blob: 961ad5c3b45412062e85255074cc374e9fe21763 [file] [log] [blame]
/*
* Copyright 2016 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
#include "core_types.h"
#include "resource.h"
#include "custom_float.h"
#include "dcn10_hw_sequencer.h"
#include "dce110/dce110_hw_sequencer.h"
#include "dce/dce_hwseq.h"
#include "abm.h"
#include "dcn10/dcn10_timing_generator.h"
#include "dcn10/dcn10_dpp.h"
#include "dcn10/dcn10_mpc.h"
#include "timing_generator.h"
#include "opp.h"
#include "ipp.h"
#include "mpc.h"
#include "reg_helper.h"
#include "custom_float.h"
#include "dcn10_hubp.h"
#define CTX \
hws->ctx
#define REG(reg)\
hws->regs->reg
#undef FN
#define FN(reg_name, field_name) \
hws->shifts->field_name, hws->masks->field_name
static void log_mpc_crc(struct dc *dc)
{
struct dc_context *dc_ctx = dc->ctx;
struct dce_hwseq *hws = dc->hwseq;
if (REG(MPC_CRC_RESULT_GB))
DTN_INFO("MPC_CRC_RESULT_GB:%d MPC_CRC_RESULT_C:%d MPC_CRC_RESULT_AR:%d\n",
REG_READ(MPC_CRC_RESULT_GB), REG_READ(MPC_CRC_RESULT_C), REG_READ(MPC_CRC_RESULT_AR));
if (REG(DPP_TOP0_DPP_CRC_VAL_B_A))
DTN_INFO("DPP_TOP0_DPP_CRC_VAL_B_A:%d DPP_TOP0_DPP_CRC_VAL_R_G:%d\n",
REG_READ(DPP_TOP0_DPP_CRC_VAL_B_A), REG_READ(DPP_TOP0_DPP_CRC_VAL_R_G));
}
void print_microsec(struct dc_context *dc_ctx, uint32_t ref_cycle)
{
static const uint32_t ref_clk_mhz = 48;
static const unsigned int frac = 10;
uint32_t us_x10 = (ref_cycle * frac) / ref_clk_mhz;
DTN_INFO("%d.%d \t ",
us_x10 / frac,
us_x10 % frac);
}
#define DTN_INFO_MICRO_SEC(ref_cycle) \
print_microsec(dc_ctx, ref_cycle)
struct dcn_hubbub_wm_set {
uint32_t wm_set;
uint32_t data_urgent;
uint32_t pte_meta_urgent;
uint32_t sr_enter;
uint32_t sr_exit;
uint32_t dram_clk_chanage;
};
struct dcn_hubbub_wm {
struct dcn_hubbub_wm_set sets[4];
};
static void dcn10_hubbub_wm_read_state(struct dce_hwseq *hws,
struct dcn_hubbub_wm *wm)
{
struct dcn_hubbub_wm_set *s;
s = &wm->sets[0];
s->wm_set = 0;
s->data_urgent = REG_READ(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_A);
s->pte_meta_urgent = REG_READ(DCHUBBUB_ARB_PTE_META_URGENCY_WATERMARK_A);
s->sr_enter = REG_READ(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_A);
s->sr_exit = REG_READ(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_A);
s->dram_clk_chanage = REG_READ(DCHUBBUB_ARB_ALLOW_DRAM_CLK_CHANGE_WATERMARK_A);
s = &wm->sets[1];
s->wm_set = 1;
s->data_urgent = REG_READ(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_B);
s->pte_meta_urgent = REG_READ(DCHUBBUB_ARB_PTE_META_URGENCY_WATERMARK_B);
s->sr_enter = REG_READ(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_B);
s->sr_exit = REG_READ(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_B);
s->dram_clk_chanage = REG_READ(DCHUBBUB_ARB_ALLOW_DRAM_CLK_CHANGE_WATERMARK_B);
s = &wm->sets[2];
s->wm_set = 2;
s->data_urgent = REG_READ(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_C);
s->pte_meta_urgent = REG_READ(DCHUBBUB_ARB_PTE_META_URGENCY_WATERMARK_C);
s->sr_enter = REG_READ(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_C);
s->sr_exit = REG_READ(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_C);
s->dram_clk_chanage = REG_READ(DCHUBBUB_ARB_ALLOW_DRAM_CLK_CHANGE_WATERMARK_C);
s = &wm->sets[3];
s->wm_set = 3;
s->data_urgent = REG_READ(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_D);
s->pte_meta_urgent = REG_READ(DCHUBBUB_ARB_PTE_META_URGENCY_WATERMARK_D);
s->sr_enter = REG_READ(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_D);
s->sr_exit = REG_READ(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_D);
s->dram_clk_chanage = REG_READ(DCHUBBUB_ARB_ALLOW_DRAM_CLK_CHANGE_WATERMARK_D);
}
static void dcn10_log_hubbub_state(struct dc *dc)
{
struct dc_context *dc_ctx = dc->ctx;
struct dcn_hubbub_wm wm;
int i;
dcn10_hubbub_wm_read_state(dc->hwseq, &wm);
DTN_INFO("HUBBUB WM: \t data_urgent \t pte_meta_urgent \t "
"sr_enter \t sr_exit \t dram_clk_change \n");
for (i = 0; i < 4; i++) {
struct dcn_hubbub_wm_set *s;
s = &wm.sets[i];
DTN_INFO("WM_Set[%d]:\t ", s->wm_set);
DTN_INFO_MICRO_SEC(s->data_urgent);
DTN_INFO_MICRO_SEC(s->pte_meta_urgent);
DTN_INFO_MICRO_SEC(s->sr_enter);
DTN_INFO_MICRO_SEC(s->sr_exit);
DTN_INFO_MICRO_SEC(s->dram_clk_chanage);
DTN_INFO("\n");
}
DTN_INFO("\n");
}
static void dcn10_log_hw_state(struct dc *dc)
{
struct dc_context *dc_ctx = dc->ctx;
struct resource_pool *pool = dc->res_pool;
int i;
DTN_INFO_BEGIN();
dcn10_log_hubbub_state(dc);
DTN_INFO("HUBP:\t format \t addr_hi \t width \t height \t "
"rotation \t mirror \t sw_mode \t "
"dcc_en \t blank_en \t ttu_dis \t underflow \t "
"min_ttu_vblank \t qos_low_wm \t qos_high_wm \n");
for (i = 0; i < pool->pipe_count; i++) {
struct hubp *hubp = pool->hubps[i];
struct dcn_hubp_state s;
hubp1_read_state(TO_DCN10_HUBP(hubp), &s);
DTN_INFO("[%d]:\t %xh \t %xh \t %d \t %d \t "
"%xh \t %xh \t %xh \t "
"%d \t %d \t %d \t %xh \t",
i,
s.pixel_format,
s.inuse_addr_hi,
s.viewport_width,
s.viewport_height,
s.rotation_angle,
s.h_mirror_en,
s.sw_mode,
s.dcc_en,
s.blank_en,
s.ttu_disable,
s.underflow_status);
DTN_INFO_MICRO_SEC(s.min_ttu_vblank);
DTN_INFO_MICRO_SEC(s.qos_level_low_wm);
DTN_INFO_MICRO_SEC(s.qos_level_high_wm);
DTN_INFO("\n");
}
DTN_INFO("\n");
DTN_INFO("OTG:\t v_bs \t v_be \t v_ss \t v_se \t vpol \t vmax \t vmin \t "
"h_bs \t h_be \t h_ss \t h_se \t hpol \t htot \t vtot \t underflow\n");
for (i = 0; i < pool->res_cap->num_timing_generator; i++) {
struct timing_generator *tg = pool->timing_generators[i];
struct dcn_otg_state s = {0};
tgn10_read_otg_state(DCN10TG_FROM_TG(tg), &s);
//only print if OTG master is enabled
if ((s.otg_enabled & 1) == 0)
continue;
DTN_INFO("[%d]:\t %d \t %d \t %d \t %d \t "
"%d \t %d \t %d \t %d \t %d \t %d \t "
"%d \t %d \t %d \t %d \t %d \t ",
i,
s.v_blank_start,
s.v_blank_end,
s.v_sync_a_start,
s.v_sync_a_end,
s.v_sync_a_pol,
s.v_total_max,
s.v_total_min,
s.h_blank_start,
s.h_blank_end,
s.h_sync_a_start,
s.h_sync_a_end,
s.h_sync_a_pol,
s.h_total,
s.v_total,
s.underflow_occurred_status);
DTN_INFO("\n");
}
DTN_INFO("\n");
log_mpc_crc(dc);
DTN_INFO_END();
}
static void verify_allow_pstate_change_high(
struct dce_hwseq *hws)
{
/* pstate latency is ~20us so if we wait over 40us and pstate allow
* still not asserted, we are probably stuck and going to hang
*
* TODO: Figure out why it takes ~100us on linux
* pstate takes around ~100us on linux. Unknown currently as to
* why it takes that long on linux
*/
static unsigned int pstate_wait_timeout_us = 200;
static unsigned int pstate_wait_expected_timeout_us = 40;
static unsigned int max_sampled_pstate_wait_us; /* data collection */
static bool forced_pstate_allow; /* help with revert wa */
static bool should_log_hw_state; /* prevent hw state log by default */
unsigned int debug_index = 0x7;
unsigned int debug_data;
unsigned int i;
if (forced_pstate_allow) {
/* we hacked to force pstate allow to prevent hang last time
* we verify_allow_pstate_change_high. so disable force
* here so we can check status
*/
REG_UPDATE_2(DCHUBBUB_ARB_DRAM_STATE_CNTL,
DCHUBBUB_ARB_ALLOW_PSTATE_CHANGE_FORCE_VALUE, 0,
DCHUBBUB_ARB_ALLOW_PSTATE_CHANGE_FORCE_ENABLE, 0);
forced_pstate_allow = false;
}
/* description "3-0: Pipe0 cursor0 QOS
* 7-4: Pipe1 cursor0 QOS
* 11-8: Pipe2 cursor0 QOS
* 15-12: Pipe3 cursor0 QOS
* 16: Pipe0 Plane0 Allow Pstate Change
* 17: Pipe1 Plane0 Allow Pstate Change
* 18: Pipe2 Plane0 Allow Pstate Change
* 19: Pipe3 Plane0 Allow Pstate Change
* 20: Pipe0 Plane1 Allow Pstate Change
* 21: Pipe1 Plane1 Allow Pstate Change
* 22: Pipe2 Plane1 Allow Pstate Change
* 23: Pipe3 Plane1 Allow Pstate Change
* 24: Pipe0 cursor0 Allow Pstate Change
* 25: Pipe1 cursor0 Allow Pstate Change
* 26: Pipe2 cursor0 Allow Pstate Change
* 27: Pipe3 cursor0 Allow Pstate Change
* 28: WB0 Allow Pstate Change
* 29: WB1 Allow Pstate Change
* 30: Arbiter's allow_pstate_change
* 31: SOC pstate change request
*/
REG_WRITE(DCHUBBUB_TEST_DEBUG_INDEX, debug_index);
for (i = 0; i < pstate_wait_timeout_us; i++) {
debug_data = REG_READ(DCHUBBUB_TEST_DEBUG_DATA);
if (debug_data & (1 << 30)) {
if (i > pstate_wait_expected_timeout_us)
dm_logger_write(hws->ctx->logger, LOG_WARNING,
"pstate took longer than expected ~%dus\n",
i);
return;
}
if (max_sampled_pstate_wait_us < i)
max_sampled_pstate_wait_us = i;
udelay(1);
}
/* force pstate allow to prevent system hang
* and break to debugger to investigate
*/
REG_UPDATE_2(DCHUBBUB_ARB_DRAM_STATE_CNTL,
DCHUBBUB_ARB_ALLOW_PSTATE_CHANGE_FORCE_VALUE, 1,
DCHUBBUB_ARB_ALLOW_PSTATE_CHANGE_FORCE_ENABLE, 1);
forced_pstate_allow = true;
if (should_log_hw_state) {
dcn10_log_hw_state(hws->ctx->dc);
}
dm_logger_write(hws->ctx->logger, LOG_WARNING,
"pstate TEST_DEBUG_DATA: 0x%X\n",
debug_data);
BREAK_TO_DEBUGGER();
}
static void enable_dppclk(
struct dce_hwseq *hws,
uint8_t plane_id,
uint32_t requested_pix_clk,
bool dppclk_div)
{
dm_logger_write(hws->ctx->logger, LOG_SURFACE,
"dppclk_rate_control for pipe %d programed to %d\n",
plane_id,
dppclk_div);
if (hws->shifts->DPPCLK_RATE_CONTROL)
REG_UPDATE_2(DPP_CONTROL[plane_id],
DPPCLK_RATE_CONTROL, dppclk_div,
DPP_CLOCK_ENABLE, 1);
else
REG_UPDATE(DPP_CONTROL[plane_id],
DPP_CLOCK_ENABLE, 1);
}
static void enable_power_gating_plane(
struct dce_hwseq *hws,
bool enable)
{
bool force_on = 1; /* disable power gating */
if (enable)
force_on = 0;
/* DCHUBP0/1/2/3 */
REG_UPDATE(DOMAIN0_PG_CONFIG, DOMAIN0_POWER_FORCEON, force_on);
REG_UPDATE(DOMAIN2_PG_CONFIG, DOMAIN2_POWER_FORCEON, force_on);
REG_UPDATE(DOMAIN4_PG_CONFIG, DOMAIN4_POWER_FORCEON, force_on);
REG_UPDATE(DOMAIN6_PG_CONFIG, DOMAIN6_POWER_FORCEON, force_on);
/* DPP0/1/2/3 */
REG_UPDATE(DOMAIN1_PG_CONFIG, DOMAIN1_POWER_FORCEON, force_on);
REG_UPDATE(DOMAIN3_PG_CONFIG, DOMAIN3_POWER_FORCEON, force_on);
REG_UPDATE(DOMAIN5_PG_CONFIG, DOMAIN5_POWER_FORCEON, force_on);
REG_UPDATE(DOMAIN7_PG_CONFIG, DOMAIN7_POWER_FORCEON, force_on);
}
static void disable_vga(
struct dce_hwseq *hws)
{
REG_WRITE(D1VGA_CONTROL, 0);
REG_WRITE(D2VGA_CONTROL, 0);
REG_WRITE(D3VGA_CONTROL, 0);
REG_WRITE(D4VGA_CONTROL, 0);
}
static void dpp_pg_control(
struct dce_hwseq *hws,
unsigned int dpp_inst,
bool power_on)
{
uint32_t power_gate = power_on ? 0 : 1;
uint32_t pwr_status = power_on ? 0 : 2;
if (hws->ctx->dc->debug.disable_dpp_power_gate)
return;
switch (dpp_inst) {
case 0: /* DPP0 */
REG_UPDATE(DOMAIN1_PG_CONFIG,
DOMAIN1_POWER_GATE, power_gate);
REG_WAIT(DOMAIN1_PG_STATUS,
DOMAIN1_PGFSM_PWR_STATUS, pwr_status,
1, 1000);
break;
case 1: /* DPP1 */
REG_UPDATE(DOMAIN3_PG_CONFIG,
DOMAIN3_POWER_GATE, power_gate);
REG_WAIT(DOMAIN3_PG_STATUS,
DOMAIN3_PGFSM_PWR_STATUS, pwr_status,
1, 1000);
break;
case 2: /* DPP2 */
REG_UPDATE(DOMAIN5_PG_CONFIG,
DOMAIN5_POWER_GATE, power_gate);
REG_WAIT(DOMAIN5_PG_STATUS,
DOMAIN5_PGFSM_PWR_STATUS, pwr_status,
1, 1000);
break;
case 3: /* DPP3 */
REG_UPDATE(DOMAIN7_PG_CONFIG,
DOMAIN7_POWER_GATE, power_gate);
REG_WAIT(DOMAIN7_PG_STATUS,
DOMAIN7_PGFSM_PWR_STATUS, pwr_status,
1, 1000);
break;
default:
BREAK_TO_DEBUGGER();
break;
}
}
static uint32_t convert_and_clamp(
uint32_t wm_ns,
uint32_t refclk_mhz,
uint32_t clamp_value)
{
uint32_t ret_val = 0;
ret_val = wm_ns * refclk_mhz;
ret_val /= 1000;
if (ret_val > clamp_value)
ret_val = clamp_value;
return ret_val;
}
static void program_watermarks(
struct dce_hwseq *hws,
struct dcn_watermark_set *watermarks,
unsigned int refclk_mhz)
{
uint32_t force_en = hws->ctx->dc->debug.disable_stutter ? 1 : 0;
/*
* Need to clamp to max of the register values (i.e. no wrap)
* for dcn1, all wm registers are 21-bit wide
*/
uint32_t prog_wm_value;
REG_UPDATE(DCHUBBUB_ARB_WATERMARK_CHANGE_CNTL,
DCHUBBUB_ARB_WATERMARK_CHANGE_REQUEST, 0);
/* Repeat for water mark set A, B, C and D. */
/* clock state A */
prog_wm_value = convert_and_clamp(watermarks->a.urgent_ns,
refclk_mhz, 0x1fffff);
REG_WRITE(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_A, prog_wm_value);
dm_logger_write(hws->ctx->logger, LOG_BANDWIDTH_CALCS,
"URGENCY_WATERMARK_A calculated =%d\n"
"HW register value = 0x%x\n",
watermarks->a.urgent_ns, prog_wm_value);
prog_wm_value = convert_and_clamp(watermarks->a.pte_meta_urgent_ns,
refclk_mhz, 0x1fffff);
REG_WRITE(DCHUBBUB_ARB_PTE_META_URGENCY_WATERMARK_A, prog_wm_value);
dm_logger_write(hws->ctx->logger, LOG_BANDWIDTH_CALCS,
"PTE_META_URGENCY_WATERMARK_A calculated =%d\n"
"HW register value = 0x%x\n",
watermarks->a.pte_meta_urgent_ns, prog_wm_value);
if (REG(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_A)) {
prog_wm_value = convert_and_clamp(
watermarks->a.cstate_pstate.cstate_enter_plus_exit_ns,
refclk_mhz, 0x1fffff);
REG_WRITE(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_A, prog_wm_value);
dm_logger_write(hws->ctx->logger, LOG_BANDWIDTH_CALCS,
"SR_ENTER_EXIT_WATERMARK_A calculated =%d\n"
"HW register value = 0x%x\n",
watermarks->a.cstate_pstate.cstate_enter_plus_exit_ns, prog_wm_value);
prog_wm_value = convert_and_clamp(
watermarks->a.cstate_pstate.cstate_exit_ns,
refclk_mhz, 0x1fffff);
REG_WRITE(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_A, prog_wm_value);
dm_logger_write(hws->ctx->logger, LOG_BANDWIDTH_CALCS,
"SR_EXIT_WATERMARK_A calculated =%d\n"
"HW register value = 0x%x\n",
watermarks->a.cstate_pstate.cstate_exit_ns, prog_wm_value);
}
prog_wm_value = convert_and_clamp(
watermarks->a.cstate_pstate.pstate_change_ns,
refclk_mhz, 0x1fffff);
REG_WRITE(DCHUBBUB_ARB_ALLOW_DRAM_CLK_CHANGE_WATERMARK_A, prog_wm_value);
dm_logger_write(hws->ctx->logger, LOG_BANDWIDTH_CALCS,
"DRAM_CLK_CHANGE_WATERMARK_A calculated =%d\n"
"HW register value = 0x%x\n\n",
watermarks->a.cstate_pstate.pstate_change_ns, prog_wm_value);
/* clock state B */
prog_wm_value = convert_and_clamp(
watermarks->b.urgent_ns, refclk_mhz, 0x1fffff);
REG_WRITE(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_B, prog_wm_value);
dm_logger_write(hws->ctx->logger, LOG_BANDWIDTH_CALCS,
"URGENCY_WATERMARK_B calculated =%d\n"
"HW register value = 0x%x\n",
watermarks->b.urgent_ns, prog_wm_value);
prog_wm_value = convert_and_clamp(
watermarks->b.pte_meta_urgent_ns,
refclk_mhz, 0x1fffff);
REG_WRITE(DCHUBBUB_ARB_PTE_META_URGENCY_WATERMARK_B, prog_wm_value);
dm_logger_write(hws->ctx->logger, LOG_BANDWIDTH_CALCS,
"PTE_META_URGENCY_WATERMARK_B calculated =%d\n"
"HW register value = 0x%x\n",
watermarks->b.pte_meta_urgent_ns, prog_wm_value);
if (REG(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_B)) {
prog_wm_value = convert_and_clamp(
watermarks->b.cstate_pstate.cstate_enter_plus_exit_ns,
refclk_mhz, 0x1fffff);
REG_WRITE(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_B, prog_wm_value);
dm_logger_write(hws->ctx->logger, LOG_BANDWIDTH_CALCS,
"SR_ENTER_WATERMARK_B calculated =%d\n"
"HW register value = 0x%x\n",
watermarks->b.cstate_pstate.cstate_enter_plus_exit_ns, prog_wm_value);
prog_wm_value = convert_and_clamp(
watermarks->b.cstate_pstate.cstate_exit_ns,
refclk_mhz, 0x1fffff);
REG_WRITE(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_B, prog_wm_value);
dm_logger_write(hws->ctx->logger, LOG_BANDWIDTH_CALCS,
"SR_EXIT_WATERMARK_B calculated =%d\n"
"HW register value = 0x%x\n",
watermarks->b.cstate_pstate.cstate_exit_ns, prog_wm_value);
}
prog_wm_value = convert_and_clamp(
watermarks->b.cstate_pstate.pstate_change_ns,
refclk_mhz, 0x1fffff);
REG_WRITE(DCHUBBUB_ARB_ALLOW_DRAM_CLK_CHANGE_WATERMARK_B, prog_wm_value);
dm_logger_write(hws->ctx->logger, LOG_BANDWIDTH_CALCS,
"DRAM_CLK_CHANGE_WATERMARK_B calculated =%d\n\n"
"HW register value = 0x%x\n",
watermarks->b.cstate_pstate.pstate_change_ns, prog_wm_value);
/* clock state C */
prog_wm_value = convert_and_clamp(
watermarks->c.urgent_ns, refclk_mhz, 0x1fffff);
REG_WRITE(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_C, prog_wm_value);
dm_logger_write(hws->ctx->logger, LOG_BANDWIDTH_CALCS,
"URGENCY_WATERMARK_C calculated =%d\n"
"HW register value = 0x%x\n",
watermarks->c.urgent_ns, prog_wm_value);
prog_wm_value = convert_and_clamp(
watermarks->c.pte_meta_urgent_ns,
refclk_mhz, 0x1fffff);
REG_WRITE(DCHUBBUB_ARB_PTE_META_URGENCY_WATERMARK_C, prog_wm_value);
dm_logger_write(hws->ctx->logger, LOG_BANDWIDTH_CALCS,
"PTE_META_URGENCY_WATERMARK_C calculated =%d\n"
"HW register value = 0x%x\n",
watermarks->c.pte_meta_urgent_ns, prog_wm_value);
if (REG(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_C)) {
prog_wm_value = convert_and_clamp(
watermarks->c.cstate_pstate.cstate_enter_plus_exit_ns,
refclk_mhz, 0x1fffff);
REG_WRITE(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_C, prog_wm_value);
dm_logger_write(hws->ctx->logger, LOG_BANDWIDTH_CALCS,
"SR_ENTER_WATERMARK_C calculated =%d\n"
"HW register value = 0x%x\n",
watermarks->c.cstate_pstate.cstate_enter_plus_exit_ns, prog_wm_value);
prog_wm_value = convert_and_clamp(
watermarks->c.cstate_pstate.cstate_exit_ns,
refclk_mhz, 0x1fffff);
REG_WRITE(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_C, prog_wm_value);
dm_logger_write(hws->ctx->logger, LOG_BANDWIDTH_CALCS,
"SR_EXIT_WATERMARK_C calculated =%d\n"
"HW register value = 0x%x\n",
watermarks->c.cstate_pstate.cstate_exit_ns, prog_wm_value);
}
prog_wm_value = convert_and_clamp(
watermarks->c.cstate_pstate.pstate_change_ns,
refclk_mhz, 0x1fffff);
REG_WRITE(DCHUBBUB_ARB_ALLOW_DRAM_CLK_CHANGE_WATERMARK_C, prog_wm_value);
dm_logger_write(hws->ctx->logger, LOG_BANDWIDTH_CALCS,
"DRAM_CLK_CHANGE_WATERMARK_C calculated =%d\n\n"
"HW register value = 0x%x\n",
watermarks->c.cstate_pstate.pstate_change_ns, prog_wm_value);
/* clock state D */
prog_wm_value = convert_and_clamp(
watermarks->d.urgent_ns, refclk_mhz, 0x1fffff);
REG_WRITE(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_D, prog_wm_value);
dm_logger_write(hws->ctx->logger, LOG_BANDWIDTH_CALCS,
"URGENCY_WATERMARK_D calculated =%d\n"
"HW register value = 0x%x\n",
watermarks->d.urgent_ns, prog_wm_value);
prog_wm_value = convert_and_clamp(
watermarks->d.pte_meta_urgent_ns,
refclk_mhz, 0x1fffff);
REG_WRITE(DCHUBBUB_ARB_PTE_META_URGENCY_WATERMARK_D, prog_wm_value);
dm_logger_write(hws->ctx->logger, LOG_BANDWIDTH_CALCS,
"PTE_META_URGENCY_WATERMARK_D calculated =%d\n"
"HW register value = 0x%x\n",
watermarks->d.pte_meta_urgent_ns, prog_wm_value);
if (REG(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_D)) {
prog_wm_value = convert_and_clamp(
watermarks->d.cstate_pstate.cstate_enter_plus_exit_ns,
refclk_mhz, 0x1fffff);
REG_WRITE(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_D, prog_wm_value);
dm_logger_write(hws->ctx->logger, LOG_BANDWIDTH_CALCS,
"SR_ENTER_WATERMARK_D calculated =%d\n"
"HW register value = 0x%x\n",
watermarks->d.cstate_pstate.cstate_enter_plus_exit_ns, prog_wm_value);
prog_wm_value = convert_and_clamp(
watermarks->d.cstate_pstate.cstate_exit_ns,
refclk_mhz, 0x1fffff);
REG_WRITE(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_D, prog_wm_value);
dm_logger_write(hws->ctx->logger, LOG_BANDWIDTH_CALCS,
"SR_EXIT_WATERMARK_D calculated =%d\n"
"HW register value = 0x%x\n",
watermarks->d.cstate_pstate.cstate_exit_ns, prog_wm_value);
}
prog_wm_value = convert_and_clamp(
watermarks->d.cstate_pstate.pstate_change_ns,
refclk_mhz, 0x1fffff);
REG_WRITE(DCHUBBUB_ARB_ALLOW_DRAM_CLK_CHANGE_WATERMARK_D, prog_wm_value);
dm_logger_write(hws->ctx->logger, LOG_BANDWIDTH_CALCS,
"DRAM_CLK_CHANGE_WATERMARK_D calculated =%d\n"
"HW register value = 0x%x\n\n",
watermarks->d.cstate_pstate.pstate_change_ns, prog_wm_value);
REG_UPDATE(DCHUBBUB_ARB_WATERMARK_CHANGE_CNTL,
DCHUBBUB_ARB_WATERMARK_CHANGE_REQUEST, 1);
REG_UPDATE(DCHUBBUB_ARB_SAT_LEVEL,
DCHUBBUB_ARB_SAT_LEVEL, 60 * refclk_mhz);
REG_UPDATE(DCHUBBUB_ARB_DF_REQ_OUTSTAND,
DCHUBBUB_ARB_MIN_REQ_OUTSTAND, 68);
REG_UPDATE_2(DCHUBBUB_ARB_DRAM_STATE_CNTL,
DCHUBBUB_ARB_ALLOW_SELF_REFRESH_FORCE_VALUE, 0,
DCHUBBUB_ARB_ALLOW_SELF_REFRESH_FORCE_ENABLE, force_en);
#if 0
REG_UPDATE_2(DCHUBBUB_ARB_WATERMARK_CHANGE_CNTL,
DCHUBBUB_ARB_WATERMARK_CHANGE_DONE_INTERRUPT_DISABLE, 1,
DCHUBBUB_ARB_WATERMARK_CHANGE_REQUEST, 1);
#endif
}
static void dcn10_update_dchub(
struct dce_hwseq *hws,
struct dchub_init_data *dh_data)
{
/* TODO: port code from dal2 */
switch (dh_data->fb_mode) {
case FRAME_BUFFER_MODE_ZFB_ONLY:
/*For ZFB case need to put DCHUB FB BASE and TOP upside down to indicate ZFB mode*/
REG_UPDATE(DCHUBBUB_SDPIF_FB_TOP,
SDPIF_FB_TOP, 0);
REG_UPDATE(DCHUBBUB_SDPIF_FB_BASE,
SDPIF_FB_BASE, 0x0FFFF);
REG_UPDATE(DCHUBBUB_SDPIF_AGP_BASE,
SDPIF_AGP_BASE, dh_data->zfb_phys_addr_base >> 22);
REG_UPDATE(DCHUBBUB_SDPIF_AGP_BOT,
SDPIF_AGP_BOT, dh_data->zfb_mc_base_addr >> 22);
REG_UPDATE(DCHUBBUB_SDPIF_AGP_TOP,
SDPIF_AGP_TOP, (dh_data->zfb_mc_base_addr +
dh_data->zfb_size_in_byte - 1) >> 22);
break;
case FRAME_BUFFER_MODE_MIXED_ZFB_AND_LOCAL:
/*Should not touch FB LOCATION (done by VBIOS on AsicInit table)*/
REG_UPDATE(DCHUBBUB_SDPIF_AGP_BASE,
SDPIF_AGP_BASE, dh_data->zfb_phys_addr_base >> 22);
REG_UPDATE(DCHUBBUB_SDPIF_AGP_BOT,
SDPIF_AGP_BOT, dh_data->zfb_mc_base_addr >> 22);
REG_UPDATE(DCHUBBUB_SDPIF_AGP_TOP,
SDPIF_AGP_TOP, (dh_data->zfb_mc_base_addr +
dh_data->zfb_size_in_byte - 1) >> 22);
break;
case FRAME_BUFFER_MODE_LOCAL_ONLY:
/*Should not touch FB LOCATION (done by VBIOS on AsicInit table)*/
REG_UPDATE(DCHUBBUB_SDPIF_AGP_BASE,
SDPIF_AGP_BASE, 0);
REG_UPDATE(DCHUBBUB_SDPIF_AGP_BOT,
SDPIF_AGP_BOT, 0X03FFFF);
REG_UPDATE(DCHUBBUB_SDPIF_AGP_TOP,
SDPIF_AGP_TOP, 0);
break;
default:
break;
}
dh_data->dchub_initialzied = true;
dh_data->dchub_info_valid = false;
}
static void hubp_pg_control(
struct dce_hwseq *hws,
unsigned int hubp_inst,
bool power_on)
{
uint32_t power_gate = power_on ? 0 : 1;
uint32_t pwr_status = power_on ? 0 : 2;
if (hws->ctx->dc->debug.disable_hubp_power_gate)
return;
switch (hubp_inst) {
case 0: /* DCHUBP0 */
REG_UPDATE(DOMAIN0_PG_CONFIG,
DOMAIN0_POWER_GATE, power_gate);
REG_WAIT(DOMAIN0_PG_STATUS,
DOMAIN0_PGFSM_PWR_STATUS, pwr_status,
1, 1000);
break;
case 1: /* DCHUBP1 */
REG_UPDATE(DOMAIN2_PG_CONFIG,
DOMAIN2_POWER_GATE, power_gate);
REG_WAIT(DOMAIN2_PG_STATUS,
DOMAIN2_PGFSM_PWR_STATUS, pwr_status,
1, 1000);
break;
case 2: /* DCHUBP2 */
REG_UPDATE(DOMAIN4_PG_CONFIG,
DOMAIN4_POWER_GATE, power_gate);
REG_WAIT(DOMAIN4_PG_STATUS,
DOMAIN4_PGFSM_PWR_STATUS, pwr_status,
1, 1000);
break;
case 3: /* DCHUBP3 */
REG_UPDATE(DOMAIN6_PG_CONFIG,
DOMAIN6_POWER_GATE, power_gate);
REG_WAIT(DOMAIN6_PG_STATUS,
DOMAIN6_PGFSM_PWR_STATUS, pwr_status,
1, 1000);
break;
default:
BREAK_TO_DEBUGGER();
break;
}
}
static void power_on_plane(
struct dce_hwseq *hws,
int plane_id)
{
if (REG(DC_IP_REQUEST_CNTL)) {
REG_SET(DC_IP_REQUEST_CNTL, 0,
IP_REQUEST_EN, 1);
dpp_pg_control(hws, plane_id, true);
hubp_pg_control(hws, plane_id, true);
REG_SET(DC_IP_REQUEST_CNTL, 0,
IP_REQUEST_EN, 0);
dm_logger_write(hws->ctx->logger, LOG_DEBUG,
"Un-gated front end for pipe %d\n", plane_id);
}
}
static void undo_DEGVIDCN10_253_wa(struct dc *dc)
{
struct dce_hwseq *hws = dc->hwseq;
struct hubp *hubp = dc->res_pool->hubps[0];
int pwr_status = 0;
REG_GET(DOMAIN0_PG_STATUS, DOMAIN0_PGFSM_PWR_STATUS, &pwr_status);
/* Don't need to blank if hubp is power gated*/
if (pwr_status == 2)
return;
hubp->funcs->set_blank(hubp, true);
REG_SET(DC_IP_REQUEST_CNTL, 0,
IP_REQUEST_EN, 1);
hubp_pg_control(hws, 0, false);
REG_SET(DC_IP_REQUEST_CNTL, 0,
IP_REQUEST_EN, 0);
}
static void apply_DEGVIDCN10_253_wa(struct dc *dc)
{
struct dce_hwseq *hws = dc->hwseq;
struct hubp *hubp = dc->res_pool->hubps[0];
if (dc->debug.disable_stutter)
return;
REG_SET(DC_IP_REQUEST_CNTL, 0,
IP_REQUEST_EN, 1);
hubp_pg_control(hws, 0, true);
REG_SET(DC_IP_REQUEST_CNTL, 0,
IP_REQUEST_EN, 0);
hubp->funcs->set_hubp_blank_en(hubp, false);
}
static void bios_golden_init(struct dc *dc)
{
struct dc_bios *bp = dc->ctx->dc_bios;
int i;
/* initialize dcn global */
bp->funcs->enable_disp_power_gating(bp,
CONTROLLER_ID_D0, ASIC_PIPE_INIT);
for (i = 0; i < dc->res_pool->pipe_count; i++) {
/* initialize dcn per pipe */
bp->funcs->enable_disp_power_gating(bp,
CONTROLLER_ID_D0 + i, ASIC_PIPE_DISABLE);
}
}
static void dcn10_init_hw(struct dc *dc)
{
int i;
struct abm *abm = dc->res_pool->abm;
struct dce_hwseq *hws = dc->hwseq;
if (IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) {
REG_WRITE(REFCLK_CNTL, 0);
REG_UPDATE(DCHUBBUB_GLOBAL_TIMER_CNTL, DCHUBBUB_GLOBAL_TIMER_ENABLE, 1);
REG_WRITE(DIO_MEM_PWR_CTRL, 0);
if (!dc->debug.disable_clock_gate) {
/* enable all DCN clock gating */
REG_WRITE(DCCG_GATE_DISABLE_CNTL, 0);
REG_WRITE(DCCG_GATE_DISABLE_CNTL2, 0);
REG_UPDATE(DCFCLK_CNTL, DCFCLK_GATE_DIS, 0);
}
enable_power_gating_plane(dc->hwseq, true);
return;
}
/* end of FPGA. Below if real ASIC */
bios_golden_init(dc);
disable_vga(dc->hwseq);
for (i = 0; i < dc->link_count; i++) {
/* Power up AND update implementation according to the
* required signal (which may be different from the
* default signal on connector).
*/
struct dc_link *link = dc->links[i];
link->link_enc->funcs->hw_init(link->link_enc);
}
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct dpp *dpp = dc->res_pool->dpps[i];
struct timing_generator *tg = dc->res_pool->timing_generators[i];
dpp->funcs->dpp_reset(dpp);
dc->res_pool->mpc->funcs->remove(
dc->res_pool->mpc, &(dc->res_pool->opps[i]->mpc_tree),
dc->res_pool->opps[i]->inst, i);
/* Blank controller using driver code instead of
* command table.
*/
tg->funcs->set_blank(tg, true);
hwss_wait_for_blank_complete(tg);
}
for (i = 0; i < dc->res_pool->audio_count; i++) {
struct audio *audio = dc->res_pool->audios[i];
audio->funcs->hw_init(audio);
}
if (abm != NULL) {
abm->funcs->init_backlight(abm);
abm->funcs->abm_init(abm);
}
/* power AFMT HDMI memory TODO: may move to dis/en output save power*/
REG_WRITE(DIO_MEM_PWR_CTRL, 0);
if (!dc->debug.disable_clock_gate) {
/* enable all DCN clock gating */
REG_WRITE(DCCG_GATE_DISABLE_CNTL, 0);
REG_WRITE(DCCG_GATE_DISABLE_CNTL2, 0);
REG_UPDATE(DCFCLK_CNTL, DCFCLK_GATE_DIS, 0);
}
enable_power_gating_plane(dc->hwseq, true);
}
static enum dc_status dcn10_prog_pixclk_crtc_otg(
struct pipe_ctx *pipe_ctx,
struct dc_state *context,
struct dc *dc)
{
struct dc_stream_state *stream = pipe_ctx->stream;
enum dc_color_space color_space;
struct tg_color black_color = {0};
bool enableStereo = stream->timing.timing_3d_format == TIMING_3D_FORMAT_NONE ?
false:true;
bool rightEyePolarity = stream->timing.flags.RIGHT_EYE_3D_POLARITY;
/* by upper caller loop, pipe0 is parent pipe and be called first.
* back end is set up by for pipe0. Other children pipe share back end
* with pipe 0. No program is needed.
*/
if (pipe_ctx->top_pipe != NULL)
return DC_OK;
/* TODO check if timing_changed, disable stream if timing changed */
/* HW program guide assume display already disable
* by unplug sequence. OTG assume stop.
*/
pipe_ctx->stream_res.tg->funcs->enable_optc_clock(pipe_ctx->stream_res.tg, true);
if (false == pipe_ctx->clock_source->funcs->program_pix_clk(
pipe_ctx->clock_source,
&pipe_ctx->stream_res.pix_clk_params,
&pipe_ctx->pll_settings)) {
BREAK_TO_DEBUGGER();
return DC_ERROR_UNEXPECTED;
}
pipe_ctx->stream_res.tg->dlg_otg_param.vready_offset = pipe_ctx->pipe_dlg_param.vready_offset;
pipe_ctx->stream_res.tg->dlg_otg_param.vstartup_start = pipe_ctx->pipe_dlg_param.vstartup_start;
pipe_ctx->stream_res.tg->dlg_otg_param.vupdate_offset = pipe_ctx->pipe_dlg_param.vupdate_offset;
pipe_ctx->stream_res.tg->dlg_otg_param.vupdate_width = pipe_ctx->pipe_dlg_param.vupdate_width;
pipe_ctx->stream_res.tg->dlg_otg_param.signal = pipe_ctx->stream->signal;
pipe_ctx->stream_res.tg->funcs->program_timing(
pipe_ctx->stream_res.tg,
&stream->timing,
true);
pipe_ctx->stream_res.opp->funcs->opp_set_stereo_polarity(
pipe_ctx->stream_res.opp,
enableStereo,
rightEyePolarity);
#if 0 /* move to after enable_crtc */
/* TODO: OPP FMT, ABM. etc. should be done here. */
/* or FPGA now. instance 0 only. TODO: move to opp.c */
inst_offset = reg_offsets[pipe_ctx->stream_res.tg->inst].fmt;
pipe_ctx->stream_res.opp->funcs->opp_program_fmt(
pipe_ctx->stream_res.opp,
&stream->bit_depth_params,
&stream->clamping);
#endif
/* program otg blank color */
color_space = stream->output_color_space;
color_space_to_black_color(dc, color_space, &black_color);
pipe_ctx->stream_res.tg->funcs->set_blank_color(
pipe_ctx->stream_res.tg,
&black_color);
pipe_ctx->stream_res.tg->funcs->set_blank(pipe_ctx->stream_res.tg, true);
hwss_wait_for_blank_complete(pipe_ctx->stream_res.tg);
/* VTG is within DCHUB command block. DCFCLK is always on */
if (false == pipe_ctx->stream_res.tg->funcs->enable_crtc(pipe_ctx->stream_res.tg)) {
BREAK_TO_DEBUGGER();
return DC_ERROR_UNEXPECTED;
}
/* TODO program crtc source select for non-virtual signal*/
/* TODO program FMT */
/* TODO setup link_enc */
/* TODO set stream attributes */
/* TODO program audio */
/* TODO enable stream if timing changed */
/* TODO unblank stream if DP */
return DC_OK;
}
static void reset_back_end_for_pipe(
struct dc *dc,
struct pipe_ctx *pipe_ctx,
struct dc_state *context)
{
int i;
if (pipe_ctx->stream_res.stream_enc == NULL) {
pipe_ctx->stream = NULL;
return;
}
if (!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) {
/* DPMS may already disable */
if (!pipe_ctx->stream->dpms_off)
core_link_disable_stream(pipe_ctx, FREE_ACQUIRED_RESOURCE);
}
/* by upper caller loop, parent pipe: pipe0, will be reset last.
* back end share by all pipes and will be disable only when disable
* parent pipe.
*/
if (pipe_ctx->top_pipe == NULL) {
pipe_ctx->stream_res.tg->funcs->disable_crtc(pipe_ctx->stream_res.tg);
pipe_ctx->stream_res.tg->funcs->enable_optc_clock(pipe_ctx->stream_res.tg, false);
}
for (i = 0; i < dc->res_pool->pipe_count; i++)
if (&dc->current_state->res_ctx.pipe_ctx[i] == pipe_ctx)
break;
if (i == dc->res_pool->pipe_count)
return;
pipe_ctx->stream = NULL;
dm_logger_write(dc->ctx->logger, LOG_DEBUG,
"Reset back end for pipe %d, tg:%d\n",
pipe_ctx->pipe_idx, pipe_ctx->stream_res.tg->inst);
}
/* trigger HW to start disconnect plane from stream on the next vsync */
static void plane_atomic_disconnect(struct dc *dc,
int fe_idx)
{
struct hubp *hubp = dc->res_pool->hubps[fe_idx];
struct mpc *mpc = dc->res_pool->mpc;
int opp_id, z_idx;
int mpcc_id = -1;
/* look at tree rather than mi here to know if we already reset */
for (opp_id = 0; opp_id < dc->res_pool->pipe_count; opp_id++) {
struct output_pixel_processor *opp = dc->res_pool->opps[opp_id];
for (z_idx = 0; z_idx < opp->mpc_tree.num_pipes; z_idx++) {
if (opp->mpc_tree.dpp[z_idx] == fe_idx) {
mpcc_id = opp->mpc_tree.mpcc[z_idx];
break;
}
}
if (mpcc_id != -1)
break;
}
/*Already reset*/
if (opp_id == dc->res_pool->pipe_count)
return;
if (dc->debug.sanity_checks)
verify_allow_pstate_change_high(dc->hwseq);
hubp->funcs->dcc_control(hubp, false, false);
if (dc->debug.sanity_checks)
verify_allow_pstate_change_high(dc->hwseq);
mpc->funcs->remove(mpc, &(dc->res_pool->opps[opp_id]->mpc_tree),
dc->res_pool->opps[opp_id]->inst, fe_idx);
}
/* disable HW used by plane.
* note: cannot disable until disconnect is complete */
static void plane_atomic_disable(struct dc *dc,
int fe_idx)
{
struct dce_hwseq *hws = dc->hwseq;
struct hubp *hubp = dc->res_pool->hubps[fe_idx];
struct mpc *mpc = dc->res_pool->mpc;
int opp_id = hubp->opp_id;
if (opp_id == 0xf)
return;
mpc->funcs->wait_for_idle(mpc, hubp->mpcc_id);
dc->res_pool->opps[hubp->opp_id]->mpcc_disconnect_pending[hubp->mpcc_id] = false;
/*dm_logger_write(dc->ctx->logger, LOG_ERROR,
"[debug_mpo: atomic disable finished on mpcc %d]\n",
fe_idx);*/
hubp->funcs->set_blank(hubp, true);
if (dc->debug.sanity_checks)
verify_allow_pstate_change_high(dc->hwseq);
REG_UPDATE(HUBP_CLK_CNTL[fe_idx],
HUBP_CLOCK_ENABLE, 0);
REG_UPDATE(DPP_CONTROL[fe_idx],
DPP_CLOCK_ENABLE, 0);
if (dc->res_pool->opps[opp_id]->mpc_tree.num_pipes == 0)
REG_UPDATE(OPP_PIPE_CONTROL[opp_id],
OPP_PIPE_CLOCK_EN, 0);
if (dc->debug.sanity_checks)
verify_allow_pstate_change_high(dc->hwseq);
}
/*
* kill power to plane hw
* note: cannot power down until plane is disable
*/
static void plane_atomic_power_down(struct dc *dc, int fe_idx)
{
struct dce_hwseq *hws = dc->hwseq;
struct dpp *dpp = dc->res_pool->dpps[fe_idx];
if (REG(DC_IP_REQUEST_CNTL)) {
REG_SET(DC_IP_REQUEST_CNTL, 0,
IP_REQUEST_EN, 1);
dpp_pg_control(hws, fe_idx, false);
hubp_pg_control(hws, fe_idx, false);
dpp->funcs->dpp_reset(dpp);
REG_SET(DC_IP_REQUEST_CNTL, 0,
IP_REQUEST_EN, 0);
dm_logger_write(dc->ctx->logger, LOG_DEBUG,
"Power gated front end %d\n", fe_idx);
if (dc->debug.sanity_checks)
verify_allow_pstate_change_high(dc->hwseq);
}
}
static void reset_front_end(
struct dc *dc,
int fe_idx)
{
struct dce_hwseq *hws = dc->hwseq;
struct timing_generator *tg;
int opp_id = dc->res_pool->hubps[fe_idx]->opp_id;
/*Already reset*/
if (opp_id == 0xf)
return;
tg = dc->res_pool->timing_generators[opp_id];
tg->funcs->lock(tg);
plane_atomic_disconnect(dc, fe_idx);
REG_UPDATE(OTG_GLOBAL_SYNC_STATUS[tg->inst], VUPDATE_NO_LOCK_EVENT_CLEAR, 1);
tg->funcs->unlock(tg);
if (dc->debug.sanity_checks)
verify_allow_pstate_change_high(hws);
if (tg->ctx->dce_environment != DCE_ENV_FPGA_MAXIMUS)
REG_WAIT(OTG_GLOBAL_SYNC_STATUS[tg->inst],
VUPDATE_NO_LOCK_EVENT_OCCURRED, 1,
1, 100000);
plane_atomic_disable(dc, fe_idx);
dm_logger_write(dc->ctx->logger, LOG_DC,
"Reset front end %d\n",
fe_idx);
}
static void dcn10_power_down_fe(struct dc *dc, int fe_idx)
{
struct dce_hwseq *hws = dc->hwseq;
struct dpp *dpp = dc->res_pool->dpps[fe_idx];
reset_front_end(dc, fe_idx);
REG_SET(DC_IP_REQUEST_CNTL, 0,
IP_REQUEST_EN, 1);
dpp_pg_control(hws, fe_idx, false);
hubp_pg_control(hws, fe_idx, false);
dpp->funcs->dpp_reset(dpp);
REG_SET(DC_IP_REQUEST_CNTL, 0,
IP_REQUEST_EN, 0);
dm_logger_write(dc->ctx->logger, LOG_DEBUG,
"Power gated front end %d\n", fe_idx);
if (dc->debug.sanity_checks)
verify_allow_pstate_change_high(dc->hwseq);
}
static void reset_hw_ctx_wrap(
struct dc *dc,
struct dc_state *context)
{
int i;
/* Reset Front End*/
/* Lock*/
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *cur_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
struct timing_generator *tg = cur_pipe_ctx->stream_res.tg;
if (cur_pipe_ctx->stream)
tg->funcs->lock(tg);
}
/* Disconnect*/
for (i = dc->res_pool->pipe_count - 1; i >= 0 ; i--) {
struct pipe_ctx *pipe_ctx_old =
&dc->current_state->res_ctx.pipe_ctx[i];
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
if (!pipe_ctx->stream ||
!pipe_ctx->plane_state ||
pipe_need_reprogram(pipe_ctx_old, pipe_ctx)) {
plane_atomic_disconnect(dc, i);
}
}
/* Unlock*/
for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) {
struct pipe_ctx *cur_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
struct timing_generator *tg = cur_pipe_ctx->stream_res.tg;
if (cur_pipe_ctx->stream)
tg->funcs->unlock(tg);
}
/* Disable and Powerdown*/
for (i = dc->res_pool->pipe_count - 1; i >= 0 ; i--) {
struct pipe_ctx *pipe_ctx_old =
&dc->current_state->res_ctx.pipe_ctx[i];
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
/*if (!pipe_ctx_old->stream)
continue;*/
if (pipe_ctx->stream && pipe_ctx->plane_state
&& !pipe_need_reprogram(pipe_ctx_old, pipe_ctx))
continue;
plane_atomic_disable(dc, i);
if (!pipe_ctx->stream || !pipe_ctx->plane_state)
plane_atomic_power_down(dc, i);
}
/* Reset Back End*/
for (i = dc->res_pool->pipe_count - 1; i >= 0 ; i--) {
struct pipe_ctx *pipe_ctx_old =
&dc->current_state->res_ctx.pipe_ctx[i];
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
if (!pipe_ctx_old->stream)
continue;
if (pipe_ctx_old->top_pipe)
continue;
if (!pipe_ctx->stream ||
pipe_need_reprogram(pipe_ctx_old, pipe_ctx)) {
struct clock_source *old_clk = pipe_ctx_old->clock_source;
reset_back_end_for_pipe(dc, pipe_ctx_old, dc->current_state);
if (old_clk)
old_clk->funcs->cs_power_down(old_clk);
}
}
}
static bool patch_address_for_sbs_tb_stereo(
struct pipe_ctx *pipe_ctx, PHYSICAL_ADDRESS_LOC *addr)
{
struct dc_plane_state *plane_state = pipe_ctx->plane_state;
bool sec_split = pipe_ctx->top_pipe &&
pipe_ctx->top_pipe->plane_state == pipe_ctx->plane_state;
if (sec_split && plane_state->address.type == PLN_ADDR_TYPE_GRPH_STEREO &&
(pipe_ctx->stream->timing.timing_3d_format ==
TIMING_3D_FORMAT_SIDE_BY_SIDE ||
pipe_ctx->stream->timing.timing_3d_format ==
TIMING_3D_FORMAT_TOP_AND_BOTTOM)) {
*addr = plane_state->address.grph_stereo.left_addr;
plane_state->address.grph_stereo.left_addr =
plane_state->address.grph_stereo.right_addr;
return true;
} else {
if (pipe_ctx->stream->view_format != VIEW_3D_FORMAT_NONE &&
plane_state->address.type != PLN_ADDR_TYPE_GRPH_STEREO) {
plane_state->address.type = PLN_ADDR_TYPE_GRPH_STEREO;
plane_state->address.grph_stereo.right_addr =
plane_state->address.grph_stereo.left_addr;
}
}
return false;
}
static void toggle_watermark_change_req(struct dce_hwseq *hws)
{
uint32_t watermark_change_req;
REG_GET(DCHUBBUB_ARB_WATERMARK_CHANGE_CNTL,
DCHUBBUB_ARB_WATERMARK_CHANGE_REQUEST, &watermark_change_req);
if (watermark_change_req)
watermark_change_req = 0;
else
watermark_change_req = 1;
REG_UPDATE(DCHUBBUB_ARB_WATERMARK_CHANGE_CNTL,
DCHUBBUB_ARB_WATERMARK_CHANGE_REQUEST, watermark_change_req);
}
static void dcn10_update_plane_addr(const struct dc *dc, struct pipe_ctx *pipe_ctx)
{
bool addr_patched = false;
PHYSICAL_ADDRESS_LOC addr;
struct dc_plane_state *plane_state = pipe_ctx->plane_state;
if (plane_state == NULL)
return;
addr_patched = patch_address_for_sbs_tb_stereo(pipe_ctx, &addr);
pipe_ctx->plane_res.hubp->funcs->hubp_program_surface_flip_and_addr(
pipe_ctx->plane_res.hubp,
&plane_state->address,
plane_state->flip_immediate);
plane_state->status.requested_address = plane_state->address;
if (addr_patched)
pipe_ctx->plane_state->address.grph_stereo.left_addr = addr;
}
static bool dcn10_set_input_transfer_func(
struct pipe_ctx *pipe_ctx, const struct dc_plane_state *plane_state)
{
struct dpp *dpp_base = pipe_ctx->plane_res.dpp;
const struct dc_transfer_func *tf = NULL;
bool result = true;
if (dpp_base == NULL)
return false;
if (plane_state->in_transfer_func)
tf = plane_state->in_transfer_func;
if (plane_state->gamma_correction && dce_use_lut(plane_state))
dpp_base->funcs->ipp_program_input_lut(dpp_base,
plane_state->gamma_correction);
if (tf == NULL)
dpp_base->funcs->ipp_set_degamma(dpp_base, IPP_DEGAMMA_MODE_BYPASS);
else if (tf->type == TF_TYPE_PREDEFINED) {
switch (tf->tf) {
case TRANSFER_FUNCTION_SRGB:
dpp_base->funcs->ipp_set_degamma(dpp_base,
IPP_DEGAMMA_MODE_HW_sRGB);
break;
case TRANSFER_FUNCTION_BT709:
dpp_base->funcs->ipp_set_degamma(dpp_base,
IPP_DEGAMMA_MODE_HW_xvYCC);
break;
case TRANSFER_FUNCTION_LINEAR:
dpp_base->funcs->ipp_set_degamma(dpp_base,
IPP_DEGAMMA_MODE_BYPASS);
break;
case TRANSFER_FUNCTION_PQ:
result = false;
break;
default:
result = false;
break;
}
} else if (tf->type == TF_TYPE_BYPASS) {
dpp_base->funcs->ipp_set_degamma(dpp_base, IPP_DEGAMMA_MODE_BYPASS);
} else {
/*TF_TYPE_DISTRIBUTED_POINTS*/
result = false;
}
return result;
}
/*modify the method to handle rgb for arr_points*/
static bool convert_to_custom_float(
struct pwl_result_data *rgb_resulted,
struct curve_points *arr_points,
uint32_t hw_points_num)
{
struct custom_float_format fmt;
struct pwl_result_data *rgb = rgb_resulted;
uint32_t i = 0;
fmt.exponenta_bits = 6;
fmt.mantissa_bits = 12;
fmt.sign = false;
if (!convert_to_custom_float_format(
arr_points[0].x,
&fmt,
&arr_points[0].custom_float_x)) {
BREAK_TO_DEBUGGER();
return false;
}
if (!convert_to_custom_float_format(
arr_points[0].offset,
&fmt,
&arr_points[0].custom_float_offset)) {
BREAK_TO_DEBUGGER();
return false;
}
if (!convert_to_custom_float_format(
arr_points[0].slope,
&fmt,
&arr_points[0].custom_float_slope)) {
BREAK_TO_DEBUGGER();
return false;
}
fmt.mantissa_bits = 10;
fmt.sign = false;
if (!convert_to_custom_float_format(
arr_points[1].x,
&fmt,
&arr_points[1].custom_float_x)) {
BREAK_TO_DEBUGGER();
return false;
}
if (!convert_to_custom_float_format(
arr_points[1].y,
&fmt,
&arr_points[1].custom_float_y)) {
BREAK_TO_DEBUGGER();
return false;
}
if (!convert_to_custom_float_format(
arr_points[1].slope,
&fmt,
&arr_points[1].custom_float_slope)) {
BREAK_TO_DEBUGGER();
return false;
}
fmt.mantissa_bits = 12;
fmt.sign = true;
while (i != hw_points_num) {
if (!convert_to_custom_float_format(
rgb->red,
&fmt,
&rgb->red_reg)) {
BREAK_TO_DEBUGGER();
return false;
}
if (!convert_to_custom_float_format(
rgb->green,
&fmt,
&rgb->green_reg)) {
BREAK_TO_DEBUGGER();
return false;
}
if (!convert_to_custom_float_format(
rgb->blue,
&fmt,
&rgb->blue_reg)) {
BREAK_TO_DEBUGGER();
return false;
}
if (!convert_to_custom_float_format(
rgb->delta_red,
&fmt,
&rgb->delta_red_reg)) {
BREAK_TO_DEBUGGER();
return false;
}
if (!convert_to_custom_float_format(
rgb->delta_green,
&fmt,
&rgb->delta_green_reg)) {
BREAK_TO_DEBUGGER();
return false;
}
if (!convert_to_custom_float_format(
rgb->delta_blue,
&fmt,
&rgb->delta_blue_reg)) {
BREAK_TO_DEBUGGER();
return false;
}
++rgb;
++i;
}
return true;
}
#define MAX_REGIONS_NUMBER 34
#define MAX_LOW_POINT 25
#define NUMBER_SEGMENTS 32
static bool dcn10_translate_regamma_to_hw_format(const struct dc_transfer_func
*output_tf, struct pwl_params *regamma_params)
{
struct curve_points *arr_points;
struct pwl_result_data *rgb_resulted;
struct pwl_result_data *rgb;
struct pwl_result_data *rgb_plus_1;
struct fixed31_32 y_r;
struct fixed31_32 y_g;
struct fixed31_32 y_b;
struct fixed31_32 y1_min;
struct fixed31_32 y3_max;
int32_t segment_start, segment_end;
int32_t i;
uint32_t j, k, seg_distr[MAX_REGIONS_NUMBER], increment, start_index, hw_points;
if (output_tf == NULL || regamma_params == NULL ||
output_tf->type == TF_TYPE_BYPASS)
return false;
arr_points = regamma_params->arr_points;
rgb_resulted = regamma_params->rgb_resulted;
hw_points = 0;
memset(regamma_params, 0, sizeof(struct pwl_params));
memset(seg_distr, 0, sizeof(seg_distr));
if (output_tf->tf == TRANSFER_FUNCTION_PQ) {
/* 32 segments
* segments are from 2^-25 to 2^7
*/
for (i = 0; i < 32 ; i++)
seg_distr[i] = 3;
segment_start = -25;
segment_end = 7;
} else {
/* 10 segments
* segment is from 2^-10 to 2^0
* There are less than 256 points, for optimization
*/
seg_distr[0] = 3;
seg_distr[1] = 4;
seg_distr[2] = 4;
seg_distr[3] = 4;
seg_distr[4] = 4;
seg_distr[5] = 4;
seg_distr[6] = 4;
seg_distr[7] = 4;
seg_distr[8] = 5;
seg_distr[9] = 5;
segment_start = -10;
segment_end = 0;
}
for (i = segment_end - segment_start; i < MAX_REGIONS_NUMBER ; i++)
seg_distr[i] = -1;
for (k = 0; k < MAX_REGIONS_NUMBER; k++) {
if (seg_distr[k] != -1)
hw_points += (1 << seg_distr[k]);
}
j = 0;
for (k = 0; k < (segment_end - segment_start); k++) {
increment = NUMBER_SEGMENTS / (1 << seg_distr[k]);
start_index = (segment_start + k + MAX_LOW_POINT) * NUMBER_SEGMENTS;
for (i = start_index; i < start_index + NUMBER_SEGMENTS; i += increment) {
if (j == hw_points - 1)
break;
rgb_resulted[j].red = output_tf->tf_pts.red[i];
rgb_resulted[j].green = output_tf->tf_pts.green[i];
rgb_resulted[j].blue = output_tf->tf_pts.blue[i];
j++;
}
}
/* last point */
start_index = (segment_end + MAX_LOW_POINT) * NUMBER_SEGMENTS;
rgb_resulted[hw_points - 1].red =
output_tf->tf_pts.red[start_index];
rgb_resulted[hw_points - 1].green =
output_tf->tf_pts.green[start_index];
rgb_resulted[hw_points - 1].blue =
output_tf->tf_pts.blue[start_index];
arr_points[0].x = dal_fixed31_32_pow(dal_fixed31_32_from_int(2),
dal_fixed31_32_from_int(segment_start));
arr_points[1].x = dal_fixed31_32_pow(dal_fixed31_32_from_int(2),
dal_fixed31_32_from_int(segment_end));
arr_points[2].x = dal_fixed31_32_pow(dal_fixed31_32_from_int(2),
dal_fixed31_32_from_int(segment_end));
y_r = rgb_resulted[0].red;
y_g = rgb_resulted[0].green;
y_b = rgb_resulted[0].blue;
y1_min = dal_fixed31_32_min(y_r, dal_fixed31_32_min(y_g, y_b));
arr_points[0].y = y1_min;
arr_points[0].slope = dal_fixed31_32_div(
arr_points[0].y,
arr_points[0].x);
y_r = rgb_resulted[hw_points - 1].red;
y_g = rgb_resulted[hw_points - 1].green;
y_b = rgb_resulted[hw_points - 1].blue;
/* see comment above, m_arrPoints[1].y should be the Y value for the
* region end (m_numOfHwPoints), not last HW point(m_numOfHwPoints - 1)
*/
y3_max = dal_fixed31_32_max(y_r, dal_fixed31_32_max(y_g, y_b));
arr_points[1].y = y3_max;
arr_points[2].y = y3_max;
arr_points[1].slope = dal_fixed31_32_zero;
arr_points[2].slope = dal_fixed31_32_zero;
if (output_tf->tf == TRANSFER_FUNCTION_PQ) {
/* for PQ, we want to have a straight line from last HW X point,
* and the slope to be such that we hit 1.0 at 10000 nits.
*/
const struct fixed31_32 end_value =
dal_fixed31_32_from_int(125);
arr_points[1].slope = dal_fixed31_32_div(
dal_fixed31_32_sub(dal_fixed31_32_one, arr_points[1].y),
dal_fixed31_32_sub(end_value, arr_points[1].x));
arr_points[2].slope = dal_fixed31_32_div(
dal_fixed31_32_sub(dal_fixed31_32_one, arr_points[1].y),
dal_fixed31_32_sub(end_value, arr_points[1].x));
}
regamma_params->hw_points_num = hw_points;
i = 1;
for (k = 0; k < MAX_REGIONS_NUMBER && i < MAX_REGIONS_NUMBER; k++) {
if (seg_distr[k] != -1) {
regamma_params->arr_curve_points[k].segments_num =
seg_distr[k];
regamma_params->arr_curve_points[i].offset =
regamma_params->arr_curve_points[k].
offset + (1 << seg_distr[k]);
}
i++;
}
if (seg_distr[k] != -1)
regamma_params->arr_curve_points[k].segments_num =
seg_distr[k];
rgb = rgb_resulted;
rgb_plus_1 = rgb_resulted + 1;
i = 1;
while (i != hw_points + 1) {
if (dal_fixed31_32_lt(rgb_plus_1->red, rgb->red))
rgb_plus_1->red = rgb->red;
if (dal_fixed31_32_lt(rgb_plus_1->green, rgb->green))
rgb_plus_1->green = rgb->green;
if (dal_fixed31_32_lt(rgb_plus_1->blue, rgb->blue))
rgb_plus_1->blue = rgb->blue;
rgb->delta_red = dal_fixed31_32_sub(
rgb_plus_1->red,
rgb->red);
rgb->delta_green = dal_fixed31_32_sub(
rgb_plus_1->green,
rgb->green);
rgb->delta_blue = dal_fixed31_32_sub(
rgb_plus_1->blue,
rgb->blue);
++rgb_plus_1;
++rgb;
++i;
}
convert_to_custom_float(rgb_resulted, arr_points, hw_points);
return true;
}
static bool dcn10_set_output_transfer_func(
struct pipe_ctx *pipe_ctx,
const struct dc_stream_state *stream)
{
struct dpp *dpp = pipe_ctx->plane_res.dpp;
if (dpp == NULL)
return false;
dpp->regamma_params.hw_points_num = GAMMA_HW_POINTS_NUM;
if (stream->out_transfer_func &&
stream->out_transfer_func->type ==
TF_TYPE_PREDEFINED &&
stream->out_transfer_func->tf ==
TRANSFER_FUNCTION_SRGB) {
dpp->funcs->opp_set_regamma_mode(dpp, OPP_REGAMMA_SRGB);
} else if (dcn10_translate_regamma_to_hw_format(
stream->out_transfer_func, &dpp->regamma_params)) {
dpp->funcs->opp_program_regamma_pwl(dpp, &dpp->regamma_params);
dpp->funcs->opp_set_regamma_mode(dpp, OPP_REGAMMA_USER);
} else {
dpp->funcs->opp_set_regamma_mode(dpp, OPP_REGAMMA_BYPASS);
}
return true;
}
static void dcn10_pipe_control_lock(
struct dc *dc,
struct pipe_ctx *pipe,
bool lock)
{
struct hubp *hubp = NULL;
hubp = dc->res_pool->hubps[pipe->pipe_idx];
/* use TG master update lock to lock everything on the TG
* therefore only top pipe need to lock
*/
if (pipe->top_pipe)
return;
if (dc->debug.sanity_checks)
verify_allow_pstate_change_high(dc->hwseq);
if (lock)
pipe->stream_res.tg->funcs->lock(pipe->stream_res.tg);
else
pipe->stream_res.tg->funcs->unlock(pipe->stream_res.tg);
if (dc->debug.sanity_checks)
verify_allow_pstate_change_high(dc->hwseq);
}
static bool wait_for_reset_trigger_to_occur(
struct dc_context *dc_ctx,
struct timing_generator *tg)
{
bool rc = false;
/* To avoid endless loop we wait at most
* frames_to_wait_on_triggered_reset frames for the reset to occur. */
const uint32_t frames_to_wait_on_triggered_reset = 10;
int i;
for (i = 0; i < frames_to_wait_on_triggered_reset; i++) {
if (!tg->funcs->is_counter_moving(tg)) {
DC_ERROR("TG counter is not moving!\n");
break;
}
if (tg->funcs->did_triggered_reset_occur(tg)) {
rc = true;
/* usually occurs at i=1 */
DC_SYNC_INFO("GSL: reset occurred at wait count: %d\n",
i);
break;
}
/* Wait for one frame. */
tg->funcs->wait_for_state(tg, CRTC_STATE_VACTIVE);
tg->funcs->wait_for_state(tg, CRTC_STATE_VBLANK);
}
if (false == rc)
DC_ERROR("GSL: Timeout on reset trigger!\n");
return rc;
}
static void dcn10_enable_timing_synchronization(
struct dc *dc,
int group_index,
int group_size,
struct pipe_ctx *grouped_pipes[])
{
struct dc_context *dc_ctx = dc->ctx;
int i;
DC_SYNC_INFO("Setting up OTG reset trigger\n");
for (i = 1; i < group_size; i++)
grouped_pipes[i]->stream_res.tg->funcs->enable_reset_trigger(
grouped_pipes[i]->stream_res.tg, grouped_pipes[0]->stream_res.tg->inst);
DC_SYNC_INFO("Waiting for trigger\n");
/* Need to get only check 1 pipe for having reset as all the others are
* synchronized. Look at last pipe programmed to reset.
*/
wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[1]->stream_res.tg);
for (i = 1; i < group_size; i++)
grouped_pipes[i]->stream_res.tg->funcs->disable_reset_trigger(
grouped_pipes[i]->stream_res.tg);
DC_SYNC_INFO("Sync complete\n");
}
static void print_rq_dlg_ttu(
struct dc *core_dc,
struct pipe_ctx *pipe_ctx)
{
dm_logger_write(core_dc->ctx->logger, LOG_BANDWIDTH_CALCS,
"\n============== DML TTU Output parameters [%d] ==============\n"
"qos_level_low_wm: %d, \n"
"qos_level_high_wm: %d, \n"
"min_ttu_vblank: %d, \n"
"qos_level_flip: %d, \n"
"refcyc_per_req_delivery_l: %d, \n"
"qos_level_fixed_l: %d, \n"
"qos_ramp_disable_l: %d, \n"
"refcyc_per_req_delivery_pre_l: %d, \n"
"refcyc_per_req_delivery_c: %d, \n"
"qos_level_fixed_c: %d, \n"
"qos_ramp_disable_c: %d, \n"
"refcyc_per_req_delivery_pre_c: %d\n"
"=============================================================\n",
pipe_ctx->pipe_idx,
pipe_ctx->ttu_regs.qos_level_low_wm,
pipe_ctx->ttu_regs.qos_level_high_wm,
pipe_ctx->ttu_regs.min_ttu_vblank,
pipe_ctx->ttu_regs.qos_level_flip,
pipe_ctx->ttu_regs.refcyc_per_req_delivery_l,
pipe_ctx->ttu_regs.qos_level_fixed_l,
pipe_ctx->ttu_regs.qos_ramp_disable_l,
pipe_ctx->ttu_regs.refcyc_per_req_delivery_pre_l,
pipe_ctx->ttu_regs.refcyc_per_req_delivery_c,
pipe_ctx->ttu_regs.qos_level_fixed_c,
pipe_ctx->ttu_regs.qos_ramp_disable_c,
pipe_ctx->ttu_regs.refcyc_per_req_delivery_pre_c
);
dm_logger_write(core_dc->ctx->logger, LOG_BANDWIDTH_CALCS,
"\n============== DML DLG Output parameters [%d] ==============\n"
"refcyc_h_blank_end: %d, \n"
"dlg_vblank_end: %d, \n"
"min_dst_y_next_start: %d, \n"
"refcyc_per_htotal: %d, \n"
"refcyc_x_after_scaler: %d, \n"
"dst_y_after_scaler: %d, \n"
"dst_y_prefetch: %d, \n"
"dst_y_per_vm_vblank: %d, \n"
"dst_y_per_row_vblank: %d, \n"
"ref_freq_to_pix_freq: %d, \n"
"vratio_prefetch: %d, \n"
"refcyc_per_pte_group_vblank_l: %d, \n"
"refcyc_per_meta_chunk_vblank_l: %d, \n"
"dst_y_per_pte_row_nom_l: %d, \n"
"refcyc_per_pte_group_nom_l: %d, \n",
pipe_ctx->pipe_idx,
pipe_ctx->dlg_regs.refcyc_h_blank_end,
pipe_ctx->dlg_regs.dlg_vblank_end,
pipe_ctx->dlg_regs.min_dst_y_next_start,
pipe_ctx->dlg_regs.refcyc_per_htotal,
pipe_ctx->dlg_regs.refcyc_x_after_scaler,
pipe_ctx->dlg_regs.dst_y_after_scaler,
pipe_ctx->dlg_regs.dst_y_prefetch,
pipe_ctx->dlg_regs.dst_y_per_vm_vblank,
pipe_ctx->dlg_regs.dst_y_per_row_vblank,
pipe_ctx->dlg_regs.ref_freq_to_pix_freq,
pipe_ctx->dlg_regs.vratio_prefetch,
pipe_ctx->dlg_regs.refcyc_per_pte_group_vblank_l,
pipe_ctx->dlg_regs.refcyc_per_meta_chunk_vblank_l,
pipe_ctx->dlg_regs.dst_y_per_pte_row_nom_l,
pipe_ctx->dlg_regs.refcyc_per_pte_group_nom_l
);
dm_logger_write(core_dc->ctx->logger, LOG_BANDWIDTH_CALCS,
"\ndst_y_per_meta_row_nom_l: %d, \n"
"refcyc_per_meta_chunk_nom_l: %d, \n"
"refcyc_per_line_delivery_pre_l: %d, \n"
"refcyc_per_line_delivery_l: %d, \n"
"vratio_prefetch_c: %d, \n"
"refcyc_per_pte_group_vblank_c: %d, \n"
"refcyc_per_meta_chunk_vblank_c: %d, \n"
"dst_y_per_pte_row_nom_c: %d, \n"
"refcyc_per_pte_group_nom_c: %d, \n"
"dst_y_per_meta_row_nom_c: %d, \n"
"refcyc_per_meta_chunk_nom_c: %d, \n"
"refcyc_per_line_delivery_pre_c: %d, \n"
"refcyc_per_line_delivery_c: %d \n"
"========================================================\n",
pipe_ctx->dlg_regs.dst_y_per_meta_row_nom_l,
pipe_ctx->dlg_regs.refcyc_per_meta_chunk_nom_l,
pipe_ctx->dlg_regs.refcyc_per_line_delivery_pre_l,
pipe_ctx->dlg_regs.refcyc_per_line_delivery_l,
pipe_ctx->dlg_regs.vratio_prefetch_c,
pipe_ctx->dlg_regs.refcyc_per_pte_group_vblank_c,
pipe_ctx->dlg_regs.refcyc_per_meta_chunk_vblank_c,
pipe_ctx->dlg_regs.dst_y_per_pte_row_nom_c,
pipe_ctx->dlg_regs.refcyc_per_pte_group_nom_c,
pipe_ctx->dlg_regs.dst_y_per_meta_row_nom_c,
pipe_ctx->dlg_regs.refcyc_per_meta_chunk_nom_c,
pipe_ctx->dlg_regs.refcyc_per_line_delivery_pre_c,
pipe_ctx->dlg_regs.refcyc_per_line_delivery_c
);
dm_logger_write(core_dc->ctx->logger, LOG_BANDWIDTH_CALCS,
"\n============== DML RQ Output parameters [%d] ==============\n"
"chunk_size: %d \n"
"min_chunk_size: %d \n"
"meta_chunk_size: %d \n"
"min_meta_chunk_size: %d \n"
"dpte_group_size: %d \n"
"mpte_group_size: %d \n"
"swath_height: %d \n"
"pte_row_height_linear: %d \n"
"========================================================\n",
pipe_ctx->pipe_idx,
pipe_ctx->rq_regs.rq_regs_l.chunk_size,
pipe_ctx->rq_regs.rq_regs_l.min_chunk_size,
pipe_ctx->rq_regs.rq_regs_l.meta_chunk_size,
pipe_ctx->rq_regs.rq_regs_l.min_meta_chunk_size,
pipe_ctx->rq_regs.rq_regs_l.dpte_group_size,
pipe_ctx->rq_regs.rq_regs_l.mpte_group_size,
pipe_ctx->rq_regs.rq_regs_l.swath_height,
pipe_ctx->rq_regs.rq_regs_l.pte_row_height_linear
);
}
static void dcn10_power_on_fe(
struct dc *dc,
struct pipe_ctx *pipe_ctx,
struct dc_state *context)
{
struct dc_plane_state *plane_state = pipe_ctx->plane_state;
struct dce_hwseq *hws = dc->hwseq;
if (dc->debug.sanity_checks) {
verify_allow_pstate_change_high(dc->hwseq);
}
power_on_plane(dc->hwseq,
pipe_ctx->pipe_idx);
/* enable DCFCLK current DCHUB */
REG_UPDATE(HUBP_CLK_CNTL[pipe_ctx->pipe_idx],
HUBP_CLOCK_ENABLE, 1);
/* make sure OPP_PIPE_CLOCK_EN = 1 */
REG_UPDATE(OPP_PIPE_CONTROL[pipe_ctx->stream_res.tg->inst],
OPP_PIPE_CLOCK_EN, 1);
/*TODO: REG_UPDATE(DENTIST_DISPCLK_CNTL, DENTIST_DPPCLK_WDIVIDER, 0x1f);*/
if (plane_state) {
dm_logger_write(dc->ctx->logger, LOG_DC,
"Pipe:%d 0x%x: addr hi:0x%x, "
"addr low:0x%x, "
"src: %d, %d, %d,"
" %d; dst: %d, %d, %d, %d;\n",
pipe_ctx->pipe_idx,
plane_state,
plane_state->address.grph.addr.high_part,
plane_state->address.grph.addr.low_part,
plane_state->src_rect.x,
plane_state->src_rect.y,
plane_state->src_rect.width,
plane_state->src_rect.height,
plane_state->dst_rect.x,
plane_state->dst_rect.y,
plane_state->dst_rect.width,
plane_state->dst_rect.height);
dm_logger_write(dc->ctx->logger, LOG_DC,
"Pipe %d: width, height, x, y format:%d\n"
"viewport:%d, %d, %d, %d\n"
"recout: %d, %d, %d, %d\n",
pipe_ctx->pipe_idx,
plane_state->format,
pipe_ctx->plane_res.scl_data.viewport.width,
pipe_ctx->plane_res.scl_data.viewport.height,
pipe_ctx->plane_res.scl_data.viewport.x,
pipe_ctx->plane_res.scl_data.viewport.y,
pipe_ctx->plane_res.scl_data.recout.width,
pipe_ctx->plane_res.scl_data.recout.height,
pipe_ctx->plane_res.scl_data.recout.x,
pipe_ctx->plane_res.scl_data.recout.y);
print_rq_dlg_ttu(dc, pipe_ctx);
}
if (dc->debug.sanity_checks) {
verify_allow_pstate_change_high(dc->hwseq);
}
}
static void program_gamut_remap(struct pipe_ctx *pipe_ctx)
{
struct dpp_grph_csc_adjustment adjust;
memset(&adjust, 0, sizeof(adjust));
adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
if (pipe_ctx->stream->gamut_remap_matrix.enable_remap == true) {
adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
adjust.temperature_matrix[0] =
pipe_ctx->stream->
gamut_remap_matrix.matrix[0];
adjust.temperature_matrix[1] =
pipe_ctx->stream->
gamut_remap_matrix.matrix[1];
adjust.temperature_matrix[2] =
pipe_ctx->stream->
gamut_remap_matrix.matrix[2];
adjust.temperature_matrix[3] =
pipe_ctx->stream->
gamut_remap_matrix.matrix[4];
adjust.temperature_matrix[4] =
pipe_ctx->stream->
gamut_remap_matrix.matrix[5];
adjust.temperature_matrix[5] =
pipe_ctx->stream->
gamut_remap_matrix.matrix[6];
adjust.temperature_matrix[6] =
pipe_ctx->stream->
gamut_remap_matrix.matrix[8];
adjust.temperature_matrix[7] =
pipe_ctx->stream->
gamut_remap_matrix.matrix[9];
adjust.temperature_matrix[8] =
pipe_ctx->stream->
gamut_remap_matrix.matrix[10];
}
pipe_ctx->plane_res.dpp->funcs->dpp_set_gamut_remap(pipe_ctx->plane_res.dpp, &adjust);
}
static void program_csc_matrix(struct pipe_ctx *pipe_ctx,
enum dc_color_space colorspace,
uint16_t *matrix)
{
int i;
struct out_csc_color_matrix tbl_entry;
if (pipe_ctx->stream->csc_color_matrix.enable_adjustment
== true) {
enum dc_color_space color_space =
pipe_ctx->stream->output_color_space;
//uint16_t matrix[12];
for (i = 0; i < 12; i++)
tbl_entry.regval[i] = pipe_ctx->stream->csc_color_matrix.matrix[i];
tbl_entry.color_space = color_space;
//tbl_entry.regval = matrix;
pipe_ctx->plane_res.dpp->funcs->opp_set_csc_adjustment(pipe_ctx->plane_res.dpp, &tbl_entry);
}
}
static bool is_lower_pipe_tree_visible(struct pipe_ctx *pipe_ctx)
{
if (pipe_ctx->plane_state->visible)
return true;
if (pipe_ctx->bottom_pipe && is_lower_pipe_tree_visible(pipe_ctx->bottom_pipe))
return true;
return false;
}
static bool is_upper_pipe_tree_visible(struct pipe_ctx *pipe_ctx)
{
if (pipe_ctx->plane_state->visible)
return true;
if (pipe_ctx->top_pipe && is_upper_pipe_tree_visible(pipe_ctx->top_pipe))
return true;
return false;
}
static bool is_pipe_tree_visible(struct pipe_ctx *pipe_ctx)
{
if (pipe_ctx->plane_state->visible)
return true;
if (pipe_ctx->top_pipe && is_upper_pipe_tree_visible(pipe_ctx->top_pipe))
return true;
if (pipe_ctx->bottom_pipe && is_lower_pipe_tree_visible(pipe_ctx->bottom_pipe))
return true;
return false;
}
static bool is_rgb_cspace(enum dc_color_space output_color_space)
{
switch (output_color_space) {
case COLOR_SPACE_SRGB:
case COLOR_SPACE_SRGB_LIMITED:
case COLOR_SPACE_2020_RGB_FULLRANGE:
case COLOR_SPACE_2020_RGB_LIMITEDRANGE:
case COLOR_SPACE_ADOBERGB:
return true;
case COLOR_SPACE_YCBCR601:
case COLOR_SPACE_YCBCR709:
case COLOR_SPACE_YCBCR601_LIMITED:
case COLOR_SPACE_YCBCR709_LIMITED:
case COLOR_SPACE_2020_YCBCR:
return false;
default:
/* Add a case to switch */
BREAK_TO_DEBUGGER();
return false;
}
}
static void dcn10_get_surface_visual_confirm_color(
const struct pipe_ctx *pipe_ctx,
struct tg_color *color)
{
uint32_t color_value = MAX_TG_COLOR_VALUE;
switch (pipe_ctx->plane_res.scl_data.format) {
case PIXEL_FORMAT_ARGB8888:
/* set boarder color to red */
color->color_r_cr = color_value;
break;
case PIXEL_FORMAT_ARGB2101010:
/* set boarder color to blue */
color->color_b_cb = color_value;
break;
case PIXEL_FORMAT_420BPP8:
/* set boarder color to green */
color->color_g_y = color_value;
break;
case PIXEL_FORMAT_420BPP10:
/* set boarder color to yellow */
color->color_g_y = color_value;
color->color_r_cr = color_value;
break;
case PIXEL_FORMAT_FP16:
/* set boarder color to white */
color->color_r_cr = color_value;
color->color_b_cb = color_value;
color->color_g_y = color_value;
break;
default:
break;
}
}
static void mmhub_read_vm_system_aperture_settings(struct dcn10_hubp *hubp1,
struct vm_system_aperture_param *apt,
struct dce_hwseq *hws)
{
PHYSICAL_ADDRESS_LOC physical_page_number;
uint32_t logical_addr_low;
uint32_t logical_addr_high;
REG_GET(MC_VM_SYSTEM_APERTURE_DEFAULT_ADDR_MSB,
PHYSICAL_PAGE_NUMBER_MSB, &physical_page_number.high_part);
REG_GET(MC_VM_SYSTEM_APERTURE_DEFAULT_ADDR_LSB,
PHYSICAL_PAGE_NUMBER_LSB, &physical_page_number.low_part);
REG_GET(MC_VM_SYSTEM_APERTURE_LOW_ADDR,
LOGICAL_ADDR, &logical_addr_low);
REG_GET(MC_VM_SYSTEM_APERTURE_HIGH_ADDR,
LOGICAL_ADDR, &logical_addr_high);
apt->sys_default.quad_part = physical_page_number.quad_part << 12;
apt->sys_low.quad_part = (int64_t)logical_addr_low << 18;
apt->sys_high.quad_part = (int64_t)logical_addr_high << 18;
}
/* Temporary read settings, future will get values from kmd directly */
static void mmhub_read_vm_context0_settings(struct dcn10_hubp *hubp1,
struct vm_context0_param *vm0,
struct dce_hwseq *hws)
{
PHYSICAL_ADDRESS_LOC fb_base;
PHYSICAL_ADDRESS_LOC fb_offset;
uint32_t fb_base_value;
uint32_t fb_offset_value;
REG_GET(DCHUBBUB_SDPIF_FB_BASE, SDPIF_FB_BASE, &fb_base_value);
REG_GET(DCHUBBUB_SDPIF_FB_OFFSET, SDPIF_FB_OFFSET, &fb_offset_value);
REG_GET(VM_CONTEXT0_PAGE_TABLE_BASE_ADDR_HI32,
PAGE_DIRECTORY_ENTRY_HI32, &vm0->pte_base.high_part);
REG_GET(VM_CONTEXT0_PAGE_TABLE_BASE_ADDR_LO32,
PAGE_DIRECTORY_ENTRY_LO32, &vm0->pte_base.low_part);
REG_GET(VM_CONTEXT0_PAGE_TABLE_START_ADDR_HI32,
LOGICAL_PAGE_NUMBER_HI4, &vm0->pte_start.high_part);
REG_GET(VM_CONTEXT0_PAGE_TABLE_START_ADDR_LO32,
LOGICAL_PAGE_NUMBER_LO32, &vm0->pte_start.low_part);
REG_GET(VM_CONTEXT0_PAGE_TABLE_END_ADDR_HI32,
LOGICAL_PAGE_NUMBER_HI4, &vm0->pte_end.high_part);
REG_GET(VM_CONTEXT0_PAGE_TABLE_END_ADDR_LO32,
LOGICAL_PAGE_NUMBER_LO32, &vm0->pte_end.low_part);
REG_GET(VM_L2_PROTECTION_FAULT_DEFAULT_ADDR_HI32,
PHYSICAL_PAGE_ADDR_HI4, &vm0->fault_default.high_part);
REG_GET(VM_L2_PROTECTION_FAULT_DEFAULT_ADDR_LO32,
PHYSICAL_PAGE_ADDR_LO32, &vm0->fault_default.low_part);
/*
* The values in VM_CONTEXT0_PAGE_TABLE_BASE_ADDR is in UMA space.
* Therefore we need to do
* DCN_VM_CONTEXT0_PAGE_TABLE_BASE_ADDR = VM_CONTEXT0_PAGE_TABLE_BASE_ADDR
* - DCHUBBUB_SDPIF_FB_OFFSET + DCHUBBUB_SDPIF_FB_BASE
*/
fb_base.quad_part = (uint64_t)fb_base_value << 24;
fb_offset.quad_part = (uint64_t)fb_offset_value << 24;
vm0->pte_base.quad_part += fb_base.quad_part;
vm0->pte_base.quad_part -= fb_offset.quad_part;
}
static void dcn10_program_pte_vm(struct hubp *hubp,
enum surface_pixel_format format,
union dc_tiling_info *tiling_info,
enum dc_rotation_angle rotation,
struct dce_hwseq *hws)
{
struct dcn10_hubp *hubp1 = TO_DCN10_HUBP(hubp);
struct vm_system_aperture_param apt = { {{ 0 } } };
struct vm_context0_param vm0 = { { { 0 } } };
mmhub_read_vm_system_aperture_settings(hubp1, &apt, hws);
mmhub_read_vm_context0_settings(hubp1, &vm0, hws);
hubp->funcs->hubp_set_vm_system_aperture_settings(hubp, &apt);
hubp->funcs->hubp_set_vm_context0_settings(hubp, &vm0);
}
static void update_dchubp_dpp(
struct dc *dc,
struct pipe_ctx *pipe_ctx,
struct dc_state *context)
{
struct dce_hwseq *hws = dc->hwseq;
struct hubp *hubp = pipe_ctx->plane_res.hubp;
struct dpp *dpp = pipe_ctx->plane_res.dpp;
struct dc_plane_state *plane_state = pipe_ctx->plane_state;
union plane_size size = plane_state->plane_size;
struct mpcc_cfg mpcc_cfg = {0};
struct pipe_ctx *top_pipe;
bool per_pixel_alpha = plane_state->per_pixel_alpha && pipe_ctx->bottom_pipe;
/* TODO: proper fix once fpga works */
/* depends on DML calculation, DPP clock value may change dynamically */
enable_dppclk(
dc->hwseq,
pipe_ctx->pipe_idx,
pipe_ctx->stream_res.pix_clk_params.requested_pix_clk,
context->bw.dcn.calc_clk.dppclk_div);
dc->current_state->bw.dcn.cur_clk.dppclk_div =
context->bw.dcn.calc_clk.dppclk_div;
context->bw.dcn.cur_clk.dppclk_div = context->bw.dcn.calc_clk.dppclk_div;
/* TODO: Need input parameter to tell current DCHUB pipe tie to which OTG
* VTG is within DCHUBBUB which is commond block share by each pipe HUBP.
* VTG is 1:1 mapping with OTG. Each pipe HUBP will select which VTG
*/
REG_UPDATE(DCHUBP_CNTL[pipe_ctx->pipe_idx], HUBP_VTG_SEL, pipe_ctx->stream_res.tg->inst);
hubp->funcs->hubp_setup(
hubp,
&pipe_ctx->dlg_regs,
&pipe_ctx->ttu_regs,
&pipe_ctx->rq_regs,
&pipe_ctx->pipe_dlg_param);
size.grph.surface_size = pipe_ctx->plane_res.scl_data.viewport;
if (dc->config.gpu_vm_support)
dcn10_program_pte_vm(
pipe_ctx->plane_res.hubp,
plane_state->format,
&plane_state->tiling_info,
plane_state->rotation,
hws
);
dpp->funcs->ipp_setup(dpp,
plane_state->format,
EXPANSION_MODE_ZERO);
mpcc_cfg.dpp_id = hubp->inst;
mpcc_cfg.opp_id = pipe_ctx->stream_res.opp->inst;
mpcc_cfg.tree_cfg = &(pipe_ctx->stream_res.opp->mpc_tree);
for (top_pipe = pipe_ctx->top_pipe; top_pipe; top_pipe = top_pipe->top_pipe)
mpcc_cfg.z_index++;
if (dc->debug.surface_visual_confirm)
dcn10_get_surface_visual_confirm_color(
pipe_ctx, &mpcc_cfg.black_color);
else
color_space_to_black_color(
dc, pipe_ctx->stream->output_color_space,
&mpcc_cfg.black_color);
mpcc_cfg.per_pixel_alpha = per_pixel_alpha;
/* DCN1.0 has output CM before MPC which seems to screw with
* pre-multiplied alpha.
*/
mpcc_cfg.pre_multiplied_alpha = is_rgb_cspace(
pipe_ctx->stream->output_color_space)
&& per_pixel_alpha;
hubp->mpcc_id = dc->res_pool->mpc->funcs->add(dc->res_pool->mpc, &mpcc_cfg);
hubp->opp_id = mpcc_cfg.opp_id;
pipe_ctx->plane_res.scl_data.lb_params.alpha_en = per_pixel_alpha;
pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_30BPP;
/* scaler configuration */
pipe_ctx->plane_res.dpp->funcs->dpp_set_scaler(
pipe_ctx->plane_res.dpp, &pipe_ctx->plane_res.scl_data);
hubp->funcs->mem_program_viewport(hubp,
&pipe_ctx->plane_res.scl_data.viewport, &pipe_ctx->plane_res.scl_data.viewport_c);
/*gamut remap*/
program_gamut_remap(pipe_ctx);
program_csc_matrix(pipe_ctx,
pipe_ctx->stream->output_color_space,
pipe_ctx->stream->csc_color_matrix.matrix);
hubp->funcs->hubp_program_surface_config(
hubp,
plane_state->format,
&plane_state->tiling_info,
&size,
plane_state->rotation,
&plane_state->dcc,
plane_state->horizontal_mirror);
dc->hwss.update_plane_addr(dc, pipe_ctx);
if (is_pipe_tree_visible(pipe_ctx))
hubp->funcs->set_blank(hubp, false);
}
static void program_all_pipe_in_tree(
struct dc *dc,
struct pipe_ctx *pipe_ctx,
struct dc_state *context)
{
unsigned int ref_clk_mhz = dc->res_pool->ref_clock_inKhz/1000;
if (pipe_ctx->top_pipe == NULL) {
/* lock otg_master_update to process all pipes associated with
* this OTG. this is done only one time.
*/
/* watermark is for all pipes */
program_watermarks(dc->hwseq, &context->bw.dcn.watermarks, ref_clk_mhz);
if (dc->debug.sanity_checks) {
/* pstate stuck check after watermark update */
verify_allow_pstate_change_high(dc->hwseq);
}
pipe_ctx->stream_res.tg->funcs->lock(pipe_ctx->stream_res.tg);
pipe_ctx->stream_res.tg->dlg_otg_param.vready_offset = pipe_ctx->pipe_dlg_param.vready_offset;
pipe_ctx->stream_res.tg->dlg_otg_param.vstartup_start = pipe_ctx->pipe_dlg_param.vstartup_start;
pipe_ctx->stream_res.tg->dlg_otg_param.vupdate_offset = pipe_ctx->pipe_dlg_param.vupdate_offset;
pipe_ctx->stream_res.tg->dlg_otg_param.vupdate_width = pipe_ctx->pipe_dlg_param.vupdate_width;
pipe_ctx->stream_res.tg->dlg_otg_param.signal = pipe_ctx->stream->signal;
pipe_ctx->stream_res.tg->funcs->program_global_sync(
pipe_ctx->stream_res.tg);
pipe_ctx->stream_res.tg->funcs->set_blank(pipe_ctx->stream_res.tg, !is_pipe_tree_visible(pipe_ctx));
}
if (pipe_ctx->plane_state != NULL) {
struct dc_cursor_position position = { 0 };
struct pipe_ctx *cur_pipe_ctx =
&dc->current_state->res_ctx.pipe_ctx[pipe_ctx->pipe_idx];
dcn10_power_on_fe(dc, pipe_ctx, context);
/* temporary dcn1 wa:
* watermark update requires toggle after a/b/c/d sets are programmed
* if hubp is pg then wm value doesn't get properaged to hubp
* need to toggle after ungate to ensure wm gets to hubp.
*
* final solution: we need to get SMU to do the toggle as
* DCHUBBUB_ARB_WATERMARK_CHANGE_REQUEST is owned by SMU we should have
* both driver and fw accessing same register
*/
toggle_watermark_change_req(dc->hwseq);
update_dchubp_dpp(dc, pipe_ctx, context);
/* TODO: this is a hack w/a for switching from mpo to pipe split */
dc_stream_set_cursor_position(pipe_ctx->stream, &position);
dc_stream_set_cursor_attributes(pipe_ctx->stream,
&pipe_ctx->stream->cursor_attributes);
if (cur_pipe_ctx->plane_state != pipe_ctx->plane_state) {
dc->hwss.set_input_transfer_func(
pipe_ctx, pipe_ctx->plane_state);
dc->hwss.set_output_transfer_func(
pipe_ctx, pipe_ctx->stream);
}
}
if (dc->debug.sanity_checks) {
/* pstate stuck check after each pipe is programmed */
verify_allow_pstate_change_high(dc->hwseq);
}
if (pipe_ctx->bottom_pipe != NULL && pipe_ctx->bottom_pipe != pipe_ctx)
program_all_pipe_in_tree(dc, pipe_ctx->bottom_pipe, context);
}
static void dcn10_pplib_apply_display_requirements(
struct dc *dc,
struct dc_state *context)
{
struct dm_pp_display_configuration *pp_display_cfg = &context->pp_display_cfg;
pp_display_cfg->all_displays_in_sync = false;/*todo*/
pp_display_cfg->nb_pstate_switch_disable = false;
pp_display_cfg->min_engine_clock_khz = context->bw.dcn.cur_clk.dcfclk_khz;
pp_display_cfg->min_memory_clock_khz = context->bw.dcn.cur_clk.fclk_khz;
pp_display_cfg->min_engine_clock_deep_sleep_khz = context->bw.dcn.cur_clk.dcfclk_deep_sleep_khz;
pp_display_cfg->min_dcfc_deep_sleep_clock_khz = context->bw.dcn.cur_clk.dcfclk_deep_sleep_khz;
pp_display_cfg->avail_mclk_switch_time_us =
context->bw.dcn.cur_clk.dram_ccm_us > 0 ? context->bw.dcn.cur_clk.dram_ccm_us : 0;
pp_display_cfg->avail_mclk_switch_time_in_disp_active_us =
context->bw.dcn.cur_clk.min_active_dram_ccm_us > 0 ? context->bw.dcn.cur_clk.min_active_dram_ccm_us : 0;
pp_display_cfg->min_dcfclock_khz = context->bw.dcn.cur_clk.dcfclk_khz;
pp_display_cfg->disp_clk_khz = context->bw.dcn.cur_clk.dispclk_khz;
dce110_fill_display_configs(context, pp_display_cfg);
if (memcmp(&dc->prev_display_config, pp_display_cfg, sizeof(
struct dm_pp_display_configuration)) != 0)
dm_pp_apply_display_requirements(dc->ctx, pp_display_cfg);
dc->prev_display_config = *pp_display_cfg;
}
static void optimize_shared_resources(struct dc *dc)
{
if (dc->current_state->stream_count == 0) {
apply_DEGVIDCN10_253_wa(dc);
/* S0i2 message */
dcn10_pplib_apply_display_requirements(dc, dc->current_state);
}
if (dc->debug.pplib_wm_report_mode == WM_REPORT_OVERRIDE)
dcn_bw_notify_pplib_of_wm_ranges(dc);
}
static void ready_shared_resources(struct dc *dc, struct dc_state *context)
{
if (dc->current_state->stream_count == 0 &&
!dc->debug.disable_stutter)
undo_DEGVIDCN10_253_wa(dc);
/* S0i2 message */
if (dc->current_state->stream_count == 0 &&
context->stream_count != 0)
dcn10_pplib_apply_display_requirements(dc, context);
}
static void dcn10_apply_ctx_for_surface(
struct dc *dc,
const struct dc_stream_state *stream,
int num_planes,
struct dc_state *context)
{
int i, be_idx;
if (dc->debug.sanity_checks)
verify_allow_pstate_change_high(dc->hwseq);
be_idx = -1;
for (i = 0; i < dc->res_pool->pipe_count; i++) {
if (stream == context->res_ctx.pipe_ctx[i].stream) {
be_idx = context->res_ctx.pipe_ctx[i].stream_res.tg->inst;
break;
}
}
ASSERT(be_idx != -1);
if (num_planes == 0) {
for (i = dc->res_pool->pipe_count - 1; i >= 0 ; i--) {
struct pipe_ctx *old_pipe_ctx =
&dc->current_state->res_ctx.pipe_ctx[i];
if (old_pipe_ctx->stream_res.tg && old_pipe_ctx->stream_res.tg->inst == be_idx) {
old_pipe_ctx->stream_res.tg->funcs->set_blank(old_pipe_ctx->stream_res.tg, true);
dcn10_power_down_fe(dc, old_pipe_ctx->pipe_idx);
}
}
return;
}
/* reset unused mpcc */
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
struct pipe_ctx *old_pipe_ctx =
&dc->current_state->res_ctx.pipe_ctx[i];
if (!pipe_ctx->plane_state && !old_pipe_ctx->plane_state)
continue;
/*
* Powergate reused pipes that are not powergated
* fairly hacky right now, using opp_id as indicator
*/
if (pipe_ctx->plane_state && !old_pipe_ctx->plane_state) {
if (pipe_ctx->plane_res.hubp->opp_id != 0xf && pipe_ctx->stream_res.tg->inst == be_idx) {
dcn10_power_down_fe(dc, pipe_ctx->pipe_idx);
/*
* power down fe will unlock when calling reset, need
* to lock it back here. Messy, need rework.
*/
pipe_ctx->stream_res.tg->funcs->lock(pipe_ctx->stream_res.tg);
}
}
if ((!pipe_ctx->plane_state && old_pipe_ctx->plane_state)
|| (!pipe_ctx->stream && old_pipe_ctx->stream)) {
if (old_pipe_ctx->stream_res.tg->inst != be_idx)
continue;
if (!old_pipe_ctx->top_pipe) {
ASSERT(0);
continue;
}
/* reset mpc */
dc->res_pool->mpc->funcs->remove(
dc->res_pool->mpc,
&(old_pipe_ctx->stream_res.opp->mpc_tree),
old_pipe_ctx->stream_res.opp->inst,
old_pipe_ctx->pipe_idx);
old_pipe_ctx->stream_res.opp->mpcc_disconnect_pending[old_pipe_ctx->plane_res.hubp->mpcc_id] = true;
/*dm_logger_write(dc->ctx->logger, LOG_ERROR,
"[debug_mpo: apply_ctx disconnect pending on mpcc %d]\n",
old_pipe_ctx->mpcc->inst);*/
if (dc->debug.sanity_checks)
verify_allow_pstate_change_high(dc->hwseq);
old_pipe_ctx->top_pipe = NULL;
old_pipe_ctx->bottom_pipe = NULL;
old_pipe_ctx->plane_state = NULL;
old_pipe_ctx->stream = NULL;
dm_logger_write(dc->ctx->logger, LOG_DC,
"Reset mpcc for pipe %d\n",
old_pipe_ctx->pipe_idx);
}
}
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
if (pipe_ctx->stream != stream)
continue;
/* looking for top pipe to program */
if (!pipe_ctx->top_pipe)
program_all_pipe_in_tree(dc, pipe_ctx, context);
}
dm_logger_write(dc->ctx->logger, LOG_BANDWIDTH_CALCS,
"\n============== Watermark parameters ==============\n"
"a.urgent_ns: %d \n"
"a.cstate_enter_plus_exit: %d \n"
"a.cstate_exit: %d \n"
"a.pstate_change: %d \n"
"a.pte_meta_urgent: %d \n"
"b.urgent_ns: %d \n"
"b.cstate_enter_plus_exit: %d \n"
"b.cstate_exit: %d \n"
"b.pstate_change: %d \n"
"b.pte_meta_urgent: %d \n",
context->bw.dcn.watermarks.a.urgent_ns,
context->bw.dcn.watermarks.a.cstate_pstate.cstate_enter_plus_exit_ns,
context->bw.dcn.watermarks.a.cstate_pstate.cstate_exit_ns,
context->bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns,
context->bw.dcn.watermarks.a.pte_meta_urgent_ns,
context->bw.dcn.watermarks.b.urgent_ns,
context->bw.dcn.watermarks.b.cstate_pstate.cstate_enter_plus_exit_ns,
context->bw.dcn.watermarks.b.cstate_pstate.cstate_exit_ns,
context->bw.dcn.watermarks.b.cstate_pstate.pstate_change_ns,
context->bw.dcn.watermarks.b.pte_meta_urgent_ns
);
dm_logger_write(dc->ctx->logger, LOG_BANDWIDTH_CALCS,
"\nc.urgent_ns: %d \n"
"c.cstate_enter_plus_exit: %d \n"
"c.cstate_exit: %d \n"
"c.pstate_change: %d \n"
"c.pte_meta_urgent: %d \n"
"d.urgent_ns: %d \n"
"d.cstate_enter_plus_exit: %d \n"
"d.cstate_exit: %d \n"
"d.pstate_change: %d \n"
"d.pte_meta_urgent: %d \n"
"========================================================\n",
context->bw.dcn.watermarks.c.urgent_ns,
context->bw.dcn.watermarks.c.cstate_pstate.cstate_enter_plus_exit_ns,
context->bw.dcn.watermarks.c.cstate_pstate.cstate_exit_ns,
context->bw.dcn.watermarks.c.cstate_pstate.pstate_change_ns,
context->bw.dcn.watermarks.c.pte_meta_urgent_ns,
context->bw.dcn.watermarks.d.urgent_ns,
context->bw.dcn.watermarks.d.cstate_pstate.cstate_enter_plus_exit_ns,
context->bw.dcn.watermarks.d.cstate_pstate.cstate_exit_ns,
context->bw.dcn.watermarks.d.cstate_pstate.pstate_change_ns,
context->bw.dcn.watermarks.d.pte_meta_urgent_ns
);
if (dc->debug.sanity_checks)
verify_allow_pstate_change_high(dc->hwseq);
}
static void dcn10_set_bandwidth(
struct dc *dc,
struct dc_state *context,
bool decrease_allowed)
{
struct pp_smu_display_requirement_rv *smu_req_cur =
&dc->res_pool->pp_smu_req;
struct pp_smu_display_requirement_rv smu_req = *smu_req_cur;
struct pp_smu_funcs_rv *pp_smu = dc->res_pool->pp_smu;
if (dc->debug.sanity_checks) {
verify_allow_pstate_change_high(dc->hwseq);
}
if (IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment))
return;
if (decrease_allowed || context->bw.dcn.calc_clk.dispclk_khz
> dc->current_state->bw.dcn.cur_clk.dispclk_khz) {
dc->res_pool->display_clock->funcs->set_clock(
dc->res_pool->display_clock,
context->bw.dcn.calc_clk.dispclk_khz);
dc->current_state->bw.dcn.cur_clk.dispclk_khz =
context->bw.dcn.calc_clk.dispclk_khz;
}
if (decrease_allowed || context->bw.dcn.calc_clk.dcfclk_khz
> dc->current_state->bw.dcn.cur_clk.dcfclk_khz) {
smu_req.hard_min_dcefclk_khz =
context->bw.dcn.calc_clk.dcfclk_khz;
}
if (decrease_allowed || context->bw.dcn.calc_clk.fclk_khz
> dc->current_state->bw.dcn.cur_clk.fclk_khz) {
smu_req.hard_min_fclk_khz = context->bw.dcn.calc_clk.fclk_khz;
}
if (decrease_allowed || context->bw.dcn.calc_clk.dcfclk_deep_sleep_khz
> dc->current_state->bw.dcn.cur_clk.dcfclk_deep_sleep_khz) {
dc->current_state->bw.dcn.calc_clk.dcfclk_deep_sleep_khz =
context->bw.dcn.calc_clk.dcfclk_deep_sleep_khz;
context->bw.dcn.cur_clk.dcfclk_deep_sleep_khz =
context->bw.dcn.calc_clk.dcfclk_deep_sleep_khz;
}
smu_req.display_count = context->stream_count;
if (pp_smu->set_display_requirement)
pp_smu->set_display_requirement(&pp_smu->pp_smu, &smu_req);
*smu_req_cur = smu_req;
/* Decrease in freq is increase in period so opposite comparison for dram_ccm */
if (decrease_allowed || context->bw.dcn.calc_clk.dram_ccm_us
< dc->current_state->bw.dcn.cur_clk.dram_ccm_us) {
dc->current_state->bw.dcn.calc_clk.dram_ccm_us =
context->bw.dcn.calc_clk.dram_ccm_us;
context->bw.dcn.cur_clk.dram_ccm_us =
context->bw.dcn.calc_clk.dram_ccm_us;
}
if (decrease_allowed || context->bw.dcn.calc_clk.min_active_dram_ccm_us
< dc->current_state->bw.dcn.cur_clk.min_active_dram_ccm_us) {
dc->current_state->bw.dcn.calc_clk.min_active_dram_ccm_us =
context->bw.dcn.calc_clk.min_active_dram_ccm_us;
context->bw.dcn.cur_clk.min_active_dram_ccm_us =
context->bw.dcn.calc_clk.min_active_dram_ccm_us;
}
dcn10_pplib_apply_display_requirements(dc, context);
if (dc->debug.sanity_checks) {
verify_allow_pstate_change_high(dc->hwseq);
}
/* need to fix this function. not doing the right thing here */
}
static void set_drr(struct pipe_ctx **pipe_ctx,
int num_pipes, int vmin, int vmax)
{
int i = 0;
struct drr_params params = {0};
params.vertical_total_max = vmax;
params.vertical_total_min = vmin;
/* TODO: If multiple pipes are to be supported, you need
* some GSL stuff
*/
for (i = 0; i < num_pipes; i++) {
pipe_ctx[i]->stream_res.tg->funcs->set_drr(pipe_ctx[i]->stream_res.tg, &params);
}
}
static void get_position(struct pipe_ctx **pipe_ctx,
int num_pipes,
struct crtc_position *position)
{
int i = 0;
/* TODO: handle pipes > 1
*/
for (i = 0; i < num_pipes; i++)
pipe_ctx[i]->stream_res.tg->funcs->get_position(pipe_ctx[i]->stream_res.tg, position);
}
static void set_static_screen_control(struct pipe_ctx **pipe_ctx,
int num_pipes, const struct dc_static_screen_events *events)
{
unsigned int i;
unsigned int value = 0;
if (events->surface_update)
value |= 0x80;
if (events->cursor_update)
value |= 0x2;
for (i = 0; i < num_pipes; i++)
pipe_ctx[i]->stream_res.tg->funcs->
set_static_screen_control(pipe_ctx[i]->stream_res.tg, value);
}
static void set_plane_config(
const struct dc *dc,
struct pipe_ctx *pipe_ctx,
struct resource_context *res_ctx)
{
/* TODO */
program_gamut_remap(pipe_ctx);
}
static void dcn10_config_stereo_parameters(
struct dc_stream_state *stream, struct crtc_stereo_flags *flags)
{
enum view_3d_format view_format = stream->view_format;
enum dc_timing_3d_format timing_3d_format =\
stream->timing.timing_3d_format;
bool non_stereo_timing = false;
if (timing_3d_format == TIMING_3D_FORMAT_NONE ||
timing_3d_format == TIMING_3D_FORMAT_SIDE_BY_SIDE ||
timing_3d_format == TIMING_3D_FORMAT_TOP_AND_BOTTOM)
non_stereo_timing = true;
if (non_stereo_timing == false &&
view_format == VIEW_3D_FORMAT_FRAME_SEQUENTIAL) {
flags->PROGRAM_STEREO = 1;
flags->PROGRAM_POLARITY = 1;
if (timing_3d_format == TIMING_3D_FORMAT_INBAND_FA ||
timing_3d_format == TIMING_3D_FORMAT_DP_HDMI_INBAND_FA ||
timing_3d_format == TIMING_3D_FORMAT_SIDEBAND_FA) {
enum display_dongle_type dongle = \
stream->sink->link->ddc->dongle_type;
if (dongle == DISPLAY_DONGLE_DP_VGA_CONVERTER ||
dongle == DISPLAY_DONGLE_DP_DVI_CONVERTER ||
dongle == DISPLAY_DONGLE_DP_HDMI_CONVERTER)
flags->DISABLE_STEREO_DP_SYNC = 1;
}
flags->RIGHT_EYE_POLARITY =\
stream->timing.flags.RIGHT_EYE_3D_POLARITY;
if (timing_3d_format == TIMING_3D_FORMAT_HW_FRAME_PACKING)
flags->FRAME_PACKED = 1;
}
return;
}
static void dcn10_setup_stereo(struct pipe_ctx *pipe_ctx, struct dc *dc)
{
struct crtc_stereo_flags flags = { 0 };
struct dc_stream_state *stream = pipe_ctx->stream;
dcn10_config_stereo_parameters(stream, &flags);
pipe_ctx->stream_res.opp->funcs->opp_set_stereo_polarity(
pipe_ctx->stream_res.opp,
flags.PROGRAM_STEREO == 1 ? true:false,
stream->timing.flags.RIGHT_EYE_3D_POLARITY == 1 ? true:false);
pipe_ctx->stream_res.tg->funcs->program_stereo(
pipe_ctx->stream_res.tg,
&stream->timing,
&flags);
return;
}
static void dcn10_wait_for_mpcc_disconnect(
struct dc *dc,
struct resource_pool *res_pool,
struct pipe_ctx *pipe_ctx)
{
int i;
if (dc->debug.sanity_checks) {
verify_allow_pstate_change_high(dc->hwseq);
}
if (!pipe_ctx->stream_res.opp)
return;
for (i = 0; i < MAX_PIPES; i++) {
if (pipe_ctx->stream_res.opp->mpcc_disconnect_pending[i]) {
res_pool->mpc->funcs->wait_for_idle(res_pool->mpc, i);
pipe_ctx->stream_res.opp->mpcc_disconnect_pending[i] = false;
res_pool->hubps[i]->funcs->set_blank(res_pool->hubps[i], true);
/*dm_logger_write(dc->ctx->logger, LOG_ERROR,
"[debug_mpo: wait_for_mpcc finished waiting on mpcc %d]\n",
i);*/
}
}
if (dc->debug.sanity_checks) {
verify_allow_pstate_change_high(dc->hwseq);
}
}
static bool dcn10_dummy_display_power_gating(
struct dc *dc,
uint8_t controller_id,
struct dc_bios *dcb,
enum pipe_gating_control power_gating)
{
return true;
}
void dcn10_update_pending_status(struct pipe_ctx *pipe_ctx)
{
struct dc_plane_state *plane_state = pipe_ctx->plane_state;
struct timing_generator *tg = pipe_ctx->stream_res.tg;
if (plane_state == NULL)
return;
plane_state->status.is_flip_pending =
pipe_ctx->plane_res.hubp->funcs->hubp_is_flip_pending(
pipe_ctx->plane_res.hubp);
plane_state->status.current_address = pipe_ctx->plane_res.hubp->current_address;
if (pipe_ctx->plane_res.hubp->current_address.type == PLN_ADDR_TYPE_GRPH_STEREO &&
tg->funcs->is_stereo_left_eye) {
plane_state->status.is_right_eye =
!tg->funcs->is_stereo_left_eye(pipe_ctx->stream_res.tg);
}
}
static const struct hw_sequencer_funcs dcn10_funcs = {
.program_gamut_remap = program_gamut_remap,
.program_csc_matrix = program_csc_matrix,
.init_hw = dcn10_init_hw,
.apply_ctx_to_hw = dce110_apply_ctx_to_hw,
.apply_ctx_for_surface = dcn10_apply_ctx_for_surface,
.set_plane_config = set_plane_config,
.update_plane_addr = dcn10_update_plane_addr,
.update_dchub = dcn10_update_dchub,
.update_pending_status = dcn10_update_pending_status,
.set_input_transfer_func = dcn10_set_input_transfer_func,
.set_output_transfer_func = dcn10_set_output_transfer_func,
.power_down = dce110_power_down,
.enable_accelerated_mode = dce110_enable_accelerated_mode,
.enable_timing_synchronization = dcn10_enable_timing_synchronization,
.update_info_frame = dce110_update_info_frame,
.enable_stream = dce110_enable_stream,
.disable_stream = dce110_disable_stream,
.unblank_stream = dce110_unblank_stream,
.enable_display_power_gating = dcn10_dummy_display_power_gating,
.power_down_front_end = dcn10_power_down_fe,
.power_on_front_end = dcn10_power_on_fe,
.pipe_control_lock = dcn10_pipe_control_lock,
.set_bandwidth = dcn10_set_bandwidth,
.reset_hw_ctx_wrap = reset_hw_ctx_wrap,
.prog_pixclk_crtc_otg = dcn10_prog_pixclk_crtc_otg,
.set_drr = set_drr,
.get_position = get_position,
.set_static_screen_control = set_static_screen_control,
.setup_stereo = dcn10_setup_stereo,
.set_avmute = dce110_set_avmute,
.log_hw_state = dcn10_log_hw_state,
.wait_for_mpcc_disconnect = dcn10_wait_for_mpcc_disconnect,
.ready_shared_resources = ready_shared_resources,
.optimize_shared_resources = optimize_shared_resources,
.edp_backlight_control = hwss_edp_backlight_control,
.edp_power_control = hwss_edp_power_control
};
void dcn10_hw_sequencer_construct(struct dc *dc)
{
dc->hwss = dcn10_funcs;
}