| // SPDX-License-Identifier: MIT |
| /* |
| * Copyright © 2019 Intel Corporation |
| */ |
| |
| #include "i915_drv.h" |
| #include "intel_lrc_reg.h" |
| #include "intel_sseu.h" |
| |
| void intel_sseu_set_info(struct sseu_dev_info *sseu, u8 max_slices, |
| u8 max_subslices, u8 max_eus_per_subslice) |
| { |
| sseu->max_slices = max_slices; |
| sseu->max_subslices = max_subslices; |
| sseu->max_eus_per_subslice = max_eus_per_subslice; |
| |
| sseu->ss_stride = GEN_SSEU_STRIDE(sseu->max_subslices); |
| GEM_BUG_ON(sseu->ss_stride > GEN_MAX_SUBSLICE_STRIDE); |
| sseu->eu_stride = GEN_SSEU_STRIDE(sseu->max_eus_per_subslice); |
| GEM_BUG_ON(sseu->eu_stride > GEN_MAX_EU_STRIDE); |
| } |
| |
| unsigned int |
| intel_sseu_subslice_total(const struct sseu_dev_info *sseu) |
| { |
| unsigned int i, total = 0; |
| |
| for (i = 0; i < ARRAY_SIZE(sseu->subslice_mask); i++) |
| total += hweight8(sseu->subslice_mask[i]); |
| |
| return total; |
| } |
| |
| u32 intel_sseu_get_subslices(const struct sseu_dev_info *sseu, u8 slice) |
| { |
| int i, offset = slice * sseu->ss_stride; |
| u32 mask = 0; |
| |
| GEM_BUG_ON(slice >= sseu->max_slices); |
| |
| for (i = 0; i < sseu->ss_stride; i++) |
| mask |= (u32)sseu->subslice_mask[offset + i] << |
| i * BITS_PER_BYTE; |
| |
| return mask; |
| } |
| |
| void intel_sseu_set_subslices(struct sseu_dev_info *sseu, int slice, |
| u8 *subslice_mask, u32 ss_mask) |
| { |
| int offset = slice * sseu->ss_stride; |
| |
| memcpy(&subslice_mask[offset], &ss_mask, sseu->ss_stride); |
| } |
| |
| unsigned int |
| intel_sseu_subslices_per_slice(const struct sseu_dev_info *sseu, u8 slice) |
| { |
| return hweight32(intel_sseu_get_subslices(sseu, slice)); |
| } |
| |
| static int sseu_eu_idx(const struct sseu_dev_info *sseu, int slice, |
| int subslice) |
| { |
| int slice_stride = sseu->max_subslices * sseu->eu_stride; |
| |
| return slice * slice_stride + subslice * sseu->eu_stride; |
| } |
| |
| static u16 sseu_get_eus(const struct sseu_dev_info *sseu, int slice, |
| int subslice) |
| { |
| int i, offset = sseu_eu_idx(sseu, slice, subslice); |
| u16 eu_mask = 0; |
| |
| for (i = 0; i < sseu->eu_stride; i++) |
| eu_mask |= |
| ((u16)sseu->eu_mask[offset + i]) << (i * BITS_PER_BYTE); |
| |
| return eu_mask; |
| } |
| |
| static void sseu_set_eus(struct sseu_dev_info *sseu, int slice, int subslice, |
| u16 eu_mask) |
| { |
| int i, offset = sseu_eu_idx(sseu, slice, subslice); |
| |
| for (i = 0; i < sseu->eu_stride; i++) |
| sseu->eu_mask[offset + i] = |
| (eu_mask >> (BITS_PER_BYTE * i)) & 0xff; |
| } |
| |
| static u16 compute_eu_total(const struct sseu_dev_info *sseu) |
| { |
| u16 i, total = 0; |
| |
| for (i = 0; i < ARRAY_SIZE(sseu->eu_mask); i++) |
| total += hweight8(sseu->eu_mask[i]); |
| |
| return total; |
| } |
| |
| static u32 get_ss_stride_mask(struct sseu_dev_info *sseu, u8 s, u32 ss_en) |
| { |
| u32 ss_mask; |
| |
| ss_mask = ss_en >> (s * sseu->max_subslices); |
| ss_mask &= GENMASK(sseu->max_subslices - 1, 0); |
| |
| return ss_mask; |
| } |
| |
| static void gen11_compute_sseu_info(struct sseu_dev_info *sseu, u8 s_en, |
| u32 g_ss_en, u32 c_ss_en, u16 eu_en) |
| { |
| int s, ss; |
| |
| /* g_ss_en/c_ss_en represent entire subslice mask across all slices */ |
| GEM_BUG_ON(sseu->max_slices * sseu->max_subslices > |
| sizeof(g_ss_en) * BITS_PER_BYTE); |
| |
| for (s = 0; s < sseu->max_slices; s++) { |
| if ((s_en & BIT(s)) == 0) |
| continue; |
| |
| sseu->slice_mask |= BIT(s); |
| |
| /* |
| * XeHP introduces the concept of compute vs geometry DSS. To |
| * reduce variation between GENs around subslice usage, store a |
| * mask for both the geometry and compute enabled masks since |
| * userspace will need to be able to query these masks |
| * independently. Also compute a total enabled subslice count |
| * for the purposes of selecting subslices to use in a |
| * particular GEM context. |
| */ |
| intel_sseu_set_subslices(sseu, s, sseu->compute_subslice_mask, |
| get_ss_stride_mask(sseu, s, c_ss_en)); |
| intel_sseu_set_subslices(sseu, s, sseu->geometry_subslice_mask, |
| get_ss_stride_mask(sseu, s, g_ss_en)); |
| intel_sseu_set_subslices(sseu, s, sseu->subslice_mask, |
| get_ss_stride_mask(sseu, s, |
| g_ss_en | c_ss_en)); |
| |
| for (ss = 0; ss < sseu->max_subslices; ss++) |
| if (intel_sseu_has_subslice(sseu, s, ss)) |
| sseu_set_eus(sseu, s, ss, eu_en); |
| } |
| sseu->eu_per_subslice = hweight16(eu_en); |
| sseu->eu_total = compute_eu_total(sseu); |
| } |
| |
| static void gen12_sseu_info_init(struct intel_gt *gt) |
| { |
| struct sseu_dev_info *sseu = >->info.sseu; |
| struct intel_uncore *uncore = gt->uncore; |
| u32 g_dss_en, c_dss_en = 0; |
| u16 eu_en = 0; |
| u8 eu_en_fuse; |
| u8 s_en; |
| int eu; |
| |
| /* |
| * Gen12 has Dual-Subslices, which behave similarly to 2 gen11 SS. |
| * Instead of splitting these, provide userspace with an array |
| * of DSS to more closely represent the hardware resource. |
| * |
| * In addition, the concept of slice has been removed in Xe_HP. |
| * To be compatible with prior generations, assume a single slice |
| * across the entire device. Then calculate out the DSS for each |
| * workload type within that software slice. |
| */ |
| if (IS_DG2(gt->i915) || IS_XEHPSDV(gt->i915)) |
| intel_sseu_set_info(sseu, 1, 32, 16); |
| else |
| intel_sseu_set_info(sseu, 1, 6, 16); |
| |
| /* |
| * As mentioned above, Xe_HP does not have the concept of a slice. |
| * Enable one for software backwards compatibility. |
| */ |
| if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 50)) |
| s_en = 0x1; |
| else |
| s_en = intel_uncore_read(uncore, GEN11_GT_SLICE_ENABLE) & |
| GEN11_GT_S_ENA_MASK; |
| |
| g_dss_en = intel_uncore_read(uncore, GEN12_GT_GEOMETRY_DSS_ENABLE); |
| if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 50)) |
| c_dss_en = intel_uncore_read(uncore, GEN12_GT_COMPUTE_DSS_ENABLE); |
| |
| /* one bit per pair of EUs */ |
| if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 50)) |
| eu_en_fuse = intel_uncore_read(uncore, XEHP_EU_ENABLE) & XEHP_EU_ENA_MASK; |
| else |
| eu_en_fuse = ~(intel_uncore_read(uncore, GEN11_EU_DISABLE) & |
| GEN11_EU_DIS_MASK); |
| |
| for (eu = 0; eu < sseu->max_eus_per_subslice / 2; eu++) |
| if (eu_en_fuse & BIT(eu)) |
| eu_en |= BIT(eu * 2) | BIT(eu * 2 + 1); |
| |
| gen11_compute_sseu_info(sseu, s_en, g_dss_en, c_dss_en, eu_en); |
| |
| /* TGL only supports slice-level power gating */ |
| sseu->has_slice_pg = 1; |
| } |
| |
| static void gen11_sseu_info_init(struct intel_gt *gt) |
| { |
| struct sseu_dev_info *sseu = >->info.sseu; |
| struct intel_uncore *uncore = gt->uncore; |
| u32 ss_en; |
| u8 eu_en; |
| u8 s_en; |
| |
| if (IS_JSL_EHL(gt->i915)) |
| intel_sseu_set_info(sseu, 1, 4, 8); |
| else |
| intel_sseu_set_info(sseu, 1, 8, 8); |
| |
| s_en = intel_uncore_read(uncore, GEN11_GT_SLICE_ENABLE) & |
| GEN11_GT_S_ENA_MASK; |
| ss_en = ~intel_uncore_read(uncore, GEN11_GT_SUBSLICE_DISABLE); |
| |
| eu_en = ~(intel_uncore_read(uncore, GEN11_EU_DISABLE) & |
| GEN11_EU_DIS_MASK); |
| |
| gen11_compute_sseu_info(sseu, s_en, ss_en, 0, eu_en); |
| |
| /* ICL has no power gating restrictions. */ |
| sseu->has_slice_pg = 1; |
| sseu->has_subslice_pg = 1; |
| sseu->has_eu_pg = 1; |
| } |
| |
| static void cherryview_sseu_info_init(struct intel_gt *gt) |
| { |
| struct sseu_dev_info *sseu = >->info.sseu; |
| u32 fuse; |
| u8 subslice_mask = 0; |
| |
| fuse = intel_uncore_read(gt->uncore, CHV_FUSE_GT); |
| |
| sseu->slice_mask = BIT(0); |
| intel_sseu_set_info(sseu, 1, 2, 8); |
| |
| if (!(fuse & CHV_FGT_DISABLE_SS0)) { |
| u8 disabled_mask = |
| ((fuse & CHV_FGT_EU_DIS_SS0_R0_MASK) >> |
| CHV_FGT_EU_DIS_SS0_R0_SHIFT) | |
| (((fuse & CHV_FGT_EU_DIS_SS0_R1_MASK) >> |
| CHV_FGT_EU_DIS_SS0_R1_SHIFT) << 4); |
| |
| subslice_mask |= BIT(0); |
| sseu_set_eus(sseu, 0, 0, ~disabled_mask); |
| } |
| |
| if (!(fuse & CHV_FGT_DISABLE_SS1)) { |
| u8 disabled_mask = |
| ((fuse & CHV_FGT_EU_DIS_SS1_R0_MASK) >> |
| CHV_FGT_EU_DIS_SS1_R0_SHIFT) | |
| (((fuse & CHV_FGT_EU_DIS_SS1_R1_MASK) >> |
| CHV_FGT_EU_DIS_SS1_R1_SHIFT) << 4); |
| |
| subslice_mask |= BIT(1); |
| sseu_set_eus(sseu, 0, 1, ~disabled_mask); |
| } |
| |
| intel_sseu_set_subslices(sseu, 0, sseu->subslice_mask, subslice_mask); |
| |
| sseu->eu_total = compute_eu_total(sseu); |
| |
| /* |
| * CHV expected to always have a uniform distribution of EU |
| * across subslices. |
| */ |
| sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ? |
| sseu->eu_total / |
| intel_sseu_subslice_total(sseu) : |
| 0; |
| /* |
| * CHV supports subslice power gating on devices with more than |
| * one subslice, and supports EU power gating on devices with |
| * more than one EU pair per subslice. |
| */ |
| sseu->has_slice_pg = 0; |
| sseu->has_subslice_pg = intel_sseu_subslice_total(sseu) > 1; |
| sseu->has_eu_pg = (sseu->eu_per_subslice > 2); |
| } |
| |
| static void gen9_sseu_info_init(struct intel_gt *gt) |
| { |
| struct drm_i915_private *i915 = gt->i915; |
| struct intel_device_info *info = mkwrite_device_info(i915); |
| struct sseu_dev_info *sseu = >->info.sseu; |
| struct intel_uncore *uncore = gt->uncore; |
| u32 fuse2, eu_disable, subslice_mask; |
| const u8 eu_mask = 0xff; |
| int s, ss; |
| |
| fuse2 = intel_uncore_read(uncore, GEN8_FUSE2); |
| sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT; |
| |
| /* BXT has a single slice and at most 3 subslices. */ |
| intel_sseu_set_info(sseu, IS_GEN9_LP(i915) ? 1 : 3, |
| IS_GEN9_LP(i915) ? 3 : 4, 8); |
| |
| /* |
| * The subslice disable field is global, i.e. it applies |
| * to each of the enabled slices. |
| */ |
| subslice_mask = (1 << sseu->max_subslices) - 1; |
| subslice_mask &= ~((fuse2 & GEN9_F2_SS_DIS_MASK) >> |
| GEN9_F2_SS_DIS_SHIFT); |
| |
| /* |
| * Iterate through enabled slices and subslices to |
| * count the total enabled EU. |
| */ |
| for (s = 0; s < sseu->max_slices; s++) { |
| if (!(sseu->slice_mask & BIT(s))) |
| /* skip disabled slice */ |
| continue; |
| |
| intel_sseu_set_subslices(sseu, s, sseu->subslice_mask, |
| subslice_mask); |
| |
| eu_disable = intel_uncore_read(uncore, GEN9_EU_DISABLE(s)); |
| for (ss = 0; ss < sseu->max_subslices; ss++) { |
| int eu_per_ss; |
| u8 eu_disabled_mask; |
| |
| if (!intel_sseu_has_subslice(sseu, s, ss)) |
| /* skip disabled subslice */ |
| continue; |
| |
| eu_disabled_mask = (eu_disable >> (ss * 8)) & eu_mask; |
| |
| sseu_set_eus(sseu, s, ss, ~eu_disabled_mask); |
| |
| eu_per_ss = sseu->max_eus_per_subslice - |
| hweight8(eu_disabled_mask); |
| |
| /* |
| * Record which subslice(s) has(have) 7 EUs. we |
| * can tune the hash used to spread work among |
| * subslices if they are unbalanced. |
| */ |
| if (eu_per_ss == 7) |
| sseu->subslice_7eu[s] |= BIT(ss); |
| } |
| } |
| |
| sseu->eu_total = compute_eu_total(sseu); |
| |
| /* |
| * SKL is expected to always have a uniform distribution |
| * of EU across subslices with the exception that any one |
| * EU in any one subslice may be fused off for die |
| * recovery. BXT is expected to be perfectly uniform in EU |
| * distribution. |
| */ |
| sseu->eu_per_subslice = |
| intel_sseu_subslice_total(sseu) ? |
| DIV_ROUND_UP(sseu->eu_total, intel_sseu_subslice_total(sseu)) : |
| 0; |
| |
| /* |
| * SKL+ supports slice power gating on devices with more than |
| * one slice, and supports EU power gating on devices with |
| * more than one EU pair per subslice. BXT+ supports subslice |
| * power gating on devices with more than one subslice, and |
| * supports EU power gating on devices with more than one EU |
| * pair per subslice. |
| */ |
| sseu->has_slice_pg = |
| !IS_GEN9_LP(i915) && hweight8(sseu->slice_mask) > 1; |
| sseu->has_subslice_pg = |
| IS_GEN9_LP(i915) && intel_sseu_subslice_total(sseu) > 1; |
| sseu->has_eu_pg = sseu->eu_per_subslice > 2; |
| |
| if (IS_GEN9_LP(i915)) { |
| #define IS_SS_DISABLED(ss) (!(sseu->subslice_mask[0] & BIT(ss))) |
| info->has_pooled_eu = hweight8(sseu->subslice_mask[0]) == 3; |
| |
| sseu->min_eu_in_pool = 0; |
| if (info->has_pooled_eu) { |
| if (IS_SS_DISABLED(2) || IS_SS_DISABLED(0)) |
| sseu->min_eu_in_pool = 3; |
| else if (IS_SS_DISABLED(1)) |
| sseu->min_eu_in_pool = 6; |
| else |
| sseu->min_eu_in_pool = 9; |
| } |
| #undef IS_SS_DISABLED |
| } |
| } |
| |
| static void bdw_sseu_info_init(struct intel_gt *gt) |
| { |
| struct sseu_dev_info *sseu = >->info.sseu; |
| struct intel_uncore *uncore = gt->uncore; |
| int s, ss; |
| u32 fuse2, subslice_mask, eu_disable[3]; /* s_max */ |
| u32 eu_disable0, eu_disable1, eu_disable2; |
| |
| fuse2 = intel_uncore_read(uncore, GEN8_FUSE2); |
| sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT; |
| intel_sseu_set_info(sseu, 3, 3, 8); |
| |
| /* |
| * The subslice disable field is global, i.e. it applies |
| * to each of the enabled slices. |
| */ |
| subslice_mask = GENMASK(sseu->max_subslices - 1, 0); |
| subslice_mask &= ~((fuse2 & GEN8_F2_SS_DIS_MASK) >> |
| GEN8_F2_SS_DIS_SHIFT); |
| eu_disable0 = intel_uncore_read(uncore, GEN8_EU_DISABLE0); |
| eu_disable1 = intel_uncore_read(uncore, GEN8_EU_DISABLE1); |
| eu_disable2 = intel_uncore_read(uncore, GEN8_EU_DISABLE2); |
| eu_disable[0] = eu_disable0 & GEN8_EU_DIS0_S0_MASK; |
| eu_disable[1] = (eu_disable0 >> GEN8_EU_DIS0_S1_SHIFT) | |
| ((eu_disable1 & GEN8_EU_DIS1_S1_MASK) << |
| (32 - GEN8_EU_DIS0_S1_SHIFT)); |
| eu_disable[2] = (eu_disable1 >> GEN8_EU_DIS1_S2_SHIFT) | |
| ((eu_disable2 & GEN8_EU_DIS2_S2_MASK) << |
| (32 - GEN8_EU_DIS1_S2_SHIFT)); |
| |
| /* |
| * Iterate through enabled slices and subslices to |
| * count the total enabled EU. |
| */ |
| for (s = 0; s < sseu->max_slices; s++) { |
| if (!(sseu->slice_mask & BIT(s))) |
| /* skip disabled slice */ |
| continue; |
| |
| intel_sseu_set_subslices(sseu, s, sseu->subslice_mask, |
| subslice_mask); |
| |
| for (ss = 0; ss < sseu->max_subslices; ss++) { |
| u8 eu_disabled_mask; |
| u32 n_disabled; |
| |
| if (!intel_sseu_has_subslice(sseu, s, ss)) |
| /* skip disabled subslice */ |
| continue; |
| |
| eu_disabled_mask = |
| eu_disable[s] >> (ss * sseu->max_eus_per_subslice); |
| |
| sseu_set_eus(sseu, s, ss, ~eu_disabled_mask); |
| |
| n_disabled = hweight8(eu_disabled_mask); |
| |
| /* |
| * Record which subslices have 7 EUs. |
| */ |
| if (sseu->max_eus_per_subslice - n_disabled == 7) |
| sseu->subslice_7eu[s] |= 1 << ss; |
| } |
| } |
| |
| sseu->eu_total = compute_eu_total(sseu); |
| |
| /* |
| * BDW is expected to always have a uniform distribution of EU across |
| * subslices with the exception that any one EU in any one subslice may |
| * be fused off for die recovery. |
| */ |
| sseu->eu_per_subslice = |
| intel_sseu_subslice_total(sseu) ? |
| DIV_ROUND_UP(sseu->eu_total, intel_sseu_subslice_total(sseu)) : |
| 0; |
| |
| /* |
| * BDW supports slice power gating on devices with more than |
| * one slice. |
| */ |
| sseu->has_slice_pg = hweight8(sseu->slice_mask) > 1; |
| sseu->has_subslice_pg = 0; |
| sseu->has_eu_pg = 0; |
| } |
| |
| static void hsw_sseu_info_init(struct intel_gt *gt) |
| { |
| struct drm_i915_private *i915 = gt->i915; |
| struct sseu_dev_info *sseu = >->info.sseu; |
| u32 fuse1; |
| u8 subslice_mask = 0; |
| int s, ss; |
| |
| /* |
| * There isn't a register to tell us how many slices/subslices. We |
| * work off the PCI-ids here. |
| */ |
| switch (INTEL_INFO(i915)->gt) { |
| default: |
| MISSING_CASE(INTEL_INFO(i915)->gt); |
| fallthrough; |
| case 1: |
| sseu->slice_mask = BIT(0); |
| subslice_mask = BIT(0); |
| break; |
| case 2: |
| sseu->slice_mask = BIT(0); |
| subslice_mask = BIT(0) | BIT(1); |
| break; |
| case 3: |
| sseu->slice_mask = BIT(0) | BIT(1); |
| subslice_mask = BIT(0) | BIT(1); |
| break; |
| } |
| |
| fuse1 = intel_uncore_read(gt->uncore, HSW_PAVP_FUSE1); |
| switch (REG_FIELD_GET(HSW_F1_EU_DIS_MASK, fuse1)) { |
| default: |
| MISSING_CASE(REG_FIELD_GET(HSW_F1_EU_DIS_MASK, fuse1)); |
| fallthrough; |
| case HSW_F1_EU_DIS_10EUS: |
| sseu->eu_per_subslice = 10; |
| break; |
| case HSW_F1_EU_DIS_8EUS: |
| sseu->eu_per_subslice = 8; |
| break; |
| case HSW_F1_EU_DIS_6EUS: |
| sseu->eu_per_subslice = 6; |
| break; |
| } |
| |
| intel_sseu_set_info(sseu, hweight8(sseu->slice_mask), |
| hweight8(subslice_mask), |
| sseu->eu_per_subslice); |
| |
| for (s = 0; s < sseu->max_slices; s++) { |
| intel_sseu_set_subslices(sseu, s, sseu->subslice_mask, |
| subslice_mask); |
| |
| for (ss = 0; ss < sseu->max_subslices; ss++) { |
| sseu_set_eus(sseu, s, ss, |
| (1UL << sseu->eu_per_subslice) - 1); |
| } |
| } |
| |
| sseu->eu_total = compute_eu_total(sseu); |
| |
| /* No powergating for you. */ |
| sseu->has_slice_pg = 0; |
| sseu->has_subslice_pg = 0; |
| sseu->has_eu_pg = 0; |
| } |
| |
| void intel_sseu_info_init(struct intel_gt *gt) |
| { |
| struct drm_i915_private *i915 = gt->i915; |
| |
| if (IS_HASWELL(i915)) |
| hsw_sseu_info_init(gt); |
| else if (IS_CHERRYVIEW(i915)) |
| cherryview_sseu_info_init(gt); |
| else if (IS_BROADWELL(i915)) |
| bdw_sseu_info_init(gt); |
| else if (GRAPHICS_VER(i915) == 9) |
| gen9_sseu_info_init(gt); |
| else if (GRAPHICS_VER(i915) == 11) |
| gen11_sseu_info_init(gt); |
| else if (GRAPHICS_VER(i915) >= 12) |
| gen12_sseu_info_init(gt); |
| } |
| |
| u32 intel_sseu_make_rpcs(struct intel_gt *gt, |
| const struct intel_sseu *req_sseu) |
| { |
| struct drm_i915_private *i915 = gt->i915; |
| const struct sseu_dev_info *sseu = >->info.sseu; |
| bool subslice_pg = sseu->has_subslice_pg; |
| u8 slices, subslices; |
| u32 rpcs = 0; |
| |
| /* |
| * No explicit RPCS request is needed to ensure full |
| * slice/subslice/EU enablement prior to Gen9. |
| */ |
| if (GRAPHICS_VER(i915) < 9) |
| return 0; |
| |
| /* |
| * If i915/perf is active, we want a stable powergating configuration |
| * on the system. Use the configuration pinned by i915/perf. |
| */ |
| if (i915->perf.exclusive_stream) |
| req_sseu = &i915->perf.sseu; |
| |
| slices = hweight8(req_sseu->slice_mask); |
| subslices = hweight8(req_sseu->subslice_mask); |
| |
| /* |
| * Since the SScount bitfield in GEN8_R_PWR_CLK_STATE is only three bits |
| * wide and Icelake has up to eight subslices, specfial programming is |
| * needed in order to correctly enable all subslices. |
| * |
| * According to documentation software must consider the configuration |
| * as 2x4x8 and hardware will translate this to 1x8x8. |
| * |
| * Furthemore, even though SScount is three bits, maximum documented |
| * value for it is four. From this some rules/restrictions follow: |
| * |
| * 1. |
| * If enabled subslice count is greater than four, two whole slices must |
| * be enabled instead. |
| * |
| * 2. |
| * When more than one slice is enabled, hardware ignores the subslice |
| * count altogether. |
| * |
| * From these restrictions it follows that it is not possible to enable |
| * a count of subslices between the SScount maximum of four restriction, |
| * and the maximum available number on a particular SKU. Either all |
| * subslices are enabled, or a count between one and four on the first |
| * slice. |
| */ |
| if (GRAPHICS_VER(i915) == 11 && |
| slices == 1 && |
| subslices > min_t(u8, 4, hweight8(sseu->subslice_mask[0]) / 2)) { |
| GEM_BUG_ON(subslices & 1); |
| |
| subslice_pg = false; |
| slices *= 2; |
| } |
| |
| /* |
| * Starting in Gen9, render power gating can leave |
| * slice/subslice/EU in a partially enabled state. We |
| * must make an explicit request through RPCS for full |
| * enablement. |
| */ |
| if (sseu->has_slice_pg) { |
| u32 mask, val = slices; |
| |
| if (GRAPHICS_VER(i915) >= 11) { |
| mask = GEN11_RPCS_S_CNT_MASK; |
| val <<= GEN11_RPCS_S_CNT_SHIFT; |
| } else { |
| mask = GEN8_RPCS_S_CNT_MASK; |
| val <<= GEN8_RPCS_S_CNT_SHIFT; |
| } |
| |
| GEM_BUG_ON(val & ~mask); |
| val &= mask; |
| |
| rpcs |= GEN8_RPCS_ENABLE | GEN8_RPCS_S_CNT_ENABLE | val; |
| } |
| |
| if (subslice_pg) { |
| u32 val = subslices; |
| |
| val <<= GEN8_RPCS_SS_CNT_SHIFT; |
| |
| GEM_BUG_ON(val & ~GEN8_RPCS_SS_CNT_MASK); |
| val &= GEN8_RPCS_SS_CNT_MASK; |
| |
| rpcs |= GEN8_RPCS_ENABLE | GEN8_RPCS_SS_CNT_ENABLE | val; |
| } |
| |
| if (sseu->has_eu_pg) { |
| u32 val; |
| |
| val = req_sseu->min_eus_per_subslice << GEN8_RPCS_EU_MIN_SHIFT; |
| GEM_BUG_ON(val & ~GEN8_RPCS_EU_MIN_MASK); |
| val &= GEN8_RPCS_EU_MIN_MASK; |
| |
| rpcs |= val; |
| |
| val = req_sseu->max_eus_per_subslice << GEN8_RPCS_EU_MAX_SHIFT; |
| GEM_BUG_ON(val & ~GEN8_RPCS_EU_MAX_MASK); |
| val &= GEN8_RPCS_EU_MAX_MASK; |
| |
| rpcs |= val; |
| |
| rpcs |= GEN8_RPCS_ENABLE; |
| } |
| |
| return rpcs; |
| } |
| |
| void intel_sseu_dump(const struct sseu_dev_info *sseu, struct drm_printer *p) |
| { |
| int s; |
| |
| drm_printf(p, "slice total: %u, mask=%04x\n", |
| hweight8(sseu->slice_mask), sseu->slice_mask); |
| drm_printf(p, "subslice total: %u\n", intel_sseu_subslice_total(sseu)); |
| for (s = 0; s < sseu->max_slices; s++) { |
| drm_printf(p, "slice%d: %u subslices, mask=%08x\n", |
| s, intel_sseu_subslices_per_slice(sseu, s), |
| intel_sseu_get_subslices(sseu, s)); |
| } |
| drm_printf(p, "EU total: %u\n", sseu->eu_total); |
| drm_printf(p, "EU per subslice: %u\n", sseu->eu_per_subslice); |
| drm_printf(p, "has slice power gating: %s\n", |
| yesno(sseu->has_slice_pg)); |
| drm_printf(p, "has subslice power gating: %s\n", |
| yesno(sseu->has_subslice_pg)); |
| drm_printf(p, "has EU power gating: %s\n", yesno(sseu->has_eu_pg)); |
| } |
| |
| void intel_sseu_print_topology(const struct sseu_dev_info *sseu, |
| struct drm_printer *p) |
| { |
| int s, ss; |
| |
| if (sseu->max_slices == 0) { |
| drm_printf(p, "Unavailable\n"); |
| return; |
| } |
| |
| for (s = 0; s < sseu->max_slices; s++) { |
| drm_printf(p, "slice%d: %u subslice(s) (0x%08x):\n", |
| s, intel_sseu_subslices_per_slice(sseu, s), |
| intel_sseu_get_subslices(sseu, s)); |
| |
| for (ss = 0; ss < sseu->max_subslices; ss++) { |
| u16 enabled_eus = sseu_get_eus(sseu, s, ss); |
| |
| drm_printf(p, "\tsubslice%d: %u EUs (0x%hx)\n", |
| ss, hweight16(enabled_eus), enabled_eus); |
| } |
| } |
| } |
| |
| u16 intel_slicemask_from_dssmask(u64 dss_mask, int dss_per_slice) |
| { |
| u16 slice_mask = 0; |
| int i; |
| |
| WARN_ON(sizeof(dss_mask) * 8 / dss_per_slice > 8 * sizeof(slice_mask)); |
| |
| for (i = 0; dss_mask; i++) { |
| if (dss_mask & GENMASK(dss_per_slice - 1, 0)) |
| slice_mask |= BIT(i); |
| |
| dss_mask >>= dss_per_slice; |
| } |
| |
| return slice_mask; |
| } |
| |