| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * processor_idle - idle state submodule to the ACPI processor driver |
| * |
| * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com> |
| * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> |
| * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de> |
| * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> |
| * - Added processor hotplug support |
| * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com> |
| * - Added support for C3 on SMP |
| */ |
| #define pr_fmt(fmt) "ACPI: " fmt |
| |
| #include <linux/module.h> |
| #include <linux/acpi.h> |
| #include <linux/dmi.h> |
| #include <linux/sched.h> /* need_resched() */ |
| #include <linux/sort.h> |
| #include <linux/tick.h> |
| #include <linux/cpuidle.h> |
| #include <linux/cpu.h> |
| #include <linux/minmax.h> |
| #include <linux/perf_event.h> |
| #include <acpi/processor.h> |
| |
| /* |
| * Include the apic definitions for x86 to have the APIC timer related defines |
| * available also for UP (on SMP it gets magically included via linux/smp.h). |
| * asm/acpi.h is not an option, as it would require more include magic. Also |
| * creating an empty asm-ia64/apic.h would just trade pest vs. cholera. |
| */ |
| #ifdef CONFIG_X86 |
| #include <asm/apic.h> |
| #include <asm/cpu.h> |
| #endif |
| |
| #define ACPI_IDLE_STATE_START (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX) ? 1 : 0) |
| |
| static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER; |
| module_param(max_cstate, uint, 0400); |
| static bool nocst __read_mostly; |
| module_param(nocst, bool, 0400); |
| static bool bm_check_disable __read_mostly; |
| module_param(bm_check_disable, bool, 0400); |
| |
| static unsigned int latency_factor __read_mostly = 2; |
| module_param(latency_factor, uint, 0644); |
| |
| static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device); |
| |
| struct cpuidle_driver acpi_idle_driver = { |
| .name = "acpi_idle", |
| .owner = THIS_MODULE, |
| }; |
| |
| #ifdef CONFIG_ACPI_PROCESSOR_CSTATE |
| static |
| DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate); |
| |
| static int disabled_by_idle_boot_param(void) |
| { |
| return boot_option_idle_override == IDLE_POLL || |
| boot_option_idle_override == IDLE_HALT; |
| } |
| |
| /* |
| * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3. |
| * For now disable this. Probably a bug somewhere else. |
| * |
| * To skip this limit, boot/load with a large max_cstate limit. |
| */ |
| static int set_max_cstate(const struct dmi_system_id *id) |
| { |
| if (max_cstate > ACPI_PROCESSOR_MAX_POWER) |
| return 0; |
| |
| pr_notice("%s detected - limiting to C%ld max_cstate." |
| " Override with \"processor.max_cstate=%d\"\n", id->ident, |
| (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1); |
| |
| max_cstate = (long)id->driver_data; |
| |
| return 0; |
| } |
| |
| static const struct dmi_system_id processor_power_dmi_table[] = { |
| { set_max_cstate, "Clevo 5600D", { |
| DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"), |
| DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")}, |
| (void *)2}, |
| { set_max_cstate, "Pavilion zv5000", { |
| DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"), |
| DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")}, |
| (void *)1}, |
| { set_max_cstate, "Asus L8400B", { |
| DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."), |
| DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")}, |
| (void *)1}, |
| {}, |
| }; |
| |
| |
| /* |
| * Callers should disable interrupts before the call and enable |
| * interrupts after return. |
| */ |
| static void __cpuidle acpi_safe_halt(void) |
| { |
| if (!tif_need_resched()) { |
| safe_halt(); |
| local_irq_disable(); |
| } |
| } |
| |
| #ifdef ARCH_APICTIMER_STOPS_ON_C3 |
| |
| /* |
| * Some BIOS implementations switch to C3 in the published C2 state. |
| * This seems to be a common problem on AMD boxen, but other vendors |
| * are affected too. We pick the most conservative approach: we assume |
| * that the local APIC stops in both C2 and C3. |
| */ |
| static void lapic_timer_check_state(int state, struct acpi_processor *pr, |
| struct acpi_processor_cx *cx) |
| { |
| struct acpi_processor_power *pwr = &pr->power; |
| u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2; |
| |
| if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT)) |
| return; |
| |
| if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) |
| type = ACPI_STATE_C1; |
| |
| /* |
| * Check, if one of the previous states already marked the lapic |
| * unstable |
| */ |
| if (pwr->timer_broadcast_on_state < state) |
| return; |
| |
| if (cx->type >= type) |
| pr->power.timer_broadcast_on_state = state; |
| } |
| |
| static void __lapic_timer_propagate_broadcast(void *arg) |
| { |
| struct acpi_processor *pr = (struct acpi_processor *) arg; |
| |
| if (pr->power.timer_broadcast_on_state < INT_MAX) |
| tick_broadcast_enable(); |
| else |
| tick_broadcast_disable(); |
| } |
| |
| static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) |
| { |
| smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast, |
| (void *)pr, 1); |
| } |
| |
| /* Power(C) State timer broadcast control */ |
| static bool lapic_timer_needs_broadcast(struct acpi_processor *pr, |
| struct acpi_processor_cx *cx) |
| { |
| return cx - pr->power.states >= pr->power.timer_broadcast_on_state; |
| } |
| |
| #else |
| |
| static void lapic_timer_check_state(int state, struct acpi_processor *pr, |
| struct acpi_processor_cx *cstate) { } |
| static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { } |
| |
| static bool lapic_timer_needs_broadcast(struct acpi_processor *pr, |
| struct acpi_processor_cx *cx) |
| { |
| return false; |
| } |
| |
| #endif |
| |
| #if defined(CONFIG_X86) |
| static void tsc_check_state(int state) |
| { |
| switch (boot_cpu_data.x86_vendor) { |
| case X86_VENDOR_HYGON: |
| case X86_VENDOR_AMD: |
| case X86_VENDOR_INTEL: |
| case X86_VENDOR_CENTAUR: |
| case X86_VENDOR_ZHAOXIN: |
| /* |
| * AMD Fam10h TSC will tick in all |
| * C/P/S0/S1 states when this bit is set. |
| */ |
| if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC)) |
| return; |
| fallthrough; |
| default: |
| /* TSC could halt in idle, so notify users */ |
| if (state > ACPI_STATE_C1) |
| mark_tsc_unstable("TSC halts in idle"); |
| } |
| } |
| #else |
| static void tsc_check_state(int state) { return; } |
| #endif |
| |
| static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr) |
| { |
| |
| if (!pr->pblk) |
| return -ENODEV; |
| |
| /* if info is obtained from pblk/fadt, type equals state */ |
| pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2; |
| pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3; |
| |
| #ifndef CONFIG_HOTPLUG_CPU |
| /* |
| * Check for P_LVL2_UP flag before entering C2 and above on |
| * an SMP system. |
| */ |
| if ((num_online_cpus() > 1) && |
| !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) |
| return -ENODEV; |
| #endif |
| |
| /* determine C2 and C3 address from pblk */ |
| pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4; |
| pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5; |
| |
| /* determine latencies from FADT */ |
| pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency; |
| pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency; |
| |
| /* |
| * FADT specified C2 latency must be less than or equal to |
| * 100 microseconds. |
| */ |
| if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) { |
| acpi_handle_debug(pr->handle, "C2 latency too large [%d]\n", |
| acpi_gbl_FADT.c2_latency); |
| /* invalidate C2 */ |
| pr->power.states[ACPI_STATE_C2].address = 0; |
| } |
| |
| /* |
| * FADT supplied C3 latency must be less than or equal to |
| * 1000 microseconds. |
| */ |
| if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) { |
| acpi_handle_debug(pr->handle, "C3 latency too large [%d]\n", |
| acpi_gbl_FADT.c3_latency); |
| /* invalidate C3 */ |
| pr->power.states[ACPI_STATE_C3].address = 0; |
| } |
| |
| acpi_handle_debug(pr->handle, "lvl2[0x%08x] lvl3[0x%08x]\n", |
| pr->power.states[ACPI_STATE_C2].address, |
| pr->power.states[ACPI_STATE_C3].address); |
| |
| snprintf(pr->power.states[ACPI_STATE_C2].desc, |
| ACPI_CX_DESC_LEN, "ACPI P_LVL2 IOPORT 0x%x", |
| pr->power.states[ACPI_STATE_C2].address); |
| snprintf(pr->power.states[ACPI_STATE_C3].desc, |
| ACPI_CX_DESC_LEN, "ACPI P_LVL3 IOPORT 0x%x", |
| pr->power.states[ACPI_STATE_C3].address); |
| |
| return 0; |
| } |
| |
| static int acpi_processor_get_power_info_default(struct acpi_processor *pr) |
| { |
| if (!pr->power.states[ACPI_STATE_C1].valid) { |
| /* set the first C-State to C1 */ |
| /* all processors need to support C1 */ |
| pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1; |
| pr->power.states[ACPI_STATE_C1].valid = 1; |
| pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT; |
| |
| snprintf(pr->power.states[ACPI_STATE_C1].desc, |
| ACPI_CX_DESC_LEN, "ACPI HLT"); |
| } |
| /* the C0 state only exists as a filler in our array */ |
| pr->power.states[ACPI_STATE_C0].valid = 1; |
| return 0; |
| } |
| |
| static int acpi_processor_get_power_info_cst(struct acpi_processor *pr) |
| { |
| int ret; |
| |
| if (nocst) |
| return -ENODEV; |
| |
| ret = acpi_processor_evaluate_cst(pr->handle, pr->id, &pr->power); |
| if (ret) |
| return ret; |
| |
| if (!pr->power.count) |
| return -EFAULT; |
| |
| pr->flags.has_cst = 1; |
| return 0; |
| } |
| |
| static void acpi_processor_power_verify_c3(struct acpi_processor *pr, |
| struct acpi_processor_cx *cx) |
| { |
| static int bm_check_flag = -1; |
| static int bm_control_flag = -1; |
| |
| |
| if (!cx->address) |
| return; |
| |
| /* |
| * PIIX4 Erratum #18: We don't support C3 when Type-F (fast) |
| * DMA transfers are used by any ISA device to avoid livelock. |
| * Note that we could disable Type-F DMA (as recommended by |
| * the erratum), but this is known to disrupt certain ISA |
| * devices thus we take the conservative approach. |
| */ |
| else if (errata.piix4.fdma) { |
| acpi_handle_debug(pr->handle, |
| "C3 not supported on PIIX4 with Type-F DMA\n"); |
| return; |
| } |
| |
| /* All the logic here assumes flags.bm_check is same across all CPUs */ |
| if (bm_check_flag == -1) { |
| /* Determine whether bm_check is needed based on CPU */ |
| acpi_processor_power_init_bm_check(&(pr->flags), pr->id); |
| bm_check_flag = pr->flags.bm_check; |
| bm_control_flag = pr->flags.bm_control; |
| } else { |
| pr->flags.bm_check = bm_check_flag; |
| pr->flags.bm_control = bm_control_flag; |
| } |
| |
| if (pr->flags.bm_check) { |
| if (!pr->flags.bm_control) { |
| if (pr->flags.has_cst != 1) { |
| /* bus mastering control is necessary */ |
| acpi_handle_debug(pr->handle, |
| "C3 support requires BM control\n"); |
| return; |
| } else { |
| /* Here we enter C3 without bus mastering */ |
| acpi_handle_debug(pr->handle, |
| "C3 support without BM control\n"); |
| } |
| } |
| } else { |
| /* |
| * WBINVD should be set in fadt, for C3 state to be |
| * supported on when bm_check is not required. |
| */ |
| if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) { |
| acpi_handle_debug(pr->handle, |
| "Cache invalidation should work properly" |
| " for C3 to be enabled on SMP systems\n"); |
| return; |
| } |
| } |
| |
| /* |
| * Otherwise we've met all of our C3 requirements. |
| * Normalize the C3 latency to expidite policy. Enable |
| * checking of bus mastering status (bm_check) so we can |
| * use this in our C3 policy |
| */ |
| cx->valid = 1; |
| |
| /* |
| * On older chipsets, BM_RLD needs to be set |
| * in order for Bus Master activity to wake the |
| * system from C3. Newer chipsets handle DMA |
| * during C3 automatically and BM_RLD is a NOP. |
| * In either case, the proper way to |
| * handle BM_RLD is to set it and leave it set. |
| */ |
| acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1); |
| |
| return; |
| } |
| |
| static int acpi_cst_latency_cmp(const void *a, const void *b) |
| { |
| const struct acpi_processor_cx *x = a, *y = b; |
| |
| if (!(x->valid && y->valid)) |
| return 0; |
| if (x->latency > y->latency) |
| return 1; |
| if (x->latency < y->latency) |
| return -1; |
| return 0; |
| } |
| static void acpi_cst_latency_swap(void *a, void *b, int n) |
| { |
| struct acpi_processor_cx *x = a, *y = b; |
| |
| if (!(x->valid && y->valid)) |
| return; |
| swap(x->latency, y->latency); |
| } |
| |
| static int acpi_processor_power_verify(struct acpi_processor *pr) |
| { |
| unsigned int i; |
| unsigned int working = 0; |
| unsigned int last_latency = 0; |
| unsigned int last_type = 0; |
| bool buggy_latency = false; |
| |
| pr->power.timer_broadcast_on_state = INT_MAX; |
| |
| for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) { |
| struct acpi_processor_cx *cx = &pr->power.states[i]; |
| |
| switch (cx->type) { |
| case ACPI_STATE_C1: |
| cx->valid = 1; |
| break; |
| |
| case ACPI_STATE_C2: |
| if (!cx->address) |
| break; |
| cx->valid = 1; |
| break; |
| |
| case ACPI_STATE_C3: |
| acpi_processor_power_verify_c3(pr, cx); |
| break; |
| } |
| if (!cx->valid) |
| continue; |
| if (cx->type >= last_type && cx->latency < last_latency) |
| buggy_latency = true; |
| last_latency = cx->latency; |
| last_type = cx->type; |
| |
| lapic_timer_check_state(i, pr, cx); |
| tsc_check_state(cx->type); |
| working++; |
| } |
| |
| if (buggy_latency) { |
| pr_notice("FW issue: working around C-state latencies out of order\n"); |
| sort(&pr->power.states[1], max_cstate, |
| sizeof(struct acpi_processor_cx), |
| acpi_cst_latency_cmp, |
| acpi_cst_latency_swap); |
| } |
| |
| lapic_timer_propagate_broadcast(pr); |
| |
| return (working); |
| } |
| |
| static int acpi_processor_get_cstate_info(struct acpi_processor *pr) |
| { |
| unsigned int i; |
| int result; |
| |
| |
| /* NOTE: the idle thread may not be running while calling |
| * this function */ |
| |
| /* Zero initialize all the C-states info. */ |
| memset(pr->power.states, 0, sizeof(pr->power.states)); |
| |
| result = acpi_processor_get_power_info_cst(pr); |
| if (result == -ENODEV) |
| result = acpi_processor_get_power_info_fadt(pr); |
| |
| if (result) |
| return result; |
| |
| acpi_processor_get_power_info_default(pr); |
| |
| pr->power.count = acpi_processor_power_verify(pr); |
| |
| /* |
| * if one state of type C2 or C3 is available, mark this |
| * CPU as being "idle manageable" |
| */ |
| for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) { |
| if (pr->power.states[i].valid) { |
| pr->power.count = i; |
| pr->flags.power = 1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * acpi_idle_bm_check - checks if bus master activity was detected |
| */ |
| static int acpi_idle_bm_check(void) |
| { |
| u32 bm_status = 0; |
| |
| if (bm_check_disable) |
| return 0; |
| |
| acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status); |
| if (bm_status) |
| acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1); |
| /* |
| * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect |
| * the true state of bus mastering activity; forcing us to |
| * manually check the BMIDEA bit of each IDE channel. |
| */ |
| else if (errata.piix4.bmisx) { |
| if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01) |
| || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01)) |
| bm_status = 1; |
| } |
| return bm_status; |
| } |
| |
| static void wait_for_freeze(void) |
| { |
| #ifdef CONFIG_X86 |
| /* No delay is needed if we are in guest */ |
| if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) |
| return; |
| #endif |
| /* Dummy wait op - must do something useless after P_LVL2 read |
| because chipsets cannot guarantee that STPCLK# signal |
| gets asserted in time to freeze execution properly. */ |
| inl(acpi_gbl_FADT.xpm_timer_block.address); |
| } |
| |
| /** |
| * acpi_idle_do_entry - enter idle state using the appropriate method |
| * @cx: cstate data |
| * |
| * Caller disables interrupt before call and enables interrupt after return. |
| */ |
| static void __cpuidle acpi_idle_do_entry(struct acpi_processor_cx *cx) |
| { |
| perf_lopwr_cb(true); |
| |
| if (cx->entry_method == ACPI_CSTATE_FFH) { |
| /* Call into architectural FFH based C-state */ |
| acpi_processor_ffh_cstate_enter(cx); |
| } else if (cx->entry_method == ACPI_CSTATE_HALT) { |
| acpi_safe_halt(); |
| } else { |
| /* IO port based C-state */ |
| inb(cx->address); |
| wait_for_freeze(); |
| } |
| |
| perf_lopwr_cb(false); |
| } |
| |
| /** |
| * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining) |
| * @dev: the target CPU |
| * @index: the index of suggested state |
| */ |
| static int acpi_idle_play_dead(struct cpuidle_device *dev, int index) |
| { |
| struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu); |
| |
| ACPI_FLUSH_CPU_CACHE(); |
| |
| while (1) { |
| |
| if (cx->entry_method == ACPI_CSTATE_HALT) |
| safe_halt(); |
| else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) { |
| inb(cx->address); |
| wait_for_freeze(); |
| } else |
| return -ENODEV; |
| |
| #if defined(CONFIG_X86) && defined(CONFIG_HOTPLUG_CPU) |
| cond_wakeup_cpu0(); |
| #endif |
| } |
| |
| /* Never reached */ |
| return 0; |
| } |
| |
| static bool acpi_idle_fallback_to_c1(struct acpi_processor *pr) |
| { |
| return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst && |
| !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED); |
| } |
| |
| static int c3_cpu_count; |
| static DEFINE_RAW_SPINLOCK(c3_lock); |
| |
| /** |
| * acpi_idle_enter_bm - enters C3 with proper BM handling |
| * @drv: cpuidle driver |
| * @pr: Target processor |
| * @cx: Target state context |
| * @index: index of target state |
| */ |
| static int __cpuidle acpi_idle_enter_bm(struct cpuidle_driver *drv, |
| struct acpi_processor *pr, |
| struct acpi_processor_cx *cx, |
| int index) |
| { |
| static struct acpi_processor_cx safe_cx = { |
| .entry_method = ACPI_CSTATE_HALT, |
| }; |
| |
| /* |
| * disable bus master |
| * bm_check implies we need ARB_DIS |
| * bm_control implies whether we can do ARB_DIS |
| * |
| * That leaves a case where bm_check is set and bm_control is not set. |
| * In that case we cannot do much, we enter C3 without doing anything. |
| */ |
| bool dis_bm = pr->flags.bm_control; |
| |
| /* If we can skip BM, demote to a safe state. */ |
| if (!cx->bm_sts_skip && acpi_idle_bm_check()) { |
| dis_bm = false; |
| index = drv->safe_state_index; |
| if (index >= 0) { |
| cx = this_cpu_read(acpi_cstate[index]); |
| } else { |
| cx = &safe_cx; |
| index = -EBUSY; |
| } |
| } |
| |
| if (dis_bm) { |
| raw_spin_lock(&c3_lock); |
| c3_cpu_count++; |
| /* Disable bus master arbitration when all CPUs are in C3 */ |
| if (c3_cpu_count == num_online_cpus()) |
| acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1); |
| raw_spin_unlock(&c3_lock); |
| } |
| |
| rcu_idle_enter(); |
| |
| acpi_idle_do_entry(cx); |
| |
| rcu_idle_exit(); |
| |
| /* Re-enable bus master arbitration */ |
| if (dis_bm) { |
| raw_spin_lock(&c3_lock); |
| acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0); |
| c3_cpu_count--; |
| raw_spin_unlock(&c3_lock); |
| } |
| |
| return index; |
| } |
| |
| static int __cpuidle acpi_idle_enter(struct cpuidle_device *dev, |
| struct cpuidle_driver *drv, int index) |
| { |
| struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu); |
| struct acpi_processor *pr; |
| |
| pr = __this_cpu_read(processors); |
| if (unlikely(!pr)) |
| return -EINVAL; |
| |
| if (cx->type != ACPI_STATE_C1) { |
| if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check) |
| return acpi_idle_enter_bm(drv, pr, cx, index); |
| |
| /* C2 to C1 demotion. */ |
| if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) { |
| index = ACPI_IDLE_STATE_START; |
| cx = per_cpu(acpi_cstate[index], dev->cpu); |
| } |
| } |
| |
| if (cx->type == ACPI_STATE_C3) |
| ACPI_FLUSH_CPU_CACHE(); |
| |
| acpi_idle_do_entry(cx); |
| |
| return index; |
| } |
| |
| static int __cpuidle acpi_idle_enter_s2idle(struct cpuidle_device *dev, |
| struct cpuidle_driver *drv, int index) |
| { |
| struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu); |
| |
| if (cx->type == ACPI_STATE_C3) { |
| struct acpi_processor *pr = __this_cpu_read(processors); |
| |
| if (unlikely(!pr)) |
| return 0; |
| |
| if (pr->flags.bm_check) { |
| u8 bm_sts_skip = cx->bm_sts_skip; |
| |
| /* Don't check BM_STS, do an unconditional ARB_DIS for S2IDLE */ |
| cx->bm_sts_skip = 1; |
| acpi_idle_enter_bm(drv, pr, cx, index); |
| cx->bm_sts_skip = bm_sts_skip; |
| |
| return 0; |
| } else { |
| ACPI_FLUSH_CPU_CACHE(); |
| } |
| } |
| acpi_idle_do_entry(cx); |
| |
| return 0; |
| } |
| |
| static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr, |
| struct cpuidle_device *dev) |
| { |
| int i, count = ACPI_IDLE_STATE_START; |
| struct acpi_processor_cx *cx; |
| struct cpuidle_state *state; |
| |
| if (max_cstate == 0) |
| max_cstate = 1; |
| |
| for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) { |
| state = &acpi_idle_driver.states[count]; |
| cx = &pr->power.states[i]; |
| |
| if (!cx->valid) |
| continue; |
| |
| per_cpu(acpi_cstate[count], dev->cpu) = cx; |
| |
| if (lapic_timer_needs_broadcast(pr, cx)) |
| state->flags |= CPUIDLE_FLAG_TIMER_STOP; |
| |
| if (cx->type == ACPI_STATE_C3) { |
| state->flags |= CPUIDLE_FLAG_TLB_FLUSHED; |
| if (pr->flags.bm_check) |
| state->flags |= CPUIDLE_FLAG_RCU_IDLE; |
| } |
| |
| count++; |
| if (count == CPUIDLE_STATE_MAX) |
| break; |
| } |
| |
| if (!count) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static int acpi_processor_setup_cstates(struct acpi_processor *pr) |
| { |
| int i, count; |
| struct acpi_processor_cx *cx; |
| struct cpuidle_state *state; |
| struct cpuidle_driver *drv = &acpi_idle_driver; |
| |
| if (max_cstate == 0) |
| max_cstate = 1; |
| |
| if (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX)) { |
| cpuidle_poll_state_init(drv); |
| count = 1; |
| } else { |
| count = 0; |
| } |
| |
| for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) { |
| cx = &pr->power.states[i]; |
| |
| if (!cx->valid) |
| continue; |
| |
| state = &drv->states[count]; |
| snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i); |
| strlcpy(state->desc, cx->desc, CPUIDLE_DESC_LEN); |
| state->exit_latency = cx->latency; |
| state->target_residency = cx->latency * latency_factor; |
| state->enter = acpi_idle_enter; |
| |
| state->flags = 0; |
| if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2 || |
| cx->type == ACPI_STATE_C3) { |
| state->enter_dead = acpi_idle_play_dead; |
| if (cx->type != ACPI_STATE_C3) |
| drv->safe_state_index = count; |
| } |
| /* |
| * Halt-induced C1 is not good for ->enter_s2idle, because it |
| * re-enables interrupts on exit. Moreover, C1 is generally not |
| * particularly interesting from the suspend-to-idle angle, so |
| * avoid C1 and the situations in which we may need to fall back |
| * to it altogether. |
| */ |
| if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr)) |
| state->enter_s2idle = acpi_idle_enter_s2idle; |
| |
| count++; |
| if (count == CPUIDLE_STATE_MAX) |
| break; |
| } |
| |
| drv->state_count = count; |
| |
| if (!count) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static inline void acpi_processor_cstate_first_run_checks(void) |
| { |
| static int first_run; |
| |
| if (first_run) |
| return; |
| dmi_check_system(processor_power_dmi_table); |
| max_cstate = acpi_processor_cstate_check(max_cstate); |
| if (max_cstate < ACPI_C_STATES_MAX) |
| pr_notice("processor limited to max C-state %d\n", max_cstate); |
| |
| first_run++; |
| |
| if (nocst) |
| return; |
| |
| acpi_processor_claim_cst_control(); |
| } |
| #else |
| |
| static inline int disabled_by_idle_boot_param(void) { return 0; } |
| static inline void acpi_processor_cstate_first_run_checks(void) { } |
| static int acpi_processor_get_cstate_info(struct acpi_processor *pr) |
| { |
| return -ENODEV; |
| } |
| |
| static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr, |
| struct cpuidle_device *dev) |
| { |
| return -EINVAL; |
| } |
| |
| static int acpi_processor_setup_cstates(struct acpi_processor *pr) |
| { |
| return -EINVAL; |
| } |
| |
| #endif /* CONFIG_ACPI_PROCESSOR_CSTATE */ |
| |
| struct acpi_lpi_states_array { |
| unsigned int size; |
| unsigned int composite_states_size; |
| struct acpi_lpi_state *entries; |
| struct acpi_lpi_state *composite_states[ACPI_PROCESSOR_MAX_POWER]; |
| }; |
| |
| static int obj_get_integer(union acpi_object *obj, u32 *value) |
| { |
| if (obj->type != ACPI_TYPE_INTEGER) |
| return -EINVAL; |
| |
| *value = obj->integer.value; |
| return 0; |
| } |
| |
| static int acpi_processor_evaluate_lpi(acpi_handle handle, |
| struct acpi_lpi_states_array *info) |
| { |
| acpi_status status; |
| int ret = 0; |
| int pkg_count, state_idx = 1, loop; |
| struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; |
| union acpi_object *lpi_data; |
| struct acpi_lpi_state *lpi_state; |
| |
| status = acpi_evaluate_object(handle, "_LPI", NULL, &buffer); |
| if (ACPI_FAILURE(status)) { |
| acpi_handle_debug(handle, "No _LPI, giving up\n"); |
| return -ENODEV; |
| } |
| |
| lpi_data = buffer.pointer; |
| |
| /* There must be at least 4 elements = 3 elements + 1 package */ |
| if (!lpi_data || lpi_data->type != ACPI_TYPE_PACKAGE || |
| lpi_data->package.count < 4) { |
| pr_debug("not enough elements in _LPI\n"); |
| ret = -ENODATA; |
| goto end; |
| } |
| |
| pkg_count = lpi_data->package.elements[2].integer.value; |
| |
| /* Validate number of power states. */ |
| if (pkg_count < 1 || pkg_count != lpi_data->package.count - 3) { |
| pr_debug("count given by _LPI is not valid\n"); |
| ret = -ENODATA; |
| goto end; |
| } |
| |
| lpi_state = kcalloc(pkg_count, sizeof(*lpi_state), GFP_KERNEL); |
| if (!lpi_state) { |
| ret = -ENOMEM; |
| goto end; |
| } |
| |
| info->size = pkg_count; |
| info->entries = lpi_state; |
| |
| /* LPI States start at index 3 */ |
| for (loop = 3; state_idx <= pkg_count; loop++, state_idx++, lpi_state++) { |
| union acpi_object *element, *pkg_elem, *obj; |
| |
| element = &lpi_data->package.elements[loop]; |
| if (element->type != ACPI_TYPE_PACKAGE || element->package.count < 7) |
| continue; |
| |
| pkg_elem = element->package.elements; |
| |
| obj = pkg_elem + 6; |
| if (obj->type == ACPI_TYPE_BUFFER) { |
| struct acpi_power_register *reg; |
| |
| reg = (struct acpi_power_register *)obj->buffer.pointer; |
| if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO && |
| reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE) |
| continue; |
| |
| lpi_state->address = reg->address; |
| lpi_state->entry_method = |
| reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE ? |
| ACPI_CSTATE_FFH : ACPI_CSTATE_SYSTEMIO; |
| } else if (obj->type == ACPI_TYPE_INTEGER) { |
| lpi_state->entry_method = ACPI_CSTATE_INTEGER; |
| lpi_state->address = obj->integer.value; |
| } else { |
| continue; |
| } |
| |
| /* elements[7,8] skipped for now i.e. Residency/Usage counter*/ |
| |
| obj = pkg_elem + 9; |
| if (obj->type == ACPI_TYPE_STRING) |
| strlcpy(lpi_state->desc, obj->string.pointer, |
| ACPI_CX_DESC_LEN); |
| |
| lpi_state->index = state_idx; |
| if (obj_get_integer(pkg_elem + 0, &lpi_state->min_residency)) { |
| pr_debug("No min. residency found, assuming 10 us\n"); |
| lpi_state->min_residency = 10; |
| } |
| |
| if (obj_get_integer(pkg_elem + 1, &lpi_state->wake_latency)) { |
| pr_debug("No wakeup residency found, assuming 10 us\n"); |
| lpi_state->wake_latency = 10; |
| } |
| |
| if (obj_get_integer(pkg_elem + 2, &lpi_state->flags)) |
| lpi_state->flags = 0; |
| |
| if (obj_get_integer(pkg_elem + 3, &lpi_state->arch_flags)) |
| lpi_state->arch_flags = 0; |
| |
| if (obj_get_integer(pkg_elem + 4, &lpi_state->res_cnt_freq)) |
| lpi_state->res_cnt_freq = 1; |
| |
| if (obj_get_integer(pkg_elem + 5, &lpi_state->enable_parent_state)) |
| lpi_state->enable_parent_state = 0; |
| } |
| |
| acpi_handle_debug(handle, "Found %d power states\n", state_idx); |
| end: |
| kfree(buffer.pointer); |
| return ret; |
| } |
| |
| /* |
| * flat_state_cnt - the number of composite LPI states after the process of flattening |
| */ |
| static int flat_state_cnt; |
| |
| /** |
| * combine_lpi_states - combine local and parent LPI states to form a composite LPI state |
| * |
| * @local: local LPI state |
| * @parent: parent LPI state |
| * @result: composite LPI state |
| */ |
| static bool combine_lpi_states(struct acpi_lpi_state *local, |
| struct acpi_lpi_state *parent, |
| struct acpi_lpi_state *result) |
| { |
| if (parent->entry_method == ACPI_CSTATE_INTEGER) { |
| if (!parent->address) /* 0 means autopromotable */ |
| return false; |
| result->address = local->address + parent->address; |
| } else { |
| result->address = parent->address; |
| } |
| |
| result->min_residency = max(local->min_residency, parent->min_residency); |
| result->wake_latency = local->wake_latency + parent->wake_latency; |
| result->enable_parent_state = parent->enable_parent_state; |
| result->entry_method = local->entry_method; |
| |
| result->flags = parent->flags; |
| result->arch_flags = parent->arch_flags; |
| result->index = parent->index; |
| |
| strlcpy(result->desc, local->desc, ACPI_CX_DESC_LEN); |
| strlcat(result->desc, "+", ACPI_CX_DESC_LEN); |
| strlcat(result->desc, parent->desc, ACPI_CX_DESC_LEN); |
| return true; |
| } |
| |
| #define ACPI_LPI_STATE_FLAGS_ENABLED BIT(0) |
| |
| static void stash_composite_state(struct acpi_lpi_states_array *curr_level, |
| struct acpi_lpi_state *t) |
| { |
| curr_level->composite_states[curr_level->composite_states_size++] = t; |
| } |
| |
| static int flatten_lpi_states(struct acpi_processor *pr, |
| struct acpi_lpi_states_array *curr_level, |
| struct acpi_lpi_states_array *prev_level) |
| { |
| int i, j, state_count = curr_level->size; |
| struct acpi_lpi_state *p, *t = curr_level->entries; |
| |
| curr_level->composite_states_size = 0; |
| for (j = 0; j < state_count; j++, t++) { |
| struct acpi_lpi_state *flpi; |
| |
| if (!(t->flags & ACPI_LPI_STATE_FLAGS_ENABLED)) |
| continue; |
| |
| if (flat_state_cnt >= ACPI_PROCESSOR_MAX_POWER) { |
| pr_warn("Limiting number of LPI states to max (%d)\n", |
| ACPI_PROCESSOR_MAX_POWER); |
| pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n"); |
| break; |
| } |
| |
| flpi = &pr->power.lpi_states[flat_state_cnt]; |
| |
| if (!prev_level) { /* leaf/processor node */ |
| memcpy(flpi, t, sizeof(*t)); |
| stash_composite_state(curr_level, flpi); |
| flat_state_cnt++; |
| continue; |
| } |
| |
| for (i = 0; i < prev_level->composite_states_size; i++) { |
| p = prev_level->composite_states[i]; |
| if (t->index <= p->enable_parent_state && |
| combine_lpi_states(p, t, flpi)) { |
| stash_composite_state(curr_level, flpi); |
| flat_state_cnt++; |
| flpi++; |
| } |
| } |
| } |
| |
| kfree(curr_level->entries); |
| return 0; |
| } |
| |
| int __weak acpi_processor_ffh_lpi_probe(unsigned int cpu) |
| { |
| return -EOPNOTSUPP; |
| } |
| |
| static int acpi_processor_get_lpi_info(struct acpi_processor *pr) |
| { |
| int ret, i; |
| acpi_status status; |
| acpi_handle handle = pr->handle, pr_ahandle; |
| struct acpi_device *d = NULL; |
| struct acpi_lpi_states_array info[2], *tmp, *prev, *curr; |
| |
| /* make sure our architecture has support */ |
| ret = acpi_processor_ffh_lpi_probe(pr->id); |
| if (ret == -EOPNOTSUPP) |
| return ret; |
| |
| if (!osc_pc_lpi_support_confirmed) |
| return -EOPNOTSUPP; |
| |
| if (!acpi_has_method(handle, "_LPI")) |
| return -EINVAL; |
| |
| flat_state_cnt = 0; |
| prev = &info[0]; |
| curr = &info[1]; |
| handle = pr->handle; |
| ret = acpi_processor_evaluate_lpi(handle, prev); |
| if (ret) |
| return ret; |
| flatten_lpi_states(pr, prev, NULL); |
| |
| status = acpi_get_parent(handle, &pr_ahandle); |
| while (ACPI_SUCCESS(status)) { |
| d = acpi_fetch_acpi_dev(pr_ahandle); |
| handle = pr_ahandle; |
| |
| if (strcmp(acpi_device_hid(d), ACPI_PROCESSOR_CONTAINER_HID)) |
| break; |
| |
| /* can be optional ? */ |
| if (!acpi_has_method(handle, "_LPI")) |
| break; |
| |
| ret = acpi_processor_evaluate_lpi(handle, curr); |
| if (ret) |
| break; |
| |
| /* flatten all the LPI states in this level of hierarchy */ |
| flatten_lpi_states(pr, curr, prev); |
| |
| tmp = prev, prev = curr, curr = tmp; |
| |
| status = acpi_get_parent(handle, &pr_ahandle); |
| } |
| |
| pr->power.count = flat_state_cnt; |
| /* reset the index after flattening */ |
| for (i = 0; i < pr->power.count; i++) |
| pr->power.lpi_states[i].index = i; |
| |
| /* Tell driver that _LPI is supported. */ |
| pr->flags.has_lpi = 1; |
| pr->flags.power = 1; |
| |
| return 0; |
| } |
| |
| int __weak acpi_processor_ffh_lpi_enter(struct acpi_lpi_state *lpi) |
| { |
| return -ENODEV; |
| } |
| |
| /** |
| * acpi_idle_lpi_enter - enters an ACPI any LPI state |
| * @dev: the target CPU |
| * @drv: cpuidle driver containing cpuidle state info |
| * @index: index of target state |
| * |
| * Return: 0 for success or negative value for error |
| */ |
| static int acpi_idle_lpi_enter(struct cpuidle_device *dev, |
| struct cpuidle_driver *drv, int index) |
| { |
| struct acpi_processor *pr; |
| struct acpi_lpi_state *lpi; |
| |
| pr = __this_cpu_read(processors); |
| |
| if (unlikely(!pr)) |
| return -EINVAL; |
| |
| lpi = &pr->power.lpi_states[index]; |
| if (lpi->entry_method == ACPI_CSTATE_FFH) |
| return acpi_processor_ffh_lpi_enter(lpi); |
| |
| return -EINVAL; |
| } |
| |
| static int acpi_processor_setup_lpi_states(struct acpi_processor *pr) |
| { |
| int i; |
| struct acpi_lpi_state *lpi; |
| struct cpuidle_state *state; |
| struct cpuidle_driver *drv = &acpi_idle_driver; |
| |
| if (!pr->flags.has_lpi) |
| return -EOPNOTSUPP; |
| |
| for (i = 0; i < pr->power.count && i < CPUIDLE_STATE_MAX; i++) { |
| lpi = &pr->power.lpi_states[i]; |
| |
| state = &drv->states[i]; |
| snprintf(state->name, CPUIDLE_NAME_LEN, "LPI-%d", i); |
| strlcpy(state->desc, lpi->desc, CPUIDLE_DESC_LEN); |
| state->exit_latency = lpi->wake_latency; |
| state->target_residency = lpi->min_residency; |
| if (lpi->arch_flags) |
| state->flags |= CPUIDLE_FLAG_TIMER_STOP; |
| state->enter = acpi_idle_lpi_enter; |
| drv->safe_state_index = i; |
| } |
| |
| drv->state_count = i; |
| |
| return 0; |
| } |
| |
| /** |
| * acpi_processor_setup_cpuidle_states- prepares and configures cpuidle |
| * global state data i.e. idle routines |
| * |
| * @pr: the ACPI processor |
| */ |
| static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr) |
| { |
| int i; |
| struct cpuidle_driver *drv = &acpi_idle_driver; |
| |
| if (!pr->flags.power_setup_done || !pr->flags.power) |
| return -EINVAL; |
| |
| drv->safe_state_index = -1; |
| for (i = ACPI_IDLE_STATE_START; i < CPUIDLE_STATE_MAX; i++) { |
| drv->states[i].name[0] = '\0'; |
| drv->states[i].desc[0] = '\0'; |
| } |
| |
| if (pr->flags.has_lpi) |
| return acpi_processor_setup_lpi_states(pr); |
| |
| return acpi_processor_setup_cstates(pr); |
| } |
| |
| /** |
| * acpi_processor_setup_cpuidle_dev - prepares and configures CPUIDLE |
| * device i.e. per-cpu data |
| * |
| * @pr: the ACPI processor |
| * @dev : the cpuidle device |
| */ |
| static int acpi_processor_setup_cpuidle_dev(struct acpi_processor *pr, |
| struct cpuidle_device *dev) |
| { |
| if (!pr->flags.power_setup_done || !pr->flags.power || !dev) |
| return -EINVAL; |
| |
| dev->cpu = pr->id; |
| if (pr->flags.has_lpi) |
| return acpi_processor_ffh_lpi_probe(pr->id); |
| |
| return acpi_processor_setup_cpuidle_cx(pr, dev); |
| } |
| |
| static int acpi_processor_get_power_info(struct acpi_processor *pr) |
| { |
| int ret; |
| |
| ret = acpi_processor_get_lpi_info(pr); |
| if (ret) |
| ret = acpi_processor_get_cstate_info(pr); |
| |
| return ret; |
| } |
| |
| int acpi_processor_hotplug(struct acpi_processor *pr) |
| { |
| int ret = 0; |
| struct cpuidle_device *dev; |
| |
| if (disabled_by_idle_boot_param()) |
| return 0; |
| |
| if (!pr->flags.power_setup_done) |
| return -ENODEV; |
| |
| dev = per_cpu(acpi_cpuidle_device, pr->id); |
| cpuidle_pause_and_lock(); |
| cpuidle_disable_device(dev); |
| ret = acpi_processor_get_power_info(pr); |
| if (!ret && pr->flags.power) { |
| acpi_processor_setup_cpuidle_dev(pr, dev); |
| ret = cpuidle_enable_device(dev); |
| } |
| cpuidle_resume_and_unlock(); |
| |
| return ret; |
| } |
| |
| int acpi_processor_power_state_has_changed(struct acpi_processor *pr) |
| { |
| int cpu; |
| struct acpi_processor *_pr; |
| struct cpuidle_device *dev; |
| |
| if (disabled_by_idle_boot_param()) |
| return 0; |
| |
| if (!pr->flags.power_setup_done) |
| return -ENODEV; |
| |
| /* |
| * FIXME: Design the ACPI notification to make it once per |
| * system instead of once per-cpu. This condition is a hack |
| * to make the code that updates C-States be called once. |
| */ |
| |
| if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) { |
| |
| /* Protect against cpu-hotplug */ |
| cpus_read_lock(); |
| cpuidle_pause_and_lock(); |
| |
| /* Disable all cpuidle devices */ |
| for_each_online_cpu(cpu) { |
| _pr = per_cpu(processors, cpu); |
| if (!_pr || !_pr->flags.power_setup_done) |
| continue; |
| dev = per_cpu(acpi_cpuidle_device, cpu); |
| cpuidle_disable_device(dev); |
| } |
| |
| /* Populate Updated C-state information */ |
| acpi_processor_get_power_info(pr); |
| acpi_processor_setup_cpuidle_states(pr); |
| |
| /* Enable all cpuidle devices */ |
| for_each_online_cpu(cpu) { |
| _pr = per_cpu(processors, cpu); |
| if (!_pr || !_pr->flags.power_setup_done) |
| continue; |
| acpi_processor_get_power_info(_pr); |
| if (_pr->flags.power) { |
| dev = per_cpu(acpi_cpuidle_device, cpu); |
| acpi_processor_setup_cpuidle_dev(_pr, dev); |
| cpuidle_enable_device(dev); |
| } |
| } |
| cpuidle_resume_and_unlock(); |
| cpus_read_unlock(); |
| } |
| |
| return 0; |
| } |
| |
| static int acpi_processor_registered; |
| |
| int acpi_processor_power_init(struct acpi_processor *pr) |
| { |
| int retval; |
| struct cpuidle_device *dev; |
| |
| if (disabled_by_idle_boot_param()) |
| return 0; |
| |
| acpi_processor_cstate_first_run_checks(); |
| |
| if (!acpi_processor_get_power_info(pr)) |
| pr->flags.power_setup_done = 1; |
| |
| /* |
| * Install the idle handler if processor power management is supported. |
| * Note that we use previously set idle handler will be used on |
| * platforms that only support C1. |
| */ |
| if (pr->flags.power) { |
| /* Register acpi_idle_driver if not already registered */ |
| if (!acpi_processor_registered) { |
| acpi_processor_setup_cpuidle_states(pr); |
| retval = cpuidle_register_driver(&acpi_idle_driver); |
| if (retval) |
| return retval; |
| pr_debug("%s registered with cpuidle\n", |
| acpi_idle_driver.name); |
| } |
| |
| dev = kzalloc(sizeof(*dev), GFP_KERNEL); |
| if (!dev) |
| return -ENOMEM; |
| per_cpu(acpi_cpuidle_device, pr->id) = dev; |
| |
| acpi_processor_setup_cpuidle_dev(pr, dev); |
| |
| /* Register per-cpu cpuidle_device. Cpuidle driver |
| * must already be registered before registering device |
| */ |
| retval = cpuidle_register_device(dev); |
| if (retval) { |
| if (acpi_processor_registered == 0) |
| cpuidle_unregister_driver(&acpi_idle_driver); |
| return retval; |
| } |
| acpi_processor_registered++; |
| } |
| return 0; |
| } |
| |
| int acpi_processor_power_exit(struct acpi_processor *pr) |
| { |
| struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id); |
| |
| if (disabled_by_idle_boot_param()) |
| return 0; |
| |
| if (pr->flags.power) { |
| cpuidle_unregister_device(dev); |
| acpi_processor_registered--; |
| if (acpi_processor_registered == 0) |
| cpuidle_unregister_driver(&acpi_idle_driver); |
| } |
| |
| pr->flags.power_setup_done = 0; |
| return 0; |
| } |