| /* |
| * System Abstraction Layer (SAL) interface routines. |
| * |
| * Copyright (C) 1998, 1999, 2001, 2003 Hewlett-Packard Co |
| * David Mosberger-Tang <davidm@hpl.hp.com> |
| * Copyright (C) 1999 VA Linux Systems |
| * Copyright (C) 1999 Walt Drummond <drummond@valinux.com> |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/init.h> |
| #include <linux/module.h> |
| #include <linux/spinlock.h> |
| #include <linux/string.h> |
| |
| #include <asm/delay.h> |
| #include <asm/page.h> |
| #include <asm/sal.h> |
| #include <asm/pal.h> |
| |
| __cacheline_aligned DEFINE_SPINLOCK(sal_lock); |
| unsigned long sal_platform_features; |
| |
| unsigned short sal_revision; |
| unsigned short sal_version; |
| |
| #define SAL_MAJOR(x) ((x) >> 8) |
| #define SAL_MINOR(x) ((x) & 0xff) |
| |
| static struct { |
| void *addr; /* function entry point */ |
| void *gpval; /* gp value to use */ |
| } pdesc; |
| |
| static long |
| default_handler (void) |
| { |
| return -1; |
| } |
| |
| ia64_sal_handler ia64_sal = (ia64_sal_handler) default_handler; |
| ia64_sal_desc_ptc_t *ia64_ptc_domain_info; |
| |
| const char * |
| ia64_sal_strerror (long status) |
| { |
| const char *str; |
| switch (status) { |
| case 0: str = "Call completed without error"; break; |
| case 1: str = "Effect a warm boot of the system to complete " |
| "the update"; break; |
| case -1: str = "Not implemented"; break; |
| case -2: str = "Invalid argument"; break; |
| case -3: str = "Call completed with error"; break; |
| case -4: str = "Virtual address not registered"; break; |
| case -5: str = "No information available"; break; |
| case -6: str = "Insufficient space to add the entry"; break; |
| case -7: str = "Invalid entry_addr value"; break; |
| case -8: str = "Invalid interrupt vector"; break; |
| case -9: str = "Requested memory not available"; break; |
| case -10: str = "Unable to write to the NVM device"; break; |
| case -11: str = "Invalid partition type specified"; break; |
| case -12: str = "Invalid NVM_Object id specified"; break; |
| case -13: str = "NVM_Object already has the maximum number " |
| "of partitions"; break; |
| case -14: str = "Insufficient space in partition for the " |
| "requested write sub-function"; break; |
| case -15: str = "Insufficient data buffer space for the " |
| "requested read record sub-function"; break; |
| case -16: str = "Scratch buffer required for the write/delete " |
| "sub-function"; break; |
| case -17: str = "Insufficient space in the NVM_Object for the " |
| "requested create sub-function"; break; |
| case -18: str = "Invalid value specified in the partition_rec " |
| "argument"; break; |
| case -19: str = "Record oriented I/O not supported for this " |
| "partition"; break; |
| case -20: str = "Bad format of record to be written or " |
| "required keyword variable not " |
| "specified"; break; |
| default: str = "Unknown SAL status code"; break; |
| } |
| return str; |
| } |
| |
| void __init |
| ia64_sal_handler_init (void *entry_point, void *gpval) |
| { |
| /* fill in the SAL procedure descriptor and point ia64_sal to it: */ |
| pdesc.addr = entry_point; |
| pdesc.gpval = gpval; |
| ia64_sal = (ia64_sal_handler) &pdesc; |
| } |
| |
| static void __init |
| check_versions (struct ia64_sal_systab *systab) |
| { |
| sal_revision = (systab->sal_rev_major << 8) | systab->sal_rev_minor; |
| sal_version = (systab->sal_b_rev_major << 8) | systab->sal_b_rev_minor; |
| |
| /* Check for broken firmware */ |
| if ((sal_revision == SAL_VERSION_CODE(49, 29)) |
| && (sal_version == SAL_VERSION_CODE(49, 29))) |
| { |
| /* |
| * Old firmware for zx2000 prototypes have this weird version number, |
| * reset it to something sane. |
| */ |
| sal_revision = SAL_VERSION_CODE(2, 8); |
| sal_version = SAL_VERSION_CODE(0, 0); |
| } |
| |
| if (ia64_platform_is("sn2") && (sal_revision == SAL_VERSION_CODE(2, 9))) |
| /* |
| * SGI Altix has hard-coded version 2.9 in their prom |
| * but they actually implement 3.2, so let's fix it here. |
| */ |
| sal_revision = SAL_VERSION_CODE(3, 2); |
| } |
| |
| static void __init |
| sal_desc_entry_point (void *p) |
| { |
| struct ia64_sal_desc_entry_point *ep = p; |
| ia64_pal_handler_init(__va(ep->pal_proc)); |
| ia64_sal_handler_init(__va(ep->sal_proc), __va(ep->gp)); |
| } |
| |
| #ifdef CONFIG_SMP |
| static void __init |
| set_smp_redirect (int flag) |
| { |
| #ifndef CONFIG_HOTPLUG_CPU |
| if (no_int_routing) |
| smp_int_redirect &= ~flag; |
| else |
| smp_int_redirect |= flag; |
| #else |
| /* |
| * For CPU Hotplug we dont want to do any chipset supported |
| * interrupt redirection. The reason is this would require that |
| * All interrupts be stopped and hard bind the irq to a cpu. |
| * Later when the interrupt is fired we need to set the redir hint |
| * on again in the vector. This is cumbersome for something that the |
| * user mode irq balancer will solve anyways. |
| */ |
| no_int_routing=1; |
| smp_int_redirect &= ~flag; |
| #endif |
| } |
| #else |
| #define set_smp_redirect(flag) do { } while (0) |
| #endif |
| |
| static void __init |
| sal_desc_platform_feature (void *p) |
| { |
| struct ia64_sal_desc_platform_feature *pf = p; |
| sal_platform_features = pf->feature_mask; |
| |
| printk(KERN_INFO "SAL Platform features:"); |
| if (!sal_platform_features) { |
| printk(" None\n"); |
| return; |
| } |
| |
| if (sal_platform_features & IA64_SAL_PLATFORM_FEATURE_BUS_LOCK) |
| printk(" BusLock"); |
| if (sal_platform_features & IA64_SAL_PLATFORM_FEATURE_IRQ_REDIR_HINT) { |
| printk(" IRQ_Redirection"); |
| set_smp_redirect(SMP_IRQ_REDIRECTION); |
| } |
| if (sal_platform_features & IA64_SAL_PLATFORM_FEATURE_IPI_REDIR_HINT) { |
| printk(" IPI_Redirection"); |
| set_smp_redirect(SMP_IPI_REDIRECTION); |
| } |
| if (sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT) |
| printk(" ITC_Drift"); |
| printk("\n"); |
| } |
| |
| #ifdef CONFIG_SMP |
| static void __init |
| sal_desc_ap_wakeup (void *p) |
| { |
| struct ia64_sal_desc_ap_wakeup *ap = p; |
| |
| switch (ap->mechanism) { |
| case IA64_SAL_AP_EXTERNAL_INT: |
| ap_wakeup_vector = ap->vector; |
| printk(KERN_INFO "SAL: AP wakeup using external interrupt " |
| "vector 0x%lx\n", ap_wakeup_vector); |
| break; |
| default: |
| printk(KERN_ERR "SAL: AP wakeup mechanism unsupported!\n"); |
| break; |
| } |
| } |
| |
| static void __init |
| chk_nointroute_opt(void) |
| { |
| char *cp; |
| |
| for (cp = boot_command_line; *cp; ) { |
| if (memcmp(cp, "nointroute", 10) == 0) { |
| no_int_routing = 1; |
| printk ("no_int_routing on\n"); |
| break; |
| } else { |
| while (*cp != ' ' && *cp) |
| ++cp; |
| while (*cp == ' ') |
| ++cp; |
| } |
| } |
| } |
| |
| #else |
| static void __init sal_desc_ap_wakeup(void *p) { } |
| #endif |
| |
| /* |
| * HP rx5670 firmware polls for interrupts during SAL_CACHE_FLUSH by reading |
| * cr.ivr, but it never writes cr.eoi. This leaves any interrupt marked as |
| * "in-service" and masks other interrupts of equal or lower priority. |
| * |
| * HP internal defect reports: F1859, F2775, F3031. |
| */ |
| static int sal_cache_flush_drops_interrupts; |
| |
| static int __init |
| force_pal_cache_flush(char *str) |
| { |
| sal_cache_flush_drops_interrupts = 1; |
| return 0; |
| } |
| early_param("force_pal_cache_flush", force_pal_cache_flush); |
| |
| void __init |
| check_sal_cache_flush (void) |
| { |
| unsigned long flags; |
| int cpu; |
| u64 vector, cache_type = 3; |
| struct ia64_sal_retval isrv; |
| |
| if (sal_cache_flush_drops_interrupts) |
| return; |
| |
| cpu = get_cpu(); |
| local_irq_save(flags); |
| |
| /* |
| * Schedule a timer interrupt, wait until it's reported, and see if |
| * SAL_CACHE_FLUSH drops it. |
| */ |
| ia64_set_itv(IA64_TIMER_VECTOR); |
| ia64_set_itm(ia64_get_itc() + 1000); |
| |
| while (!ia64_get_irr(IA64_TIMER_VECTOR)) |
| cpu_relax(); |
| |
| SAL_CALL(isrv, SAL_CACHE_FLUSH, cache_type, 0, 0, 0, 0, 0, 0); |
| |
| if (isrv.status) |
| printk(KERN_ERR "SAL_CAL_FLUSH failed with %ld\n", isrv.status); |
| |
| if (ia64_get_irr(IA64_TIMER_VECTOR)) { |
| vector = ia64_get_ivr(); |
| ia64_eoi(); |
| WARN_ON(vector != IA64_TIMER_VECTOR); |
| } else { |
| sal_cache_flush_drops_interrupts = 1; |
| printk(KERN_ERR "SAL: SAL_CACHE_FLUSH drops interrupts; " |
| "PAL_CACHE_FLUSH will be used instead\n"); |
| ia64_eoi(); |
| } |
| |
| local_irq_restore(flags); |
| put_cpu(); |
| } |
| |
| s64 |
| ia64_sal_cache_flush (u64 cache_type) |
| { |
| struct ia64_sal_retval isrv; |
| |
| if (sal_cache_flush_drops_interrupts) { |
| unsigned long flags; |
| u64 progress; |
| s64 rc; |
| |
| progress = 0; |
| local_irq_save(flags); |
| rc = ia64_pal_cache_flush(cache_type, |
| PAL_CACHE_FLUSH_INVALIDATE, &progress, NULL); |
| local_irq_restore(flags); |
| return rc; |
| } |
| |
| SAL_CALL(isrv, SAL_CACHE_FLUSH, cache_type, 0, 0, 0, 0, 0, 0); |
| return isrv.status; |
| } |
| EXPORT_SYMBOL_GPL(ia64_sal_cache_flush); |
| |
| void __init |
| ia64_sal_init (struct ia64_sal_systab *systab) |
| { |
| char *p; |
| int i; |
| |
| if (!systab) { |
| printk(KERN_WARNING "Hmm, no SAL System Table.\n"); |
| return; |
| } |
| |
| if (strncmp(systab->signature, "SST_", 4) != 0) |
| printk(KERN_ERR "bad signature in system table!"); |
| |
| check_versions(systab); |
| #ifdef CONFIG_SMP |
| chk_nointroute_opt(); |
| #endif |
| |
| /* revisions are coded in BCD, so %x does the job for us */ |
| printk(KERN_INFO "SAL %x.%x: %.32s %.32s%sversion %x.%x\n", |
| SAL_MAJOR(sal_revision), SAL_MINOR(sal_revision), |
| systab->oem_id, systab->product_id, |
| systab->product_id[0] ? " " : "", |
| SAL_MAJOR(sal_version), SAL_MINOR(sal_version)); |
| |
| p = (char *) (systab + 1); |
| for (i = 0; i < systab->entry_count; i++) { |
| /* |
| * The first byte of each entry type contains the type |
| * descriptor. |
| */ |
| switch (*p) { |
| case SAL_DESC_ENTRY_POINT: |
| sal_desc_entry_point(p); |
| break; |
| case SAL_DESC_PLATFORM_FEATURE: |
| sal_desc_platform_feature(p); |
| break; |
| case SAL_DESC_PTC: |
| ia64_ptc_domain_info = (ia64_sal_desc_ptc_t *)p; |
| break; |
| case SAL_DESC_AP_WAKEUP: |
| sal_desc_ap_wakeup(p); |
| break; |
| } |
| p += SAL_DESC_SIZE(*p); |
| } |
| |
| } |
| |
| int |
| ia64_sal_oemcall(struct ia64_sal_retval *isrvp, u64 oemfunc, u64 arg1, |
| u64 arg2, u64 arg3, u64 arg4, u64 arg5, u64 arg6, u64 arg7) |
| { |
| if (oemfunc < IA64_SAL_OEMFUNC_MIN || oemfunc > IA64_SAL_OEMFUNC_MAX) |
| return -1; |
| SAL_CALL(*isrvp, oemfunc, arg1, arg2, arg3, arg4, arg5, arg6, arg7); |
| return 0; |
| } |
| EXPORT_SYMBOL(ia64_sal_oemcall); |
| |
| int |
| ia64_sal_oemcall_nolock(struct ia64_sal_retval *isrvp, u64 oemfunc, u64 arg1, |
| u64 arg2, u64 arg3, u64 arg4, u64 arg5, u64 arg6, |
| u64 arg7) |
| { |
| if (oemfunc < IA64_SAL_OEMFUNC_MIN || oemfunc > IA64_SAL_OEMFUNC_MAX) |
| return -1; |
| SAL_CALL_NOLOCK(*isrvp, oemfunc, arg1, arg2, arg3, arg4, arg5, arg6, |
| arg7); |
| return 0; |
| } |
| EXPORT_SYMBOL(ia64_sal_oemcall_nolock); |
| |
| int |
| ia64_sal_oemcall_reentrant(struct ia64_sal_retval *isrvp, u64 oemfunc, |
| u64 arg1, u64 arg2, u64 arg3, u64 arg4, u64 arg5, |
| u64 arg6, u64 arg7) |
| { |
| if (oemfunc < IA64_SAL_OEMFUNC_MIN || oemfunc > IA64_SAL_OEMFUNC_MAX) |
| return -1; |
| SAL_CALL_REENTRANT(*isrvp, oemfunc, arg1, arg2, arg3, arg4, arg5, arg6, |
| arg7); |
| return 0; |
| } |
| EXPORT_SYMBOL(ia64_sal_oemcall_reentrant); |
| |
| long |
| ia64_sal_freq_base (unsigned long which, unsigned long *ticks_per_second, |
| unsigned long *drift_info) |
| { |
| struct ia64_sal_retval isrv; |
| |
| SAL_CALL(isrv, SAL_FREQ_BASE, which, 0, 0, 0, 0, 0, 0); |
| *ticks_per_second = isrv.v0; |
| *drift_info = isrv.v1; |
| return isrv.status; |
| } |
| EXPORT_SYMBOL_GPL(ia64_sal_freq_base); |