| /* Simple expression parser */ |
| %{ |
| #define YYDEBUG 1 |
| #include <assert.h> |
| #include <math.h> |
| #include <stdlib.h> |
| #include "util/debug.h" |
| #define IN_EXPR_Y 1 |
| #include "expr.h" |
| %} |
| |
| %define api.pure full |
| |
| %parse-param { double *final_val } |
| %parse-param { struct expr_parse_ctx *ctx } |
| %parse-param { bool compute_ids } |
| %parse-param {void *scanner} |
| %lex-param {void* scanner} |
| |
| %union { |
| double num; |
| char *str; |
| struct ids { |
| /* |
| * When creating ids, holds the working set of event ids. NULL |
| * implies the set is empty. |
| */ |
| struct hashmap *ids; |
| /* |
| * The metric value. When not creating ids this is the value |
| * read from a counter, a constant or some computed value. When |
| * creating ids the value is either a constant or BOTTOM. NAN is |
| * used as the special BOTTOM value, representing a "set of all |
| * values" case. |
| */ |
| double val; |
| } ids; |
| } |
| |
| %token ID NUMBER MIN MAX IF ELSE LITERAL D_RATIO SOURCE_COUNT EXPR_ERROR |
| %left MIN MAX IF |
| %left '|' |
| %left '^' |
| %left '&' |
| %left '<' '>' |
| %left '-' '+' |
| %left '*' '/' '%' |
| %left NEG NOT |
| %type <num> NUMBER LITERAL |
| %type <str> ID |
| %destructor { free ($$); } <str> |
| %type <ids> expr if_expr |
| %destructor { ids__free($$.ids); } <ids> |
| |
| %{ |
| static void expr_error(double *final_val __maybe_unused, |
| struct expr_parse_ctx *ctx __maybe_unused, |
| bool compute_ids __maybe_unused, |
| void *scanner, |
| const char *s) |
| { |
| pr_debug("%s\n", s); |
| } |
| |
| /* |
| * During compute ids, the special "bottom" value uses NAN to represent the set |
| * of all values. NAN is selected as it isn't a useful constant value. |
| */ |
| #define BOTTOM NAN |
| |
| /* During computing ids, does val represent a constant (non-BOTTOM) value? */ |
| static bool is_const(double val) |
| { |
| return isfinite(val); |
| } |
| |
| static struct ids union_expr(struct ids ids1, struct ids ids2) |
| { |
| struct ids result = { |
| .val = BOTTOM, |
| .ids = ids__union(ids1.ids, ids2.ids), |
| }; |
| return result; |
| } |
| |
| static struct ids handle_id(struct expr_parse_ctx *ctx, char *id, |
| bool compute_ids, bool source_count) |
| { |
| struct ids result; |
| |
| if (!compute_ids) { |
| /* |
| * Compute the event's value from ID. If the ID isn't known then |
| * it isn't used to compute the formula so set to NAN. |
| */ |
| struct expr_id_data *data; |
| |
| result.val = NAN; |
| if (expr__resolve_id(ctx, id, &data) == 0) { |
| result.val = source_count |
| ? expr_id_data__source_count(data) |
| : expr_id_data__value(data); |
| } |
| result.ids = NULL; |
| free(id); |
| } else { |
| /* |
| * Set the value to BOTTOM to show that any value is possible |
| * when the event is computed. Create a set of just the ID. |
| */ |
| result.val = BOTTOM; |
| result.ids = ids__new(); |
| if (!result.ids || ids__insert(result.ids, id)) { |
| pr_err("Error creating IDs for '%s'", id); |
| free(id); |
| } |
| } |
| return result; |
| } |
| |
| /* |
| * If we're not computing ids or $1 and $3 are constants, compute the new |
| * constant value using OP. Its invariant that there are no ids. If computing |
| * ids for non-constants union the set of IDs that must be computed. |
| */ |
| #define BINARY_LONG_OP(RESULT, OP, LHS, RHS) \ |
| if (!compute_ids || (is_const(LHS.val) && is_const(RHS.val))) { \ |
| assert(LHS.ids == NULL); \ |
| assert(RHS.ids == NULL); \ |
| RESULT.val = (long)LHS.val OP (long)RHS.val; \ |
| RESULT.ids = NULL; \ |
| } else { \ |
| RESULT = union_expr(LHS, RHS); \ |
| } |
| |
| #define BINARY_OP(RESULT, OP, LHS, RHS) \ |
| if (!compute_ids || (is_const(LHS.val) && is_const(RHS.val))) { \ |
| assert(LHS.ids == NULL); \ |
| assert(RHS.ids == NULL); \ |
| RESULT.val = LHS.val OP RHS.val; \ |
| RESULT.ids = NULL; \ |
| } else { \ |
| RESULT = union_expr(LHS, RHS); \ |
| } |
| |
| %} |
| %% |
| |
| start: if_expr |
| { |
| if (compute_ids) |
| ctx->ids = ids__union($1.ids, ctx->ids); |
| |
| if (final_val) |
| *final_val = $1.val; |
| } |
| ; |
| |
| if_expr: expr IF expr ELSE if_expr |
| { |
| if (fpclassify($3.val) == FP_ZERO) { |
| /* |
| * The IF expression evaluated to 0 so treat as false, take the |
| * ELSE and discard everything else. |
| */ |
| $$.val = $5.val; |
| $$.ids = $5.ids; |
| ids__free($1.ids); |
| ids__free($3.ids); |
| } else if (!compute_ids || is_const($3.val)) { |
| /* |
| * If ids aren't computed then treat the expression as true. If |
| * ids are being computed and the IF expr is a non-zero |
| * constant, then also evaluate the true case. |
| */ |
| $$.val = $1.val; |
| $$.ids = $1.ids; |
| ids__free($3.ids); |
| ids__free($5.ids); |
| } else if ($1.val == $5.val) { |
| /* |
| * LHS == RHS, so both are an identical constant. No need to |
| * evaluate any events. |
| */ |
| $$.val = $1.val; |
| $$.ids = NULL; |
| ids__free($1.ids); |
| ids__free($3.ids); |
| ids__free($5.ids); |
| } else { |
| /* |
| * Value is either the LHS or RHS and we need the IF expression |
| * to compute it. |
| */ |
| $$ = union_expr($1, union_expr($3, $5)); |
| } |
| } |
| | expr |
| ; |
| |
| expr: NUMBER |
| { |
| $$.val = $1; |
| $$.ids = NULL; |
| } |
| | ID { $$ = handle_id(ctx, $1, compute_ids, /*source_count=*/false); } |
| | SOURCE_COUNT '(' ID ')' { $$ = handle_id(ctx, $3, compute_ids, /*source_count=*/true); } |
| | expr '|' expr { BINARY_LONG_OP($$, |, $1, $3); } |
| | expr '&' expr { BINARY_LONG_OP($$, &, $1, $3); } |
| | expr '^' expr { BINARY_LONG_OP($$, ^, $1, $3); } |
| | expr '<' expr { BINARY_OP($$, <, $1, $3); } |
| | expr '>' expr { BINARY_OP($$, >, $1, $3); } |
| | expr '+' expr { BINARY_OP($$, +, $1, $3); } |
| | expr '-' expr { BINARY_OP($$, -, $1, $3); } |
| | expr '*' expr { BINARY_OP($$, *, $1, $3); } |
| | expr '/' expr |
| { |
| if (fpclassify($3.val) == FP_ZERO) { |
| pr_debug("division by zero\n"); |
| YYABORT; |
| } else if (!compute_ids || (is_const($1.val) && is_const($3.val))) { |
| assert($1.ids == NULL); |
| assert($3.ids == NULL); |
| $$.val = $1.val / $3.val; |
| $$.ids = NULL; |
| } else { |
| /* LHS and/or RHS need computing from event IDs so union. */ |
| $$ = union_expr($1, $3); |
| } |
| } |
| | expr '%' expr |
| { |
| if (fpclassify($3.val) == FP_ZERO) { |
| pr_debug("division by zero\n"); |
| YYABORT; |
| } else if (!compute_ids || (is_const($1.val) && is_const($3.val))) { |
| assert($1.ids == NULL); |
| assert($3.ids == NULL); |
| $$.val = (long)$1.val % (long)$3.val; |
| $$.ids = NULL; |
| } else { |
| /* LHS and/or RHS need computing from event IDs so union. */ |
| $$ = union_expr($1, $3); |
| } |
| } |
| | D_RATIO '(' expr ',' expr ')' |
| { |
| if (fpclassify($5.val) == FP_ZERO) { |
| /* |
| * Division by constant zero always yields zero and no events |
| * are necessary. |
| */ |
| assert($5.ids == NULL); |
| $$.val = 0.0; |
| $$.ids = NULL; |
| ids__free($3.ids); |
| } else if (!compute_ids || (is_const($3.val) && is_const($5.val))) { |
| assert($3.ids == NULL); |
| assert($5.ids == NULL); |
| $$.val = $3.val / $5.val; |
| $$.ids = NULL; |
| } else { |
| /* LHS and/or RHS need computing from event IDs so union. */ |
| $$ = union_expr($3, $5); |
| } |
| } |
| | '-' expr %prec NEG |
| { |
| $$.val = -$2.val; |
| $$.ids = $2.ids; |
| } |
| | '(' if_expr ')' |
| { |
| $$ = $2; |
| } |
| | MIN '(' expr ',' expr ')' |
| { |
| if (!compute_ids) { |
| $$.val = $3.val < $5.val ? $3.val : $5.val; |
| $$.ids = NULL; |
| } else { |
| $$ = union_expr($3, $5); |
| } |
| } |
| | MAX '(' expr ',' expr ')' |
| { |
| if (!compute_ids) { |
| $$.val = $3.val > $5.val ? $3.val : $5.val; |
| $$.ids = NULL; |
| } else { |
| $$ = union_expr($3, $5); |
| } |
| } |
| | LITERAL |
| { |
| $$.val = $1; |
| $$.ids = NULL; |
| } |
| ; |
| |
| %% |