive one packet.
* For larger packets, get new buffer.
*/
static struct sk_buff *sky2_receive(struct net_device *dev,
u16 length, u32 status)
{
struct sky2_port *sky2 = netdev_priv(dev);
struct rx_ring_info *re = sky2->rx_ring + sky2->rx_next;
struct sk_buff *skb = NULL;
u16 count = (status & GMR_FS_LEN) >> 16;
netif_printk(sky2, rx_status, KERN_DEBUG, dev,
"rx slot %u status 0x%x len %d\n",
sky2->rx_next, status, length);
sky2->rx_next = (sky2->rx_next + 1) % sky2->rx_pending;
prefetch(sky2->rx_ring + sky2->rx_next);
if (skb_vlan_tag_present(re->skb))
count -= VLAN_HLEN; /* Account for vlan tag */
/* This chip has hardware problems that generates bogus status.
* So do only marginal checking and expect higher level protocols
* to handle crap frames.
*/
if (sky2->hw->chip_id == CHIP_ID_YUKON_FE_P &&
sky2->hw->chip_rev == CHIP_REV_YU_FE2_A0 &&
length != count)
goto okay;
if (status & GMR_FS_ANY_ERR)
goto error;
if (!(status & GMR_FS_RX_OK))
goto resubmit;
/* if length reported by DMA does not match PHY, packet was truncated */
if (length != count)
goto error;
okay:
if (needs_copy(re, length))
skb = receive_copy(sky2, re, length);
else
skb = receive_new(sky2, re, length);
dev->stats.rx_dropped += (skb == NULL);
resubmit:
sky2_rx_submit(sky2, re);
return skb;
error:
++dev->stats.rx_errors;
if (net_ratelimit())
netif_info(sky2, rx_err, dev,
"rx error, status 0x%x length %d\n", status, length);
goto resubmit;
}
/* Transmit complete */
static inline void sky2_tx_done(struct net_device *dev, u16 last)
{
struct sky2_port *sky2 = netdev_priv(dev);
if (netif_running(dev)) {
sky2_tx_complete(sky2, last);
/* Wake unless it's detached, and called e.g. from sky2_close() */
if (tx_avail(sky2) > MAX_SKB_TX_LE + 4)
netif_wake_queue(dev);
}
}
static inline void sky2_skb_rx(const struct sky2_port *sky2,
struct sk_buff *skb)
{
if (skb->ip_summed == CHECKSUM_NONE)
netif_receive_skb(skb);
else
napi_gro_receive(&sky2->hw->napi, skb);
}
static inline void sky2_rx_done(struct sky2_hw *hw, unsigned port,
unsigned packets, unsigned bytes)
{
struct net_device *dev = hw->dev[port];
struct sky2_port *sky2 = netdev_priv(dev);
if (packets == 0)
return;
u64_stats_update_begin(&sky2->rx_stats.syncp);
sky2->rx_stats.packets += packets;
sky2->rx_stats.bytes += bytes;
u64_stats_update_end(&sky2->rx_stats.syncp);
sky2->last_rx = jiffies;
sky2_rx_update(netdev_priv(dev), rxqaddr[port]);
}
static void sky2_rx_checksum(struct sky2_port *sky2, u32 status)
{
/* If this happens then driver assuming wrong format for chip type */
BUG_ON(sky2->hw->flags & SKY2_HW_NEW_LE);
/* Both checksum counters are programmed to start at
* the same offset, so unless there is a problem they
* should match. This failure is an early indication that
* hardware receive checksumming won't work.
*/
if (likely((u16)(status >> 16) == (u16)status)) {
struct sk_buff *skb = sky2->rx_ring[sky2->rx_next].skb;
skb->ip_summed = CHECKSUM_COMPLETE;
skb->csum = le16_to_cpu(status);
} else {
dev_notice(&sky2->hw->pdev->dev,
"%s: receive checksum problem (status = %#x)\n",
sky2->netdev->name, status);
/* Disable checksum offload
* It will be reenabled on next ndo_set_features, but if it's
* really broken, will get disabled again
*/
sky2->netdev->features &= ~NETIF_F_RXCSUM;
sky2_write32(sky2->hw, Q_ADDR(rxqaddr[sky2->port], Q_CSR),
BMU_DIS_RX_CHKSUM);
}
}
static void sky2_rx_tag(struct sky2_port *sky2, u16 length)
{
struct sk_buff *skb;
skb = sky2->rx_ring[sky2->rx_next].skb;
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), be16_to_cpu(length));
}
static void sky2_rx_hash(struct sky2_port *sky2, u32 status)
{
struct sk_buff *skb;
skb = sky2->rx_ring[sky2->rx_next].skb;
skb_set_hash(skb, le32_to_cpu(status), PKT_HASH_TYPE_L3);
}
/* Process status response ring */
static int sky2_status_intr(struct sky2_hw *hw, int to_do, u16 idx)
{
int work_done = 0;
unsigned int total_bytes[2] = { 0 };
unsigned int total_packets[2] = { 0 };
if (to_do <= 0)
return work_done;
rmb();
do {
struct sky2_port *sky2;
struct sky2_status_le *le = hw->st_le + hw->st_idx;
unsigned port;
struct net_device *dev;
struct sk_buff *skb;
u32 status;
u16 length;
u8 opcode = le->opcode;
if (!(opcode & HW_OWNER))
break;
hw->st_idx = RING_NEXT(hw->st_idx, hw->st_size);
port = le->css & CSS_LINK_BIT;
dev = hw->dev[port];
sky2 = netdev_priv(dev);
length = le16_to_cpu(le->length);
status = le32_to_cpu(le->status);
le->opcode = 0;
switch (opcode & ~HW_OWNER) {
case OP_RXSTAT:
total_packets[port]++;
total_bytes[port] += length;
skb = sky2_receive(dev, length, status);
if (!skb)
break;
/* This chip reports checksum status differently */
if (hw->flags & SKY2_HW_NEW_LE) {
if ((dev->features & NETIF_F_RXCSUM) &&
(le->css & (CSS_ISIPV4 | CSS_ISIPV6)) &&
(le->css & CSS_TCPUDPCSOK))
skb->ip_summed = CHECKSUM_UNNECESSARY;
else
skb->ip_summed = CHECKSUM_NONE;
}
skb->protocol = eth_type_trans(skb, dev);
sky2_skb_rx(sky2, skb);
/* Stop after net poll weight */
if (++work_done >= to_do)
goto exit_loop;
break;
case OP_RXVLAN:
sky2_rx_tag(sky2, length);
break;
case OP_RXCHKSVLAN:
sky2_rx_tag(sky2, length);
/* fall through */
case OP_RXCHKS:
if (likely(dev->features & NETIF_F_RXCSUM))
sky2_rx_checksum(sky2, status);
break;
case OP_RSS_HASH:
sky2_rx_hash(sky2, status);
break;
case OP_TXINDEXLE:
/* TX index reports status for both ports */
sky2_tx_done(hw->dev[0], status & 0xfff);
if (hw->dev[1])
sky2_tx_done(hw->dev[1],
((status >> 24) & 0xff)
| (u16)(length & 0xf) << 8);
break;
default:
if (net_ratelimit())
pr_warn("unknown status opcode 0x%x\n", opcode);
}
} while (hw->st_idx != idx);
/* Fully processed status ring so clear irq */
sky2_write32(hw, STAT_CTRL, SC_STAT_CLR_IRQ);
exit_loop:
sky2_rx_done(hw, 0, total_packets[0], total_bytes[0]);
sky2_rx_done(hw, 1, total_packets[1], total_bytes[1]);
return work_done;
}
static void sky2_hw_error(struct sky2_hw *hw, unsigned port, u32 status)
{
struct net_device *dev = hw->dev[port];
if (net_ratelimit())
netdev_info(dev, "hw error interrupt status 0x%x\n", status);
if (status & Y2_IS_PAR_RD1) {
if (net_ratelimit())
netdev_err(dev, "ram data read parity error\n");
/* Clear IRQ */
sky2_write16(hw, RAM_BUFFER(port, B3_RI_CTRL), RI_CLR_RD_PERR);
}
if (status & Y2_IS_PAR_WR1) {
if (net_ratelimit())
netdev_err(dev, "ram data write parity error\n");
sky2_write16(hw, RAM_BUFFER(port, B3_RI_CTRL), RI_CLR_WR_PERR);
}
if (status & Y2_IS_PAR_MAC1) {
if (net_ratelimit())
netdev_err(dev, "MAC parity error\n");
sky2_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_PE);
}
if (status & Y2_IS_PAR_RX1) {
if (net_ratelimit())
netdev_err(dev, "RX parity error\n");
sky2_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), BMU_CLR_IRQ_PAR);
}
if (status & Y2_IS_TCP_TXA1) {
if (net_ratelimit())
netdev_err(dev, "TCP segmentation error\n");
sky2_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), BMU_CLR_IRQ_TCP);
}
}
static void sky2_hw_intr(struct sky2_hw *hw)
{
struct pci_dev *pdev = hw->pdev;
u32 status = sky2_read32(hw, B0_HWE_ISRC);
u32 hwmsk = sky2_read32(hw, B0_HWE_IMSK);
status &= hwmsk;
if (status & Y2_IS_TIST_OV)
sky2_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
if (status & (Y2_IS_MST_ERR | Y2_IS_IRQ_STAT)) {
u16 pci_err;
sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
pci_err = sky2_pci_read16(hw, PCI_STATUS);
if (net_ratelimit())
dev_err(&pdev->dev, "PCI hardware error (0x%x)\n",
pci_err);
sky2_pci_write16(hw, PCI_STATUS,
pci_err | PCI_STATUS_ERROR_BITS);
sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
}
if (status & Y2_IS_PCI_EXP) {
/* PCI-Express uncorrectable Error occurred */
u32 err;
sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
err = sky2_read32(hw, Y2_CFG_AER + PCI_ERR_UNCOR_STATUS);
sky2_write32(hw, Y2_CFG_AER + PCI_ERR_UNCOR_STATUS,
0xfffffffful);
if (net_ratelimit())
dev_err(&pdev->dev, "PCI Express error (0x%x)\n", err);
sky2_read32(hw, Y2_CFG_AER + PCI_ERR_UNCOR_STATUS);
sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
}
if (status & Y2_HWE_L1_MASK)
sky2_hw_error(hw, 0, status);
status >>= 8;
if (status & Y2_HWE_L1_MASK)
sky2_hw_error(hw, 1, status);
}
static void sky2_mac_intr(struct sky2_hw *hw, unsigned port)
{
struct net_device *dev = hw->dev[port];
struct sky2_port *sky2 = netdev_priv(dev);
u8 status = sky2_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
netif_info(sky2, intr, dev, "mac interrupt status 0x%x\n", status);
if (status & GM_IS_RX_CO_OV)
gma_read16(hw, port, GM_RX_IRQ_SRC);
if (status & GM_IS_TX_CO_OV)
gma_read16(hw, port, GM_TX_IRQ_SRC);
if (status & GM_IS_RX_FF_OR) {
++dev->stats.rx_fifo_errors;
sky2_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
}
if (status & GM_IS_TX_FF_UR) {
++dev->stats.tx_fifo_errors;
sky2_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
}
}
/* This should never happen it is a bug. */
static void sky2_le_error(struct sky2_hw *hw, unsigned port, u16 q)
{
struct net_device *dev = hw->dev[port];
u16 idx = sky2_read16(hw, Y2_QADDR(q, PREF_UNIT_GET_IDX));
dev_err(&hw->pdev->dev, "%s: descriptor error q=%#x get=%u put=%u\n",
dev->name, (unsigned) q, (unsigned) idx,
(unsigned) sky2_read16(hw, Y2_QADDR(q, PREF_UNIT_PUT_IDX)));
sky2_write32(hw, Q_ADDR(q, Q_CSR), BMU_CLR_IRQ_CHK);
}
static int sky2_rx_hung(struct net_device *dev)
{
struct sky2_port *sky2 = netdev_priv(dev);
struct sky2_hw *hw = sky2->hw;
unsigned port = sky2->port;
unsigned rxq = rxqaddr[port];
u32 mac_rp = sky2_read32(hw, SK_REG(port, RX_GMF_RP));
u8 mac_lev = sky2_read8(hw, SK_REG(port, RX_GMF_RLEV));
u8 fifo_rp = sky2_read8(hw, Q_ADDR(rxq, Q_RP));
u8 fifo_lev = sky2_read8(hw, Q_ADDR(rxq, Q_RL));
/* If idle and MAC or PCI is stuck */
if (sky2->check.last == sky2->last_rx &&
((mac_rp == sky2->check.mac_rp &&
mac_lev != 0 && mac_lev >= sky2->check.mac_lev) ||
/* Check if the PCI RX hang */
(fifo_rp == sky2->check.fifo_rp &&
fifo_lev != 0 && fifo_lev >= sky2->check.fifo_lev))) {
netdev_printk(KERN_DEBUG, dev,
"hung mac %d:%d fifo %d (%d:%d)\n",
mac_lev, mac_rp, fifo_lev,
fifo_rp, sky2_read8(hw, Q_ADDR(rxq, Q_WP)));
return 1;
} else {
sky2->check.last = sky2->last_rx;
sky2->check.mac_rp = mac_rp;
sky2->check.mac_lev = mac_lev;
sky2->check.fifo_rp = fifo_rp;
sky2->check.fifo_lev = fifo_lev;
return 0;
}
}
static void sky2_watchdog(struct timer_list *t)
{
struct sky2_hw *hw = from_timer(hw, t, watchdog_timer);
/* Check for lost IRQ once a second */
if (sky2_read32(hw, B0_ISRC)) {
napi_schedule(&hw->napi);
} else {
int i, active = 0;
for (i = 0; i < hw->ports; i++) {
struct net_device *dev = hw->dev[i];
if (!netif_running(dev))
continue;
++active;
/* For chips with Rx FIFO, check if stuck */
if ((hw->flags & SKY2_HW_RAM_BUFFER) &&
sky2_rx_hung(dev)) {
netdev_info(dev, "receiver hang detected\n");
schedule_work(&hw->restart_work);
return;
}
}
if (active == 0)
return;
}
mod_timer(&hw->watchdog_timer, round_jiffies(jiffies + HZ));
}
/* Hardware/software error handling */
static void sky2_err_intr(struct sky2_hw *hw, u32 status)
{
if (net_ratelimit())
dev_warn(&hw->pdev->dev, "error interrupt status=%#x\n", status);
if (status & Y2_IS_HW_ERR)
sky2_hw_intr(hw);
if (status & Y2_IS_IRQ_MAC1)
sky2_mac_intr(hw, 0);
if (status & Y2_IS_IRQ_MAC2)
sky2_mac_intr(hw, 1);
if (status & Y2_IS_CHK_RX1)
sky2_le_error(hw, 0, Q_R1);
if (status & Y2_IS_CHK_RX2)
sky2_le_error(hw, 1, Q_R2);
if (status & Y2_IS_CHK_TXA1)
sky2_le_error(hw, 0, Q_XA1);
if (status & Y2_IS_CHK_TXA2)
sky2_le_error(hw, 1, Q_XA2);
}
static int sky2_poll(struct napi_struct *napi, int work_limit)
{
struct sky2_hw *hw = container_of(napi, struct sky2_hw, napi);
u32 status = sky2_read32(hw, B0_Y2_SP_EISR);
int work_done = 0;
u16 idx;
if (unlikely(status & Y2_IS_ERROR))
sky2_err_intr(hw, status);
if (status & Y2_IS_IRQ_PHY1)
sky2_phy_intr(hw, 0);
if (status & Y2_IS_IRQ_PHY2)
sky2_phy_intr(hw, 1);
if (status & Y2_IS_PHY_QLNK)
sky2_qlink_intr(hw);
while ((idx = sky2_read16(hw, STAT_PUT_IDX)) != hw->st_idx) {
work_done += sky2_status_intr(hw, work_limit - work_done, idx);
if (work_done >= work_limit)
goto done;
}
napi_complete_done(napi, work_done);
sky2_read32(hw, B0_Y2_SP_LISR);
done:
return work_done;
}
static irqreturn_t sky2_intr(int irq, void *dev_id)
{
struct sky2_hw *hw = dev_id;
u32 status;
/* Reading this mask interrupts as side effect */
status = sky2_read32(hw, B0_Y2_SP_ISRC2);
if (status == 0 || status == ~0) {
sky2_write32(hw, B0_Y2_SP_ICR, 2);
return IRQ_NONE;
}
prefetch(&hw->st_le[hw->st_idx]);
napi_schedule(&hw->napi);
return IRQ_HANDLED;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void sky2_netpoll(struct net_device *dev)
{
struct sky2_port *sky2 = netdev_priv(dev);
napi_schedule(&sky2->hw->napi);
}
#endif
/* Chip internal frequency for clock calculations */
static u32 sky2_mhz(const struct sky2_hw *hw)
{
switch (hw->chip_id) {
case CHIP_ID_YUKON_EC:
case CHIP_ID_YUKON_EC_U:
case CHIP_ID_YUKON_EX:
case CHIP_ID_YUKON_SUPR:
case CHIP_ID_YUKON_UL_2:
case CHIP_ID_YUKON_OPT:
case CHIP_ID_YUKON_PRM:
case CHIP_ID_YUKON_OP_2:
return 125;
case CHIP_ID_YUKON_FE:
return 100;
case CHIP_ID_YUKON_FE_P:
return 50;
case CHIP_ID_YUKON_XL:
return 156;
default:
BUG();
}
}
static inline u32 sky2_us2clk(const struct sky2_hw *hw, u32 us)
{
return sky2_mhz(hw) * us;
}
static inline u32 sky2_clk2us(const struct sky2_hw *hw, u32 clk)
{
return clk / sky2_mhz(hw);
}
static int sky2_init(struct sky2_hw *hw)
{
u8 t8;
/* Enable all clocks and check for bad PCI access */
sky2_pci_write32(hw, PCI_DEV_REG3, 0);
sky2_write8(hw, B0_CTST, CS_RST_CLR);
hw->chip_id = sky2_read8(hw, B2_CHIP_ID);
hw->chip_rev = (sky2_read8(hw, B2_MAC_CFG) & CFG_CHIP_R_MSK) >> 4;
switch (hw->chip_id) {
case CHIP_ID_YUKON_XL:
hw->flags = SKY2_HW_GIGABIT | SKY2_HW_NEWER_PHY;
if (hw->chip_rev < CHIP_REV_YU_XL_A2)
hw->flags |= SKY2_HW_RSS_BROKEN;
break;
case CHIP_ID_YUKON_EC_U:
hw->flags = SKY2_HW_GIGABIT
| SKY2_HW_NEWER_PHY
| SKY2_HW_ADV_POWER_CTL;
break;
case CHIP_ID_YUKON_EX:
hw->flags = SKY2_HW_GIGABIT
| SKY2_HW_NEWER_PHY
| SKY2_HW_NEW_LE
| SKY2_HW_ADV_POWER_CTL
| SKY2_HW_RSS_CHKSUM;
/* New transmit checksum */
if (hw->chip_rev != CHIP_REV_YU_EX_B0)
hw->flags |= SKY2_HW_AUTO_TX_SUM;
break;
case CHIP_ID_YUKON_EC:
/* This rev is really old, and requires untested workarounds */
if (hw->chip_rev == CHIP_REV_YU_EC_A1) {
dev_err(&hw->pdev->dev, "unsupported revision Yukon-EC rev A1\n");
return -EOPNOTSUPP;
}
hw->flags = SKY2_HW_GIGABIT | SKY2_HW_RSS_BROKEN;
break;
case CHIP_ID_YUKON_FE:
hw->flags = SKY2_HW_RSS_BROKEN;
break;
case CHIP_ID_YUKON_FE_P:
hw->flags = SKY2_HW_NEWER_PHY
| SKY2_HW_NEW_LE
| SKY2_HW_AUTO_TX_SUM
| SKY2_HW_ADV_POWER_CTL;
/* The workaround for status conflicts VLAN tag detection. */
if (hw->chip_rev == CHIP_REV_YU_FE2_A0)
hw->flags |= SKY2_HW_VLAN_BROKEN | SKY2_HW_RSS_CHKSUM;
break;
case CHIP_ID_YUKON_SUPR:
hw->flags = SKY2_HW_GIGABIT
| SKY2_HW_NEWER_PHY
| SKY2_HW_NEW_LE
| SKY2_HW_AUTO_TX_SUM
| SKY2_HW_ADV_POWER_CTL;
if (hw->chip_rev == CHIP_REV_YU_SU_A0)
hw->flags |= SKY2_HW_RSS_CHKSUM;
break;
case CHIP_ID_YUKON_UL_2:
hw->flags = SKY2_HW_GIGABIT
| SKY2_HW_ADV_POWER_CTL;
break;
case CHIP_ID_YUKON_OPT:
case CHIP_ID_YUKON_PRM:
case CHIP_ID_YUKON_OP_2:
hw->flags = SKY2_HW_GIGABIT
| SKY2_HW_NEW_LE
| SKY2_HW_ADV_POWER_CTL;
break;
default:
dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n",
hw->chip_id);
return -EOPNOTSUPP;
}
hw->pmd_type = sky2_read8(hw, B2_PMD_TYP);
if (hw->pmd_type == 'L' || hw->pmd_type == 'S' || hw->pmd_type == 'P')
hw->flags |= SKY2_HW_FIBRE_PHY;
hw->ports = 1;
t8 = sky2_read8(hw, B2_Y2_HW_RES);
if ((t8 & CFG_DUAL_MAC_MSK) == CFG_DUAL_MAC_MSK) {
if (!(sky2_read8(hw, B2_Y2_CLK_GATE) & Y2_STATUS_LNK2_INAC))
++hw->ports;
}
if (sky2_read8(hw, B2_E_0))
hw->flags |= SKY2_HW_RAM_BUFFER;
return 0;
}
static void sky2_reset(struct sky2_hw *hw)
{
struct pci_dev *pdev = hw->pdev;
u16 status;
int i;
u32 hwe_mask = Y2_HWE_ALL_MASK;
/* disable ASF */
if (hw->chip_id == CHIP_ID_YUKON_EX
|| hw->chip_id == CHIP_ID_YUKON_SUPR) {
sky2_write32(hw, CPU_WDOG, 0);
status = sky2_read16(hw, HCU_CCSR);
status &= ~(HCU_CCSR_AHB_RST | HCU_CCSR_CPU_RST_MODE |
HCU_CCSR_UC_STATE_MSK);
/*
* CPU clock divider shouldn't be used because
* - ASF firmware may malfunction
* - Yukon-Supreme: Parallel FLASH doesn't support divided clocks
*/
status &= ~HCU_CCSR_CPU_CLK_DIVIDE_MSK;
sky2_write16(hw, HCU_CCSR, status);
sky2_write32(hw, CPU_WDOG, 0);
} else
sky2_write8(hw, B28_Y2_ASF_STAT_CMD, Y2_ASF_RESET);
sky2_write16(hw, B0_CTST, Y2_ASF_DISABLE);
/* do a SW reset */
sky2_write8(hw, B0_CTST, CS_RST_SET);
sky2_write8(hw, B0_CTST, CS_RST_CLR);
/* allow writes to PCI config */
sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
/* clear PCI errors, if any */
status = sky2_pci_read16(hw, PCI_STATUS);
status |= PCI_STATUS_ERROR_BITS;
sky2_pci_write16(hw, PCI_STATUS, status);
sky2_write8(hw, B0_CTST, CS_MRST_CLR);
if (pci_is_pcie(pdev)) {
sky2_write32(hw, Y2_CFG_AER + PCI_ERR_UNCOR_STATUS,
0xfffffffful);
/* If error bit is stuck on ignore it */
if (sky2_read32(hw, B0_HWE_ISRC) & Y2_IS_PCI_EXP)
dev_info(&pdev->dev, "ignoring stuck error report bit\n");
else
hwe_mask |= Y2_IS_PCI_EXP;
}
sky2_power_on(hw);
sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
for (i = 0; i < hw->ports; i++) {
sky2_write8(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
sky2_write8(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
if (hw->chip_id == CHIP_ID_YUKON_EX ||
hw->chip_id == CHIP_ID_YUKON_SUPR)
sky2_write16(hw, SK_REG(i, GMAC_CTRL),
GMC_BYP_MACSECRX_ON | GMC_BYP_MACSECTX_ON
| GMC_BYP_RETR_ON);
}
if (hw->chip_id == CHIP_ID_YUKON_SUPR && hw->chip_rev > CHIP_REV_YU_SU_B0) {
/* enable MACSec clock gating */
sky2_pci_write32(hw, PCI_DEV_REG3, P_CLK_MACSEC_DIS);
}
if (hw->chip_id == CHIP_ID_YUKON_OPT ||
hw->chip_id == CHIP_ID_YUKON_PRM ||
hw->chip_id == CHIP_ID_YUKON_OP_2) {
u16 reg;
if (hw->chip_id == CHIP_ID_YUKON_OPT && hw->chip_rev == 0) {
/* disable PCI-E PHY power down (set PHY reg 0x80, bit 7 */
sky2_write32(hw, Y2_PEX_PHY_DATA, (0x80UL << 16) | (1 << 7));
/* set PHY Link Detect Timer to 1.1 second (11x 100ms) */
reg = 10;
/* re-enable PEX PM in PEX PHY debug reg. 8 (clear bit 12) */
sky2_write32(hw, Y2_PEX_PHY_DATA, PEX_DB_ACCESS | (0x08UL << 16));
} else {
/* set PHY Link Detect Timer to 0.4 second (4x 100ms) */
reg = 3;
}
reg <<= PSM_CONFIG_REG4_TIMER_PHY_LINK_DETECT_BASE;
reg |= PSM_CONFIG_REG4_RST_PHY_LINK_DETECT;
/* reset PHY Link Detect */
sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
sky2_pci_write16(hw, PSM_CONFIG_REG4, reg);
/* check if PSMv2 was running before */
reg = sky2_pci_read16(hw, PSM_CONFIG_REG3);
if (reg & PCI_EXP_LNKCTL_ASPMC)
/* restore the PCIe Link Control register */
sky2_pci_write16(hw, pdev->pcie_cap + PCI_EXP_LNKCTL,
reg);
if (hw->chip_id == CHIP_ID_YUKON_PRM &&
hw->chip_rev == CHIP_REV_YU_PRM_A0) {
/* change PHY Interrupt polarity to low active */
reg = sky2_read16(hw, GPHY_CTRL);
sky2_write16(hw, GPHY_CTRL, reg | GPC_INTPOL);
/* adapt HW for low active PHY Interrupt */
reg = sky2_read16(hw, Y2_CFG_SPC + PCI_LDO_CTRL);
sky2_write16(hw, Y2_CFG_SPC + PCI_LDO_CTRL, reg | PHY_M_UNDOC1);
}
sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
/* re-enable PEX PM in PEX PHY debug reg. 8 (clear bit 12) */
sky2_write32(hw, Y2_PEX_PHY_DATA, PEX_DB_ACCESS | (0x08UL << 16));
}
/* Clear I2C IRQ noise */
sky2_write32(hw, B2_I2C_IRQ, 1);
/* turn off hardware timer (unused) */
sky2_write8(hw, B2_TI_CTRL, TIM_STOP);
sky2_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
/* Turn off descriptor polling */
sky2_write32(hw, B28_DPT_CTRL, DPT_STOP);
/* Turn off receive timestamp */
sky2_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_STOP);
sky2_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
/* enable the Tx Arbiters */
for (i = 0; i < hw->ports; i++)
sky2_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
/* Initialize ram interface */
for (i = 0; i < hw->ports; i++) {
sky2_write8(hw, RAM_BUFFER(i, B3_RI_CTRL), RI_RST_CLR);
sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_R1), SK_RI_TO_53);
sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_XA1), SK_RI_TO_53);
sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_XS1), SK_RI_TO_53);
sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_R1), SK_RI_TO_53);
sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_XA1), SK_RI_TO_53);
sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_XS1), SK_RI_TO_53);
sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_R2), SK_RI_TO_53);
sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_XA2), SK_RI_TO_53);
sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_XS2), SK_RI_TO_53);
sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_R2), SK_RI_TO_53);
sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_XA2), SK_RI_TO_53);
sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_XS2), SK_RI_TO_53);
}
sky2_write32(hw, B0_HWE_IMSK, hwe_mask);
for (i = 0; i < hw->ports; i++)
sky2_gmac_reset(hw, i);
memset(hw->st_le, 0, hw->st_size * sizeof(struct sky2_status_le));
hw->st_idx = 0;
sky2_write32(hw, STAT_CTRL, SC_STAT_RST_SET);
sky2_write32(hw, STAT_CTRL, SC_STAT_RST_CLR);
sky2_write32(hw, STAT_LIST_ADDR_LO, hw->st_dma);
sky2_write32(hw, STAT_LIST_ADDR_HI, (u64) hw->st_dma >> 32);
/* Set the list last index */
sky2_write16(hw, STAT_LAST_IDX, hw->st_size - 1);
sky2_write16(hw, STAT_TX_IDX_TH, 10);
sky2_write8(hw, STAT_FIFO_WM, 16);
/* set Status-FIFO ISR watermark */
if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev == 0)
sky2_write8(hw, STAT_FIFO_ISR_WM, 4);
else
sky2_write8(hw, STAT_FIFO_ISR_WM, 16);
sky2_write32(hw, STAT_TX_TIMER_INI, sky2_us2clk(hw, 1000));
sky2_write32(hw, STAT_ISR_TIMER_INI, sky2_us2clk(hw, 20));
sky2_write32(hw, STAT_LEV_TIMER_INI, sky2_us2clk(hw, 100));
/* enable status unit */
sky2_write32(hw, STAT_CTRL, SC_STAT_OP_ON);
sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_START);
sky2_write8(hw, STAT_LEV_TIMER_CTRL, TIM_START);
sky2_write8(hw, STAT_ISR_TIMER_CTRL, TIM_START);
}
/* Take device down (offline).
* Equivalent to doing dev_stop() but this does not
* inform upper layers of the transition.
*/
static void sky2_detach(struct net_device *dev)
{
if (netif_running(dev)) {
netif_tx_lock(dev);
netif_device_detach(dev); /* stop txq */
netif_tx_unlock(dev);
sky2_close(dev);
}
}
/* Bring device back after doing sky2_detach */
static int sky2_reattach(struct net_device *dev)
{
int err = 0;
if (netif_running(dev)) {
err = sky2_open(dev);
if (err) {
netdev_info(dev, "could not restart %d\n", err);
dev_close(dev);
} else {
netif_device_attach(dev);
sky2_set_multicast(dev);
}
}
return err;
}
static void sky2_all_down(struct sky2_hw *hw)
{
int i;
if (hw->flags & SKY2_HW_IRQ_SETUP) {
sky2_write32(hw, B0_IMSK, 0);
sky2_read32(hw, B0_IMSK);
synchronize_irq(hw->pdev->irq);
napi_disable(&hw->napi);
}
for (i = 0; i < hw->ports; i++) {
struct net_device *dev = hw->dev[i];
struct sky2_port *sky2 = netdev_priv(dev);
if (!netif_running(dev))
continue;
netif_carrier_off(dev);
netif_tx_disable(dev);
sky2_hw_down(sky2);
}
}
static void sky2_all_up(struct sky2_hw *hw)
{
u32 imask = Y2_IS_BASE;
int i;
for (i = 0; i < hw->ports; i++) {
struct net_device *dev = hw->dev[i];
struct sky2_port *sky2 = netdev_priv(dev);
if (!netif_running(dev))
continue;
sky2_hw_up(sky2);
sky2_set_multicast(dev);
imask |= portirq_msk[i];
netif_wake_queue(dev);
}
if (hw->flags & SKY2_HW_IRQ_SETUP) {
sky2_write32(hw, B0_IMSK, imask);
sky2_read32(hw, B0_IMSK);
sky2_read32(hw, B0_Y2_SP_LISR);
napi_enable(&hw->napi);
}
}
static void sky2_restart(struct work_struct *work)
{
struct sky2_hw *hw = container_of(work, struct sky2_hw, restart_work);
rtnl_lock();
sky2_all_down(hw);
sky2_reset(hw);
sky2_all_up(hw);
rtnl_unlock();
}
static inline u8 sky2_wol_supported(const struct sky2_hw *hw)
{
return sky2_is_copper(hw) ? (WAKE_PHY | WAKE_MAGIC) : 0;
}
static void sky2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
const struct sky2_port *sky2 = netdev_priv(dev);
wol->supported = sky2_wol_supported(sky2->hw);
wol->wolopts = sky2->wol;
}
static int sky2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
struct sky2_port *sky2 = netdev_priv(dev);
struct sky2_hw *hw = sky2->hw;
bool enable_wakeup = false;
int i;
if ((wol->wolopts & ~sky2_wol_supported(sky2->hw)) ||
!device_can_wakeup(&hw->pdev->dev))
return -EOPNOTSUPP;
sky2->wol = wol->wolopts;
for (i = 0; i < hw->ports; i++) {
struct net_device *dev = hw->dev[i];
struct sky2_port *sky2 = netdev_priv(dev);
if (sky2->wol)
enable_wakeup = true;
}
device_set_wakeup_enable(&hw->pdev->dev, enable_wakeup);
return 0;
}
static u32 sky2_supported_modes(const struct sky2_hw *hw)
{
if (sky2_is_copper(hw)) {
u32 modes = SUPPORTED_10baseT_Half
| SUPPORTED_10baseT_Full
| SUPPORTED_100baseT_Half
| SUPPORTED_100baseT_Full;
if (hw->flags & SKY2_HW_GIGABIT)
modes |= SUPPORTED_1000baseT_Half
| SUPPORTED_1000baseT_Full;
return modes;
} else
return SUPPORTED_1000baseT_Half
| SUPPORTED_1000baseT_Full;
}
static int sky2_get_link_ksettings(struct net_device *dev,
struct ethtool_link_ksettings *cmd)
{
struct sky2_port *sky2 = netdev_priv(dev);
struct sky2_hw *hw = sky2->hw;
u32 supported, advertising;
supported = sky2_supported_modes(hw);
cmd->base.phy_address = PHY_ADDR_MARV;
if (sky2_is_copper(hw)) {
cmd->base.port = PORT_TP;
cmd->base.speed = sky2->speed;
supported |= SUPPORTED_Autoneg | SUPPORTED_TP;
} else {
cmd->base.speed = SPEED_1000;
cmd->base.port = PORT_FIBRE;
supported |= SUPPORTED_Autoneg | SUPPORTED_FIBRE;
}
advertising = sky2->advertising;
cmd->base.autoneg = (sky2->flags & SKY2_FLAG_AUTO_SPEED)
? AUTONEG_ENABLE : AUTONEG_DISABLE;
cmd->base.duplex = sky2->duplex;
ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
supported);
ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
advertising);
return 0;
}
static int sky2_set_link_ksettings(struct net_device *dev,
const struct ethtool_link_ksettings *cmd)
{
struct sky2_port *sky2 = netdev_priv(dev);
const struct sky2_hw *hw = sky2->hw;
u32 supported = sky2_supported_modes(hw);
u32 new_advertising;
ethtool_convert_link_mode_to_legacy_u32(&new_advertising,
cmd->link_modes.advertising);
if (cmd->base.autoneg == AUTONEG_ENABLE) {
if (new_advertising & ~supported)
return -EINVAL;
if (sky2_is_copper(hw))
sky2->advertising = new_advertising |
ADVERTISED_TP |
ADVERTISED_Autoneg;
else
sky2->advertising = new_advertising |
ADVERTISED_FIBRE |
ADVERTISED_Autoneg;
sky2->flags |= SKY2_FLAG_AUTO_SPEED;
sky2->duplex = -1;
sky2->speed = -1;
} else {
u32 setting;
u32 speed = cmd->base.speed;
switch (speed) {
case SPEED_1000:
if (cmd->base.duplex == DUPLEX_FULL)
setting = SUPPORTED_1000baseT_Full;
else if (cmd->base.duplex == DUPLEX_HALF)
setting = SUPPORTED_1000baseT_Half;
else
return -EINVAL;
break;
case SPEED_100:
if (cmd->base.duplex == DUPLEX_FULL)
setting = SUPPORTED_100baseT_Full;
else if (cmd->base.duplex == DUPLEX_HALF)
setting = SUPPORTED_100baseT_Half;
else
return -EINVAL;
break;
case SPEED_10:
if (cmd->base.duplex == DUPLEX_FULL)
setting = SUPPORTED_10baseT_Full;
else if (cmd->base.duplex == DUPLEX_HALF)
setting = SUPPORTED_10baseT_Half;
else
return -EINVAL;
break;
default:
return -EINVAL;
}
if ((setting & supported) == 0)
return -EINVAL;
sky2->speed = speed;
sky2->duplex = cmd->base.duplex;
sky2->flags &= ~SKY2_FLAG_AUTO_SPEED;
}
if (netif_running(dev)) {
sky2_phy_reinit(sky2);
sky2_set_multicast(dev);
}
return 0;
}
static void sky2_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *info)
{
struct sky2_port *sky2 = netdev_priv(dev);
strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
strlcpy(info->version, DRV_VERSION, sizeof(info->version));
strlcpy(info->bus_info, pci_name(sky2->hw->pdev),
sizeof(info->bus_info));
}
static const struct sky2_stat {
char name[ETH_GSTRING_LEN];
u16 offset;
} sky2_stats[] = {
{ "tx_bytes", GM_TXO_OK_HI },
{ "rx_bytes", GM_RXO_OK_HI },
{ "tx_broadcast", GM_TXF_BC_OK },
{ "rx_broadcast", GM_RXF_BC_OK },
{ "tx_multicast", GM_TXF_MC_OK },
{ "rx_multicast", GM_RXF_MC_OK },
{ "tx_unicast", GM_TXF_UC_OK },
{ "rx_unicast", GM_RXF_UC_OK },
{ "tx_mac_pause", GM_TXF_MPAUSE },
{ "rx_mac_pause", GM_RXF_MPAUSE },
{ "collisions", GM_TXF_COL },
{ "late_collision",GM_TXF_LAT_COL },
{ "aborted", GM_TXF_ABO_COL },
{ "single_collisions", GM_TXF_SNG_COL },
{ "multi_collisions", GM_TXF_MUL_COL },
{ "rx_short", GM_RXF_SHT },
{ "rx_runt", GM_RXE_FRAG },
{ "rx_64_byte_packets", GM_RXF_64B },
{ "rx_65_to_127_byte_packets", GM_RXF_127B },
{ "rx_128_to_255_byte_packets", GM_RXF_255B },
{ "rx_256_to_511_byte_packets", GM_RXF_511B },
{ "rx_512_to_1023_byte_packets", GM_RXF_1023B },
{ "rx_1024_to_1518_byte_packets", GM_RXF_1518B },
{ "rx_1518_to_max_byte_packets", GM_RXF_MAX_SZ },
{ "rx_too_long", GM_RXF_LNG_ERR },
{ "rx_fifo_overflow", GM_RXE_FIFO_OV },
{ "rx_jabber", GM_RXF_JAB_PKT },
{ "rx_fcs_error", GM_RXF_FCS_ERR },
{ "tx_64_byte_packets", GM_TXF_64B },
{ "tx_65_to_127_byte_packets", GM_TXF_127B },
{ "tx_128_to_255_byte_packets", GM_TXF_255B },
{ "tx_256_to_511_byte_packets", GM_TXF_511B },
{ "tx_512_to_1023_byte_packets", GM_TXF_1023B },
{ "tx_1024_to_1518_byte_packets", GM_TXF_1518B },
{ "tx_1519_to_max_byte_packets", GM_TXF_MAX_SZ },
{ "tx_fifo_underrun", GM_TXE_FIFO_UR },
};
static u32 sky2_get_msglevel(struct net_device *netdev)
{
struct sky2_port *sky2 = netdev_priv(netdev);
return sky2->msg_enable;
}
static int sky2_nway_reset(struct net_device *dev)
{
struct sky2_port *sky2 = netdev_priv(dev);
if (!netif_running(dev) || !(sky2->flags & SKY2_FLAG_AUTO_SPEED))
return -EINVAL;
sky2_phy_reinit(sky2);
sky2_set_multicast(dev);
return 0;
}
static void sky2_phy_stats(struct sky2_port *sky2, u64 * data, unsigned count)
{
struct sky2_hw *hw = sky2->hw;
unsigned port = sky2->port;
int i;
data[0] = get_stats64(hw, port, GM_TXO_OK_LO);
data[1] = get_stats64(hw, port, GM_RXO_OK_LO);
for (i = 2; i < count; i++)
data[i] = get_stats32(hw, port, sky2_stats[i].offset);
}
static void sky2_set_msglevel(struct net_device *netdev, u32 value)
{
struct sky2_port *sky2 = netdev_priv(netdev);
sky2->msg_enable = value;
}
static int sky2_get_sset_count(struct net_device *dev, int sset)
{
switch (sset) {
case ETH_SS_STATS:
return ARRAY_SIZE(sky2_stats);
default:
return -EOPNOTSUPP;
}
}
static void sky2_get_ethtool_stats(struct net_device *dev,
struct ethtool_stats *stats, u64 * data)
{
struct sky2_port *sky2 = netdev_priv(dev);
sky2_phy_stats(sky2, data, ARRAY_SIZE(sky2_stats));
}
static void sky2_get_strings(struct net_device *dev, u32 stringset, u8 * data)
{
int i;
switch (stringset) {
case ETH_SS_STATS:
for (i = 0; i < ARRAY_SIZE(sky2_stats); i++)
memcpy(data + i * ETH_GSTRING_LEN,
sky2_stats[i].name, ETH_GSTRING_LEN);
break;
}
}
static int sky2_set_mac_address(struct net_device *dev, void *p)
{
struct sky2_port *sky2 = netdev_priv(dev);
struct sky2_hw *hw = sky2->hw;
unsigned port = sky2->port;
const struct sockaddr *addr = p;
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
memcpy_toio(hw->regs + B2_MAC_1 + port * 8,
dev->dev_addr, ETH_ALEN);
memcpy_toio(hw->regs + B2_MAC_2 + port * 8,
dev->dev_addr, ETH_ALEN);
/* virtual address for data */
gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
/* physical address: used for pause frames */
gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
return 0;
}
static inline void sky2_add_filter(u8 filter[8], const u8 *addr)
{
u32 bit;
bit = ether_crc(ETH_ALEN, addr) & 63;
filter[bit >> 3] |= 1 << (bit & 7);
}
static void sky2_set_multicast(struct net_device *dev)
{
struct sky2_port *sky2 = netdev_priv(dev);
struct sky2_hw *hw = sky2->hw;
unsigned port = sky2->port;
struct netdev_hw_addr *ha;
u16 reg;
u8 filter[8];
int rx_pause;
static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
rx_pause = (sky2->flow_status == FC_RX || sky2->flow_status == FC_BOTH);
memset(filter, 0, sizeof(filter));
reg = gma_read16(hw, port, GM_RX_CTRL);
reg |= GM_RXCR_UCF_ENA;
if (dev->flags & IFF_PROMISC) /* promiscuous */
reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
else if (dev->flags & IFF_ALLMULTI)
memset(filter, 0xff, sizeof(filter));
else if (netdev_mc_empty(dev) && !rx_pause)
reg &= ~GM_RXCR_MCF_ENA;
else {
reg |= GM_RXCR_MCF_ENA;
if (rx_pause)
sky2_add_filter(filter, pause_mc_addr);
netdev_for_each_mc_addr(ha, dev)
sky2_add_filter(filter, ha->addr);
}
gma_write16(hw, port, GM_MC_ADDR_H1,
(u16) filter[0] | ((u16) filter[1] << 8));
gma_write16(hw, port, GM_MC_ADDR_H2,
(u16) filter[2] | ((u16) filter[3] << 8));
gma_write16(hw, port, GM_MC_ADDR_H3,
(u16) filter[4] | ((u16) filter[5] << 8));
gma_write16(hw, port, GM_MC_ADDR_H4,
(u16) filter[6] | ((u16) filter[7] << 8));
gma_write16(hw, port, GM_RX_CTRL, reg);
}
static void sky2_get_stats(struct net_device *dev,
struct rtnl_link_stats64 *stats)
{
struct sky2_port *sky2 = netdev_priv(dev);
struct sky2_hw *hw = sky2->hw;
unsigned port = sky2->port;
unsigned int start;
u64 _bytes, _packets;
do {
start = u64_stats_fetch_begin_irq(&sky2->rx_stats.syncp);
_bytes = sky2->rx_stats.bytes;
_packets = sky2->rx_stats.packets;
} while (u64_stats_fetch_retry_irq(&sky2->rx_stats.syncp, start));
stats->rx_packets = _packets;
stats->rx_bytes = _bytes;
do {
start = u64_stats_fetch_begin_irq(&sky2->tx_stats.syncp);
_bytes = sky2->tx_stats.bytes;
_packets = sky2->tx_stats.packets;
} while (u64_stats_fetch_retry_irq(&sky2->tx_stats.syncp, start));
stats->tx_packets = _packets;
stats->tx_bytes = _bytes;
stats->multicast = get_stats32(hw, port, GM_RXF_MC_OK)
+ get_stats32(hw, port, GM_RXF_BC_OK);
stats->collisions = get_stats32(hw, port, GM_TXF_COL);
stats->rx_length_errors = get_stats32(hw, port, GM_RXF_LNG_ERR);
stats->rx_crc_errors = get_stats32(hw, port, GM_RXF_FCS_ERR);
stats->rx_frame_errors = get_stats32(hw, port, GM_RXF_SHT)
+ get_stats32(hw, port, GM_RXE_FRAG);
stats->rx_over_errors = get_stats32(hw, port, GM_RXE_FIFO_OV);
stats->rx_dropped = dev->stats.rx_dropped;
stats->rx_fifo_errors = dev->stats.rx_fifo_errors;
stats->tx_fifo_errors = dev->stats.tx_fifo_errors;
}
/* Can have one global because blinking is controlled by
* ethtool and that is always under RTNL mutex
*/
static void sky2_led(struct sky2_port *sky2, enum led_mode mode)
{
struct sky2_hw *hw = sky2->hw;
unsigned port = sky2->port;
spin_lock_bh(&sky2->phy_lock);
if (hw->chip_id == CHIP_ID_YUKON_EC_U ||
hw->chip_id == CHIP_ID_YUKON_EX ||
hw->chip_id == CHIP_ID_YUKON_SUPR) {
u16 pg;
pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
switch (mode) {
case MO_LED_OFF:
gm_phy_write(hw, port, PHY_MARV_PHY_CTRL,
PHY_M_LEDC_LOS_CTRL(8) |
PHY_M_LEDC_INIT_CTRL(8) |
PHY_M_LEDC_STA1_CTRL(8) |
PHY_M_LEDC_STA0_CTRL(8));
break;
case MO_LED_ON:
gm_phy_write(hw, port, PHY_MARV_PHY_CTRL,
PHY_M_LEDC_LOS_CTRL(9) |
PHY_M_LEDC_INIT_CTRL(9) |
PHY_M_LEDC_STA1_CTRL(9) |
PHY_M_LEDC_STA0_CTRL(9));
break;
case MO_LED_BLINK:
gm_phy_write(hw, port, PHY_MARV_PHY_CTRL,
PHY_M_LEDC_LOS_CTRL(0xa) |
PHY_M_LEDC_INIT_CTRL(0xa) |
PHY_M_LEDC_STA1_CTRL(0xa) |
PHY_M_LEDC_STA0_CTRL(0xa));
break;
case MO_LED_NORM:
gm_phy_write(hw, port, PHY_MARV_PHY_CTRL,
PHY_M_LEDC_LOS_CTRL(1) |
PHY_M_LEDC_INIT_CTRL(8) |
PHY_M_LEDC_STA1_CTRL(7) |
PHY_M_LEDC_STA0_CTRL(7));
}
gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
} else
gm_phy_write(hw, port, PHY_MARV_LED_OVER,
PHY_M_LED_MO_DUP(mode) |
PHY_M_LED_MO_10(mode) |
PHY_M_LED_MO_100(mode) |
PHY_M_LED_MO_1000(mode) |
PHY_M_LED_MO_RX(mode) |
PHY_M_LED_MO_TX(mode));
spin_unlock_bh(&sky2->phy_lock);
}
/* blink LED's for finding board */
static int sky2_set_phys_id(struct net_device *dev,
enum ethtool_phys_id_state state)
{
struct sky2_port *sky2 = netdev_priv(dev);
switch (state) {
case ETHTOOL_ID_ACTIVE:
return 1; /* cycle on/off once per second */
case ETHTOOL_ID_INACTIVE:
sky2_led(sky2, MO_LED_NORM);
break;
case ETHTOOL_ID_ON:
sky2_led(sky2, MO_LED_ON);
break;
case ETHTOOL_ID_OFF:
sky2_led(sky2, MO_LED_OFF);
break;
}
return 0;
}
static void sky2_get_pauseparam(struct net_device *dev,
struct ethtool_pauseparam *ecmd)
{
struct sky2_port *sky2 = netdev_priv(dev);
switch (sky2->flow_mode) {
case FC_NONE:
ecmd->tx_pause = ecmd->rx_pause = 0;
break;
case FC_TX:
ecmd->tx_pause = 1, ecmd->rx_pause = 0;
break;
case FC_RX:
ecmd->tx_pause = 0, ecmd->rx_pause = 1;
break;
case FC_BOTH:
ecmd->tx_pause = ecmd->rx_pause = 1;
}
ecmd->autoneg = (sky2->flags & SKY2_FLAG_AUTO_PAUSE)
? AUTONEG_ENABLE : AUTONEG_DISABLE;
}
static int sky2_set_pauseparam(struct net_device *dev,
struct ethtool_pauseparam *ecmd)
{
struct sky2_port *sky2 = netdev_priv(dev);
if (ecmd->autoneg == AUTONEG_ENABLE)
sky2->flags |= SKY2_FLAG_AUTO_PAUSE;
else
sky2->flags &= ~SKY2_FLAG_AUTO_PAUSE;
sky2->flow_mode = sky2_flow(ecmd->rx_pause, ecmd->tx_pause);
if (netif_running(dev))
sky2_phy_reinit(sky2);
return 0;
}
static int sky2_get_coalesce(struct net_device *dev,
struct ethtool_coalesce *ecmd)
{
struct sky2_port *sky2 = netdev_priv(dev);
struct sky2_hw *hw = sky2->hw;
if (sky2_read8(hw, STAT_TX_TIMER_CTRL) == TIM_STOP)
ecmd->tx_coalesce_usecs = 0;
else {
u32 clks = sky2_read32(hw, STAT_TX_TIMER_INI);
ecmd->tx_coalesce_usecs = sky2_clk2us(hw, clks);
}
ecmd->tx_max_coalesced_frames = sky2_read16(hw, STAT_TX_IDX_TH);
if (sky2_read8(hw, STAT_LEV_TIMER_CTRL) == TIM_STOP)
ecmd->rx_coalesce_usecs = 0;
else {
u32 clks = sky2_read32(hw, STAT_LEV_TIMER_INI);
ecmd->rx_coalesce_usecs = sky2_clk2us(hw, clks);
}
ecmd->rx_max_coalesced_frames = sky2_read8(hw, STAT_FIFO_WM);
if (sky2_read8(hw, STAT_ISR_TIMER_CTRL) == TIM_STOP)
ecmd->rx_coalesce_usecs_irq = 0;
else {
u32 clks = sky2_read32(hw, STAT_ISR_TIMER_INI);
ecmd->rx_coalesce_usecs_irq = sky2_clk2us(hw, clks);
}
ecmd->rx_max_coalesced_frames_irq = sky2_read8(hw, STAT_FIFO_ISR_WM);
return 0;
}
/* Note: this affect both ports */
static int sky2_set_coalesce(struct net_device *dev,
struct ethtool_coalesce *ecmd)
{
struct sky2_port *sky2 = netdev_priv(dev);
struct sky2_hw *hw = sky2->hw;
const u32 tmax = sky2_clk2us(hw, 0x0ffffff);
if (ecmd->tx_coalesce_usecs > tmax ||
ecmd->rx_coalesce_usecs > tmax ||
ecmd->rx_coalesce_usecs_irq > tmax)
return -EINVAL;
if (ecmd->tx_max_coalesced_frames >= sky2->tx_ring_size-1)
return -EINVAL;
if (ecmd->rx_max_coalesced_frames > RX_MAX_PENDING)
return -EINVAL;
if (ecmd->rx_max_coalesced_frames_irq > RX_MAX_PENDING)
return -EINVAL;
if (ecmd->tx_coalesce_usecs == 0)
sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_STOP);
else {
sky2_write32(hw, STAT_TX_TIMER_INI,
sky2_us2clk(hw, ecmd->tx_coalesce_usecs));
sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_START);
}
sky2_write16(hw, STAT_TX_IDX_TH, ecmd->tx_max_coalesced_frames);
if (ecmd->rx_coalesce_usecs == 0)
sky2_write8(hw, STAT_LEV_TIMER_CTRL, TIM_STOP);
else {
sky2_write32(hw, STAT_LEV_TIMER_INI,
sky2_us2clk(hw, ecmd->rx_coalesce_usecs));
sky2_write8(hw, STAT_LEV_TIMER_CTRL, TIM_START);
}
sky2_write8(hw, STAT_FIFO_WM, ecmd->rx_max_coalesced_frames);
if (ecmd->rx_coalesce_usecs_irq == 0)
sky2_write8(hw, STAT_ISR_TIMER_CTRL, TIM_STOP);
else {
sky2_write32(hw, STAT_ISR_TIMER_INI,
sky2_us2clk(hw, ecmd->rx_coalesce_usecs_irq));
sky2_write8(hw, STAT_ISR_TIMER_CTRL, TIM_START);
}
sky2_write8(hw, STAT_FIFO_ISR_WM, ecmd->rx_max_coalesced_frames_irq);
return 0;
}
/*
* Hardware is limited to min of 128 and max of 2048 for ring size
* and rounded up to next power of two
* to avoid division in modulus calclation
*/
static unsigned long roundup_ring_size(unsigned long pending)
{
return max(128ul, roundup_pow_of_two(pending+1));
}
static void sky2_get_ringparam(struct net_device *dev,
struct ethtool_ringparam *ering)
{
struct sky2_port *sky2 = netdev_priv(dev);
ering->rx_max_pending = RX_MAX_PENDING;
ering->tx_max_pending = TX_MAX_PENDING;
ering->rx_pending = sky2->rx_pending;
ering->tx_pending = sky2->tx_pending;
}
static int sky2_set_ringparam(struct net_device *dev,
struct ethtool_ringparam *ering)
{
struct sky2_port *sky2 = netdev_priv(dev);
if (ering->rx_pending > RX_MAX_PENDING ||
ering->rx_pending < 8 ||
ering->tx_pending < TX_MIN_PENDING ||
ering->tx_pending > TX_MAX_PENDING)
return -EINVAL;
sky2_detach(dev);
sky2->rx_pending = ering->rx_pending;
sky2->tx_pending = ering->tx_pending;
sky2->tx_ring_size = roundup_ring_size(sky2->tx_pending);
return sky2_reattach(dev);
}
static int sky2_get_regs_len(struct net_device *dev)
{
return 0x4000;
}
static int sky2_reg_access_ok(struct sky2_hw *hw, unsigned int b)
{
/* This complicated switch statement is to make sure and
* only access regions that are unreserved.
* Some blocks are only valid on dual port cards.
*/
switch (b) {
/* second port */
case 5: /* Tx Arbiter 2 */
case 9: /* RX2 */
case 14 ... 15: /* TX2 */
case 17: case 19: /* Ram Buffer 2 */
case 22 ... 23: /* Tx Ram Buffer 2 */
case 25: /* Rx MAC Fifo 1 */
case 27: /* Tx MAC Fifo 2 */
case 31: /* GPHY 2 */
case 40 ... 47: /* Pattern Ram 2 */
case 52: case 54: /* TCP Segmentation 2 */
case 112 ... 116: /* GMAC 2 */
return hw->ports > 1;
case 0: /* Control */
case 2: /* Mac address */
case 4: /* Tx Arbiter 1 */
case 7: /* PCI express reg */
case 8: /* RX1 */
case 12 ... 13: /* TX1 */
case 16: case 18:/* Rx Ram Buffer 1 */
case 20 ... 21: /* Tx Ram Buffer 1 */
case 24: /* Rx MAC Fifo 1 */
case 26: /* Tx MAC Fifo 1 */
case 28 ... 29: /* Descriptor and status unit */
case 30: /* GPHY 1*/
case 32 ... 39: /* Pattern Ram 1 */
case 48: case 50: /* TCP Segmentation 1 */
case 56 ... 60: /* PCI space */
case 80 ... 84: /* GMAC 1 */
return 1;
default:
return 0;
}
}
/*
* Returns copy of control register region
* Note: ethtool_get_regs always provides full size (16k) buffer
*/
static void sky2_get_regs(struct net_device *dev, struct ethtool_regs *regs,
void *p)
{
const struct sky2_port *sky2 = netdev_priv(dev);
const void __iomem *io = sky2->hw->regs;
unsigned int b;
regs->version = 1;
for (b = 0; b < 128; b++) {
/* skip poisonous diagnostic ram region in block 3 */
if (b == 3)
memcpy_fromio(p + 0x10, io + 0x10, 128 - 0x10);
else if (sky2_reg_access_ok(sky2->hw, b))
memcpy_fromio(p, io, 128);
else
memset(p, 0, 128);
p += 128;
io += 128;
}
}
static int sky2_get_eeprom_len(struct net_device *dev)
{
struct sky2_port *sky2 = netdev_priv(dev);
struct sky2_hw *hw = sky2->hw;
u16 reg2;
reg2 = sky2_pci_read16(hw, PCI_DEV_REG2);
return 1 << ( ((reg2 & PCI_VPD_ROM_SZ) >> 14) + 8);
}
static int sky2_vpd_wait(const struct sky2_hw *hw, int cap, u16 busy)
{
unsigned long start = jiffies;
while ( (sky2_pci_read16(hw, cap + PCI_VPD_ADDR) & PCI_VPD_ADDR_F) == busy) {
/* Can take up to 10.6 ms for write */
if (time_after(jiffies, start + HZ/4)) {
dev_err(&hw->pdev->dev, "VPD cycle timed out\n");
return -ETIMEDOUT;
}
msleep(1);
}
return 0;
}
static int sky2_vpd_read(struct sky2_hw *hw, int cap, void *data,
u16 offset, size_t length)
{
int rc = 0;
while (length > 0) {
u32 val;
sky2_pci_write16(hw, cap + PCI_VPD_ADDR, offset);
rc = sky2_vpd_wait(hw, cap, 0);
if (rc)
break;
val = sky2_pci_read32(hw, cap + PCI_VPD_DATA);
memcpy(data, &val, min(sizeof(val), length));
offset += sizeof(u32);
data += sizeof(u32);
length -= sizeof(u32);
}
return rc;
}
static int sky2_vpd_write(struct sky2_hw *hw, int cap, const void *data,
u16 offset, unsigned int length)
{
unsigned int i;
int rc = 0;
for (i = 0; i < length; i += sizeof(u32)) {
u32 val = *(u32 *)(data + i);
sky2_pci_write32(hw, cap + PCI_VPD_DATA, val);
sky2_pci_write32(hw, cap + PCI_VPD_ADDR, offset | PCI_VPD_ADDR_F);
rc = sky2_vpd_wait(hw, cap, PCI_VPD_ADDR_F);
if (rc)
break;
}
return rc;
}
static int sky2_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
u8 *data)
{
struct sky2_port *sky2 = netdev_priv(dev);
int cap = pci_find_capability(sky2->hw->pdev, PCI_CAP_ID_VPD);
if (!cap)
return -EINVAL;
eeprom->magic = SKY2_EEPROM_MAGIC;
return sky2_vpd_read(sky2->hw, cap, data, eeprom->offset, eeprom->len);
}
static int sky2_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
u8 *data)
{
struct sky2_port *sky2 = netdev_priv(dev);
int cap = pci_find_capability(sky2->hw->pdev, PCI_CAP_ID_VPD);
if (!cap)
return -EINVAL;
if (eeprom->magic != SKY2_EEPROM_MAGIC)
return -EINVAL;
/* Partial writes not supported */
if ((eeprom->offset & 3) || (eeprom->len & 3))
return -EINVAL;
return sky2_vpd_write(sky2->hw, cap, data, eeprom->offset, eeprom->len);
}
static netdev_features_t sky2_fix_features(struct net_device *dev,
netdev_features_t features)
{
const struct sky2_port *sky2 = netdev_priv(dev);
const struct sky2_hw *hw = sky2->hw;
/* In order to do Jumbo packets on these chips, need to turn off the
* transmit store/forward. Therefore checksum offload won't work.
*/
if (dev->mtu > ETH_DATA_LEN && hw->chip_id == CHIP_ID_YUKON_EC_U) {
netdev_info(dev, "checksum offload not possible with jumbo frames\n");
features &= ~(NETIF_F_TSO | NETIF_F_SG | NETIF_F_CSUM_MASK);
}
/* Some hardware requires receive checksum for RSS to work. */
if ( (features & NETIF_F_RXHASH) &&
!(features & NETIF_F_RXCSUM) &&
(sky2->hw->flags & SKY2_HW_RSS_CHKSUM)) {
netdev_info(dev, "receive hashing forces receive checksum\n");
features |= NETIF_F_RXCSUM;
}
return features;
}
static int sky2_set_features(struct net_device *dev, netdev_features_t features)
{
struct sky2_port *sky2 = netdev_priv(dev);
netdev_features_t changed = dev->features ^ features;
if ((changed & NETIF_F_RXCSUM) &&
!(sky2->hw->flags & SKY2_HW_NEW_LE)) {
sky2_write32(sky2->hw,
Q_ADDR(rxqaddr[sky2->port], Q_CSR),
(features & NETIF_F_RXCSUM)
? BMU_ENA_RX_CHKSUM : BMU_DIS_RX_CHKSUM);
}
if (changed & NETIF_F_RXHASH)
rx_set_rss(dev, features);
if (changed & (NETIF_F_HW_VLAN_CTAG_TX|NETIF_F_HW_VLAN_CTAG_RX))
sky2_vlan_mode(dev, features);
return 0;
}
static const struct ethtool_ops sky2_ethtool_ops = {
.supported_coalesce_params = ETHTOOL_COALESCE_USECS |
ETHTOOL_COALESCE_MAX_FRAMES |
ETHTOOL_COALESCE_RX_USECS_IRQ |
ETHTOOL_COALESCE_RX_MAX_FRAMES_IRQ,
.get_drvinfo = sky2_get_drvinfo,
.get_wol = sky2_get_wol,
.set_wol = sky2_set_wol,
.get_msglevel = sky2_get_msglevel,
.set_msglevel = sky2_set_msglevel,
.nway_reset = sky2_nway_reset,
.get_regs_len = sky2_get_regs_len,
.get_regs = sky2_get_regs,
.get_link = ethtool_op_get_link,
.get_eeprom_len = sky2_get_eeprom_len,
.get_eeprom = sky2_get_eeprom,
.set_eeprom = sky2_set_eeprom,
.get_strings = sky2_get_strings,
.get_coalesce = sky2_get_coalesce,
.set_coalesce = sky2_set_coalesce,
.get_ringparam = sky2_get_ringparam,
.set_ringparam = sky2_set_ringparam,
.get_pauseparam = sky2_get_pauseparam,
.set_pauseparam = sky2_set_pauseparam,
.set_phys_id = sky2_set_phys_id,
.get_sset_count = sky2_get_sset_count,
.get_ethtool_stats = sky2_get_ethtool_stats,
.get_link_ksettings = sky2_get_link_ksettings,
.set_link_ksettings = sky2_set_link_ksettings,
};
#ifdef CONFIG_SKY2_DEBUG
static struct dentry *sky2_debug;
/*
* Read and parse the first part of Vital Product Data
*/
#define VPD_SIZE 128
#define VPD_MAGIC 0x82
static const struct vpd_tag {
char tag[2];
char *label;
} vpd_tags[] = {
{ "PN", "Part Number" },
{ "EC", "Engineering Level" },
{ "MN", "Manufacturer" },
{ "SN", "Serial Number" },
{ "YA", "Asset Tag" },
{ "VL", "First Error Log Message" },
{ "VF", "Second Error Log Message" },
{ "VB", "Boot Agent ROM Configuration" },
{ "VE", "EFI UNDI Configuration" },
};
static void sky2_show_vpd(struct seq_file *seq, struct sky2_hw *hw)
{
size_t vpd_size;
loff_t offs;
u8 len;
unsigned char *buf;
u16 reg2;
reg2 = sky2_pci_read16(hw, PCI_DEV_REG2);
vpd_size = 1 << ( ((reg2 & PCI_VPD_ROM_SZ) >> 14) + 8);
seq_printf(seq, "%s Product Data\n", pci_name(hw->pdev));
buf = kmalloc(vpd_size, GFP_KERNEL);
if (!buf) {
seq_puts(seq, "no memory!\n");
return;
}
if (pci_read_vpd(hw->pdev, 0, vpd_size, buf) < 0) {
seq_puts(seq, "VPD read failed\n");
goto out;
}
if (buf[0] != VPD_MAGIC) {
seq_printf(seq, "VPD tag mismatch: %#x\n", buf[0]);
goto out;
}
len = buf[1];
if (len == 0 || len > vpd_size - 4) {
seq_printf(seq, "Invalid id length: %d\n", len);
goto out;
}
seq_printf(seq, "%.*s\n", len, buf + 3);
offs = len + 3;
while (offs < vpd_size - 4) {
int i;
if (!memcmp("RW", buf + offs, 2)) /* end marker */
break;
len = buf[offs + 2];
if (offs + len + 3 >= vpd_size)
break;
for (i = 0; i < ARRAY_SIZE(vpd_tags); i++) {
if (!memcmp(vpd_tags[i].tag, buf + offs, 2)) {
seq_printf(seq, " %s: %.*s\n",
vpd_tags[i].label, len, buf + offs + 3);
break;
}
}
offs += len + 3;
}
out:
kfree(buf);
}
static int sky2_debug_show(struct seq_file *seq, void *v)
{
struct net_device *dev = seq->private;
const struct sky2_port *sky2 = netdev_priv(dev);
struct sky2_hw *hw = sky2->hw;
unsigned port = sky2->port;
unsigned idx, last;
int sop;
sky2_show_vpd(seq, hw);
seq_printf(seq, "\nIRQ src=%x mask=%x control=%x\n",
sky2_read32(hw, B0_ISRC),
sky2_read32(hw, B0_IMSK),
sky2_read32(hw, B0_Y2_SP_ICR));
if (!netif_running(dev)) {
seq_puts(seq, "network not running\n");
return 0;
}
napi_disable(&hw->napi);
last = sky2_read16(hw, STAT_PUT_IDX);
seq_printf(seq, "Status ring %u\n", hw->st_size);
if (hw->st_idx == last)
seq_puts(seq, "Status ring (empty)\n");
else {
seq_puts(seq, "Status ring\n");
for (idx = hw->st_idx; idx != last && idx < hw->st_size;
idx = RING_NEXT(idx, hw->st_size)) {
const struct sky2_status_le *le = hw->st_le + idx;
seq_printf(seq, "[%d] %#x %d %#x\n",
idx, le->opcode, le->length, le->status);
}
seq_puts(seq, "\n");
}
seq_printf(seq, "Tx ring pending=%u...%u report=%d done=%d\n",
sky2->tx_cons, sky2->tx_prod,
sky2_read16(hw, port == 0 ? STAT_TXA1_RIDX : STAT_TXA2_RIDX),
sky2_read16(hw, Q_ADDR(txqaddr[port], Q_DONE)));
/* Dump contents of tx ring */
sop = 1;
for (idx = sky2->tx_next; idx != sky2->tx_prod && idx < sky2->tx_ring_size;
idx = RING_NEXT(idx, sky2->tx_ring_size)) {
const struct sky2_tx_le *le = sky2->tx_le + idx;
u32 a = le32_to_cpu(le->addr);
if (sop)
seq_printf(seq, "%u:", idx);
sop = 0;
switch (le->opcode & ~HW_OWNER) {
case OP_ADDR64:
seq_printf(seq, " %#x:", a);
break;
case OP_LRGLEN:
seq_printf(seq, " mtu=%d", a);
break;
case OP_VLAN:
seq_printf(seq, " vlan=%d", be16_to_cpu(le->length));
break;
case OP_TCPLISW:
seq_printf(seq, " csum=%#x", a);
break;
case OP_LARGESEND:
seq_printf(seq, " tso=%#x(%d)", a, le16_to_cpu(le->length));
break;
case OP_PACKET:
seq_printf(seq, " %#x(%d)", a, le16_to_cpu(le->length));
break;
case OP_BUFFER:
seq_printf(seq, " frag=%#x(%d)", a, le16_to_cpu(le->length));
break;
default:
seq_printf(seq, " op=%#x,%#x(%d)", le->opcode,
a, le16_to_cpu(le->length));
}
if (le->ctrl & EOP) {
seq_putc(seq, '\n');
sop = 1;
}
}
seq_printf(seq, "\nRx ring hw get=%d put=%d last=%d\n",
sky2_read16(hw, Y2_QADDR(rxqaddr[port], PREF_UNIT_GET_IDX)),
sky2_read16(hw, Y2_QADDR(rxqaddr[port], PREF_UNIT_PUT_IDX)),
sky2_read16(hw, Y2_QADDR(rxqaddr[port], PREF_UNIT_LAST_IDX)));
sky2_read32(hw, B0_Y2_SP_LISR);
napi_enable(&hw->napi);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(sky2_debug);
/*
* Use network device events to create/remove/rename
* debugfs file entries
*/
static int sky2_device_event(struct notifier_block *unused,
unsigned long event, void *ptr)
{
struct net_device *dev = netdev_notifier_info_to_dev(ptr);
struct sky2_port *sky2 = netdev_priv(dev);
if (dev->netdev_ops->ndo_open != sky2_open || !sky2_debug)
return NOTIFY_DONE;
switch (event) {
case NETDEV_CHANGENAME:
if (sky2->debugfs) {
sky2->debugfs = debugfs_rename(sky2_debug, sky2->debugfs,
sky2_debug, dev->name);
}
break;
case NETDEV_GOING_DOWN:
if (sky2->debugfs) {
netdev_printk(KERN_DEBUG, dev, "remove debugfs\n");
debugfs_remove(sky2->debugfs);
sky2->debugfs = NULL;
}
break;
case NETDEV_UP:
sky2->debugfs = debugfs_create_file(dev->name, 0444,
sky2_debug, dev,
&sky2_debug_fops);
if (IS_ERR(sky2->debugfs))
sky2->debugfs = NULL;
}
return NOTIFY_DONE;
}
static struct notifier_block sky2_notifier = {
.notifier_call = sky2_device_event,
};
static __init void sky2_debug_init(void)
{
struct dentry *ent;
ent = debugfs_create_dir("sky2", NULL);
if (!ent || IS_ERR(ent))
return;
sky2_debug = ent;
register_netdevice_notifier(&sky2_notifier);
}
static __exit void sky2_debug_cleanup(void)
{
if (sky2_debug) {
unregister_netdevice_notifier(&sky2_notifier);
debugfs_remove(sky2_debug);
sky2_debug = NULL;
}
}
#else
#define sky2_debug_init()
#define sky2_debug_cleanup()
#endif
/* Two copies of network device operations to handle special case of
not allowing netpoll on second port */
static const struct net_device_ops sky2_netdev_ops[2] = {
{
.ndo_open = sky2_open,
.ndo_stop = sky2_close,
.ndo_start_xmit = sky2_xmit_frame,
.ndo_do_ioctl = sky2_ioctl,
.ndo_validate_addr = eth_validate_addr,
.ndo_set_mac_address = sky2_set_mac_address,
.ndo_set_rx_mode = sky2_set_multicast,
.ndo_change_mtu = sky2_change_mtu,
.ndo_fix_features = sky2_fix_features,
.ndo_set_features = sky2_set_features,
.ndo_tx_timeout = sky2_tx_timeout,
.ndo_get_stats64 = sky2_get_stats,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = sky2_netpoll,
#endif
},
{
.ndo_open = sky2_open,
.ndo_stop = sky2_close,
.ndo_start_xmit = sky2_xmit_frame,
.ndo_do_ioctl = sky2_ioctl,
.ndo_validate_addr = eth_validate_addr,
.ndo_set_mac_address = sky2_set_mac_address,
.ndo_set_rx_mode = sky2_set_multicast,
.ndo_change_mtu = sky2_change_mtu,
.ndo_fix_features = sky2_fix_features,
.ndo_set_features = sky2_set_features,
.ndo_tx_timeout = sky2_tx_timeout,
.ndo_get_stats64 = sky2_get_stats,
},
};
/* Initialize network device */
static struct net_device *sky2_init_netdev(struct sky2_hw *hw, unsigned port,
int highmem, int wol)
{
struct sky2_port *sky2;
struct net_device *dev = alloc_etherdev(sizeof(*sky2));
const void *iap;
if (!dev)
return NULL;
SET_NETDEV_DEV(dev, &hw->pdev->dev);
dev->irq = hw->pdev->irq;
dev->ethtool_ops = &sky2_ethtool_ops;
dev->watchdog_timeo = TX_WATCHDOG;
dev->netdev_ops = &sky2_netdev_ops[port];
sky2 = netdev_priv(dev);
sky2->netdev = dev;
sky2->hw = hw;
sky2->msg_enable = netif_msg_init(debug, default_msg);
u64_stats_init(&sky2->tx_stats.syncp);
u64_stats_init(&sky2->rx_stats.syncp);
/* Auto speed and flow control */
sky2->flags = SKY2_FLAG_AUTO_SPEED | SKY2_FLAG_AUTO_PAUSE;
if (hw->chip_id != CHIP_ID_YUKON_XL)
dev->hw_features |= NETIF_F_RXCSUM;
sky2->flow_mode = FC_BOTH;
sky2->duplex = -1;
sky2->speed = -1;
sky2->advertising = sky2_supported_modes(hw);
sky2->wol = wol;
spin_lock_init(&sky2->phy_lock);
sky2->tx_pending = TX_DEF_PENDING;
sky2->tx_ring_size = roundup_ring_size(TX_DEF_PENDING);
sky2->rx_pending = RX_DEF_PENDING;
hw->dev[port] = dev;
sky2->port = port;
dev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_TSO;
if (highmem)
dev->features |= NETIF_F_HIGHDMA;
/* Enable receive hashing unless hardware is known broken */
if (!(hw->flags & SKY2_HW_RSS_BROKEN))
dev->hw_features |= NETIF_F_RXHASH;
if (!(hw->flags & SKY2_HW_VLAN_BROKEN)) {
dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
NETIF_F_HW_VLAN_CTAG_RX;
dev->vlan_features |= SKY2_VLAN_OFFLOADS;
}
dev->features |= dev->hw_features;
/* MTU range: 60 - 1500 or 9000 */
dev->min_mtu = ETH_ZLEN;
if (hw->chip_id == CHIP_ID_YUKON_FE ||
hw->chip_id == CHIP_ID_YUKON_FE_P)
dev->max_mtu = ETH_DATA_LEN;
else
dev->max_mtu = ETH_JUMBO_MTU;
/* try to get mac address in the following order:
* 1) from device tree data
* 2) from internal registers set by bootloader
*/
iap = of_get_mac_address(hw->pdev->dev.of_node);
if (!IS_ERR(iap))
ether_addr_copy(dev->dev_addr, iap);
else
memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port * 8,
ETH_ALEN);
/* if the address is invalid, use a random value */
if (!is_valid_ether_addr(dev->dev_addr)) {
struct sockaddr sa = { AF_UNSPEC };
netdev_warn(dev,
"Invalid MAC address, defaulting to random\n");
eth_hw_addr_random(dev);
memcpy(sa.sa_data, dev->dev_addr, ETH_ALEN);
if (sky2_set_mac_address(dev, &sa))
netdev_warn(dev, "Failed to set MAC address.\n");
}
return dev;
}
static void sky2_show_addr(struct net_device *dev)
{
const struct sky2_port *sky2 = netdev_priv(dev);
netif_info(sky2, probe, dev, "addr %pM\n", dev->dev_addr);
}
/* Handle software interrupt used during MSI test */
static irqreturn_t sky2_test_intr(int irq, void *dev_id)
{
struct sky2_hw *hw = dev_id;
u32 status = sky2_read32(hw, B0_Y2_SP_ISRC2);
if (status == 0)
return IRQ_NONE;
if (status & Y2_IS_IRQ_SW) {
hw->flags |= SKY2_HW_USE_MSI;
wake_up(&hw->msi_wait);
sky2_write8(hw, B0_CTST, CS_CL_SW_IRQ);
}
sky2_write32(hw, B0_Y2_SP_ICR, 2);
return IRQ_HANDLED;
}
/* Test interrupt path by forcing a a software IRQ */
static int sky2_test_msi(struct sky2_hw *hw)
{
struct pci_dev *pdev = hw->pdev;
int err;
init_waitqueue_head(&hw->msi_wait);
err = request_irq(pdev->irq, sky2_test_intr, 0, DRV_NAME, hw);
if (err) {
dev_err(&pdev->dev, "cannot assign irq %d\n", pdev->irq);
return err;
}
sky2_write32(hw, B0_IMSK, Y2_IS_IRQ_SW);
sky2_write8(hw, B0_CTST, CS_ST_SW_IRQ);
sky2_read8(hw, B0_CTST);
wait_event_timeout(hw->msi_wait, (hw->flags & SKY2_HW_USE_MSI), HZ/10);
if (!(hw->flags & SKY2_HW_USE_MSI)) {
/* MSI test failed, go back to INTx mode */
dev_info(&pdev->dev, "No interrupt generated using MSI, "
"switching to INTx mode.\n");
err = -EOPNOTSUPP;
sky2_write8(hw, B0_CTST, CS_CL_SW_IRQ);
}
sky2_write32(hw, B0_IMSK, 0);
sky2_read32(hw, B0_IMSK);
free_irq(pdev->irq, hw);
return err;
}
/* This driver supports yukon2 chipset only */
static const char *sky2_name(u8 chipid, char *buf, int sz)
{
const char *name[] = {
"XL", /* 0xb3 */
"EC Ultra", /* 0xb4 */
"Extreme", /* 0xb5 */
"EC", /* 0xb6 */
"FE", /* 0xb7 */
"FE+", /* 0xb8 */
"Supreme", /* 0xb9 */
"UL 2", /* 0xba */
"Unknown", /* 0xbb */
"Optima", /* 0xbc */
"OptimaEEE", /* 0xbd */
"Optima 2", /* 0xbe */
};
if (chipid >= CHIP_ID_YUKON_XL && chipid <= CHIP_ID_YUKON_OP_2)
strncpy(buf, name[chipid - CHIP_ID_YUKON_XL], sz);
else
snprintf(buf, sz, "(chip %#x)", chipid);
return buf;
}
static const struct dmi_system_id msi_blacklist[] = {
{
.ident = "Dell Inspiron 1545",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc."),
DMI_MATCH(DMI_PRODUCT_NAME, "Inspiron 1545"),
},
},
{
.ident = "Gateway P-79",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Gateway"),
DMI_MATCH(DMI_PRODUCT_NAME, "P-79"),
},
},
{
.ident = "ASUS P5W DH Deluxe",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "ASUSTEK COMPUTER INC"),
DMI_MATCH(DMI_PRODUCT_NAME, "P5W DH Deluxe"),
},
},
{
.ident = "ASUS P6T",
.matches = {
DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTeK Computer INC."),
DMI_MATCH(DMI_BOARD_NAME, "P6T"),
},
},
{
.ident = "ASUS P6X",
.matches = {
DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTeK Computer INC."),
DMI_MATCH(DMI_BOARD_NAME, "P6X"),
},
},
{}
};
static int sky2_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
struct net_device *dev, *dev1;
struct sky2_hw *hw;
int err, using_dac = 0, wol_default;
u32 reg;
char buf1[16];
err = pci_enable_device(pdev);
if (err) {
dev_err(&pdev->dev, "cannot enable PCI device\n");
goto err_out;
}
/* Get configuration information
* Note: only regular PCI config access once to test for HW issues
* other PCI access through shared memory for speed and to
* avoid MMCONFIG problems.
*/
err = pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
if (err) {
dev_err(&pdev->dev, "PCI read config failed\n");
goto err_out_disable;
}
if (~reg == 0) {
dev_err(&pdev->dev, "PCI configuration read error\n");
err = -EIO;
goto err_out_disable;
}
err = pci_request_regions(pdev, DRV_NAME);
if (err) {
dev_err(&pdev->dev, "cannot obtain PCI resources\n");
goto err_out_disable;
}
pci_set_master(pdev);
if (sizeof(dma_addr_t) > sizeof(u32) &&
!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64)))) {
using_dac = 1;
err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
if (err < 0) {
dev_err(&pdev->dev, "unable to obtain 64 bit DMA "
"for consistent allocations\n");
goto err_out_free_regions;
}
} else {
err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
if (err) {
dev_err(&pdev->dev, "no usable DMA configuration\n");
goto err_out_free_regions;
}
}
#ifdef __BIG_ENDIAN
/* The sk98lin vendor driver uses hardware byte swapping but
* this driver uses software swapping.
*/
reg &= ~PCI_REV_DESC;
err = pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
if (err) {
dev_err(&pdev->dev, "PCI write config failed\n");
goto err_out_free_regions;
}
#endif
wol_default = device_may_wakeup(&pdev->dev) ? WAKE_MAGIC : 0;
err = -ENOMEM;
hw = kzalloc(sizeof(*hw) + strlen(DRV_NAME "@pci:")
+ strlen(pci_name(pdev)) + 1, GFP_KERNEL);
if (!hw)
goto err_out_free_regions;
hw->pdev = pdev;
sprintf(hw->irq_name, DRV_NAME "@pci:%s", pci_name(pdev));
hw->regs = ioremap(pci_resource_start(pdev, 0), 0x4000);
if (!hw->regs) {
dev_err(&pdev->dev, "cannot map device registers\n");
goto err_out_free_hw;
}
err = sky2_init(hw);
if (err)
goto err_out_iounmap;
/* ring for status responses */
hw->st_size = hw->ports * roundup_pow_of_two(3*RX_MAX_PENDING + TX_MAX_PENDING);
hw->st_le = pci_alloc_consistent(pdev, hw->st_size * sizeof(struct sky2_status_le),
&hw->st_dma);
if (!hw->st_le) {
err = -ENOMEM;
goto err_out_reset;
}
dev_info(&pdev->dev, "Yukon-2 %s chip revision %d\n",
sky2_name(hw->chip_id, buf1, sizeof(buf1)), hw->chip_rev);
sky2_reset(hw);
dev = sky2_init_netdev(hw, 0, using_dac, wol_default);
if (!dev) {
err = -ENOMEM;
goto err_out_free_pci;
}
if (disable_msi == -1)
disable_msi = !!dmi_check_system(msi_blacklist);
if (!disable_msi && pci_enable_msi(pdev) == 0) {
err = sky2_test_msi(hw);
if (err) {
pci_disable_msi(pdev);
if (err != -EOPNOTSUPP)
goto err_out_free_netdev;
}
}
netif_napi_add(dev, &hw->napi, sky2_poll, NAPI_WEIGHT);
err = register_netdev(dev);
if (err) {
dev_err(&pdev->dev, "cannot register net device\n");
goto err_out_free_netdev;
}
netif_carrier_off(dev);
sky2_show_addr(dev);
if (hw->ports > 1) {
dev1 = sky2_init_netdev(hw, 1, using_dac, wol_default);
if (!dev1) {
err = -ENOMEM;
goto err_out_unregister;
}
err = register_netdev(dev1);
if (err) {
dev_err(&pdev->dev, "cannot register second net device\n");
goto err_out_free_dev1;
}
err = sky2_setup_irq(hw, hw->irq_name);
if (err)
goto err_out_unregister_dev1;
sky2_show_addr(dev1);
}
timer_setup(&hw->watchdog_timer, sky2_watchdog, 0);
INIT_WORK(&hw->restart_work, sky2_restart);
pci_set_drvdata(pdev, hw);
pdev->d3_delay = 300;
return 0;
err_out_unregister_dev1:
unregister_netdev(dev1);
err_out_free_dev1:
free_netdev(dev1);
err_out_unregister:
unregister_netdev(dev);
err_out_free_netdev:
if (hw->flags & SKY2_HW_USE_MSI)
pci_disable_msi(pdev);
free_netdev(dev);
err_out_free_pci:
pci_free_consistent(pdev, hw->st_size * sizeof(struct sky2_status_le),
hw->st_le, hw->st_dma);
err_out_reset:
sky2_write8(hw, B0_CTST, CS_RST_SET);
err_out_iounmap:
iounmap(hw->regs);
err_out_free_hw:
kfree(hw);
err_out_free_regions:
pci_release_regions(pdev);
err_out_disable:
pci_disable_device(pdev);
err_out:
return err;
}
static void sky2_remove(struct pci_dev *pdev)
{
struct sky2_hw *hw = pci_get_drvdata(pdev);
int i;
if (!hw)
return;
del_timer_sync(&hw->watchdog_timer);
cancel_work_sync(&hw->restart_work);
for (i = hw->ports-1; i >= 0; --i)
unregister_netdev(hw->dev[i]);
sky2_write32(hw, B0_IMSK, 0);
sky2_read32(hw, B0_IMSK);
sky2_power_aux(hw);
sky2_write8(hw, B0_CTST, CS_RST_SET);
sky2_read8(hw, B0_CTST);
if (hw->ports > 1) {
napi_disable(&hw->napi);
free_irq(pdev->irq, hw);
}
if (hw->flags & SKY2_HW_USE_MSI)
pci_disable_msi(pdev);
pci_free_consistent(pdev, hw->st_size * sizeof(struct sky2_status_le),
hw->st_le, hw->st_dma);
pci_release_regions(pdev);
pci_disable_device(pdev);
for (i = hw->ports-1; i >= 0; --i)
free_netdev(hw->dev[i]);
iounmap(hw->regs);
kfree(hw);
}
static int sky2_suspend(struct device *dev)
{
struct sky2_hw *hw = dev_get_drvdata(dev);
int i;
if (!hw)
return 0;
del_timer_sync(&hw->watchdog_timer);
cancel_work_sync(&hw->restart_work);
rtnl_lock();
sky2_all_down(hw);
for (i = 0; i < hw->ports; i++) {
struct net_device *dev = hw->dev[i];
struct sky2_port *sky2 = netdev_priv(dev);
if (sky2->wol)
sky2_wol_init(sky2);
}
sky2_power_aux(hw);
rtnl_unlock();
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int sky2_resume(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct sky2_hw *hw = pci_get_drvdata(pdev);
int err;
if (!hw)
return 0;
/* Re-enable all clocks */
err = pci_write_config_dword(pdev, PCI_DEV_REG3, 0);
if (err) {
dev_err(&pdev->dev, "PCI write config failed\n");
goto out;
}
rtnl_lock();
sky2_reset(hw);
sky2_all_up(hw);
rtnl_unlock();
return 0;
out:
dev_err(&pdev->dev, "resume failed (%d)\n", err);
pci_disable_device(pdev);
return err;
}
static SIMPLE_DEV_PM_OPS(sky2_pm_ops, sky2_suspend, sky2_resume);
#define SKY2_PM_OPS (&sky2_pm_ops)
#else
#define SKY2_PM_OPS NULL
#endif
static void sky2_shutdown(struct pci_dev *pdev)
{
struct sky2_hw *hw = pci_get_drvdata(pdev);
int port;
for (port = 0; port < hw->ports; port++) {
struct net_device *ndev = hw->dev[port];
rtnl_lock();
if (netif_running(ndev)) {
dev_close(ndev);
netif_device_detach(ndev);
}
rtnl_unlock();
}
sky2_suspend(&pdev->dev);
pci_wake_from_d3(pdev, device_may_wakeup(&pdev->dev));
pci_set_power_state(pdev, PCI_D3hot);
}
static struct pci_driver sky2_driver = {
.name = DRV_NAME,
.id_table = sky2_id_table,
.probe = sky2_probe,
.remove = sky2_remove,
.shutdown = sky2_shutdown,
.driver.pm = SKY2_PM_OPS,
};
static int __init sky2_init_module(void)
{
pr_info("driver version " DRV_VERSION "\n");
sky2_debug_init();
return pci_register_driver(&sky2_driver);
}
static void __exit sky2_cleanup_module(void)
{
pci_unregister_driver(&sky2_driver);
sky2_debug_cleanup();
}
module_init(sky2_init_module);
module_exit(sky2_cleanup_module);
MODULE_DESCRIPTION("Marvell Yukon 2 Gigabit Ethernet driver");
MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);