| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * Digital Audio (PCM) abstract layer |
| * Copyright (c) by Jaroslav Kysela <perex@perex.cz> |
| * Abramo Bagnara <abramo@alsa-project.org> |
| */ |
| |
| #include <linux/slab.h> |
| #include <linux/sched/signal.h> |
| #include <linux/time.h> |
| #include <linux/math64.h> |
| #include <linux/export.h> |
| #include <sound/core.h> |
| #include <sound/control.h> |
| #include <sound/tlv.h> |
| #include <sound/info.h> |
| #include <sound/pcm.h> |
| #include <sound/pcm_params.h> |
| #include <sound/timer.h> |
| |
| #include "pcm_local.h" |
| |
| #ifdef CONFIG_SND_PCM_XRUN_DEBUG |
| #define CREATE_TRACE_POINTS |
| #include "pcm_trace.h" |
| #else |
| #define trace_hwptr(substream, pos, in_interrupt) |
| #define trace_xrun(substream) |
| #define trace_hw_ptr_error(substream, reason) |
| #define trace_applptr(substream, prev, curr) |
| #endif |
| |
| static int fill_silence_frames(struct snd_pcm_substream *substream, |
| snd_pcm_uframes_t off, snd_pcm_uframes_t frames); |
| |
| /* |
| * fill ring buffer with silence |
| * runtime->silence_start: starting pointer to silence area |
| * runtime->silence_filled: size filled with silence |
| * runtime->silence_threshold: threshold from application |
| * runtime->silence_size: maximal size from application |
| * |
| * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately |
| */ |
| void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr) |
| { |
| struct snd_pcm_runtime *runtime = substream->runtime; |
| snd_pcm_uframes_t frames, ofs, transfer; |
| int err; |
| |
| if (runtime->silence_size < runtime->boundary) { |
| snd_pcm_sframes_t noise_dist, n; |
| snd_pcm_uframes_t appl_ptr = READ_ONCE(runtime->control->appl_ptr); |
| if (runtime->silence_start != appl_ptr) { |
| n = appl_ptr - runtime->silence_start; |
| if (n < 0) |
| n += runtime->boundary; |
| if ((snd_pcm_uframes_t)n < runtime->silence_filled) |
| runtime->silence_filled -= n; |
| else |
| runtime->silence_filled = 0; |
| runtime->silence_start = appl_ptr; |
| } |
| if (runtime->silence_filled >= runtime->buffer_size) |
| return; |
| noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled; |
| if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold) |
| return; |
| frames = runtime->silence_threshold - noise_dist; |
| if (frames > runtime->silence_size) |
| frames = runtime->silence_size; |
| } else { |
| if (new_hw_ptr == ULONG_MAX) { /* initialization */ |
| snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime); |
| if (avail > runtime->buffer_size) |
| avail = runtime->buffer_size; |
| runtime->silence_filled = avail > 0 ? avail : 0; |
| runtime->silence_start = (runtime->status->hw_ptr + |
| runtime->silence_filled) % |
| runtime->boundary; |
| } else { |
| ofs = runtime->status->hw_ptr; |
| frames = new_hw_ptr - ofs; |
| if ((snd_pcm_sframes_t)frames < 0) |
| frames += runtime->boundary; |
| runtime->silence_filled -= frames; |
| if ((snd_pcm_sframes_t)runtime->silence_filled < 0) { |
| runtime->silence_filled = 0; |
| runtime->silence_start = new_hw_ptr; |
| } else { |
| runtime->silence_start = ofs; |
| } |
| } |
| frames = runtime->buffer_size - runtime->silence_filled; |
| } |
| if (snd_BUG_ON(frames > runtime->buffer_size)) |
| return; |
| if (frames == 0) |
| return; |
| ofs = runtime->silence_start % runtime->buffer_size; |
| while (frames > 0) { |
| transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames; |
| err = fill_silence_frames(substream, ofs, transfer); |
| snd_BUG_ON(err < 0); |
| runtime->silence_filled += transfer; |
| frames -= transfer; |
| ofs = 0; |
| } |
| snd_pcm_dma_buffer_sync(substream, SNDRV_DMA_SYNC_DEVICE); |
| } |
| |
| #ifdef CONFIG_SND_DEBUG |
| void snd_pcm_debug_name(struct snd_pcm_substream *substream, |
| char *name, size_t len) |
| { |
| snprintf(name, len, "pcmC%dD%d%c:%d", |
| substream->pcm->card->number, |
| substream->pcm->device, |
| substream->stream ? 'c' : 'p', |
| substream->number); |
| } |
| EXPORT_SYMBOL(snd_pcm_debug_name); |
| #endif |
| |
| #define XRUN_DEBUG_BASIC (1<<0) |
| #define XRUN_DEBUG_STACK (1<<1) /* dump also stack */ |
| #define XRUN_DEBUG_JIFFIESCHECK (1<<2) /* do jiffies check */ |
| |
| #ifdef CONFIG_SND_PCM_XRUN_DEBUG |
| |
| #define xrun_debug(substream, mask) \ |
| ((substream)->pstr->xrun_debug & (mask)) |
| #else |
| #define xrun_debug(substream, mask) 0 |
| #endif |
| |
| #define dump_stack_on_xrun(substream) do { \ |
| if (xrun_debug(substream, XRUN_DEBUG_STACK)) \ |
| dump_stack(); \ |
| } while (0) |
| |
| /* call with stream lock held */ |
| void __snd_pcm_xrun(struct snd_pcm_substream *substream) |
| { |
| struct snd_pcm_runtime *runtime = substream->runtime; |
| |
| trace_xrun(substream); |
| if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) { |
| struct timespec64 tstamp; |
| |
| snd_pcm_gettime(runtime, &tstamp); |
| runtime->status->tstamp.tv_sec = tstamp.tv_sec; |
| runtime->status->tstamp.tv_nsec = tstamp.tv_nsec; |
| } |
| snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN); |
| if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { |
| char name[16]; |
| snd_pcm_debug_name(substream, name, sizeof(name)); |
| pcm_warn(substream->pcm, "XRUN: %s\n", name); |
| dump_stack_on_xrun(substream); |
| } |
| } |
| |
| #ifdef CONFIG_SND_PCM_XRUN_DEBUG |
| #define hw_ptr_error(substream, in_interrupt, reason, fmt, args...) \ |
| do { \ |
| trace_hw_ptr_error(substream, reason); \ |
| if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { \ |
| pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \ |
| (in_interrupt) ? 'Q' : 'P', ##args); \ |
| dump_stack_on_xrun(substream); \ |
| } \ |
| } while (0) |
| |
| #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */ |
| |
| #define hw_ptr_error(substream, fmt, args...) do { } while (0) |
| |
| #endif |
| |
| int snd_pcm_update_state(struct snd_pcm_substream *substream, |
| struct snd_pcm_runtime *runtime) |
| { |
| snd_pcm_uframes_t avail; |
| |
| avail = snd_pcm_avail(substream); |
| if (avail > runtime->avail_max) |
| runtime->avail_max = avail; |
| if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) { |
| if (avail >= runtime->buffer_size) { |
| snd_pcm_drain_done(substream); |
| return -EPIPE; |
| } |
| } else { |
| if (avail >= runtime->stop_threshold) { |
| __snd_pcm_xrun(substream); |
| return -EPIPE; |
| } |
| } |
| if (runtime->twake) { |
| if (avail >= runtime->twake) |
| wake_up(&runtime->tsleep); |
| } else if (avail >= runtime->control->avail_min) |
| wake_up(&runtime->sleep); |
| return 0; |
| } |
| |
| static void update_audio_tstamp(struct snd_pcm_substream *substream, |
| struct timespec64 *curr_tstamp, |
| struct timespec64 *audio_tstamp) |
| { |
| struct snd_pcm_runtime *runtime = substream->runtime; |
| u64 audio_frames, audio_nsecs; |
| struct timespec64 driver_tstamp; |
| |
| if (runtime->tstamp_mode != SNDRV_PCM_TSTAMP_ENABLE) |
| return; |
| |
| if (!(substream->ops->get_time_info) || |
| (runtime->audio_tstamp_report.actual_type == |
| SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) { |
| |
| /* |
| * provide audio timestamp derived from pointer position |
| * add delay only if requested |
| */ |
| |
| audio_frames = runtime->hw_ptr_wrap + runtime->status->hw_ptr; |
| |
| if (runtime->audio_tstamp_config.report_delay) { |
| if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) |
| audio_frames -= runtime->delay; |
| else |
| audio_frames += runtime->delay; |
| } |
| audio_nsecs = div_u64(audio_frames * 1000000000LL, |
| runtime->rate); |
| *audio_tstamp = ns_to_timespec64(audio_nsecs); |
| } |
| |
| if (runtime->status->audio_tstamp.tv_sec != audio_tstamp->tv_sec || |
| runtime->status->audio_tstamp.tv_nsec != audio_tstamp->tv_nsec) { |
| runtime->status->audio_tstamp.tv_sec = audio_tstamp->tv_sec; |
| runtime->status->audio_tstamp.tv_nsec = audio_tstamp->tv_nsec; |
| runtime->status->tstamp.tv_sec = curr_tstamp->tv_sec; |
| runtime->status->tstamp.tv_nsec = curr_tstamp->tv_nsec; |
| } |
| |
| |
| /* |
| * re-take a driver timestamp to let apps detect if the reference tstamp |
| * read by low-level hardware was provided with a delay |
| */ |
| snd_pcm_gettime(substream->runtime, &driver_tstamp); |
| runtime->driver_tstamp = driver_tstamp; |
| } |
| |
| static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream, |
| unsigned int in_interrupt) |
| { |
| struct snd_pcm_runtime *runtime = substream->runtime; |
| snd_pcm_uframes_t pos; |
| snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base; |
| snd_pcm_sframes_t hdelta, delta; |
| unsigned long jdelta; |
| unsigned long curr_jiffies; |
| struct timespec64 curr_tstamp; |
| struct timespec64 audio_tstamp; |
| int crossed_boundary = 0; |
| |
| old_hw_ptr = runtime->status->hw_ptr; |
| |
| /* |
| * group pointer, time and jiffies reads to allow for more |
| * accurate correlations/corrections. |
| * The values are stored at the end of this routine after |
| * corrections for hw_ptr position |
| */ |
| pos = substream->ops->pointer(substream); |
| curr_jiffies = jiffies; |
| if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) { |
| if ((substream->ops->get_time_info) && |
| (runtime->audio_tstamp_config.type_requested != SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) { |
| substream->ops->get_time_info(substream, &curr_tstamp, |
| &audio_tstamp, |
| &runtime->audio_tstamp_config, |
| &runtime->audio_tstamp_report); |
| |
| /* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */ |
| if (runtime->audio_tstamp_report.actual_type == SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT) |
| snd_pcm_gettime(runtime, &curr_tstamp); |
| } else |
| snd_pcm_gettime(runtime, &curr_tstamp); |
| } |
| |
| if (pos == SNDRV_PCM_POS_XRUN) { |
| __snd_pcm_xrun(substream); |
| return -EPIPE; |
| } |
| if (pos >= runtime->buffer_size) { |
| if (printk_ratelimit()) { |
| char name[16]; |
| snd_pcm_debug_name(substream, name, sizeof(name)); |
| pcm_err(substream->pcm, |
| "invalid position: %s, pos = %ld, buffer size = %ld, period size = %ld\n", |
| name, pos, runtime->buffer_size, |
| runtime->period_size); |
| } |
| pos = 0; |
| } |
| pos -= pos % runtime->min_align; |
| trace_hwptr(substream, pos, in_interrupt); |
| hw_base = runtime->hw_ptr_base; |
| new_hw_ptr = hw_base + pos; |
| if (in_interrupt) { |
| /* we know that one period was processed */ |
| /* delta = "expected next hw_ptr" for in_interrupt != 0 */ |
| delta = runtime->hw_ptr_interrupt + runtime->period_size; |
| if (delta > new_hw_ptr) { |
| /* check for double acknowledged interrupts */ |
| hdelta = curr_jiffies - runtime->hw_ptr_jiffies; |
| if (hdelta > runtime->hw_ptr_buffer_jiffies/2 + 1) { |
| hw_base += runtime->buffer_size; |
| if (hw_base >= runtime->boundary) { |
| hw_base = 0; |
| crossed_boundary++; |
| } |
| new_hw_ptr = hw_base + pos; |
| goto __delta; |
| } |
| } |
| } |
| /* new_hw_ptr might be lower than old_hw_ptr in case when */ |
| /* pointer crosses the end of the ring buffer */ |
| if (new_hw_ptr < old_hw_ptr) { |
| hw_base += runtime->buffer_size; |
| if (hw_base >= runtime->boundary) { |
| hw_base = 0; |
| crossed_boundary++; |
| } |
| new_hw_ptr = hw_base + pos; |
| } |
| __delta: |
| delta = new_hw_ptr - old_hw_ptr; |
| if (delta < 0) |
| delta += runtime->boundary; |
| |
| if (runtime->no_period_wakeup) { |
| snd_pcm_sframes_t xrun_threshold; |
| /* |
| * Without regular period interrupts, we have to check |
| * the elapsed time to detect xruns. |
| */ |
| jdelta = curr_jiffies - runtime->hw_ptr_jiffies; |
| if (jdelta < runtime->hw_ptr_buffer_jiffies / 2) |
| goto no_delta_check; |
| hdelta = jdelta - delta * HZ / runtime->rate; |
| xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1; |
| while (hdelta > xrun_threshold) { |
| delta += runtime->buffer_size; |
| hw_base += runtime->buffer_size; |
| if (hw_base >= runtime->boundary) { |
| hw_base = 0; |
| crossed_boundary++; |
| } |
| new_hw_ptr = hw_base + pos; |
| hdelta -= runtime->hw_ptr_buffer_jiffies; |
| } |
| goto no_delta_check; |
| } |
| |
| /* something must be really wrong */ |
| if (delta >= runtime->buffer_size + runtime->period_size) { |
| hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr", |
| "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n", |
| substream->stream, (long)pos, |
| (long)new_hw_ptr, (long)old_hw_ptr); |
| return 0; |
| } |
| |
| /* Do jiffies check only in xrun_debug mode */ |
| if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK)) |
| goto no_jiffies_check; |
| |
| /* Skip the jiffies check for hardwares with BATCH flag. |
| * Such hardware usually just increases the position at each IRQ, |
| * thus it can't give any strange position. |
| */ |
| if (runtime->hw.info & SNDRV_PCM_INFO_BATCH) |
| goto no_jiffies_check; |
| hdelta = delta; |
| if (hdelta < runtime->delay) |
| goto no_jiffies_check; |
| hdelta -= runtime->delay; |
| jdelta = curr_jiffies - runtime->hw_ptr_jiffies; |
| if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) { |
| delta = jdelta / |
| (((runtime->period_size * HZ) / runtime->rate) |
| + HZ/100); |
| /* move new_hw_ptr according jiffies not pos variable */ |
| new_hw_ptr = old_hw_ptr; |
| hw_base = delta; |
| /* use loop to avoid checks for delta overflows */ |
| /* the delta value is small or zero in most cases */ |
| while (delta > 0) { |
| new_hw_ptr += runtime->period_size; |
| if (new_hw_ptr >= runtime->boundary) { |
| new_hw_ptr -= runtime->boundary; |
| crossed_boundary--; |
| } |
| delta--; |
| } |
| /* align hw_base to buffer_size */ |
| hw_ptr_error(substream, in_interrupt, "hw_ptr skipping", |
| "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n", |
| (long)pos, (long)hdelta, |
| (long)runtime->period_size, jdelta, |
| ((hdelta * HZ) / runtime->rate), hw_base, |
| (unsigned long)old_hw_ptr, |
| (unsigned long)new_hw_ptr); |
| /* reset values to proper state */ |
| delta = 0; |
| hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size); |
| } |
| no_jiffies_check: |
| if (delta > runtime->period_size + runtime->period_size / 2) { |
| hw_ptr_error(substream, in_interrupt, |
| "Lost interrupts?", |
| "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n", |
| substream->stream, (long)delta, |
| (long)new_hw_ptr, |
| (long)old_hw_ptr); |
| } |
| |
| no_delta_check: |
| if (runtime->status->hw_ptr == new_hw_ptr) { |
| runtime->hw_ptr_jiffies = curr_jiffies; |
| update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp); |
| return 0; |
| } |
| |
| if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK && |
| runtime->silence_size > 0) |
| snd_pcm_playback_silence(substream, new_hw_ptr); |
| |
| if (in_interrupt) { |
| delta = new_hw_ptr - runtime->hw_ptr_interrupt; |
| if (delta < 0) |
| delta += runtime->boundary; |
| delta -= (snd_pcm_uframes_t)delta % runtime->period_size; |
| runtime->hw_ptr_interrupt += delta; |
| if (runtime->hw_ptr_interrupt >= runtime->boundary) |
| runtime->hw_ptr_interrupt -= runtime->boundary; |
| } |
| runtime->hw_ptr_base = hw_base; |
| runtime->status->hw_ptr = new_hw_ptr; |
| runtime->hw_ptr_jiffies = curr_jiffies; |
| if (crossed_boundary) { |
| snd_BUG_ON(crossed_boundary != 1); |
| runtime->hw_ptr_wrap += runtime->boundary; |
| } |
| |
| update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp); |
| |
| return snd_pcm_update_state(substream, runtime); |
| } |
| |
| /* CAUTION: call it with irq disabled */ |
| int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream) |
| { |
| return snd_pcm_update_hw_ptr0(substream, 0); |
| } |
| |
| /** |
| * snd_pcm_set_ops - set the PCM operators |
| * @pcm: the pcm instance |
| * @direction: stream direction, SNDRV_PCM_STREAM_XXX |
| * @ops: the operator table |
| * |
| * Sets the given PCM operators to the pcm instance. |
| */ |
| void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, |
| const struct snd_pcm_ops *ops) |
| { |
| struct snd_pcm_str *stream = &pcm->streams[direction]; |
| struct snd_pcm_substream *substream; |
| |
| for (substream = stream->substream; substream != NULL; substream = substream->next) |
| substream->ops = ops; |
| } |
| EXPORT_SYMBOL(snd_pcm_set_ops); |
| |
| /** |
| * snd_pcm_set_sync - set the PCM sync id |
| * @substream: the pcm substream |
| * |
| * Sets the PCM sync identifier for the card. |
| */ |
| void snd_pcm_set_sync(struct snd_pcm_substream *substream) |
| { |
| struct snd_pcm_runtime *runtime = substream->runtime; |
| |
| runtime->sync.id32[0] = substream->pcm->card->number; |
| runtime->sync.id32[1] = -1; |
| runtime->sync.id32[2] = -1; |
| runtime->sync.id32[3] = -1; |
| } |
| EXPORT_SYMBOL(snd_pcm_set_sync); |
| |
| /* |
| * Standard ioctl routine |
| */ |
| |
| static inline unsigned int div32(unsigned int a, unsigned int b, |
| unsigned int *r) |
| { |
| if (b == 0) { |
| *r = 0; |
| return UINT_MAX; |
| } |
| *r = a % b; |
| return a / b; |
| } |
| |
| static inline unsigned int div_down(unsigned int a, unsigned int b) |
| { |
| if (b == 0) |
| return UINT_MAX; |
| return a / b; |
| } |
| |
| static inline unsigned int div_up(unsigned int a, unsigned int b) |
| { |
| unsigned int r; |
| unsigned int q; |
| if (b == 0) |
| return UINT_MAX; |
| q = div32(a, b, &r); |
| if (r) |
| ++q; |
| return q; |
| } |
| |
| static inline unsigned int mul(unsigned int a, unsigned int b) |
| { |
| if (a == 0) |
| return 0; |
| if (div_down(UINT_MAX, a) < b) |
| return UINT_MAX; |
| return a * b; |
| } |
| |
| static inline unsigned int muldiv32(unsigned int a, unsigned int b, |
| unsigned int c, unsigned int *r) |
| { |
| u_int64_t n = (u_int64_t) a * b; |
| if (c == 0) { |
| *r = 0; |
| return UINT_MAX; |
| } |
| n = div_u64_rem(n, c, r); |
| if (n >= UINT_MAX) { |
| *r = 0; |
| return UINT_MAX; |
| } |
| return n; |
| } |
| |
| /** |
| * snd_interval_refine - refine the interval value of configurator |
| * @i: the interval value to refine |
| * @v: the interval value to refer to |
| * |
| * Refines the interval value with the reference value. |
| * The interval is changed to the range satisfying both intervals. |
| * The interval status (min, max, integer, etc.) are evaluated. |
| * |
| * Return: Positive if the value is changed, zero if it's not changed, or a |
| * negative error code. |
| */ |
| int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v) |
| { |
| int changed = 0; |
| if (snd_BUG_ON(snd_interval_empty(i))) |
| return -EINVAL; |
| if (i->min < v->min) { |
| i->min = v->min; |
| i->openmin = v->openmin; |
| changed = 1; |
| } else if (i->min == v->min && !i->openmin && v->openmin) { |
| i->openmin = 1; |
| changed = 1; |
| } |
| if (i->max > v->max) { |
| i->max = v->max; |
| i->openmax = v->openmax; |
| changed = 1; |
| } else if (i->max == v->max && !i->openmax && v->openmax) { |
| i->openmax = 1; |
| changed = 1; |
| } |
| if (!i->integer && v->integer) { |
| i->integer = 1; |
| changed = 1; |
| } |
| if (i->integer) { |
| if (i->openmin) { |
| i->min++; |
| i->openmin = 0; |
| } |
| if (i->openmax) { |
| i->max--; |
| i->openmax = 0; |
| } |
| } else if (!i->openmin && !i->openmax && i->min == i->max) |
| i->integer = 1; |
| if (snd_interval_checkempty(i)) { |
| snd_interval_none(i); |
| return -EINVAL; |
| } |
| return changed; |
| } |
| EXPORT_SYMBOL(snd_interval_refine); |
| |
| static int snd_interval_refine_first(struct snd_interval *i) |
| { |
| const unsigned int last_max = i->max; |
| |
| if (snd_BUG_ON(snd_interval_empty(i))) |
| return -EINVAL; |
| if (snd_interval_single(i)) |
| return 0; |
| i->max = i->min; |
| if (i->openmin) |
| i->max++; |
| /* only exclude max value if also excluded before refine */ |
| i->openmax = (i->openmax && i->max >= last_max); |
| return 1; |
| } |
| |
| static int snd_interval_refine_last(struct snd_interval *i) |
| { |
| const unsigned int last_min = i->min; |
| |
| if (snd_BUG_ON(snd_interval_empty(i))) |
| return -EINVAL; |
| if (snd_interval_single(i)) |
| return 0; |
| i->min = i->max; |
| if (i->openmax) |
| i->min--; |
| /* only exclude min value if also excluded before refine */ |
| i->openmin = (i->openmin && i->min <= last_min); |
| return 1; |
| } |
| |
| void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c) |
| { |
| if (a->empty || b->empty) { |
| snd_interval_none(c); |
| return; |
| } |
| c->empty = 0; |
| c->min = mul(a->min, b->min); |
| c->openmin = (a->openmin || b->openmin); |
| c->max = mul(a->max, b->max); |
| c->openmax = (a->openmax || b->openmax); |
| c->integer = (a->integer && b->integer); |
| } |
| |
| /** |
| * snd_interval_div - refine the interval value with division |
| * @a: dividend |
| * @b: divisor |
| * @c: quotient |
| * |
| * c = a / b |
| * |
| * Returns non-zero if the value is changed, zero if not changed. |
| */ |
| void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c) |
| { |
| unsigned int r; |
| if (a->empty || b->empty) { |
| snd_interval_none(c); |
| return; |
| } |
| c->empty = 0; |
| c->min = div32(a->min, b->max, &r); |
| c->openmin = (r || a->openmin || b->openmax); |
| if (b->min > 0) { |
| c->max = div32(a->max, b->min, &r); |
| if (r) { |
| c->max++; |
| c->openmax = 1; |
| } else |
| c->openmax = (a->openmax || b->openmin); |
| } else { |
| c->max = UINT_MAX; |
| c->openmax = 0; |
| } |
| c->integer = 0; |
| } |
| |
| /** |
| * snd_interval_muldivk - refine the interval value |
| * @a: dividend 1 |
| * @b: dividend 2 |
| * @k: divisor (as integer) |
| * @c: result |
| * |
| * c = a * b / k |
| * |
| * Returns non-zero if the value is changed, zero if not changed. |
| */ |
| void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b, |
| unsigned int k, struct snd_interval *c) |
| { |
| unsigned int r; |
| if (a->empty || b->empty) { |
| snd_interval_none(c); |
| return; |
| } |
| c->empty = 0; |
| c->min = muldiv32(a->min, b->min, k, &r); |
| c->openmin = (r || a->openmin || b->openmin); |
| c->max = muldiv32(a->max, b->max, k, &r); |
| if (r) { |
| c->max++; |
| c->openmax = 1; |
| } else |
| c->openmax = (a->openmax || b->openmax); |
| c->integer = 0; |
| } |
| |
| /** |
| * snd_interval_mulkdiv - refine the interval value |
| * @a: dividend 1 |
| * @k: dividend 2 (as integer) |
| * @b: divisor |
| * @c: result |
| * |
| * c = a * k / b |
| * |
| * Returns non-zero if the value is changed, zero if not changed. |
| */ |
| void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k, |
| const struct snd_interval *b, struct snd_interval *c) |
| { |
| unsigned int r; |
| if (a->empty || b->empty) { |
| snd_interval_none(c); |
| return; |
| } |
| c->empty = 0; |
| c->min = muldiv32(a->min, k, b->max, &r); |
| c->openmin = (r || a->openmin || b->openmax); |
| if (b->min > 0) { |
| c->max = muldiv32(a->max, k, b->min, &r); |
| if (r) { |
| c->max++; |
| c->openmax = 1; |
| } else |
| c->openmax = (a->openmax || b->openmin); |
| } else { |
| c->max = UINT_MAX; |
| c->openmax = 0; |
| } |
| c->integer = 0; |
| } |
| |
| /* ---- */ |
| |
| |
| /** |
| * snd_interval_ratnum - refine the interval value |
| * @i: interval to refine |
| * @rats_count: number of ratnum_t |
| * @rats: ratnum_t array |
| * @nump: pointer to store the resultant numerator |
| * @denp: pointer to store the resultant denominator |
| * |
| * Return: Positive if the value is changed, zero if it's not changed, or a |
| * negative error code. |
| */ |
| int snd_interval_ratnum(struct snd_interval *i, |
| unsigned int rats_count, const struct snd_ratnum *rats, |
| unsigned int *nump, unsigned int *denp) |
| { |
| unsigned int best_num, best_den; |
| int best_diff; |
| unsigned int k; |
| struct snd_interval t; |
| int err; |
| unsigned int result_num, result_den; |
| int result_diff; |
| |
| best_num = best_den = best_diff = 0; |
| for (k = 0; k < rats_count; ++k) { |
| unsigned int num = rats[k].num; |
| unsigned int den; |
| unsigned int q = i->min; |
| int diff; |
| if (q == 0) |
| q = 1; |
| den = div_up(num, q); |
| if (den < rats[k].den_min) |
| continue; |
| if (den > rats[k].den_max) |
| den = rats[k].den_max; |
| else { |
| unsigned int r; |
| r = (den - rats[k].den_min) % rats[k].den_step; |
| if (r != 0) |
| den -= r; |
| } |
| diff = num - q * den; |
| if (diff < 0) |
| diff = -diff; |
| if (best_num == 0 || |
| diff * best_den < best_diff * den) { |
| best_diff = diff; |
| best_den = den; |
| best_num = num; |
| } |
| } |
| if (best_den == 0) { |
| i->empty = 1; |
| return -EINVAL; |
| } |
| t.min = div_down(best_num, best_den); |
| t.openmin = !!(best_num % best_den); |
| |
| result_num = best_num; |
| result_diff = best_diff; |
| result_den = best_den; |
| best_num = best_den = best_diff = 0; |
| for (k = 0; k < rats_count; ++k) { |
| unsigned int num = rats[k].num; |
| unsigned int den; |
| unsigned int q = i->max; |
| int diff; |
| if (q == 0) { |
| i->empty = 1; |
| return -EINVAL; |
| } |
| den = div_down(num, q); |
| if (den > rats[k].den_max) |
| continue; |
| if (den < rats[k].den_min) |
| den = rats[k].den_min; |
| else { |
| unsigned int r; |
| r = (den - rats[k].den_min) % rats[k].den_step; |
| if (r != 0) |
| den += rats[k].den_step - r; |
| } |
| diff = q * den - num; |
| if (diff < 0) |
| diff = -diff; |
| if (best_num == 0 || |
| diff * best_den < best_diff * den) { |
| best_diff = diff; |
| best_den = den; |
| best_num = num; |
| } |
| } |
| if (best_den == 0) { |
| i->empty = 1; |
| return -EINVAL; |
| } |
| t.max = div_up(best_num, best_den); |
| t.openmax = !!(best_num % best_den); |
| t.integer = 0; |
| err = snd_interval_refine(i, &t); |
| if (err < 0) |
| return err; |
| |
| if (snd_interval_single(i)) { |
| if (best_diff * result_den < result_diff * best_den) { |
| result_num = best_num; |
| result_den = best_den; |
| } |
| if (nump) |
| *nump = result_num; |
| if (denp) |
| *denp = result_den; |
| } |
| return err; |
| } |
| EXPORT_SYMBOL(snd_interval_ratnum); |
| |
| /** |
| * snd_interval_ratden - refine the interval value |
| * @i: interval to refine |
| * @rats_count: number of struct ratden |
| * @rats: struct ratden array |
| * @nump: pointer to store the resultant numerator |
| * @denp: pointer to store the resultant denominator |
| * |
| * Return: Positive if the value is changed, zero if it's not changed, or a |
| * negative error code. |
| */ |
| static int snd_interval_ratden(struct snd_interval *i, |
| unsigned int rats_count, |
| const struct snd_ratden *rats, |
| unsigned int *nump, unsigned int *denp) |
| { |
| unsigned int best_num, best_diff, best_den; |
| unsigned int k; |
| struct snd_interval t; |
| int err; |
| |
| best_num = best_den = best_diff = 0; |
| for (k = 0; k < rats_count; ++k) { |
| unsigned int num; |
| unsigned int den = rats[k].den; |
| unsigned int q = i->min; |
| int diff; |
| num = mul(q, den); |
| if (num > rats[k].num_max) |
| continue; |
| if (num < rats[k].num_min) |
| num = rats[k].num_max; |
| else { |
| unsigned int r; |
| r = (num - rats[k].num_min) % rats[k].num_step; |
| if (r != 0) |
| num += rats[k].num_step - r; |
| } |
| diff = num - q * den; |
| if (best_num == 0 || |
| diff * best_den < best_diff * den) { |
| best_diff = diff; |
| best_den = den; |
| best_num = num; |
| } |
| } |
| if (best_den == 0) { |
| i->empty = 1; |
| return -EINVAL; |
| } |
| t.min = div_down(best_num, best_den); |
| t.openmin = !!(best_num % best_den); |
| |
| best_num = best_den = best_diff = 0; |
| for (k = 0; k < rats_count; ++k) { |
| unsigned int num; |
| unsigned int den = rats[k].den; |
| unsigned int q = i->max; |
| int diff; |
| num = mul(q, den); |
| if (num < rats[k].num_min) |
| continue; |
| if (num > rats[k].num_max) |
| num = rats[k].num_max; |
| else { |
| unsigned int r; |
| r = (num - rats[k].num_min) % rats[k].num_step; |
| if (r != 0) |
| num -= r; |
| } |
| diff = q * den - num; |
| if (best_num == 0 || |
| diff * best_den < best_diff * den) { |
| best_diff = diff; |
| best_den = den; |
| best_num = num; |
| } |
| } |
| if (best_den == 0) { |
| i->empty = 1; |
| return -EINVAL; |
| } |
| t.max = div_up(best_num, best_den); |
| t.openmax = !!(best_num % best_den); |
| t.integer = 0; |
| err = snd_interval_refine(i, &t); |
| if (err < 0) |
| return err; |
| |
| if (snd_interval_single(i)) { |
| if (nump) |
| *nump = best_num; |
| if (denp) |
| *denp = best_den; |
| } |
| return err; |
| } |
| |
| /** |
| * snd_interval_list - refine the interval value from the list |
| * @i: the interval value to refine |
| * @count: the number of elements in the list |
| * @list: the value list |
| * @mask: the bit-mask to evaluate |
| * |
| * Refines the interval value from the list. |
| * When mask is non-zero, only the elements corresponding to bit 1 are |
| * evaluated. |
| * |
| * Return: Positive if the value is changed, zero if it's not changed, or a |
| * negative error code. |
| */ |
| int snd_interval_list(struct snd_interval *i, unsigned int count, |
| const unsigned int *list, unsigned int mask) |
| { |
| unsigned int k; |
| struct snd_interval list_range; |
| |
| if (!count) { |
| i->empty = 1; |
| return -EINVAL; |
| } |
| snd_interval_any(&list_range); |
| list_range.min = UINT_MAX; |
| list_range.max = 0; |
| for (k = 0; k < count; k++) { |
| if (mask && !(mask & (1 << k))) |
| continue; |
| if (!snd_interval_test(i, list[k])) |
| continue; |
| list_range.min = min(list_range.min, list[k]); |
| list_range.max = max(list_range.max, list[k]); |
| } |
| return snd_interval_refine(i, &list_range); |
| } |
| EXPORT_SYMBOL(snd_interval_list); |
| |
| /** |
| * snd_interval_ranges - refine the interval value from the list of ranges |
| * @i: the interval value to refine |
| * @count: the number of elements in the list of ranges |
| * @ranges: the ranges list |
| * @mask: the bit-mask to evaluate |
| * |
| * Refines the interval value from the list of ranges. |
| * When mask is non-zero, only the elements corresponding to bit 1 are |
| * evaluated. |
| * |
| * Return: Positive if the value is changed, zero if it's not changed, or a |
| * negative error code. |
| */ |
| int snd_interval_ranges(struct snd_interval *i, unsigned int count, |
| const struct snd_interval *ranges, unsigned int mask) |
| { |
| unsigned int k; |
| struct snd_interval range_union; |
| struct snd_interval range; |
| |
| if (!count) { |
| snd_interval_none(i); |
| return -EINVAL; |
| } |
| snd_interval_any(&range_union); |
| range_union.min = UINT_MAX; |
| range_union.max = 0; |
| for (k = 0; k < count; k++) { |
| if (mask && !(mask & (1 << k))) |
| continue; |
| snd_interval_copy(&range, &ranges[k]); |
| if (snd_interval_refine(&range, i) < 0) |
| continue; |
| if (snd_interval_empty(&range)) |
| continue; |
| |
| if (range.min < range_union.min) { |
| range_union.min = range.min; |
| range_union.openmin = 1; |
| } |
| if (range.min == range_union.min && !range.openmin) |
| range_union.openmin = 0; |
| if (range.max > range_union.max) { |
| range_union.max = range.max; |
| range_union.openmax = 1; |
| } |
| if (range.max == range_union.max && !range.openmax) |
| range_union.openmax = 0; |
| } |
| return snd_interval_refine(i, &range_union); |
| } |
| EXPORT_SYMBOL(snd_interval_ranges); |
| |
| static int snd_interval_step(struct snd_interval *i, unsigned int step) |
| { |
| unsigned int n; |
| int changed = 0; |
| n = i->min % step; |
| if (n != 0 || i->openmin) { |
| i->min += step - n; |
| i->openmin = 0; |
| changed = 1; |
| } |
| n = i->max % step; |
| if (n != 0 || i->openmax) { |
| i->max -= n; |
| i->openmax = 0; |
| changed = 1; |
| } |
| if (snd_interval_checkempty(i)) { |
| i->empty = 1; |
| return -EINVAL; |
| } |
| return changed; |
| } |
| |
| /* Info constraints helpers */ |
| |
| /** |
| * snd_pcm_hw_rule_add - add the hw-constraint rule |
| * @runtime: the pcm runtime instance |
| * @cond: condition bits |
| * @var: the variable to evaluate |
| * @func: the evaluation function |
| * @private: the private data pointer passed to function |
| * @dep: the dependent variables |
| * |
| * Return: Zero if successful, or a negative error code on failure. |
| */ |
| int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond, |
| int var, |
| snd_pcm_hw_rule_func_t func, void *private, |
| int dep, ...) |
| { |
| struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; |
| struct snd_pcm_hw_rule *c; |
| unsigned int k; |
| va_list args; |
| va_start(args, dep); |
| if (constrs->rules_num >= constrs->rules_all) { |
| struct snd_pcm_hw_rule *new; |
| unsigned int new_rules = constrs->rules_all + 16; |
| new = krealloc_array(constrs->rules, new_rules, |
| sizeof(*c), GFP_KERNEL); |
| if (!new) { |
| va_end(args); |
| return -ENOMEM; |
| } |
| constrs->rules = new; |
| constrs->rules_all = new_rules; |
| } |
| c = &constrs->rules[constrs->rules_num]; |
| c->cond = cond; |
| c->func = func; |
| c->var = var; |
| c->private = private; |
| k = 0; |
| while (1) { |
| if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) { |
| va_end(args); |
| return -EINVAL; |
| } |
| c->deps[k++] = dep; |
| if (dep < 0) |
| break; |
| dep = va_arg(args, int); |
| } |
| constrs->rules_num++; |
| va_end(args); |
| return 0; |
| } |
| EXPORT_SYMBOL(snd_pcm_hw_rule_add); |
| |
| /** |
| * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint |
| * @runtime: PCM runtime instance |
| * @var: hw_params variable to apply the mask |
| * @mask: the bitmap mask |
| * |
| * Apply the constraint of the given bitmap mask to a 32-bit mask parameter. |
| * |
| * Return: Zero if successful, or a negative error code on failure. |
| */ |
| int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var, |
| u_int32_t mask) |
| { |
| struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; |
| struct snd_mask *maskp = constrs_mask(constrs, var); |
| *maskp->bits &= mask; |
| memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */ |
| if (*maskp->bits == 0) |
| return -EINVAL; |
| return 0; |
| } |
| |
| /** |
| * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint |
| * @runtime: PCM runtime instance |
| * @var: hw_params variable to apply the mask |
| * @mask: the 64bit bitmap mask |
| * |
| * Apply the constraint of the given bitmap mask to a 64-bit mask parameter. |
| * |
| * Return: Zero if successful, or a negative error code on failure. |
| */ |
| int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var, |
| u_int64_t mask) |
| { |
| struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; |
| struct snd_mask *maskp = constrs_mask(constrs, var); |
| maskp->bits[0] &= (u_int32_t)mask; |
| maskp->bits[1] &= (u_int32_t)(mask >> 32); |
| memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */ |
| if (! maskp->bits[0] && ! maskp->bits[1]) |
| return -EINVAL; |
| return 0; |
| } |
| EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64); |
| |
| /** |
| * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval |
| * @runtime: PCM runtime instance |
| * @var: hw_params variable to apply the integer constraint |
| * |
| * Apply the constraint of integer to an interval parameter. |
| * |
| * Return: Positive if the value is changed, zero if it's not changed, or a |
| * negative error code. |
| */ |
| int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var) |
| { |
| struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; |
| return snd_interval_setinteger(constrs_interval(constrs, var)); |
| } |
| EXPORT_SYMBOL(snd_pcm_hw_constraint_integer); |
| |
| /** |
| * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval |
| * @runtime: PCM runtime instance |
| * @var: hw_params variable to apply the range |
| * @min: the minimal value |
| * @max: the maximal value |
| * |
| * Apply the min/max range constraint to an interval parameter. |
| * |
| * Return: Positive if the value is changed, zero if it's not changed, or a |
| * negative error code. |
| */ |
| int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var, |
| unsigned int min, unsigned int max) |
| { |
| struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; |
| struct snd_interval t; |
| t.min = min; |
| t.max = max; |
| t.openmin = t.openmax = 0; |
| t.integer = 0; |
| return snd_interval_refine(constrs_interval(constrs, var), &t); |
| } |
| EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax); |
| |
| static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params, |
| struct snd_pcm_hw_rule *rule) |
| { |
| struct snd_pcm_hw_constraint_list *list = rule->private; |
| return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask); |
| } |
| |
| |
| /** |
| * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter |
| * @runtime: PCM runtime instance |
| * @cond: condition bits |
| * @var: hw_params variable to apply the list constraint |
| * @l: list |
| * |
| * Apply the list of constraints to an interval parameter. |
| * |
| * Return: Zero if successful, or a negative error code on failure. |
| */ |
| int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime, |
| unsigned int cond, |
| snd_pcm_hw_param_t var, |
| const struct snd_pcm_hw_constraint_list *l) |
| { |
| return snd_pcm_hw_rule_add(runtime, cond, var, |
| snd_pcm_hw_rule_list, (void *)l, |
| var, -1); |
| } |
| EXPORT_SYMBOL(snd_pcm_hw_constraint_list); |
| |
| static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params, |
| struct snd_pcm_hw_rule *rule) |
| { |
| struct snd_pcm_hw_constraint_ranges *r = rule->private; |
| return snd_interval_ranges(hw_param_interval(params, rule->var), |
| r->count, r->ranges, r->mask); |
| } |
| |
| |
| /** |
| * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter |
| * @runtime: PCM runtime instance |
| * @cond: condition bits |
| * @var: hw_params variable to apply the list of range constraints |
| * @r: ranges |
| * |
| * Apply the list of range constraints to an interval parameter. |
| * |
| * Return: Zero if successful, or a negative error code on failure. |
| */ |
| int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime, |
| unsigned int cond, |
| snd_pcm_hw_param_t var, |
| const struct snd_pcm_hw_constraint_ranges *r) |
| { |
| return snd_pcm_hw_rule_add(runtime, cond, var, |
| snd_pcm_hw_rule_ranges, (void *)r, |
| var, -1); |
| } |
| EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges); |
| |
| static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params, |
| struct snd_pcm_hw_rule *rule) |
| { |
| const struct snd_pcm_hw_constraint_ratnums *r = rule->private; |
| unsigned int num = 0, den = 0; |
| int err; |
| err = snd_interval_ratnum(hw_param_interval(params, rule->var), |
| r->nrats, r->rats, &num, &den); |
| if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) { |
| params->rate_num = num; |
| params->rate_den = den; |
| } |
| return err; |
| } |
| |
| /** |
| * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter |
| * @runtime: PCM runtime instance |
| * @cond: condition bits |
| * @var: hw_params variable to apply the ratnums constraint |
| * @r: struct snd_ratnums constriants |
| * |
| * Return: Zero if successful, or a negative error code on failure. |
| */ |
| int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, |
| unsigned int cond, |
| snd_pcm_hw_param_t var, |
| const struct snd_pcm_hw_constraint_ratnums *r) |
| { |
| return snd_pcm_hw_rule_add(runtime, cond, var, |
| snd_pcm_hw_rule_ratnums, (void *)r, |
| var, -1); |
| } |
| EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums); |
| |
| static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params, |
| struct snd_pcm_hw_rule *rule) |
| { |
| const struct snd_pcm_hw_constraint_ratdens *r = rule->private; |
| unsigned int num = 0, den = 0; |
| int err = snd_interval_ratden(hw_param_interval(params, rule->var), |
| r->nrats, r->rats, &num, &den); |
| if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) { |
| params->rate_num = num; |
| params->rate_den = den; |
| } |
| return err; |
| } |
| |
| /** |
| * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter |
| * @runtime: PCM runtime instance |
| * @cond: condition bits |
| * @var: hw_params variable to apply the ratdens constraint |
| * @r: struct snd_ratdens constriants |
| * |
| * Return: Zero if successful, or a negative error code on failure. |
| */ |
| int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, |
| unsigned int cond, |
| snd_pcm_hw_param_t var, |
| const struct snd_pcm_hw_constraint_ratdens *r) |
| { |
| return snd_pcm_hw_rule_add(runtime, cond, var, |
| snd_pcm_hw_rule_ratdens, (void *)r, |
| var, -1); |
| } |
| EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens); |
| |
| static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params, |
| struct snd_pcm_hw_rule *rule) |
| { |
| unsigned int l = (unsigned long) rule->private; |
| int width = l & 0xffff; |
| unsigned int msbits = l >> 16; |
| const struct snd_interval *i = |
| hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS); |
| |
| if (!snd_interval_single(i)) |
| return 0; |
| |
| if ((snd_interval_value(i) == width) || |
| (width == 0 && snd_interval_value(i) > msbits)) |
| params->msbits = min_not_zero(params->msbits, msbits); |
| |
| return 0; |
| } |
| |
| /** |
| * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule |
| * @runtime: PCM runtime instance |
| * @cond: condition bits |
| * @width: sample bits width |
| * @msbits: msbits width |
| * |
| * This constraint will set the number of most significant bits (msbits) if a |
| * sample format with the specified width has been select. If width is set to 0 |
| * the msbits will be set for any sample format with a width larger than the |
| * specified msbits. |
| * |
| * Return: Zero if successful, or a negative error code on failure. |
| */ |
| int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, |
| unsigned int cond, |
| unsigned int width, |
| unsigned int msbits) |
| { |
| unsigned long l = (msbits << 16) | width; |
| return snd_pcm_hw_rule_add(runtime, cond, -1, |
| snd_pcm_hw_rule_msbits, |
| (void*) l, |
| SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1); |
| } |
| EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits); |
| |
| static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params, |
| struct snd_pcm_hw_rule *rule) |
| { |
| unsigned long step = (unsigned long) rule->private; |
| return snd_interval_step(hw_param_interval(params, rule->var), step); |
| } |
| |
| /** |
| * snd_pcm_hw_constraint_step - add a hw constraint step rule |
| * @runtime: PCM runtime instance |
| * @cond: condition bits |
| * @var: hw_params variable to apply the step constraint |
| * @step: step size |
| * |
| * Return: Zero if successful, or a negative error code on failure. |
| */ |
| int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime, |
| unsigned int cond, |
| snd_pcm_hw_param_t var, |
| unsigned long step) |
| { |
| return snd_pcm_hw_rule_add(runtime, cond, var, |
| snd_pcm_hw_rule_step, (void *) step, |
| var, -1); |
| } |
| EXPORT_SYMBOL(snd_pcm_hw_constraint_step); |
| |
| static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule) |
| { |
| static const unsigned int pow2_sizes[] = { |
| 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7, |
| 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15, |
| 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23, |
| 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30 |
| }; |
| return snd_interval_list(hw_param_interval(params, rule->var), |
| ARRAY_SIZE(pow2_sizes), pow2_sizes, 0); |
| } |
| |
| /** |
| * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule |
| * @runtime: PCM runtime instance |
| * @cond: condition bits |
| * @var: hw_params variable to apply the power-of-2 constraint |
| * |
| * Return: Zero if successful, or a negative error code on failure. |
| */ |
| int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime, |
| unsigned int cond, |
| snd_pcm_hw_param_t var) |
| { |
| return snd_pcm_hw_rule_add(runtime, cond, var, |
| snd_pcm_hw_rule_pow2, NULL, |
| var, -1); |
| } |
| EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2); |
| |
| static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params, |
| struct snd_pcm_hw_rule *rule) |
| { |
| unsigned int base_rate = (unsigned int)(uintptr_t)rule->private; |
| struct snd_interval *rate; |
| |
| rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); |
| return snd_interval_list(rate, 1, &base_rate, 0); |
| } |
| |
| /** |
| * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling |
| * @runtime: PCM runtime instance |
| * @base_rate: the rate at which the hardware does not resample |
| * |
| * Return: Zero if successful, or a negative error code on failure. |
| */ |
| int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime, |
| unsigned int base_rate) |
| { |
| return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE, |
| SNDRV_PCM_HW_PARAM_RATE, |
| snd_pcm_hw_rule_noresample_func, |
| (void *)(uintptr_t)base_rate, |
| SNDRV_PCM_HW_PARAM_RATE, -1); |
| } |
| EXPORT_SYMBOL(snd_pcm_hw_rule_noresample); |
| |
| static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params, |
| snd_pcm_hw_param_t var) |
| { |
| if (hw_is_mask(var)) { |
| snd_mask_any(hw_param_mask(params, var)); |
| params->cmask |= 1 << var; |
| params->rmask |= 1 << var; |
| return; |
| } |
| if (hw_is_interval(var)) { |
| snd_interval_any(hw_param_interval(params, var)); |
| params->cmask |= 1 << var; |
| params->rmask |= 1 << var; |
| return; |
| } |
| snd_BUG(); |
| } |
| |
| void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params) |
| { |
| unsigned int k; |
| memset(params, 0, sizeof(*params)); |
| for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++) |
| _snd_pcm_hw_param_any(params, k); |
| for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++) |
| _snd_pcm_hw_param_any(params, k); |
| params->info = ~0U; |
| } |
| EXPORT_SYMBOL(_snd_pcm_hw_params_any); |
| |
| /** |
| * snd_pcm_hw_param_value - return @params field @var value |
| * @params: the hw_params instance |
| * @var: parameter to retrieve |
| * @dir: pointer to the direction (-1,0,1) or %NULL |
| * |
| * Return: The value for field @var if it's fixed in configuration space |
| * defined by @params. -%EINVAL otherwise. |
| */ |
| int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params, |
| snd_pcm_hw_param_t var, int *dir) |
| { |
| if (hw_is_mask(var)) { |
| const struct snd_mask *mask = hw_param_mask_c(params, var); |
| if (!snd_mask_single(mask)) |
| return -EINVAL; |
| if (dir) |
| *dir = 0; |
| return snd_mask_value(mask); |
| } |
| if (hw_is_interval(var)) { |
| const struct snd_interval *i = hw_param_interval_c(params, var); |
| if (!snd_interval_single(i)) |
| return -EINVAL; |
| if (dir) |
| *dir = i->openmin; |
| return snd_interval_value(i); |
| } |
| return -EINVAL; |
| } |
| EXPORT_SYMBOL(snd_pcm_hw_param_value); |
| |
| void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params, |
| snd_pcm_hw_param_t var) |
| { |
| if (hw_is_mask(var)) { |
| snd_mask_none(hw_param_mask(params, var)); |
| params->cmask |= 1 << var; |
| params->rmask |= 1 << var; |
| } else if (hw_is_interval(var)) { |
| snd_interval_none(hw_param_interval(params, var)); |
| params->cmask |= 1 << var; |
| params->rmask |= 1 << var; |
| } else { |
| snd_BUG(); |
| } |
| } |
| EXPORT_SYMBOL(_snd_pcm_hw_param_setempty); |
| |
| static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params, |
| snd_pcm_hw_param_t var) |
| { |
| int changed; |
| if (hw_is_mask(var)) |
| changed = snd_mask_refine_first(hw_param_mask(params, var)); |
| else if (hw_is_interval(var)) |
| changed = snd_interval_refine_first(hw_param_interval(params, var)); |
| else |
| return -EINVAL; |
| if (changed > 0) { |
| params->cmask |= 1 << var; |
| params->rmask |= 1 << var; |
| } |
| return changed; |
| } |
| |
| |
| /** |
| * snd_pcm_hw_param_first - refine config space and return minimum value |
| * @pcm: PCM instance |
| * @params: the hw_params instance |
| * @var: parameter to retrieve |
| * @dir: pointer to the direction (-1,0,1) or %NULL |
| * |
| * Inside configuration space defined by @params remove from @var all |
| * values > minimum. Reduce configuration space accordingly. |
| * |
| * Return: The minimum, or a negative error code on failure. |
| */ |
| int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, |
| struct snd_pcm_hw_params *params, |
| snd_pcm_hw_param_t var, int *dir) |
| { |
| int changed = _snd_pcm_hw_param_first(params, var); |
| if (changed < 0) |
| return changed; |
| if (params->rmask) { |
| int err = snd_pcm_hw_refine(pcm, params); |
| if (err < 0) |
| return err; |
| } |
| return snd_pcm_hw_param_value(params, var, dir); |
| } |
| EXPORT_SYMBOL(snd_pcm_hw_param_first); |
| |
| static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params, |
| snd_pcm_hw_param_t var) |
| { |
| int changed; |
| if (hw_is_mask(var)) |
| changed = snd_mask_refine_last(hw_param_mask(params, var)); |
| else if (hw_is_interval(var)) |
| changed = snd_interval_refine_last(hw_param_interval(params, var)); |
| else |
| return -EINVAL; |
| if (changed > 0) { |
| params->cmask |= 1 << var; |
| params->rmask |= 1 << var; |
| } |
| return changed; |
| } |
| |
| |
| /** |
| * snd_pcm_hw_param_last - refine config space and return maximum value |
| * @pcm: PCM instance |
| * @params: the hw_params instance |
| * @var: parameter to retrieve |
| * @dir: pointer to the direction (-1,0,1) or %NULL |
| * |
| * Inside configuration space defined by @params remove from @var all |
| * values < maximum. Reduce configuration space accordingly. |
| * |
| * Return: The maximum, or a negative error code on failure. |
| */ |
| int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, |
| struct snd_pcm_hw_params *params, |
| snd_pcm_hw_param_t var, int *dir) |
| { |
| int changed = _snd_pcm_hw_param_last(params, var); |
| if (changed < 0) |
| return changed; |
| if (params->rmask) { |
| int err = snd_pcm_hw_refine(pcm, params); |
| if (err < 0) |
| return err; |
| } |
| return snd_pcm_hw_param_value(params, var, dir); |
| } |
| EXPORT_SYMBOL(snd_pcm_hw_param_last); |
| |
| static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream, |
| void *arg) |
| { |
| struct snd_pcm_runtime *runtime = substream->runtime; |
| unsigned long flags; |
| snd_pcm_stream_lock_irqsave(substream, flags); |
| if (snd_pcm_running(substream) && |
| snd_pcm_update_hw_ptr(substream) >= 0) |
| runtime->status->hw_ptr %= runtime->buffer_size; |
| else { |
| runtime->status->hw_ptr = 0; |
| runtime->hw_ptr_wrap = 0; |
| } |
| snd_pcm_stream_unlock_irqrestore(substream, flags); |
| return 0; |
| } |
| |
| static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream, |
| void *arg) |
| { |
| struct snd_pcm_channel_info *info = arg; |
| struct snd_pcm_runtime *runtime = substream->runtime; |
| int width; |
| if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) { |
| info->offset = -1; |
| return 0; |
| } |
| width = snd_pcm_format_physical_width(runtime->format); |
| if (width < 0) |
| return width; |
| info->offset = 0; |
| switch (runtime->access) { |
| case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED: |
| case SNDRV_PCM_ACCESS_RW_INTERLEAVED: |
| info->first = info->channel * width; |
| info->step = runtime->channels * width; |
| break; |
| case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED: |
| case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED: |
| { |
| size_t size = runtime->dma_bytes / runtime->channels; |
| info->first = info->channel * size * 8; |
| info->step = width; |
| break; |
| } |
| default: |
| snd_BUG(); |
| break; |
| } |
| return 0; |
| } |
| |
| static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream, |
| void *arg) |
| { |
| struct snd_pcm_hw_params *params = arg; |
| snd_pcm_format_t format; |
| int channels; |
| ssize_t frame_size; |
| |
| params->fifo_size = substream->runtime->hw.fifo_size; |
| if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) { |
| format = params_format(params); |
| channels = params_channels(params); |
| frame_size = snd_pcm_format_size(format, channels); |
| if (frame_size > 0) |
| params->fifo_size /= frame_size; |
| } |
| return 0; |
| } |
| |
| /** |
| * snd_pcm_lib_ioctl - a generic PCM ioctl callback |
| * @substream: the pcm substream instance |
| * @cmd: ioctl command |
| * @arg: ioctl argument |
| * |
| * Processes the generic ioctl commands for PCM. |
| * Can be passed as the ioctl callback for PCM ops. |
| * |
| * Return: Zero if successful, or a negative error code on failure. |
| */ |
| int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream, |
| unsigned int cmd, void *arg) |
| { |
| switch (cmd) { |
| case SNDRV_PCM_IOCTL1_RESET: |
| return snd_pcm_lib_ioctl_reset(substream, arg); |
| case SNDRV_PCM_IOCTL1_CHANNEL_INFO: |
| return snd_pcm_lib_ioctl_channel_info(substream, arg); |
| case SNDRV_PCM_IOCTL1_FIFO_SIZE: |
| return snd_pcm_lib_ioctl_fifo_size(substream, arg); |
| } |
| return -ENXIO; |
| } |
| EXPORT_SYMBOL(snd_pcm_lib_ioctl); |
| |
| /** |
| * snd_pcm_period_elapsed_under_stream_lock() - update the status of runtime for the next period |
| * under acquired lock of PCM substream. |
| * @substream: the instance of pcm substream. |
| * |
| * This function is called when the batch of audio data frames as the same size as the period of |
| * buffer is already processed in audio data transmission. |
| * |
| * The call of function updates the status of runtime with the latest position of audio data |
| * transmission, checks overrun and underrun over buffer, awaken user processes from waiting for |
| * available audio data frames, sampling audio timestamp, and performs stop or drain the PCM |
| * substream according to configured threshold. |
| * |
| * The function is intended to use for the case that PCM driver operates audio data frames under |
| * acquired lock of PCM substream; e.g. in callback of any operation of &snd_pcm_ops in process |
| * context. In any interrupt context, it's preferrable to use ``snd_pcm_period_elapsed()`` instead |
| * since lock of PCM substream should be acquired in advance. |
| * |
| * Developer should pay enough attention that some callbacks in &snd_pcm_ops are done by the call of |
| * function: |
| * |
| * - .pointer - to retrieve current position of audio data transmission by frame count or XRUN state. |
| * - .trigger - with SNDRV_PCM_TRIGGER_STOP at XRUN or DRAINING state. |
| * - .get_time_info - to retrieve audio time stamp if needed. |
| * |
| * Even if more than one periods have elapsed since the last call, you have to call this only once. |
| */ |
| void snd_pcm_period_elapsed_under_stream_lock(struct snd_pcm_substream *substream) |
| { |
| struct snd_pcm_runtime *runtime; |
| |
| if (PCM_RUNTIME_CHECK(substream)) |
| return; |
| runtime = substream->runtime; |
| |
| if (!snd_pcm_running(substream) || |
| snd_pcm_update_hw_ptr0(substream, 1) < 0) |
| goto _end; |
| |
| #ifdef CONFIG_SND_PCM_TIMER |
| if (substream->timer_running) |
| snd_timer_interrupt(substream->timer, 1); |
| #endif |
| _end: |
| kill_fasync(&runtime->fasync, SIGIO, POLL_IN); |
| } |
| EXPORT_SYMBOL(snd_pcm_period_elapsed_under_stream_lock); |
| |
| /** |
| * snd_pcm_period_elapsed() - update the status of runtime for the next period by acquiring lock of |
| * PCM substream. |
| * @substream: the instance of PCM substream. |
| * |
| * This function is mostly similar to ``snd_pcm_period_elapsed_under_stream_lock()`` except for |
| * acquiring lock of PCM substream voluntarily. |
| * |
| * It's typically called by any type of IRQ handler when hardware IRQ occurs to notify event that |
| * the batch of audio data frames as the same size as the period of buffer is already processed in |
| * audio data transmission. |
| */ |
| void snd_pcm_period_elapsed(struct snd_pcm_substream *substream) |
| { |
| unsigned long flags; |
| |
| if (snd_BUG_ON(!substream)) |
| return; |
| |
| snd_pcm_stream_lock_irqsave(substream, flags); |
| snd_pcm_period_elapsed_under_stream_lock(substream); |
| snd_pcm_stream_unlock_irqrestore(substream, flags); |
| } |
| EXPORT_SYMBOL(snd_pcm_period_elapsed); |
| |
| /* |
| * Wait until avail_min data becomes available |
| * Returns a negative error code if any error occurs during operation. |
| * The available space is stored on availp. When err = 0 and avail = 0 |
| * on the capture stream, it indicates the stream is in DRAINING state. |
| */ |
| static int wait_for_avail(struct snd_pcm_substream *substream, |
| snd_pcm_uframes_t *availp) |
| { |
| struct snd_pcm_runtime *runtime = substream->runtime; |
| int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK; |
| wait_queue_entry_t wait; |
| int err = 0; |
| snd_pcm_uframes_t avail = 0; |
| long wait_time, tout; |
| |
| init_waitqueue_entry(&wait, current); |
| set_current_state(TASK_INTERRUPTIBLE); |
| add_wait_queue(&runtime->tsleep, &wait); |
| |
| if (runtime->no_period_wakeup) |
| wait_time = MAX_SCHEDULE_TIMEOUT; |
| else { |
| /* use wait time from substream if available */ |
| if (substream->wait_time) { |
| wait_time = substream->wait_time; |
| } else { |
| wait_time = 10; |
| |
| if (runtime->rate) { |
| long t = runtime->period_size * 2 / |
| runtime->rate; |
| wait_time = max(t, wait_time); |
| } |
| wait_time = msecs_to_jiffies(wait_time * 1000); |
| } |
| } |
| |
| for (;;) { |
| if (signal_pending(current)) { |
| err = -ERESTARTSYS; |
| break; |
| } |
| |
| /* |
| * We need to check if space became available already |
| * (and thus the wakeup happened already) first to close |
| * the race of space already having become available. |
| * This check must happen after been added to the waitqueue |
| * and having current state be INTERRUPTIBLE. |
| */ |
| avail = snd_pcm_avail(substream); |
| if (avail >= runtime->twake) |
| break; |
| snd_pcm_stream_unlock_irq(substream); |
| |
| tout = schedule_timeout(wait_time); |
| |
| snd_pcm_stream_lock_irq(substream); |
| set_current_state(TASK_INTERRUPTIBLE); |
| switch (runtime->status->state) { |
| case SNDRV_PCM_STATE_SUSPENDED: |
| err = -ESTRPIPE; |
| goto _endloop; |
| case SNDRV_PCM_STATE_XRUN: |
| err = -EPIPE; |
| goto _endloop; |
| case SNDRV_PCM_STATE_DRAINING: |
| if (is_playback) |
| err = -EPIPE; |
| else |
| avail = 0; /* indicate draining */ |
| goto _endloop; |
| case SNDRV_PCM_STATE_OPEN: |
| case SNDRV_PCM_STATE_SETUP: |
| case SNDRV_PCM_STATE_DISCONNECTED: |
| err = -EBADFD; |
| goto _endloop; |
| case SNDRV_PCM_STATE_PAUSED: |
| continue; |
| } |
| if (!tout) { |
| pcm_dbg(substream->pcm, |
| "%s write error (DMA or IRQ trouble?)\n", |
| is_playback ? "playback" : "capture"); |
| err = -EIO; |
| break; |
| } |
| } |
| _endloop: |
| set_current_state(TASK_RUNNING); |
| remove_wait_queue(&runtime->tsleep, &wait); |
| *availp = avail; |
| return err; |
| } |
| |
| typedef int (*pcm_transfer_f)(struct snd_pcm_substream *substream, |
| int channel, unsigned long hwoff, |
| void *buf, unsigned long bytes); |
| |
| typedef int (*pcm_copy_f)(struct snd_pcm_substream *, snd_pcm_uframes_t, void *, |
| snd_pcm_uframes_t, snd_pcm_uframes_t, pcm_transfer_f); |
| |
| /* calculate the target DMA-buffer position to be written/read */ |
| static void *get_dma_ptr(struct snd_pcm_runtime *runtime, |
| int channel, unsigned long hwoff) |
| { |
| return runtime->dma_area + hwoff + |
| channel * (runtime->dma_bytes / runtime->channels); |
| } |
| |
| /* default copy_user ops for write; used for both interleaved and non- modes */ |
| static int default_write_copy(struct snd_pcm_substream *substream, |
| int channel, unsigned long hwoff, |
| void *buf, unsigned long bytes) |
| { |
| if (copy_from_user(get_dma_ptr(substream->runtime, channel, hwoff), |
| (void __user *)buf, bytes)) |
| return -EFAULT; |
| return 0; |
| } |
| |
| /* default copy_kernel ops for write */ |
| static int default_write_copy_kernel(struct snd_pcm_substream *substream, |
| int channel, unsigned long hwoff, |
| void *buf, unsigned long bytes) |
| { |
| memcpy(get_dma_ptr(substream->runtime, channel, hwoff), buf, bytes); |
| return 0; |
| } |
| |
| /* fill silence instead of copy data; called as a transfer helper |
| * from __snd_pcm_lib_write() or directly from noninterleaved_copy() when |
| * a NULL buffer is passed |
| */ |
| static int fill_silence(struct snd_pcm_substream *substream, int channel, |
| unsigned long hwoff, void *buf, unsigned long bytes) |
| { |
| struct snd_pcm_runtime *runtime = substream->runtime; |
| |
| if (substream->stream != SNDRV_PCM_STREAM_PLAYBACK) |
| return 0; |
| if (substream->ops->fill_silence) |
| return substream->ops->fill_silence(substream, channel, |
| hwoff, bytes); |
| |
| snd_pcm_format_set_silence(runtime->format, |
| get_dma_ptr(runtime, channel, hwoff), |
| bytes_to_samples(runtime, bytes)); |
| return 0; |
| } |
| |
| /* default copy_user ops for read; used for both interleaved and non- modes */ |
| static int default_read_copy(struct snd_pcm_substream *substream, |
| int channel, unsigned long hwoff, |
| void *buf, unsigned long bytes) |
| { |
| if (copy_to_user((void __user *)buf, |
| get_dma_ptr(substream->runtime, channel, hwoff), |
| bytes)) |
| return -EFAULT; |
| return 0; |
| } |
| |
| /* default copy_kernel ops for read */ |
| static int default_read_copy_kernel(struct snd_pcm_substream *substream, |
| int channel, unsigned long hwoff, |
| void *buf, unsigned long bytes) |
| { |
| memcpy(buf, get_dma_ptr(substream->runtime, channel, hwoff), bytes); |
| return 0; |
| } |
| |
| /* call transfer function with the converted pointers and sizes; |
| * for interleaved mode, it's one shot for all samples |
| */ |
| static int interleaved_copy(struct snd_pcm_substream *substream, |
| snd_pcm_uframes_t hwoff, void *data, |
| snd_pcm_uframes_t off, |
| snd_pcm_uframes_t frames, |
| pcm_transfer_f transfer) |
| { |
| struct snd_pcm_runtime *runtime = substream->runtime; |
| |
| /* convert to bytes */ |
| hwoff = frames_to_bytes(runtime, hwoff); |
| off = frames_to_bytes(runtime, off); |
| frames = frames_to_bytes(runtime, frames); |
| return transfer(substream, 0, hwoff, data + off, frames); |
| } |
| |
| /* call transfer function with the converted pointers and sizes for each |
| * non-interleaved channel; when buffer is NULL, silencing instead of copying |
| */ |
| static int noninterleaved_copy(struct snd_pcm_substream *substream, |
| snd_pcm_uframes_t hwoff, void *data, |
| snd_pcm_uframes_t off, |
| snd_pcm_uframes_t frames, |
| pcm_transfer_f transfer) |
| { |
| struct snd_pcm_runtime *runtime = substream->runtime; |
| int channels = runtime->channels; |
| void **bufs = data; |
| int c, err; |
| |
| /* convert to bytes; note that it's not frames_to_bytes() here. |
| * in non-interleaved mode, we copy for each channel, thus |
| * each copy is n_samples bytes x channels = whole frames. |
| */ |
| off = samples_to_bytes(runtime, off); |
| frames = samples_to_bytes(runtime, frames); |
| hwoff = samples_to_bytes(runtime, hwoff); |
| for (c = 0; c < channels; ++c, ++bufs) { |
| if (!data || !*bufs) |
| err = fill_silence(substream, c, hwoff, NULL, frames); |
| else |
| err = transfer(substream, c, hwoff, *bufs + off, |
| frames); |
| if (err < 0) |
| return err; |
| } |
| return 0; |
| } |
| |
| /* fill silence on the given buffer position; |
| * called from snd_pcm_playback_silence() |
| */ |
| static int fill_silence_frames(struct snd_pcm_substream *substream, |
| snd_pcm_uframes_t off, snd_pcm_uframes_t frames) |
| { |
| if (substream->runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED || |
| substream->runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) |
| return interleaved_copy(substream, off, NULL, 0, frames, |
| fill_silence); |
| else |
| return noninterleaved_copy(substream, off, NULL, 0, frames, |
| fill_silence); |
| } |
| |
| /* sanity-check for read/write methods */ |
| static int pcm_sanity_check(struct snd_pcm_substream *substream) |
| { |
| struct snd_pcm_runtime *runtime; |
| if (PCM_RUNTIME_CHECK(substream)) |
| return -ENXIO; |
| runtime = substream->runtime; |
| if (snd_BUG_ON(!substream->ops->copy_user && !runtime->dma_area)) |
| return -EINVAL; |
| if (runtime->status->state == SNDRV_PCM_STATE_OPEN) |
| return -EBADFD; |
| return 0; |
| } |
| |
| static int pcm_accessible_state(struct snd_pcm_runtime *runtime) |
| { |
| switch (runtime->status->state) { |
| case SNDRV_PCM_STATE_PREPARED: |
| case SNDRV_PCM_STATE_RUNNING: |
| case SNDRV_PCM_STATE_PAUSED: |
| return 0; |
| case SNDRV_PCM_STATE_XRUN: |
| return -EPIPE; |
| case SNDRV_PCM_STATE_SUSPENDED: |
| return -ESTRPIPE; |
| default: |
| return -EBADFD; |
| } |
| } |
| |
| /* update to the given appl_ptr and call ack callback if needed; |
| * when an error is returned, take back to the original value |
| */ |
| int pcm_lib_apply_appl_ptr(struct snd_pcm_substream *substream, |
| snd_pcm_uframes_t appl_ptr) |
| { |
| struct snd_pcm_runtime *runtime = substream->runtime; |
| snd_pcm_uframes_t old_appl_ptr = runtime->control->appl_ptr; |
| snd_pcm_sframes_t diff; |
| int ret; |
| |
| if (old_appl_ptr == appl_ptr) |
| return 0; |
| |
| if (appl_ptr >= runtime->boundary) |
| return -EINVAL; |
| /* |
| * check if a rewind is requested by the application |
| */ |
| if (substream->runtime->info & SNDRV_PCM_INFO_NO_REWINDS) { |
| diff = appl_ptr - old_appl_ptr; |
| if (diff >= 0) { |
| if (diff > runtime->buffer_size) |
| return -EINVAL; |
| } else { |
| if (runtime->boundary + diff > runtime->buffer_size) |
| return -EINVAL; |
| } |
| } |
| |
| runtime->control->appl_ptr = appl_ptr; |
| if (substream->ops->ack) { |
| ret = substream->ops->ack(substream); |
| if (ret < 0) { |
| runtime->control->appl_ptr = old_appl_ptr; |
| return ret; |
| } |
| } |
| |
| trace_applptr(substream, old_appl_ptr, appl_ptr); |
| |
| return 0; |
| } |
| |
| /* the common loop for read/write data */ |
| snd_pcm_sframes_t __snd_pcm_lib_xfer(struct snd_pcm_substream *substream, |
| void *data, bool interleaved, |
| snd_pcm_uframes_t size, bool in_kernel) |
| { |
| struct snd_pcm_runtime *runtime = substream->runtime; |
| snd_pcm_uframes_t xfer = 0; |
| snd_pcm_uframes_t offset = 0; |
| snd_pcm_uframes_t avail; |
| pcm_copy_f writer; |
| pcm_transfer_f transfer; |
| bool nonblock; |
| bool is_playback; |
| int err; |
| |
| err = pcm_sanity_check(substream); |
| if (err < 0) |
| return err; |
| |
| is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK; |
| if (interleaved) { |
| if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED && |
| runtime->channels > 1) |
| return -EINVAL; |
| writer = interleaved_copy; |
| } else { |
| if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED) |
| return -EINVAL; |
| writer = noninterleaved_copy; |
| } |
| |
| if (!data) { |
| if (is_playback) |
| transfer = fill_silence; |
| else |
| return -EINVAL; |
| } else if (in_kernel) { |
| if (substream->ops->copy_kernel) |
| transfer = substream->ops->copy_kernel; |
| else |
| transfer = is_playback ? |
| default_write_copy_kernel : default_read_copy_kernel; |
| } else { |
| if (substream->ops->copy_user) |
| transfer = (pcm_transfer_f)substream->ops->copy_user; |
| else |
| transfer = is_playback ? |
| default_write_copy : default_read_copy; |
| } |
| |
| if (size == 0) |
| return 0; |
| |
| nonblock = !!(substream->f_flags & O_NONBLOCK); |
| |
| snd_pcm_stream_lock_irq(substream); |
| err = pcm_accessible_state(runtime); |
| if (err < 0) |
| goto _end_unlock; |
| |
| runtime->twake = runtime->control->avail_min ? : 1; |
| if (runtime->status->state == SNDRV_PCM_STATE_RUNNING) |
| snd_pcm_update_hw_ptr(substream); |
| |
| /* |
| * If size < start_threshold, wait indefinitely. Another |
| * thread may start capture |
| */ |
| if (!is_playback && |
| runtime->status->state == SNDRV_PCM_STATE_PREPARED && |
| size >= runtime->start_threshold) { |
| err = snd_pcm_start(substream); |
| if (err < 0) |
| goto _end_unlock; |
| } |
| |
| avail = snd_pcm_avail(substream); |
| |
| while (size > 0) { |
| snd_pcm_uframes_t frames, appl_ptr, appl_ofs; |
| snd_pcm_uframes_t cont; |
| if (!avail) { |
| if (!is_playback && |
| runtime->status->state == SNDRV_PCM_STATE_DRAINING) { |
| snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP); |
| goto _end_unlock; |
| } |
| if (nonblock) { |
| err = -EAGAIN; |
| goto _end_unlock; |
| } |
| runtime->twake = min_t(snd_pcm_uframes_t, size, |
| runtime->control->avail_min ? : 1); |
| err = wait_for_avail(substream, &avail); |
| if (err < 0) |
| goto _end_unlock; |
| if (!avail) |
| continue; /* draining */ |
| } |
| frames = size > avail ? avail : size; |
| appl_ptr = READ_ONCE(runtime->control->appl_ptr); |
| appl_ofs = appl_ptr % runtime->buffer_size; |
| cont = runtime->buffer_size - appl_ofs; |
| if (frames > cont) |
| frames = cont; |
| if (snd_BUG_ON(!frames)) { |
| err = -EINVAL; |
| goto _end_unlock; |
| } |
| snd_pcm_stream_unlock_irq(substream); |
| if (!is_playback) |
| snd_pcm_dma_buffer_sync(substream, SNDRV_DMA_SYNC_CPU); |
| err = writer(substream, appl_ofs, data, offset, frames, |
| transfer); |
| if (is_playback) |
| snd_pcm_dma_buffer_sync(substream, SNDRV_DMA_SYNC_DEVICE); |
| snd_pcm_stream_lock_irq(substream); |
| if (err < 0) |
| goto _end_unlock; |
| err = pcm_accessible_state(runtime); |
| if (err < 0) |
| goto _end_unlock; |
| appl_ptr += frames; |
| if (appl_ptr >= runtime->boundary) |
| appl_ptr -= runtime->boundary; |
| err = pcm_lib_apply_appl_ptr(substream, appl_ptr); |
| if (err < 0) |
| goto _end_unlock; |
| |
| offset += frames; |
| size -= frames; |
| xfer += frames; |
| avail -= frames; |
| if (is_playback && |
| runtime->status->state == SNDRV_PCM_STATE_PREPARED && |
| snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) { |
| err = snd_pcm_start(substream); |
| if (err < 0) |
| goto _end_unlock; |
| } |
| } |
| _end_unlock: |
| runtime->twake = 0; |
| if (xfer > 0 && err >= 0) |
| snd_pcm_update_state(substream, runtime); |
| snd_pcm_stream_unlock_irq(substream); |
| return xfer > 0 ? (snd_pcm_sframes_t)xfer : err; |
| } |
| EXPORT_SYMBOL(__snd_pcm_lib_xfer); |
| |
| /* |
| * standard channel mapping helpers |
| */ |
| |
| /* default channel maps for multi-channel playbacks, up to 8 channels */ |
| const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = { |
| { .channels = 1, |
| .map = { SNDRV_CHMAP_MONO } }, |
| { .channels = 2, |
| .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } }, |
| { .channels = 4, |
| .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR, |
| SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } }, |
| { .channels = 6, |
| .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR, |
| SNDRV_CHMAP_RL, SNDRV_CHMAP_RR, |
| SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } }, |
| { .channels = 8, |
| .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR, |
| SNDRV_CHMAP_RL, SNDRV_CHMAP_RR, |
| SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE, |
| SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } }, |
| { } |
| }; |
| EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps); |
| |
| /* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */ |
| const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = { |
| { .channels = 1, |
| .map = { SNDRV_CHMAP_MONO } }, |
| { .channels = 2, |
| .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } }, |
| { .channels = 4, |
| .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR, |
| SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } }, |
| { .channels = 6, |
| .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR, |
| SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE, |
| SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } }, |
| { .channels = 8, |
| .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR, |
| SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE, |
| SNDRV_CHMAP_RL, SNDRV_CHMAP_RR, |
| SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } }, |
| { } |
| }; |
| EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps); |
| |
| static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch) |
| { |
| if (ch > info->max_channels) |
| return false; |
| return !info->channel_mask || (info->channel_mask & (1U << ch)); |
| } |
| |
| static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol, |
| struct snd_ctl_elem_info *uinfo) |
| { |
| struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol); |
| |
| uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; |
| uinfo->count = info->max_channels; |
| uinfo->value.integer.min = 0; |
| uinfo->value.integer.max = SNDRV_CHMAP_LAST; |
| return 0; |
| } |
| |
| /* get callback for channel map ctl element |
| * stores the channel position firstly matching with the current channels |
| */ |
| static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol, |
| struct snd_ctl_elem_value *ucontrol) |
| { |
| struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol); |
| unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id); |
| struct snd_pcm_substream *substream; |
| const struct snd_pcm_chmap_elem *map; |
| |
| if (!info->chmap) |
| return -EINVAL; |
| substream = snd_pcm_chmap_substream(info, idx); |
| if (!substream) |
| return -ENODEV; |
| memset(ucontrol->value.integer.value, 0, |
| sizeof(long) * info->max_channels); |
| if (!substream->runtime) |
| return 0; /* no channels set */ |
| for (map = info->chmap; map->channels; map++) { |
| int i; |
| if (map->channels == substream->runtime->channels && |
| valid_chmap_channels(info, map->channels)) { |
| for (i = 0; i < map->channels; i++) |
| ucontrol->value.integer.value[i] = map->map[i]; |
| return 0; |
| } |
| } |
| return -EINVAL; |
| } |
| |
| /* tlv callback for channel map ctl element |
| * expands the pre-defined channel maps in a form of TLV |
| */ |
| static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag, |
| unsigned int size, unsigned int __user *tlv) |
| { |
| struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol); |
| const struct snd_pcm_chmap_elem *map; |
| unsigned int __user *dst; |
| int c, count = 0; |
| |
| if (!info->chmap) |
| return -EINVAL; |
| if (size < 8) |
| return -ENOMEM; |
| if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv)) |
| return -EFAULT; |
| size -= 8; |
| dst = tlv + 2; |
| for (map = info->chmap; map->channels; map++) { |
| int chs_bytes = map->channels * 4; |
| if (!valid_chmap_channels(info, map->channels)) |
| continue; |
| if (size < 8) |
| return -ENOMEM; |
| if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) || |
| put_user(chs_bytes, dst + 1)) |
| return -EFAULT; |
| dst += 2; |
| size -= 8; |
| count += 8; |
| if (size < chs_bytes) |
| return -ENOMEM; |
| size -= chs_bytes; |
| count += chs_bytes; |
| for (c = 0; c < map->channels; c++) { |
| if (put_user(map->map[c], dst)) |
| return -EFAULT; |
| dst++; |
| } |
| } |
| if (put_user(count, tlv + 1)) |
| return -EFAULT; |
| return 0; |
| } |
| |
| static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol) |
| { |
| struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol); |
| info->pcm->streams[info->stream].chmap_kctl = NULL; |
| kfree(info); |
| } |
| |
| /** |
| * snd_pcm_add_chmap_ctls - create channel-mapping control elements |
| * @pcm: the assigned PCM instance |
| * @stream: stream direction |
| * @chmap: channel map elements (for query) |
| * @max_channels: the max number of channels for the stream |
| * @private_value: the value passed to each kcontrol's private_value field |
| * @info_ret: store struct snd_pcm_chmap instance if non-NULL |
| * |
| * Create channel-mapping control elements assigned to the given PCM stream(s). |
| * Return: Zero if successful, or a negative error value. |
| */ |
| int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream, |
| const struct snd_pcm_chmap_elem *chmap, |
| int max_channels, |
| unsigned long private_value, |
| struct snd_pcm_chmap **info_ret) |
| { |
| struct snd_pcm_chmap *info; |
| struct snd_kcontrol_new knew = { |
| .iface = SNDRV_CTL_ELEM_IFACE_PCM, |
| .access = SNDRV_CTL_ELEM_ACCESS_READ | |
| SNDRV_CTL_ELEM_ACCESS_TLV_READ | |
| SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK, |
| .info = pcm_chmap_ctl_info, |
| .get = pcm_chmap_ctl_get, |
| .tlv.c = pcm_chmap_ctl_tlv, |
| }; |
| int err; |
| |
| if (WARN_ON(pcm->streams[stream].chmap_kctl)) |
| return -EBUSY; |
| info = kzalloc(sizeof(*info), GFP_KERNEL); |
| if (!info) |
| return -ENOMEM; |
| info->pcm = pcm; |
| info->stream = stream; |
| info->chmap = chmap; |
| info->max_channels = max_channels; |
| if (stream == SNDRV_PCM_STREAM_PLAYBACK) |
| knew.name = "Playback Channel Map"; |
| else |
| knew.name = "Capture Channel Map"; |
| knew.device = pcm->device; |
| knew.count = pcm->streams[stream].substream_count; |
| knew.private_value = private_value; |
| info->kctl = snd_ctl_new1(&knew, info); |
| if (!info->kctl) { |
| kfree(info); |
| return -ENOMEM; |
| } |
| info->kctl->private_free = pcm_chmap_ctl_private_free; |
| err = snd_ctl_add(pcm->card, info->kctl); |
| if (err < 0) |
| return err; |
| pcm->streams[stream].chmap_kctl = info->kctl; |
| if (info_ret) |
| *info_ret = info; |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls); |