| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Functions related to segment and merge handling |
| */ |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/bio.h> |
| #include <linux/blkdev.h> |
| #include <linux/scatterlist.h> |
| |
| #include <trace/events/block.h> |
| |
| #include "blk.h" |
| |
| static inline bool bio_will_gap(struct request_queue *q, |
| struct request *prev_rq, struct bio *prev, struct bio *next) |
| { |
| struct bio_vec pb, nb; |
| |
| if (!bio_has_data(prev) || !queue_virt_boundary(q)) |
| return false; |
| |
| /* |
| * Don't merge if the 1st bio starts with non-zero offset, otherwise it |
| * is quite difficult to respect the sg gap limit. We work hard to |
| * merge a huge number of small single bios in case of mkfs. |
| */ |
| if (prev_rq) |
| bio_get_first_bvec(prev_rq->bio, &pb); |
| else |
| bio_get_first_bvec(prev, &pb); |
| if (pb.bv_offset & queue_virt_boundary(q)) |
| return true; |
| |
| /* |
| * We don't need to worry about the situation that the merged segment |
| * ends in unaligned virt boundary: |
| * |
| * - if 'pb' ends aligned, the merged segment ends aligned |
| * - if 'pb' ends unaligned, the next bio must include |
| * one single bvec of 'nb', otherwise the 'nb' can't |
| * merge with 'pb' |
| */ |
| bio_get_last_bvec(prev, &pb); |
| bio_get_first_bvec(next, &nb); |
| if (biovec_phys_mergeable(q, &pb, &nb)) |
| return false; |
| return __bvec_gap_to_prev(q, &pb, nb.bv_offset); |
| } |
| |
| static inline bool req_gap_back_merge(struct request *req, struct bio *bio) |
| { |
| return bio_will_gap(req->q, req, req->biotail, bio); |
| } |
| |
| static inline bool req_gap_front_merge(struct request *req, struct bio *bio) |
| { |
| return bio_will_gap(req->q, NULL, bio, req->bio); |
| } |
| |
| static struct bio *blk_bio_discard_split(struct request_queue *q, |
| struct bio *bio, |
| struct bio_set *bs, |
| unsigned *nsegs) |
| { |
| unsigned int max_discard_sectors, granularity; |
| int alignment; |
| sector_t tmp; |
| unsigned split_sectors; |
| |
| *nsegs = 1; |
| |
| /* Zero-sector (unknown) and one-sector granularities are the same. */ |
| granularity = max(q->limits.discard_granularity >> 9, 1U); |
| |
| max_discard_sectors = min(q->limits.max_discard_sectors, |
| bio_allowed_max_sectors(q)); |
| max_discard_sectors -= max_discard_sectors % granularity; |
| |
| if (unlikely(!max_discard_sectors)) { |
| /* XXX: warn */ |
| return NULL; |
| } |
| |
| if (bio_sectors(bio) <= max_discard_sectors) |
| return NULL; |
| |
| split_sectors = max_discard_sectors; |
| |
| /* |
| * If the next starting sector would be misaligned, stop the discard at |
| * the previous aligned sector. |
| */ |
| alignment = (q->limits.discard_alignment >> 9) % granularity; |
| |
| tmp = bio->bi_iter.bi_sector + split_sectors - alignment; |
| tmp = sector_div(tmp, granularity); |
| |
| if (split_sectors > tmp) |
| split_sectors -= tmp; |
| |
| return bio_split(bio, split_sectors, GFP_NOIO, bs); |
| } |
| |
| static struct bio *blk_bio_write_zeroes_split(struct request_queue *q, |
| struct bio *bio, struct bio_set *bs, unsigned *nsegs) |
| { |
| *nsegs = 0; |
| |
| if (!q->limits.max_write_zeroes_sectors) |
| return NULL; |
| |
| if (bio_sectors(bio) <= q->limits.max_write_zeroes_sectors) |
| return NULL; |
| |
| return bio_split(bio, q->limits.max_write_zeroes_sectors, GFP_NOIO, bs); |
| } |
| |
| static struct bio *blk_bio_write_same_split(struct request_queue *q, |
| struct bio *bio, |
| struct bio_set *bs, |
| unsigned *nsegs) |
| { |
| *nsegs = 1; |
| |
| if (!q->limits.max_write_same_sectors) |
| return NULL; |
| |
| if (bio_sectors(bio) <= q->limits.max_write_same_sectors) |
| return NULL; |
| |
| return bio_split(bio, q->limits.max_write_same_sectors, GFP_NOIO, bs); |
| } |
| |
| /* |
| * Return the maximum number of sectors from the start of a bio that may be |
| * submitted as a single request to a block device. If enough sectors remain, |
| * align the end to the physical block size. Otherwise align the end to the |
| * logical block size. This approach minimizes the number of non-aligned |
| * requests that are submitted to a block device if the start of a bio is not |
| * aligned to a physical block boundary. |
| */ |
| static inline unsigned get_max_io_size(struct request_queue *q, |
| struct bio *bio) |
| { |
| unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector); |
| unsigned max_sectors = sectors; |
| unsigned pbs = queue_physical_block_size(q) >> SECTOR_SHIFT; |
| unsigned lbs = queue_logical_block_size(q) >> SECTOR_SHIFT; |
| unsigned start_offset = bio->bi_iter.bi_sector & (pbs - 1); |
| |
| max_sectors += start_offset; |
| max_sectors &= ~(pbs - 1); |
| if (max_sectors > start_offset) |
| return max_sectors - start_offset; |
| |
| return sectors & (lbs - 1); |
| } |
| |
| static inline unsigned get_max_segment_size(const struct request_queue *q, |
| struct page *start_page, |
| unsigned long offset) |
| { |
| unsigned long mask = queue_segment_boundary(q); |
| |
| offset = mask & (page_to_phys(start_page) + offset); |
| |
| /* |
| * overflow may be triggered in case of zero page physical address |
| * on 32bit arch, use queue's max segment size when that happens. |
| */ |
| return min_not_zero(mask - offset + 1, |
| (unsigned long)queue_max_segment_size(q)); |
| } |
| |
| /** |
| * bvec_split_segs - verify whether or not a bvec should be split in the middle |
| * @q: [in] request queue associated with the bio associated with @bv |
| * @bv: [in] bvec to examine |
| * @nsegs: [in,out] Number of segments in the bio being built. Incremented |
| * by the number of segments from @bv that may be appended to that |
| * bio without exceeding @max_segs |
| * @sectors: [in,out] Number of sectors in the bio being built. Incremented |
| * by the number of sectors from @bv that may be appended to that |
| * bio without exceeding @max_sectors |
| * @max_segs: [in] upper bound for *@nsegs |
| * @max_sectors: [in] upper bound for *@sectors |
| * |
| * When splitting a bio, it can happen that a bvec is encountered that is too |
| * big to fit in a single segment and hence that it has to be split in the |
| * middle. This function verifies whether or not that should happen. The value |
| * %true is returned if and only if appending the entire @bv to a bio with |
| * *@nsegs segments and *@sectors sectors would make that bio unacceptable for |
| * the block driver. |
| */ |
| static bool bvec_split_segs(const struct request_queue *q, |
| const struct bio_vec *bv, unsigned *nsegs, |
| unsigned *sectors, unsigned max_segs, |
| unsigned max_sectors) |
| { |
| unsigned max_len = (min(max_sectors, UINT_MAX >> 9) - *sectors) << 9; |
| unsigned len = min(bv->bv_len, max_len); |
| unsigned total_len = 0; |
| unsigned seg_size = 0; |
| |
| while (len && *nsegs < max_segs) { |
| seg_size = get_max_segment_size(q, bv->bv_page, |
| bv->bv_offset + total_len); |
| seg_size = min(seg_size, len); |
| |
| (*nsegs)++; |
| total_len += seg_size; |
| len -= seg_size; |
| |
| if ((bv->bv_offset + total_len) & queue_virt_boundary(q)) |
| break; |
| } |
| |
| *sectors += total_len >> 9; |
| |
| /* tell the caller to split the bvec if it is too big to fit */ |
| return len > 0 || bv->bv_len > max_len; |
| } |
| |
| /** |
| * blk_bio_segment_split - split a bio in two bios |
| * @q: [in] request queue pointer |
| * @bio: [in] bio to be split |
| * @bs: [in] bio set to allocate the clone from |
| * @segs: [out] number of segments in the bio with the first half of the sectors |
| * |
| * Clone @bio, update the bi_iter of the clone to represent the first sectors |
| * of @bio and update @bio->bi_iter to represent the remaining sectors. The |
| * following is guaranteed for the cloned bio: |
| * - That it has at most get_max_io_size(@q, @bio) sectors. |
| * - That it has at most queue_max_segments(@q) segments. |
| * |
| * Except for discard requests the cloned bio will point at the bi_io_vec of |
| * the original bio. It is the responsibility of the caller to ensure that the |
| * original bio is not freed before the cloned bio. The caller is also |
| * responsible for ensuring that @bs is only destroyed after processing of the |
| * split bio has finished. |
| */ |
| static struct bio *blk_bio_segment_split(struct request_queue *q, |
| struct bio *bio, |
| struct bio_set *bs, |
| unsigned *segs) |
| { |
| struct bio_vec bv, bvprv, *bvprvp = NULL; |
| struct bvec_iter iter; |
| unsigned nsegs = 0, sectors = 0; |
| const unsigned max_sectors = get_max_io_size(q, bio); |
| const unsigned max_segs = queue_max_segments(q); |
| |
| bio_for_each_bvec(bv, bio, iter) { |
| /* |
| * If the queue doesn't support SG gaps and adding this |
| * offset would create a gap, disallow it. |
| */ |
| if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset)) |
| goto split; |
| |
| if (nsegs < max_segs && |
| sectors + (bv.bv_len >> 9) <= max_sectors && |
| bv.bv_offset + bv.bv_len <= PAGE_SIZE) { |
| nsegs++; |
| sectors += bv.bv_len >> 9; |
| } else if (bvec_split_segs(q, &bv, &nsegs, §ors, max_segs, |
| max_sectors)) { |
| goto split; |
| } |
| |
| bvprv = bv; |
| bvprvp = &bvprv; |
| } |
| |
| *segs = nsegs; |
| return NULL; |
| split: |
| *segs = nsegs; |
| return bio_split(bio, sectors, GFP_NOIO, bs); |
| } |
| |
| /** |
| * __blk_queue_split - split a bio and submit the second half |
| * @bio: [in, out] bio to be split |
| * @nr_segs: [out] number of segments in the first bio |
| * |
| * Split a bio into two bios, chain the two bios, submit the second half and |
| * store a pointer to the first half in *@bio. If the second bio is still too |
| * big it will be split by a recursive call to this function. Since this |
| * function may allocate a new bio from @bio->bi_disk->queue->bio_split, it is |
| * the responsibility of the caller to ensure that |
| * @bio->bi_disk->queue->bio_split is only released after processing of the |
| * split bio has finished. |
| */ |
| void __blk_queue_split(struct bio **bio, unsigned int *nr_segs) |
| { |
| struct request_queue *q = (*bio)->bi_disk->queue; |
| struct bio *split = NULL; |
| |
| switch (bio_op(*bio)) { |
| case REQ_OP_DISCARD: |
| case REQ_OP_SECURE_ERASE: |
| split = blk_bio_discard_split(q, *bio, &q->bio_split, nr_segs); |
| break; |
| case REQ_OP_WRITE_ZEROES: |
| split = blk_bio_write_zeroes_split(q, *bio, &q->bio_split, |
| nr_segs); |
| break; |
| case REQ_OP_WRITE_SAME: |
| split = blk_bio_write_same_split(q, *bio, &q->bio_split, |
| nr_segs); |
| break; |
| default: |
| /* |
| * All drivers must accept single-segments bios that are <= |
| * PAGE_SIZE. This is a quick and dirty check that relies on |
| * the fact that bi_io_vec[0] is always valid if a bio has data. |
| * The check might lead to occasional false negatives when bios |
| * are cloned, but compared to the performance impact of cloned |
| * bios themselves the loop below doesn't matter anyway. |
| */ |
| if (!q->limits.chunk_sectors && |
| (*bio)->bi_vcnt == 1 && |
| ((*bio)->bi_io_vec[0].bv_len + |
| (*bio)->bi_io_vec[0].bv_offset) <= PAGE_SIZE) { |
| *nr_segs = 1; |
| break; |
| } |
| split = blk_bio_segment_split(q, *bio, &q->bio_split, nr_segs); |
| break; |
| } |
| |
| if (split) { |
| /* there isn't chance to merge the splitted bio */ |
| split->bi_opf |= REQ_NOMERGE; |
| |
| bio_chain(split, *bio); |
| trace_block_split(q, split, (*bio)->bi_iter.bi_sector); |
| submit_bio_noacct(*bio); |
| *bio = split; |
| } |
| } |
| |
| /** |
| * blk_queue_split - split a bio and submit the second half |
| * @bio: [in, out] bio to be split |
| * |
| * Split a bio into two bios, chains the two bios, submit the second half and |
| * store a pointer to the first half in *@bio. Since this function may allocate |
| * a new bio from @bio->bi_disk->queue->bio_split, it is the responsibility of |
| * the caller to ensure that @bio->bi_disk->queue->bio_split is only released |
| * after processing of the split bio has finished. |
| */ |
| void blk_queue_split(struct bio **bio) |
| { |
| unsigned int nr_segs; |
| |
| __blk_queue_split(bio, &nr_segs); |
| } |
| EXPORT_SYMBOL(blk_queue_split); |
| |
| unsigned int blk_recalc_rq_segments(struct request *rq) |
| { |
| unsigned int nr_phys_segs = 0; |
| unsigned int nr_sectors = 0; |
| struct req_iterator iter; |
| struct bio_vec bv; |
| |
| if (!rq->bio) |
| return 0; |
| |
| switch (bio_op(rq->bio)) { |
| case REQ_OP_DISCARD: |
| case REQ_OP_SECURE_ERASE: |
| case REQ_OP_WRITE_ZEROES: |
| return 0; |
| case REQ_OP_WRITE_SAME: |
| return 1; |
| } |
| |
| rq_for_each_bvec(bv, rq, iter) |
| bvec_split_segs(rq->q, &bv, &nr_phys_segs, &nr_sectors, |
| UINT_MAX, UINT_MAX); |
| return nr_phys_segs; |
| } |
| |
| static inline struct scatterlist *blk_next_sg(struct scatterlist **sg, |
| struct scatterlist *sglist) |
| { |
| if (!*sg) |
| return sglist; |
| |
| /* |
| * If the driver previously mapped a shorter list, we could see a |
| * termination bit prematurely unless it fully inits the sg table |
| * on each mapping. We KNOW that there must be more entries here |
| * or the driver would be buggy, so force clear the termination bit |
| * to avoid doing a full sg_init_table() in drivers for each command. |
| */ |
| sg_unmark_end(*sg); |
| return sg_next(*sg); |
| } |
| |
| static unsigned blk_bvec_map_sg(struct request_queue *q, |
| struct bio_vec *bvec, struct scatterlist *sglist, |
| struct scatterlist **sg) |
| { |
| unsigned nbytes = bvec->bv_len; |
| unsigned nsegs = 0, total = 0; |
| |
| while (nbytes > 0) { |
| unsigned offset = bvec->bv_offset + total; |
| unsigned len = min(get_max_segment_size(q, bvec->bv_page, |
| offset), nbytes); |
| struct page *page = bvec->bv_page; |
| |
| /* |
| * Unfortunately a fair number of drivers barf on scatterlists |
| * that have an offset larger than PAGE_SIZE, despite other |
| * subsystems dealing with that invariant just fine. For now |
| * stick to the legacy format where we never present those from |
| * the block layer, but the code below should be removed once |
| * these offenders (mostly MMC/SD drivers) are fixed. |
| */ |
| page += (offset >> PAGE_SHIFT); |
| offset &= ~PAGE_MASK; |
| |
| *sg = blk_next_sg(sg, sglist); |
| sg_set_page(*sg, page, len, offset); |
| |
| total += len; |
| nbytes -= len; |
| nsegs++; |
| } |
| |
| return nsegs; |
| } |
| |
| static inline int __blk_bvec_map_sg(struct bio_vec bv, |
| struct scatterlist *sglist, struct scatterlist **sg) |
| { |
| *sg = blk_next_sg(sg, sglist); |
| sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset); |
| return 1; |
| } |
| |
| /* only try to merge bvecs into one sg if they are from two bios */ |
| static inline bool |
| __blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec, |
| struct bio_vec *bvprv, struct scatterlist **sg) |
| { |
| |
| int nbytes = bvec->bv_len; |
| |
| if (!*sg) |
| return false; |
| |
| if ((*sg)->length + nbytes > queue_max_segment_size(q)) |
| return false; |
| |
| if (!biovec_phys_mergeable(q, bvprv, bvec)) |
| return false; |
| |
| (*sg)->length += nbytes; |
| |
| return true; |
| } |
| |
| static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio, |
| struct scatterlist *sglist, |
| struct scatterlist **sg) |
| { |
| struct bio_vec uninitialized_var(bvec), bvprv = { NULL }; |
| struct bvec_iter iter; |
| int nsegs = 0; |
| bool new_bio = false; |
| |
| for_each_bio(bio) { |
| bio_for_each_bvec(bvec, bio, iter) { |
| /* |
| * Only try to merge bvecs from two bios given we |
| * have done bio internal merge when adding pages |
| * to bio |
| */ |
| if (new_bio && |
| __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg)) |
| goto next_bvec; |
| |
| if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE) |
| nsegs += __blk_bvec_map_sg(bvec, sglist, sg); |
| else |
| nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg); |
| next_bvec: |
| new_bio = false; |
| } |
| if (likely(bio->bi_iter.bi_size)) { |
| bvprv = bvec; |
| new_bio = true; |
| } |
| } |
| |
| return nsegs; |
| } |
| |
| /* |
| * map a request to scatterlist, return number of sg entries setup. Caller |
| * must make sure sg can hold rq->nr_phys_segments entries |
| */ |
| int __blk_rq_map_sg(struct request_queue *q, struct request *rq, |
| struct scatterlist *sglist, struct scatterlist **last_sg) |
| { |
| int nsegs = 0; |
| |
| if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) |
| nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg); |
| else if (rq->bio && bio_op(rq->bio) == REQ_OP_WRITE_SAME) |
| nsegs = __blk_bvec_map_sg(bio_iovec(rq->bio), sglist, last_sg); |
| else if (rq->bio) |
| nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg); |
| |
| if (*last_sg) |
| sg_mark_end(*last_sg); |
| |
| /* |
| * Something must have been wrong if the figured number of |
| * segment is bigger than number of req's physical segments |
| */ |
| WARN_ON(nsegs > blk_rq_nr_phys_segments(rq)); |
| |
| return nsegs; |
| } |
| EXPORT_SYMBOL(__blk_rq_map_sg); |
| |
| static inline int ll_new_hw_segment(struct request *req, struct bio *bio, |
| unsigned int nr_phys_segs) |
| { |
| if (req->nr_phys_segments + nr_phys_segs > queue_max_segments(req->q)) |
| goto no_merge; |
| |
| if (blk_integrity_merge_bio(req->q, req, bio) == false) |
| goto no_merge; |
| |
| /* |
| * This will form the start of a new hw segment. Bump both |
| * counters. |
| */ |
| req->nr_phys_segments += nr_phys_segs; |
| return 1; |
| |
| no_merge: |
| req_set_nomerge(req->q, req); |
| return 0; |
| } |
| |
| int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs) |
| { |
| if (req_gap_back_merge(req, bio)) |
| return 0; |
| if (blk_integrity_rq(req) && |
| integrity_req_gap_back_merge(req, bio)) |
| return 0; |
| if (!bio_crypt_ctx_back_mergeable(req, bio)) |
| return 0; |
| if (blk_rq_sectors(req) + bio_sectors(bio) > |
| blk_rq_get_max_sectors(req, blk_rq_pos(req))) { |
| req_set_nomerge(req->q, req); |
| return 0; |
| } |
| |
| return ll_new_hw_segment(req, bio, nr_segs); |
| } |
| |
| int ll_front_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs) |
| { |
| if (req_gap_front_merge(req, bio)) |
| return 0; |
| if (blk_integrity_rq(req) && |
| integrity_req_gap_front_merge(req, bio)) |
| return 0; |
| if (!bio_crypt_ctx_front_mergeable(req, bio)) |
| return 0; |
| if (blk_rq_sectors(req) + bio_sectors(bio) > |
| blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) { |
| req_set_nomerge(req->q, req); |
| return 0; |
| } |
| |
| return ll_new_hw_segment(req, bio, nr_segs); |
| } |
| |
| static bool req_attempt_discard_merge(struct request_queue *q, struct request *req, |
| struct request *next) |
| { |
| unsigned short segments = blk_rq_nr_discard_segments(req); |
| |
| if (segments >= queue_max_discard_segments(q)) |
| goto no_merge; |
| if (blk_rq_sectors(req) + bio_sectors(next->bio) > |
| blk_rq_get_max_sectors(req, blk_rq_pos(req))) |
| goto no_merge; |
| |
| req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next); |
| return true; |
| no_merge: |
| req_set_nomerge(q, req); |
| return false; |
| } |
| |
| static int ll_merge_requests_fn(struct request_queue *q, struct request *req, |
| struct request *next) |
| { |
| int total_phys_segments; |
| |
| if (req_gap_back_merge(req, next->bio)) |
| return 0; |
| |
| /* |
| * Will it become too large? |
| */ |
| if ((blk_rq_sectors(req) + blk_rq_sectors(next)) > |
| blk_rq_get_max_sectors(req, blk_rq_pos(req))) |
| return 0; |
| |
| total_phys_segments = req->nr_phys_segments + next->nr_phys_segments; |
| if (total_phys_segments > queue_max_segments(q)) |
| return 0; |
| |
| if (blk_integrity_merge_rq(q, req, next) == false) |
| return 0; |
| |
| if (!bio_crypt_ctx_merge_rq(req, next)) |
| return 0; |
| |
| /* Merge is OK... */ |
| req->nr_phys_segments = total_phys_segments; |
| return 1; |
| } |
| |
| /** |
| * blk_rq_set_mixed_merge - mark a request as mixed merge |
| * @rq: request to mark as mixed merge |
| * |
| * Description: |
| * @rq is about to be mixed merged. Make sure the attributes |
| * which can be mixed are set in each bio and mark @rq as mixed |
| * merged. |
| */ |
| void blk_rq_set_mixed_merge(struct request *rq) |
| { |
| unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; |
| struct bio *bio; |
| |
| if (rq->rq_flags & RQF_MIXED_MERGE) |
| return; |
| |
| /* |
| * @rq will no longer represent mixable attributes for all the |
| * contained bios. It will just track those of the first one. |
| * Distributes the attributs to each bio. |
| */ |
| for (bio = rq->bio; bio; bio = bio->bi_next) { |
| WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) && |
| (bio->bi_opf & REQ_FAILFAST_MASK) != ff); |
| bio->bi_opf |= ff; |
| } |
| rq->rq_flags |= RQF_MIXED_MERGE; |
| } |
| |
| static void blk_account_io_merge_request(struct request *req) |
| { |
| if (blk_do_io_stat(req)) { |
| part_stat_lock(); |
| part_stat_inc(req->part, merges[op_stat_group(req_op(req))]); |
| part_stat_unlock(); |
| |
| hd_struct_put(req->part); |
| } |
| } |
| |
| /* |
| * Two cases of handling DISCARD merge: |
| * If max_discard_segments > 1, the driver takes every bio |
| * as a range and send them to controller together. The ranges |
| * needn't to be contiguous. |
| * Otherwise, the bios/requests will be handled as same as |
| * others which should be contiguous. |
| */ |
| static inline bool blk_discard_mergable(struct request *req) |
| { |
| if (req_op(req) == REQ_OP_DISCARD && |
| queue_max_discard_segments(req->q) > 1) |
| return true; |
| return false; |
| } |
| |
| static enum elv_merge blk_try_req_merge(struct request *req, |
| struct request *next) |
| { |
| if (blk_discard_mergable(req)) |
| return ELEVATOR_DISCARD_MERGE; |
| else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next)) |
| return ELEVATOR_BACK_MERGE; |
| |
| return ELEVATOR_NO_MERGE; |
| } |
| |
| /* |
| * For non-mq, this has to be called with the request spinlock acquired. |
| * For mq with scheduling, the appropriate queue wide lock should be held. |
| */ |
| static struct request *attempt_merge(struct request_queue *q, |
| struct request *req, struct request *next) |
| { |
| if (!rq_mergeable(req) || !rq_mergeable(next)) |
| return NULL; |
| |
| if (req_op(req) != req_op(next)) |
| return NULL; |
| |
| if (rq_data_dir(req) != rq_data_dir(next) |
| || req->rq_disk != next->rq_disk) |
| return NULL; |
| |
| if (req_op(req) == REQ_OP_WRITE_SAME && |
| !blk_write_same_mergeable(req->bio, next->bio)) |
| return NULL; |
| |
| /* |
| * Don't allow merge of different write hints, or for a hint with |
| * non-hint IO. |
| */ |
| if (req->write_hint != next->write_hint) |
| return NULL; |
| |
| if (req->ioprio != next->ioprio) |
| return NULL; |
| |
| /* |
| * If we are allowed to merge, then append bio list |
| * from next to rq and release next. merge_requests_fn |
| * will have updated segment counts, update sector |
| * counts here. Handle DISCARDs separately, as they |
| * have separate settings. |
| */ |
| |
| switch (blk_try_req_merge(req, next)) { |
| case ELEVATOR_DISCARD_MERGE: |
| if (!req_attempt_discard_merge(q, req, next)) |
| return NULL; |
| break; |
| case ELEVATOR_BACK_MERGE: |
| if (!ll_merge_requests_fn(q, req, next)) |
| return NULL; |
| break; |
| default: |
| return NULL; |
| } |
| |
| /* |
| * If failfast settings disagree or any of the two is already |
| * a mixed merge, mark both as mixed before proceeding. This |
| * makes sure that all involved bios have mixable attributes |
| * set properly. |
| */ |
| if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) || |
| (req->cmd_flags & REQ_FAILFAST_MASK) != |
| (next->cmd_flags & REQ_FAILFAST_MASK)) { |
| blk_rq_set_mixed_merge(req); |
| blk_rq_set_mixed_merge(next); |
| } |
| |
| /* |
| * At this point we have either done a back merge or front merge. We |
| * need the smaller start_time_ns of the merged requests to be the |
| * current request for accounting purposes. |
| */ |
| if (next->start_time_ns < req->start_time_ns) |
| req->start_time_ns = next->start_time_ns; |
| |
| req->biotail->bi_next = next->bio; |
| req->biotail = next->biotail; |
| |
| req->__data_len += blk_rq_bytes(next); |
| |
| if (!blk_discard_mergable(req)) |
| elv_merge_requests(q, req, next); |
| |
| /* |
| * 'next' is going away, so update stats accordingly |
| */ |
| blk_account_io_merge_request(next); |
| |
| trace_block_rq_merge(q, next); |
| |
| /* |
| * ownership of bio passed from next to req, return 'next' for |
| * the caller to free |
| */ |
| next->bio = NULL; |
| return next; |
| } |
| |
| struct request *attempt_back_merge(struct request_queue *q, struct request *rq) |
| { |
| struct request *next = elv_latter_request(q, rq); |
| |
| if (next) |
| return attempt_merge(q, rq, next); |
| |
| return NULL; |
| } |
| |
| struct request *attempt_front_merge(struct request_queue *q, struct request *rq) |
| { |
| struct request *prev = elv_former_request(q, rq); |
| |
| if (prev) |
| return attempt_merge(q, prev, rq); |
| |
| return NULL; |
| } |
| |
| int blk_attempt_req_merge(struct request_queue *q, struct request *rq, |
| struct request *next) |
| { |
| struct request *free; |
| |
| free = attempt_merge(q, rq, next); |
| if (free) { |
| blk_put_request(free); |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| bool blk_rq_merge_ok(struct request *rq, struct bio *bio) |
| { |
| if (!rq_mergeable(rq) || !bio_mergeable(bio)) |
| return false; |
| |
| if (req_op(rq) != bio_op(bio)) |
| return false; |
| |
| /* different data direction or already started, don't merge */ |
| if (bio_data_dir(bio) != rq_data_dir(rq)) |
| return false; |
| |
| /* must be same device */ |
| if (rq->rq_disk != bio->bi_disk) |
| return false; |
| |
| /* only merge integrity protected bio into ditto rq */ |
| if (blk_integrity_merge_bio(rq->q, rq, bio) == false) |
| return false; |
| |
| /* Only merge if the crypt contexts are compatible */ |
| if (!bio_crypt_rq_ctx_compatible(rq, bio)) |
| return false; |
| |
| /* must be using the same buffer */ |
| if (req_op(rq) == REQ_OP_WRITE_SAME && |
| !blk_write_same_mergeable(rq->bio, bio)) |
| return false; |
| |
| /* |
| * Don't allow merge of different write hints, or for a hint with |
| * non-hint IO. |
| */ |
| if (rq->write_hint != bio->bi_write_hint) |
| return false; |
| |
| if (rq->ioprio != bio_prio(bio)) |
| return false; |
| |
| return true; |
| } |
| |
| enum elv_merge blk_try_merge(struct request *rq, struct bio *bio) |
| { |
| if (blk_discard_mergable(rq)) |
| return ELEVATOR_DISCARD_MERGE; |
| else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector) |
| return ELEVATOR_BACK_MERGE; |
| else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector) |
| return ELEVATOR_FRONT_MERGE; |
| return ELEVATOR_NO_MERGE; |
| } |