| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (c) 2000-2006 Silicon Graphics, Inc. |
| * All Rights Reserved. |
| */ |
| |
| #include "xfs.h" |
| #include "xfs_shared.h" |
| #include "xfs_format.h" |
| #include "xfs_log_format.h" |
| #include "xfs_trans_resv.h" |
| #include "xfs_sb.h" |
| #include "xfs_mount.h" |
| #include "xfs_inode.h" |
| #include "xfs_btree.h" |
| #include "xfs_bmap.h" |
| #include "xfs_alloc.h" |
| #include "xfs_fsops.h" |
| #include "xfs_trans.h" |
| #include "xfs_buf_item.h" |
| #include "xfs_log.h" |
| #include "xfs_log_priv.h" |
| #include "xfs_dir2.h" |
| #include "xfs_extfree_item.h" |
| #include "xfs_mru_cache.h" |
| #include "xfs_inode_item.h" |
| #include "xfs_icache.h" |
| #include "xfs_trace.h" |
| #include "xfs_icreate_item.h" |
| #include "xfs_filestream.h" |
| #include "xfs_quota.h" |
| #include "xfs_sysfs.h" |
| #include "xfs_ondisk.h" |
| #include "xfs_rmap_item.h" |
| #include "xfs_refcount_item.h" |
| #include "xfs_bmap_item.h" |
| #include "xfs_reflink.h" |
| #include "xfs_pwork.h" |
| #include "xfs_ag.h" |
| #include "xfs_defer.h" |
| #include "xfs_attr_item.h" |
| #include "xfs_xattr.h" |
| #include "xfs_iunlink_item.h" |
| #include "xfs_dahash_test.h" |
| #include "xfs_rtbitmap.h" |
| #include "scrub/stats.h" |
| |
| #include <linux/magic.h> |
| #include <linux/fs_context.h> |
| #include <linux/fs_parser.h> |
| |
| static const struct super_operations xfs_super_operations; |
| |
| static struct dentry *xfs_debugfs; /* top-level xfs debugfs dir */ |
| static struct kset *xfs_kset; /* top-level xfs sysfs dir */ |
| #ifdef DEBUG |
| static struct xfs_kobj xfs_dbg_kobj; /* global debug sysfs attrs */ |
| #endif |
| |
| enum xfs_dax_mode { |
| XFS_DAX_INODE = 0, |
| XFS_DAX_ALWAYS = 1, |
| XFS_DAX_NEVER = 2, |
| }; |
| |
| static void |
| xfs_mount_set_dax_mode( |
| struct xfs_mount *mp, |
| enum xfs_dax_mode mode) |
| { |
| switch (mode) { |
| case XFS_DAX_INODE: |
| mp->m_features &= ~(XFS_FEAT_DAX_ALWAYS | XFS_FEAT_DAX_NEVER); |
| break; |
| case XFS_DAX_ALWAYS: |
| mp->m_features |= XFS_FEAT_DAX_ALWAYS; |
| mp->m_features &= ~XFS_FEAT_DAX_NEVER; |
| break; |
| case XFS_DAX_NEVER: |
| mp->m_features |= XFS_FEAT_DAX_NEVER; |
| mp->m_features &= ~XFS_FEAT_DAX_ALWAYS; |
| break; |
| } |
| } |
| |
| static const struct constant_table dax_param_enums[] = { |
| {"inode", XFS_DAX_INODE }, |
| {"always", XFS_DAX_ALWAYS }, |
| {"never", XFS_DAX_NEVER }, |
| {} |
| }; |
| |
| /* |
| * Table driven mount option parser. |
| */ |
| enum { |
| Opt_logbufs, Opt_logbsize, Opt_logdev, Opt_rtdev, |
| Opt_wsync, Opt_noalign, Opt_swalloc, Opt_sunit, Opt_swidth, Opt_nouuid, |
| Opt_grpid, Opt_nogrpid, Opt_bsdgroups, Opt_sysvgroups, |
| Opt_allocsize, Opt_norecovery, Opt_inode64, Opt_inode32, Opt_ikeep, |
| Opt_noikeep, Opt_largeio, Opt_nolargeio, Opt_attr2, Opt_noattr2, |
| Opt_filestreams, Opt_quota, Opt_noquota, Opt_usrquota, Opt_grpquota, |
| Opt_prjquota, Opt_uquota, Opt_gquota, Opt_pquota, |
| Opt_uqnoenforce, Opt_gqnoenforce, Opt_pqnoenforce, Opt_qnoenforce, |
| Opt_discard, Opt_nodiscard, Opt_dax, Opt_dax_enum, |
| }; |
| |
| static const struct fs_parameter_spec xfs_fs_parameters[] = { |
| fsparam_u32("logbufs", Opt_logbufs), |
| fsparam_string("logbsize", Opt_logbsize), |
| fsparam_string("logdev", Opt_logdev), |
| fsparam_string("rtdev", Opt_rtdev), |
| fsparam_flag("wsync", Opt_wsync), |
| fsparam_flag("noalign", Opt_noalign), |
| fsparam_flag("swalloc", Opt_swalloc), |
| fsparam_u32("sunit", Opt_sunit), |
| fsparam_u32("swidth", Opt_swidth), |
| fsparam_flag("nouuid", Opt_nouuid), |
| fsparam_flag("grpid", Opt_grpid), |
| fsparam_flag("nogrpid", Opt_nogrpid), |
| fsparam_flag("bsdgroups", Opt_bsdgroups), |
| fsparam_flag("sysvgroups", Opt_sysvgroups), |
| fsparam_string("allocsize", Opt_allocsize), |
| fsparam_flag("norecovery", Opt_norecovery), |
| fsparam_flag("inode64", Opt_inode64), |
| fsparam_flag("inode32", Opt_inode32), |
| fsparam_flag("ikeep", Opt_ikeep), |
| fsparam_flag("noikeep", Opt_noikeep), |
| fsparam_flag("largeio", Opt_largeio), |
| fsparam_flag("nolargeio", Opt_nolargeio), |
| fsparam_flag("attr2", Opt_attr2), |
| fsparam_flag("noattr2", Opt_noattr2), |
| fsparam_flag("filestreams", Opt_filestreams), |
| fsparam_flag("quota", Opt_quota), |
| fsparam_flag("noquota", Opt_noquota), |
| fsparam_flag("usrquota", Opt_usrquota), |
| fsparam_flag("grpquota", Opt_grpquota), |
| fsparam_flag("prjquota", Opt_prjquota), |
| fsparam_flag("uquota", Opt_uquota), |
| fsparam_flag("gquota", Opt_gquota), |
| fsparam_flag("pquota", Opt_pquota), |
| fsparam_flag("uqnoenforce", Opt_uqnoenforce), |
| fsparam_flag("gqnoenforce", Opt_gqnoenforce), |
| fsparam_flag("pqnoenforce", Opt_pqnoenforce), |
| fsparam_flag("qnoenforce", Opt_qnoenforce), |
| fsparam_flag("discard", Opt_discard), |
| fsparam_flag("nodiscard", Opt_nodiscard), |
| fsparam_flag("dax", Opt_dax), |
| fsparam_enum("dax", Opt_dax_enum, dax_param_enums), |
| {} |
| }; |
| |
| struct proc_xfs_info { |
| uint64_t flag; |
| char *str; |
| }; |
| |
| static int |
| xfs_fs_show_options( |
| struct seq_file *m, |
| struct dentry *root) |
| { |
| static struct proc_xfs_info xfs_info_set[] = { |
| /* the few simple ones we can get from the mount struct */ |
| { XFS_FEAT_IKEEP, ",ikeep" }, |
| { XFS_FEAT_WSYNC, ",wsync" }, |
| { XFS_FEAT_NOALIGN, ",noalign" }, |
| { XFS_FEAT_SWALLOC, ",swalloc" }, |
| { XFS_FEAT_NOUUID, ",nouuid" }, |
| { XFS_FEAT_NORECOVERY, ",norecovery" }, |
| { XFS_FEAT_ATTR2, ",attr2" }, |
| { XFS_FEAT_FILESTREAMS, ",filestreams" }, |
| { XFS_FEAT_GRPID, ",grpid" }, |
| { XFS_FEAT_DISCARD, ",discard" }, |
| { XFS_FEAT_LARGE_IOSIZE, ",largeio" }, |
| { XFS_FEAT_DAX_ALWAYS, ",dax=always" }, |
| { XFS_FEAT_DAX_NEVER, ",dax=never" }, |
| { 0, NULL } |
| }; |
| struct xfs_mount *mp = XFS_M(root->d_sb); |
| struct proc_xfs_info *xfs_infop; |
| |
| for (xfs_infop = xfs_info_set; xfs_infop->flag; xfs_infop++) { |
| if (mp->m_features & xfs_infop->flag) |
| seq_puts(m, xfs_infop->str); |
| } |
| |
| seq_printf(m, ",inode%d", xfs_has_small_inums(mp) ? 32 : 64); |
| |
| if (xfs_has_allocsize(mp)) |
| seq_printf(m, ",allocsize=%dk", |
| (1 << mp->m_allocsize_log) >> 10); |
| |
| if (mp->m_logbufs > 0) |
| seq_printf(m, ",logbufs=%d", mp->m_logbufs); |
| if (mp->m_logbsize > 0) |
| seq_printf(m, ",logbsize=%dk", mp->m_logbsize >> 10); |
| |
| if (mp->m_logname) |
| seq_show_option(m, "logdev", mp->m_logname); |
| if (mp->m_rtname) |
| seq_show_option(m, "rtdev", mp->m_rtname); |
| |
| if (mp->m_dalign > 0) |
| seq_printf(m, ",sunit=%d", |
| (int)XFS_FSB_TO_BB(mp, mp->m_dalign)); |
| if (mp->m_swidth > 0) |
| seq_printf(m, ",swidth=%d", |
| (int)XFS_FSB_TO_BB(mp, mp->m_swidth)); |
| |
| if (mp->m_qflags & XFS_UQUOTA_ENFD) |
| seq_puts(m, ",usrquota"); |
| else if (mp->m_qflags & XFS_UQUOTA_ACCT) |
| seq_puts(m, ",uqnoenforce"); |
| |
| if (mp->m_qflags & XFS_PQUOTA_ENFD) |
| seq_puts(m, ",prjquota"); |
| else if (mp->m_qflags & XFS_PQUOTA_ACCT) |
| seq_puts(m, ",pqnoenforce"); |
| |
| if (mp->m_qflags & XFS_GQUOTA_ENFD) |
| seq_puts(m, ",grpquota"); |
| else if (mp->m_qflags & XFS_GQUOTA_ACCT) |
| seq_puts(m, ",gqnoenforce"); |
| |
| if (!(mp->m_qflags & XFS_ALL_QUOTA_ACCT)) |
| seq_puts(m, ",noquota"); |
| |
| return 0; |
| } |
| |
| static bool |
| xfs_set_inode_alloc_perag( |
| struct xfs_perag *pag, |
| xfs_ino_t ino, |
| xfs_agnumber_t max_metadata) |
| { |
| if (!xfs_is_inode32(pag->pag_mount)) { |
| set_bit(XFS_AGSTATE_ALLOWS_INODES, &pag->pag_opstate); |
| clear_bit(XFS_AGSTATE_PREFERS_METADATA, &pag->pag_opstate); |
| return false; |
| } |
| |
| if (ino > XFS_MAXINUMBER_32) { |
| clear_bit(XFS_AGSTATE_ALLOWS_INODES, &pag->pag_opstate); |
| clear_bit(XFS_AGSTATE_PREFERS_METADATA, &pag->pag_opstate); |
| return false; |
| } |
| |
| set_bit(XFS_AGSTATE_ALLOWS_INODES, &pag->pag_opstate); |
| if (pag->pag_agno < max_metadata) |
| set_bit(XFS_AGSTATE_PREFERS_METADATA, &pag->pag_opstate); |
| else |
| clear_bit(XFS_AGSTATE_PREFERS_METADATA, &pag->pag_opstate); |
| return true; |
| } |
| |
| /* |
| * Set parameters for inode allocation heuristics, taking into account |
| * filesystem size and inode32/inode64 mount options; i.e. specifically |
| * whether or not XFS_FEAT_SMALL_INUMS is set. |
| * |
| * Inode allocation patterns are altered only if inode32 is requested |
| * (XFS_FEAT_SMALL_INUMS), and the filesystem is sufficiently large. |
| * If altered, XFS_OPSTATE_INODE32 is set as well. |
| * |
| * An agcount independent of that in the mount structure is provided |
| * because in the growfs case, mp->m_sb.sb_agcount is not yet updated |
| * to the potentially higher ag count. |
| * |
| * Returns the maximum AG index which may contain inodes. |
| */ |
| xfs_agnumber_t |
| xfs_set_inode_alloc( |
| struct xfs_mount *mp, |
| xfs_agnumber_t agcount) |
| { |
| xfs_agnumber_t index; |
| xfs_agnumber_t maxagi = 0; |
| xfs_sb_t *sbp = &mp->m_sb; |
| xfs_agnumber_t max_metadata; |
| xfs_agino_t agino; |
| xfs_ino_t ino; |
| |
| /* |
| * Calculate how much should be reserved for inodes to meet |
| * the max inode percentage. Used only for inode32. |
| */ |
| if (M_IGEO(mp)->maxicount) { |
| uint64_t icount; |
| |
| icount = sbp->sb_dblocks * sbp->sb_imax_pct; |
| do_div(icount, 100); |
| icount += sbp->sb_agblocks - 1; |
| do_div(icount, sbp->sb_agblocks); |
| max_metadata = icount; |
| } else { |
| max_metadata = agcount; |
| } |
| |
| /* Get the last possible inode in the filesystem */ |
| agino = XFS_AGB_TO_AGINO(mp, sbp->sb_agblocks - 1); |
| ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino); |
| |
| /* |
| * If user asked for no more than 32-bit inodes, and the fs is |
| * sufficiently large, set XFS_OPSTATE_INODE32 if we must alter |
| * the allocator to accommodate the request. |
| */ |
| if (xfs_has_small_inums(mp) && ino > XFS_MAXINUMBER_32) |
| set_bit(XFS_OPSTATE_INODE32, &mp->m_opstate); |
| else |
| clear_bit(XFS_OPSTATE_INODE32, &mp->m_opstate); |
| |
| for (index = 0; index < agcount; index++) { |
| struct xfs_perag *pag; |
| |
| ino = XFS_AGINO_TO_INO(mp, index, agino); |
| |
| pag = xfs_perag_get(mp, index); |
| if (xfs_set_inode_alloc_perag(pag, ino, max_metadata)) |
| maxagi++; |
| xfs_perag_put(pag); |
| } |
| |
| return xfs_is_inode32(mp) ? maxagi : agcount; |
| } |
| |
| static int |
| xfs_setup_dax_always( |
| struct xfs_mount *mp) |
| { |
| if (!mp->m_ddev_targp->bt_daxdev && |
| (!mp->m_rtdev_targp || !mp->m_rtdev_targp->bt_daxdev)) { |
| xfs_alert(mp, |
| "DAX unsupported by block device. Turning off DAX."); |
| goto disable_dax; |
| } |
| |
| if (mp->m_super->s_blocksize != PAGE_SIZE) { |
| xfs_alert(mp, |
| "DAX not supported for blocksize. Turning off DAX."); |
| goto disable_dax; |
| } |
| |
| if (xfs_has_reflink(mp) && |
| bdev_is_partition(mp->m_ddev_targp->bt_bdev)) { |
| xfs_alert(mp, |
| "DAX and reflink cannot work with multi-partitions!"); |
| return -EINVAL; |
| } |
| |
| xfs_warn(mp, "DAX enabled. Warning: EXPERIMENTAL, use at your own risk"); |
| return 0; |
| |
| disable_dax: |
| xfs_mount_set_dax_mode(mp, XFS_DAX_NEVER); |
| return 0; |
| } |
| |
| STATIC int |
| xfs_blkdev_get( |
| xfs_mount_t *mp, |
| const char *name, |
| struct bdev_handle **handlep) |
| { |
| int error = 0; |
| |
| *handlep = bdev_open_by_path(name, |
| BLK_OPEN_READ | BLK_OPEN_WRITE | BLK_OPEN_RESTRICT_WRITES, |
| mp->m_super, &fs_holder_ops); |
| if (IS_ERR(*handlep)) { |
| error = PTR_ERR(*handlep); |
| *handlep = NULL; |
| xfs_warn(mp, "Invalid device [%s], error=%d", name, error); |
| } |
| |
| return error; |
| } |
| |
| STATIC void |
| xfs_shutdown_devices( |
| struct xfs_mount *mp) |
| { |
| /* |
| * Udev is triggered whenever anyone closes a block device or unmounts |
| * a file systemm on a block device. |
| * The default udev rules invoke blkid to read the fs super and create |
| * symlinks to the bdev under /dev/disk. For this, it uses buffered |
| * reads through the page cache. |
| * |
| * xfs_db also uses buffered reads to examine metadata. There is no |
| * coordination between xfs_db and udev, which means that they can run |
| * concurrently. Note there is no coordination between the kernel and |
| * blkid either. |
| * |
| * On a system with 64k pages, the page cache can cache the superblock |
| * and the root inode (and hence the root directory) with the same 64k |
| * page. If udev spawns blkid after the mkfs and the system is busy |
| * enough that it is still running when xfs_db starts up, they'll both |
| * read from the same page in the pagecache. |
| * |
| * The unmount writes updated inode metadata to disk directly. The XFS |
| * buffer cache does not use the bdev pagecache, so it needs to |
| * invalidate that pagecache on unmount. If the above scenario occurs, |
| * the pagecache no longer reflects what's on disk, xfs_db reads the |
| * stale metadata, and fails to find /a. Most of the time this succeeds |
| * because closing a bdev invalidates the page cache, but when processes |
| * race, everyone loses. |
| */ |
| if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) { |
| blkdev_issue_flush(mp->m_logdev_targp->bt_bdev); |
| invalidate_bdev(mp->m_logdev_targp->bt_bdev); |
| } |
| if (mp->m_rtdev_targp) { |
| blkdev_issue_flush(mp->m_rtdev_targp->bt_bdev); |
| invalidate_bdev(mp->m_rtdev_targp->bt_bdev); |
| } |
| blkdev_issue_flush(mp->m_ddev_targp->bt_bdev); |
| invalidate_bdev(mp->m_ddev_targp->bt_bdev); |
| } |
| |
| /* |
| * The file system configurations are: |
| * (1) device (partition) with data and internal log |
| * (2) logical volume with data and log subvolumes. |
| * (3) logical volume with data, log, and realtime subvolumes. |
| * |
| * We only have to handle opening the log and realtime volumes here if |
| * they are present. The data subvolume has already been opened by |
| * get_sb_bdev() and is stored in sb->s_bdev. |
| */ |
| STATIC int |
| xfs_open_devices( |
| struct xfs_mount *mp) |
| { |
| struct super_block *sb = mp->m_super; |
| struct block_device *ddev = sb->s_bdev; |
| struct bdev_handle *logdev_handle = NULL, *rtdev_handle = NULL; |
| int error; |
| |
| /* |
| * Open real time and log devices - order is important. |
| */ |
| if (mp->m_logname) { |
| error = xfs_blkdev_get(mp, mp->m_logname, &logdev_handle); |
| if (error) |
| return error; |
| } |
| |
| if (mp->m_rtname) { |
| error = xfs_blkdev_get(mp, mp->m_rtname, &rtdev_handle); |
| if (error) |
| goto out_close_logdev; |
| |
| if (rtdev_handle->bdev == ddev || |
| (logdev_handle && |
| rtdev_handle->bdev == logdev_handle->bdev)) { |
| xfs_warn(mp, |
| "Cannot mount filesystem with identical rtdev and ddev/logdev."); |
| error = -EINVAL; |
| goto out_close_rtdev; |
| } |
| } |
| |
| /* |
| * Setup xfs_mount buffer target pointers |
| */ |
| error = -ENOMEM; |
| mp->m_ddev_targp = xfs_alloc_buftarg(mp, sb->s_bdev_handle); |
| if (!mp->m_ddev_targp) |
| goto out_close_rtdev; |
| |
| if (rtdev_handle) { |
| mp->m_rtdev_targp = xfs_alloc_buftarg(mp, rtdev_handle); |
| if (!mp->m_rtdev_targp) |
| goto out_free_ddev_targ; |
| } |
| |
| if (logdev_handle && logdev_handle->bdev != ddev) { |
| mp->m_logdev_targp = xfs_alloc_buftarg(mp, logdev_handle); |
| if (!mp->m_logdev_targp) |
| goto out_free_rtdev_targ; |
| } else { |
| mp->m_logdev_targp = mp->m_ddev_targp; |
| /* Handle won't be used, drop it */ |
| if (logdev_handle) |
| bdev_release(logdev_handle); |
| } |
| |
| return 0; |
| |
| out_free_rtdev_targ: |
| if (mp->m_rtdev_targp) |
| xfs_free_buftarg(mp->m_rtdev_targp); |
| out_free_ddev_targ: |
| xfs_free_buftarg(mp->m_ddev_targp); |
| out_close_rtdev: |
| if (rtdev_handle) |
| bdev_release(rtdev_handle); |
| out_close_logdev: |
| if (logdev_handle) |
| bdev_release(logdev_handle); |
| return error; |
| } |
| |
| /* |
| * Setup xfs_mount buffer target pointers based on superblock |
| */ |
| STATIC int |
| xfs_setup_devices( |
| struct xfs_mount *mp) |
| { |
| int error; |
| |
| error = xfs_setsize_buftarg(mp->m_ddev_targp, mp->m_sb.sb_sectsize); |
| if (error) |
| return error; |
| |
| if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) { |
| unsigned int log_sector_size = BBSIZE; |
| |
| if (xfs_has_sector(mp)) |
| log_sector_size = mp->m_sb.sb_logsectsize; |
| error = xfs_setsize_buftarg(mp->m_logdev_targp, |
| log_sector_size); |
| if (error) |
| return error; |
| } |
| if (mp->m_rtdev_targp) { |
| error = xfs_setsize_buftarg(mp->m_rtdev_targp, |
| mp->m_sb.sb_sectsize); |
| if (error) |
| return error; |
| } |
| |
| return 0; |
| } |
| |
| STATIC int |
| xfs_init_mount_workqueues( |
| struct xfs_mount *mp) |
| { |
| mp->m_buf_workqueue = alloc_workqueue("xfs-buf/%s", |
| XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM), |
| 1, mp->m_super->s_id); |
| if (!mp->m_buf_workqueue) |
| goto out; |
| |
| mp->m_unwritten_workqueue = alloc_workqueue("xfs-conv/%s", |
| XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM), |
| 0, mp->m_super->s_id); |
| if (!mp->m_unwritten_workqueue) |
| goto out_destroy_buf; |
| |
| mp->m_reclaim_workqueue = alloc_workqueue("xfs-reclaim/%s", |
| XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM), |
| 0, mp->m_super->s_id); |
| if (!mp->m_reclaim_workqueue) |
| goto out_destroy_unwritten; |
| |
| mp->m_blockgc_wq = alloc_workqueue("xfs-blockgc/%s", |
| XFS_WQFLAGS(WQ_UNBOUND | WQ_FREEZABLE | WQ_MEM_RECLAIM), |
| 0, mp->m_super->s_id); |
| if (!mp->m_blockgc_wq) |
| goto out_destroy_reclaim; |
| |
| mp->m_inodegc_wq = alloc_workqueue("xfs-inodegc/%s", |
| XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM), |
| 1, mp->m_super->s_id); |
| if (!mp->m_inodegc_wq) |
| goto out_destroy_blockgc; |
| |
| mp->m_sync_workqueue = alloc_workqueue("xfs-sync/%s", |
| XFS_WQFLAGS(WQ_FREEZABLE), 0, mp->m_super->s_id); |
| if (!mp->m_sync_workqueue) |
| goto out_destroy_inodegc; |
| |
| return 0; |
| |
| out_destroy_inodegc: |
| destroy_workqueue(mp->m_inodegc_wq); |
| out_destroy_blockgc: |
| destroy_workqueue(mp->m_blockgc_wq); |
| out_destroy_reclaim: |
| destroy_workqueue(mp->m_reclaim_workqueue); |
| out_destroy_unwritten: |
| destroy_workqueue(mp->m_unwritten_workqueue); |
| out_destroy_buf: |
| destroy_workqueue(mp->m_buf_workqueue); |
| out: |
| return -ENOMEM; |
| } |
| |
| STATIC void |
| xfs_destroy_mount_workqueues( |
| struct xfs_mount *mp) |
| { |
| destroy_workqueue(mp->m_sync_workqueue); |
| destroy_workqueue(mp->m_blockgc_wq); |
| destroy_workqueue(mp->m_inodegc_wq); |
| destroy_workqueue(mp->m_reclaim_workqueue); |
| destroy_workqueue(mp->m_unwritten_workqueue); |
| destroy_workqueue(mp->m_buf_workqueue); |
| } |
| |
| static void |
| xfs_flush_inodes_worker( |
| struct work_struct *work) |
| { |
| struct xfs_mount *mp = container_of(work, struct xfs_mount, |
| m_flush_inodes_work); |
| struct super_block *sb = mp->m_super; |
| |
| if (down_read_trylock(&sb->s_umount)) { |
| sync_inodes_sb(sb); |
| up_read(&sb->s_umount); |
| } |
| } |
| |
| /* |
| * Flush all dirty data to disk. Must not be called while holding an XFS_ILOCK |
| * or a page lock. We use sync_inodes_sb() here to ensure we block while waiting |
| * for IO to complete so that we effectively throttle multiple callers to the |
| * rate at which IO is completing. |
| */ |
| void |
| xfs_flush_inodes( |
| struct xfs_mount *mp) |
| { |
| /* |
| * If flush_work() returns true then that means we waited for a flush |
| * which was already in progress. Don't bother running another scan. |
| */ |
| if (flush_work(&mp->m_flush_inodes_work)) |
| return; |
| |
| queue_work(mp->m_sync_workqueue, &mp->m_flush_inodes_work); |
| flush_work(&mp->m_flush_inodes_work); |
| } |
| |
| /* Catch misguided souls that try to use this interface on XFS */ |
| STATIC struct inode * |
| xfs_fs_alloc_inode( |
| struct super_block *sb) |
| { |
| BUG(); |
| return NULL; |
| } |
| |
| /* |
| * Now that the generic code is guaranteed not to be accessing |
| * the linux inode, we can inactivate and reclaim the inode. |
| */ |
| STATIC void |
| xfs_fs_destroy_inode( |
| struct inode *inode) |
| { |
| struct xfs_inode *ip = XFS_I(inode); |
| |
| trace_xfs_destroy_inode(ip); |
| |
| ASSERT(!rwsem_is_locked(&inode->i_rwsem)); |
| XFS_STATS_INC(ip->i_mount, vn_rele); |
| XFS_STATS_INC(ip->i_mount, vn_remove); |
| xfs_inode_mark_reclaimable(ip); |
| } |
| |
| static void |
| xfs_fs_dirty_inode( |
| struct inode *inode, |
| int flags) |
| { |
| struct xfs_inode *ip = XFS_I(inode); |
| struct xfs_mount *mp = ip->i_mount; |
| struct xfs_trans *tp; |
| |
| if (!(inode->i_sb->s_flags & SB_LAZYTIME)) |
| return; |
| |
| /* |
| * Only do the timestamp update if the inode is dirty (I_DIRTY_SYNC) |
| * and has dirty timestamp (I_DIRTY_TIME). I_DIRTY_TIME can be passed |
| * in flags possibly together with I_DIRTY_SYNC. |
| */ |
| if ((flags & ~I_DIRTY_TIME) != I_DIRTY_SYNC || !(flags & I_DIRTY_TIME)) |
| return; |
| |
| if (xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp)) |
| return; |
| xfs_ilock(ip, XFS_ILOCK_EXCL); |
| xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); |
| xfs_trans_log_inode(tp, ip, XFS_ILOG_TIMESTAMP); |
| xfs_trans_commit(tp); |
| } |
| |
| /* |
| * Slab object creation initialisation for the XFS inode. |
| * This covers only the idempotent fields in the XFS inode; |
| * all other fields need to be initialised on allocation |
| * from the slab. This avoids the need to repeatedly initialise |
| * fields in the xfs inode that left in the initialise state |
| * when freeing the inode. |
| */ |
| STATIC void |
| xfs_fs_inode_init_once( |
| void *inode) |
| { |
| struct xfs_inode *ip = inode; |
| |
| memset(ip, 0, sizeof(struct xfs_inode)); |
| |
| /* vfs inode */ |
| inode_init_once(VFS_I(ip)); |
| |
| /* xfs inode */ |
| atomic_set(&ip->i_pincount, 0); |
| spin_lock_init(&ip->i_flags_lock); |
| |
| mrlock_init(&ip->i_lock, MRLOCK_ALLOW_EQUAL_PRI|MRLOCK_BARRIER, |
| "xfsino", ip->i_ino); |
| } |
| |
| /* |
| * We do an unlocked check for XFS_IDONTCACHE here because we are already |
| * serialised against cache hits here via the inode->i_lock and igrab() in |
| * xfs_iget_cache_hit(). Hence a lookup that might clear this flag will not be |
| * racing with us, and it avoids needing to grab a spinlock here for every inode |
| * we drop the final reference on. |
| */ |
| STATIC int |
| xfs_fs_drop_inode( |
| struct inode *inode) |
| { |
| struct xfs_inode *ip = XFS_I(inode); |
| |
| /* |
| * If this unlinked inode is in the middle of recovery, don't |
| * drop the inode just yet; log recovery will take care of |
| * that. See the comment for this inode flag. |
| */ |
| if (ip->i_flags & XFS_IRECOVERY) { |
| ASSERT(xlog_recovery_needed(ip->i_mount->m_log)); |
| return 0; |
| } |
| |
| return generic_drop_inode(inode); |
| } |
| |
| static void |
| xfs_mount_free( |
| struct xfs_mount *mp) |
| { |
| if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) |
| xfs_free_buftarg(mp->m_logdev_targp); |
| if (mp->m_rtdev_targp) |
| xfs_free_buftarg(mp->m_rtdev_targp); |
| if (mp->m_ddev_targp) |
| xfs_free_buftarg(mp->m_ddev_targp); |
| |
| debugfs_remove(mp->m_debugfs); |
| kfree(mp->m_rtname); |
| kfree(mp->m_logname); |
| kmem_free(mp); |
| } |
| |
| STATIC int |
| xfs_fs_sync_fs( |
| struct super_block *sb, |
| int wait) |
| { |
| struct xfs_mount *mp = XFS_M(sb); |
| int error; |
| |
| trace_xfs_fs_sync_fs(mp, __return_address); |
| |
| /* |
| * Doing anything during the async pass would be counterproductive. |
| */ |
| if (!wait) |
| return 0; |
| |
| error = xfs_log_force(mp, XFS_LOG_SYNC); |
| if (error) |
| return error; |
| |
| if (laptop_mode) { |
| /* |
| * The disk must be active because we're syncing. |
| * We schedule log work now (now that the disk is |
| * active) instead of later (when it might not be). |
| */ |
| flush_delayed_work(&mp->m_log->l_work); |
| } |
| |
| /* |
| * If we are called with page faults frozen out, it means we are about |
| * to freeze the transaction subsystem. Take the opportunity to shut |
| * down inodegc because once SB_FREEZE_FS is set it's too late to |
| * prevent inactivation races with freeze. The fs doesn't get called |
| * again by the freezing process until after SB_FREEZE_FS has been set, |
| * so it's now or never. Same logic applies to speculative allocation |
| * garbage collection. |
| * |
| * We don't care if this is a normal syncfs call that does this or |
| * freeze that does this - we can run this multiple times without issue |
| * and we won't race with a restart because a restart can only occur |
| * when the state is either SB_FREEZE_FS or SB_FREEZE_COMPLETE. |
| */ |
| if (sb->s_writers.frozen == SB_FREEZE_PAGEFAULT) { |
| xfs_inodegc_stop(mp); |
| xfs_blockgc_stop(mp); |
| } |
| |
| return 0; |
| } |
| |
| STATIC int |
| xfs_fs_statfs( |
| struct dentry *dentry, |
| struct kstatfs *statp) |
| { |
| struct xfs_mount *mp = XFS_M(dentry->d_sb); |
| xfs_sb_t *sbp = &mp->m_sb; |
| struct xfs_inode *ip = XFS_I(d_inode(dentry)); |
| uint64_t fakeinos, id; |
| uint64_t icount; |
| uint64_t ifree; |
| uint64_t fdblocks; |
| xfs_extlen_t lsize; |
| int64_t ffree; |
| |
| /* |
| * Expedite background inodegc but don't wait. We do not want to block |
| * here waiting hours for a billion extent file to be truncated. |
| */ |
| xfs_inodegc_push(mp); |
| |
| statp->f_type = XFS_SUPER_MAGIC; |
| statp->f_namelen = MAXNAMELEN - 1; |
| |
| id = huge_encode_dev(mp->m_ddev_targp->bt_dev); |
| statp->f_fsid = u64_to_fsid(id); |
| |
| icount = percpu_counter_sum(&mp->m_icount); |
| ifree = percpu_counter_sum(&mp->m_ifree); |
| fdblocks = percpu_counter_sum(&mp->m_fdblocks); |
| |
| spin_lock(&mp->m_sb_lock); |
| statp->f_bsize = sbp->sb_blocksize; |
| lsize = sbp->sb_logstart ? sbp->sb_logblocks : 0; |
| statp->f_blocks = sbp->sb_dblocks - lsize; |
| spin_unlock(&mp->m_sb_lock); |
| |
| /* make sure statp->f_bfree does not underflow */ |
| statp->f_bfree = max_t(int64_t, 0, |
| fdblocks - xfs_fdblocks_unavailable(mp)); |
| statp->f_bavail = statp->f_bfree; |
| |
| fakeinos = XFS_FSB_TO_INO(mp, statp->f_bfree); |
| statp->f_files = min(icount + fakeinos, (uint64_t)XFS_MAXINUMBER); |
| if (M_IGEO(mp)->maxicount) |
| statp->f_files = min_t(typeof(statp->f_files), |
| statp->f_files, |
| M_IGEO(mp)->maxicount); |
| |
| /* If sb_icount overshot maxicount, report actual allocation */ |
| statp->f_files = max_t(typeof(statp->f_files), |
| statp->f_files, |
| sbp->sb_icount); |
| |
| /* make sure statp->f_ffree does not underflow */ |
| ffree = statp->f_files - (icount - ifree); |
| statp->f_ffree = max_t(int64_t, ffree, 0); |
| |
| |
| if ((ip->i_diflags & XFS_DIFLAG_PROJINHERIT) && |
| ((mp->m_qflags & (XFS_PQUOTA_ACCT|XFS_PQUOTA_ENFD))) == |
| (XFS_PQUOTA_ACCT|XFS_PQUOTA_ENFD)) |
| xfs_qm_statvfs(ip, statp); |
| |
| if (XFS_IS_REALTIME_MOUNT(mp) && |
| (ip->i_diflags & (XFS_DIFLAG_RTINHERIT | XFS_DIFLAG_REALTIME))) { |
| s64 freertx; |
| |
| statp->f_blocks = sbp->sb_rblocks; |
| freertx = percpu_counter_sum_positive(&mp->m_frextents); |
| statp->f_bavail = statp->f_bfree = xfs_rtx_to_rtb(mp, freertx); |
| } |
| |
| return 0; |
| } |
| |
| STATIC void |
| xfs_save_resvblks(struct xfs_mount *mp) |
| { |
| mp->m_resblks_save = mp->m_resblks; |
| xfs_reserve_blocks(mp, 0); |
| } |
| |
| STATIC void |
| xfs_restore_resvblks(struct xfs_mount *mp) |
| { |
| uint64_t resblks; |
| |
| if (mp->m_resblks_save) { |
| resblks = mp->m_resblks_save; |
| mp->m_resblks_save = 0; |
| } else |
| resblks = xfs_default_resblks(mp); |
| |
| xfs_reserve_blocks(mp, resblks); |
| } |
| |
| /* |
| * Second stage of a freeze. The data is already frozen so we only |
| * need to take care of the metadata. Once that's done sync the superblock |
| * to the log to dirty it in case of a crash while frozen. This ensures that we |
| * will recover the unlinked inode lists on the next mount. |
| */ |
| STATIC int |
| xfs_fs_freeze( |
| struct super_block *sb) |
| { |
| struct xfs_mount *mp = XFS_M(sb); |
| unsigned int flags; |
| int ret; |
| |
| /* |
| * The filesystem is now frozen far enough that memory reclaim |
| * cannot safely operate on the filesystem. Hence we need to |
| * set a GFP_NOFS context here to avoid recursion deadlocks. |
| */ |
| flags = memalloc_nofs_save(); |
| xfs_save_resvblks(mp); |
| ret = xfs_log_quiesce(mp); |
| memalloc_nofs_restore(flags); |
| |
| /* |
| * For read-write filesystems, we need to restart the inodegc on error |
| * because we stopped it at SB_FREEZE_PAGEFAULT level and a thaw is not |
| * going to be run to restart it now. We are at SB_FREEZE_FS level |
| * here, so we can restart safely without racing with a stop in |
| * xfs_fs_sync_fs(). |
| */ |
| if (ret && !xfs_is_readonly(mp)) { |
| xfs_blockgc_start(mp); |
| xfs_inodegc_start(mp); |
| } |
| |
| return ret; |
| } |
| |
| STATIC int |
| xfs_fs_unfreeze( |
| struct super_block *sb) |
| { |
| struct xfs_mount *mp = XFS_M(sb); |
| |
| xfs_restore_resvblks(mp); |
| xfs_log_work_queue(mp); |
| |
| /* |
| * Don't reactivate the inodegc worker on a readonly filesystem because |
| * inodes are sent directly to reclaim. Don't reactivate the blockgc |
| * worker because there are no speculative preallocations on a readonly |
| * filesystem. |
| */ |
| if (!xfs_is_readonly(mp)) { |
| xfs_blockgc_start(mp); |
| xfs_inodegc_start(mp); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * This function fills in xfs_mount_t fields based on mount args. |
| * Note: the superblock _has_ now been read in. |
| */ |
| STATIC int |
| xfs_finish_flags( |
| struct xfs_mount *mp) |
| { |
| /* Fail a mount where the logbuf is smaller than the log stripe */ |
| if (xfs_has_logv2(mp)) { |
| if (mp->m_logbsize <= 0 && |
| mp->m_sb.sb_logsunit > XLOG_BIG_RECORD_BSIZE) { |
| mp->m_logbsize = mp->m_sb.sb_logsunit; |
| } else if (mp->m_logbsize > 0 && |
| mp->m_logbsize < mp->m_sb.sb_logsunit) { |
| xfs_warn(mp, |
| "logbuf size must be greater than or equal to log stripe size"); |
| return -EINVAL; |
| } |
| } else { |
| /* Fail a mount if the logbuf is larger than 32K */ |
| if (mp->m_logbsize > XLOG_BIG_RECORD_BSIZE) { |
| xfs_warn(mp, |
| "logbuf size for version 1 logs must be 16K or 32K"); |
| return -EINVAL; |
| } |
| } |
| |
| /* |
| * V5 filesystems always use attr2 format for attributes. |
| */ |
| if (xfs_has_crc(mp) && xfs_has_noattr2(mp)) { |
| xfs_warn(mp, "Cannot mount a V5 filesystem as noattr2. " |
| "attr2 is always enabled for V5 filesystems."); |
| return -EINVAL; |
| } |
| |
| /* |
| * prohibit r/w mounts of read-only filesystems |
| */ |
| if ((mp->m_sb.sb_flags & XFS_SBF_READONLY) && !xfs_is_readonly(mp)) { |
| xfs_warn(mp, |
| "cannot mount a read-only filesystem as read-write"); |
| return -EROFS; |
| } |
| |
| if ((mp->m_qflags & XFS_GQUOTA_ACCT) && |
| (mp->m_qflags & XFS_PQUOTA_ACCT) && |
| !xfs_has_pquotino(mp)) { |
| xfs_warn(mp, |
| "Super block does not support project and group quota together"); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int |
| xfs_init_percpu_counters( |
| struct xfs_mount *mp) |
| { |
| int error; |
| |
| error = percpu_counter_init(&mp->m_icount, 0, GFP_KERNEL); |
| if (error) |
| return -ENOMEM; |
| |
| error = percpu_counter_init(&mp->m_ifree, 0, GFP_KERNEL); |
| if (error) |
| goto free_icount; |
| |
| error = percpu_counter_init(&mp->m_fdblocks, 0, GFP_KERNEL); |
| if (error) |
| goto free_ifree; |
| |
| error = percpu_counter_init(&mp->m_delalloc_blks, 0, GFP_KERNEL); |
| if (error) |
| goto free_fdblocks; |
| |
| error = percpu_counter_init(&mp->m_frextents, 0, GFP_KERNEL); |
| if (error) |
| goto free_delalloc; |
| |
| return 0; |
| |
| free_delalloc: |
| percpu_counter_destroy(&mp->m_delalloc_blks); |
| free_fdblocks: |
| percpu_counter_destroy(&mp->m_fdblocks); |
| free_ifree: |
| percpu_counter_destroy(&mp->m_ifree); |
| free_icount: |
| percpu_counter_destroy(&mp->m_icount); |
| return -ENOMEM; |
| } |
| |
| void |
| xfs_reinit_percpu_counters( |
| struct xfs_mount *mp) |
| { |
| percpu_counter_set(&mp->m_icount, mp->m_sb.sb_icount); |
| percpu_counter_set(&mp->m_ifree, mp->m_sb.sb_ifree); |
| percpu_counter_set(&mp->m_fdblocks, mp->m_sb.sb_fdblocks); |
| percpu_counter_set(&mp->m_frextents, mp->m_sb.sb_frextents); |
| } |
| |
| static void |
| xfs_destroy_percpu_counters( |
| struct xfs_mount *mp) |
| { |
| percpu_counter_destroy(&mp->m_icount); |
| percpu_counter_destroy(&mp->m_ifree); |
| percpu_counter_destroy(&mp->m_fdblocks); |
| ASSERT(xfs_is_shutdown(mp) || |
| percpu_counter_sum(&mp->m_delalloc_blks) == 0); |
| percpu_counter_destroy(&mp->m_delalloc_blks); |
| percpu_counter_destroy(&mp->m_frextents); |
| } |
| |
| static int |
| xfs_inodegc_init_percpu( |
| struct xfs_mount *mp) |
| { |
| struct xfs_inodegc *gc; |
| int cpu; |
| |
| mp->m_inodegc = alloc_percpu(struct xfs_inodegc); |
| if (!mp->m_inodegc) |
| return -ENOMEM; |
| |
| for_each_possible_cpu(cpu) { |
| gc = per_cpu_ptr(mp->m_inodegc, cpu); |
| gc->cpu = cpu; |
| gc->mp = mp; |
| init_llist_head(&gc->list); |
| gc->items = 0; |
| gc->error = 0; |
| INIT_DELAYED_WORK(&gc->work, xfs_inodegc_worker); |
| } |
| return 0; |
| } |
| |
| static void |
| xfs_inodegc_free_percpu( |
| struct xfs_mount *mp) |
| { |
| if (!mp->m_inodegc) |
| return; |
| free_percpu(mp->m_inodegc); |
| } |
| |
| static void |
| xfs_fs_put_super( |
| struct super_block *sb) |
| { |
| struct xfs_mount *mp = XFS_M(sb); |
| |
| xfs_notice(mp, "Unmounting Filesystem %pU", &mp->m_sb.sb_uuid); |
| xfs_filestream_unmount(mp); |
| xfs_unmountfs(mp); |
| |
| xfs_freesb(mp); |
| xchk_mount_stats_free(mp); |
| free_percpu(mp->m_stats.xs_stats); |
| xfs_inodegc_free_percpu(mp); |
| xfs_destroy_percpu_counters(mp); |
| xfs_destroy_mount_workqueues(mp); |
| xfs_shutdown_devices(mp); |
| } |
| |
| static long |
| xfs_fs_nr_cached_objects( |
| struct super_block *sb, |
| struct shrink_control *sc) |
| { |
| /* Paranoia: catch incorrect calls during mount setup or teardown */ |
| if (WARN_ON_ONCE(!sb->s_fs_info)) |
| return 0; |
| return xfs_reclaim_inodes_count(XFS_M(sb)); |
| } |
| |
| static long |
| xfs_fs_free_cached_objects( |
| struct super_block *sb, |
| struct shrink_control *sc) |
| { |
| return xfs_reclaim_inodes_nr(XFS_M(sb), sc->nr_to_scan); |
| } |
| |
| static void |
| xfs_fs_shutdown( |
| struct super_block *sb) |
| { |
| xfs_force_shutdown(XFS_M(sb), SHUTDOWN_DEVICE_REMOVED); |
| } |
| |
| static const struct super_operations xfs_super_operations = { |
| .alloc_inode = xfs_fs_alloc_inode, |
| .destroy_inode = xfs_fs_destroy_inode, |
| .dirty_inode = xfs_fs_dirty_inode, |
| .drop_inode = xfs_fs_drop_inode, |
| .put_super = xfs_fs_put_super, |
| .sync_fs = xfs_fs_sync_fs, |
| .freeze_fs = xfs_fs_freeze, |
| .unfreeze_fs = xfs_fs_unfreeze, |
| .statfs = xfs_fs_statfs, |
| .show_options = xfs_fs_show_options, |
| .nr_cached_objects = xfs_fs_nr_cached_objects, |
| .free_cached_objects = xfs_fs_free_cached_objects, |
| .shutdown = xfs_fs_shutdown, |
| }; |
| |
| static int |
| suffix_kstrtoint( |
| const char *s, |
| unsigned int base, |
| int *res) |
| { |
| int last, shift_left_factor = 0, _res; |
| char *value; |
| int ret = 0; |
| |
| value = kstrdup(s, GFP_KERNEL); |
| if (!value) |
| return -ENOMEM; |
| |
| last = strlen(value) - 1; |
| if (value[last] == 'K' || value[last] == 'k') { |
| shift_left_factor = 10; |
| value[last] = '\0'; |
| } |
| if (value[last] == 'M' || value[last] == 'm') { |
| shift_left_factor = 20; |
| value[last] = '\0'; |
| } |
| if (value[last] == 'G' || value[last] == 'g') { |
| shift_left_factor = 30; |
| value[last] = '\0'; |
| } |
| |
| if (kstrtoint(value, base, &_res)) |
| ret = -EINVAL; |
| kfree(value); |
| *res = _res << shift_left_factor; |
| return ret; |
| } |
| |
| static inline void |
| xfs_fs_warn_deprecated( |
| struct fs_context *fc, |
| struct fs_parameter *param, |
| uint64_t flag, |
| bool value) |
| { |
| /* Don't print the warning if reconfiguring and current mount point |
| * already had the flag set |
| */ |
| if ((fc->purpose & FS_CONTEXT_FOR_RECONFIGURE) && |
| !!(XFS_M(fc->root->d_sb)->m_features & flag) == value) |
| return; |
| xfs_warn(fc->s_fs_info, "%s mount option is deprecated.", param->key); |
| } |
| |
| /* |
| * Set mount state from a mount option. |
| * |
| * NOTE: mp->m_super is NULL here! |
| */ |
| static int |
| xfs_fs_parse_param( |
| struct fs_context *fc, |
| struct fs_parameter *param) |
| { |
| struct xfs_mount *parsing_mp = fc->s_fs_info; |
| struct fs_parse_result result; |
| int size = 0; |
| int opt; |
| |
| opt = fs_parse(fc, xfs_fs_parameters, param, &result); |
| if (opt < 0) |
| return opt; |
| |
| switch (opt) { |
| case Opt_logbufs: |
| parsing_mp->m_logbufs = result.uint_32; |
| return 0; |
| case Opt_logbsize: |
| if (suffix_kstrtoint(param->string, 10, &parsing_mp->m_logbsize)) |
| return -EINVAL; |
| return 0; |
| case Opt_logdev: |
| kfree(parsing_mp->m_logname); |
| parsing_mp->m_logname = kstrdup(param->string, GFP_KERNEL); |
| if (!parsing_mp->m_logname) |
| return -ENOMEM; |
| return 0; |
| case Opt_rtdev: |
| kfree(parsing_mp->m_rtname); |
| parsing_mp->m_rtname = kstrdup(param->string, GFP_KERNEL); |
| if (!parsing_mp->m_rtname) |
| return -ENOMEM; |
| return 0; |
| case Opt_allocsize: |
| if (suffix_kstrtoint(param->string, 10, &size)) |
| return -EINVAL; |
| parsing_mp->m_allocsize_log = ffs(size) - 1; |
| parsing_mp->m_features |= XFS_FEAT_ALLOCSIZE; |
| return 0; |
| case Opt_grpid: |
| case Opt_bsdgroups: |
| parsing_mp->m_features |= XFS_FEAT_GRPID; |
| return 0; |
| case Opt_nogrpid: |
| case Opt_sysvgroups: |
| parsing_mp->m_features &= ~XFS_FEAT_GRPID; |
| return 0; |
| case Opt_wsync: |
| parsing_mp->m_features |= XFS_FEAT_WSYNC; |
| return 0; |
| case Opt_norecovery: |
| parsing_mp->m_features |= XFS_FEAT_NORECOVERY; |
| return 0; |
| case Opt_noalign: |
| parsing_mp->m_features |= XFS_FEAT_NOALIGN; |
| return 0; |
| case Opt_swalloc: |
| parsing_mp->m_features |= XFS_FEAT_SWALLOC; |
| return 0; |
| case Opt_sunit: |
| parsing_mp->m_dalign = result.uint_32; |
| return 0; |
| case Opt_swidth: |
| parsing_mp->m_swidth = result.uint_32; |
| return 0; |
| case Opt_inode32: |
| parsing_mp->m_features |= XFS_FEAT_SMALL_INUMS; |
| return 0; |
| case Opt_inode64: |
| parsing_mp->m_features &= ~XFS_FEAT_SMALL_INUMS; |
| return 0; |
| case Opt_nouuid: |
| parsing_mp->m_features |= XFS_FEAT_NOUUID; |
| return 0; |
| case Opt_largeio: |
| parsing_mp->m_features |= XFS_FEAT_LARGE_IOSIZE; |
| return 0; |
| case Opt_nolargeio: |
| parsing_mp->m_features &= ~XFS_FEAT_LARGE_IOSIZE; |
| return 0; |
| case Opt_filestreams: |
| parsing_mp->m_features |= XFS_FEAT_FILESTREAMS; |
| return 0; |
| case Opt_noquota: |
| parsing_mp->m_qflags &= ~XFS_ALL_QUOTA_ACCT; |
| parsing_mp->m_qflags &= ~XFS_ALL_QUOTA_ENFD; |
| return 0; |
| case Opt_quota: |
| case Opt_uquota: |
| case Opt_usrquota: |
| parsing_mp->m_qflags |= (XFS_UQUOTA_ACCT | XFS_UQUOTA_ENFD); |
| return 0; |
| case Opt_qnoenforce: |
| case Opt_uqnoenforce: |
| parsing_mp->m_qflags |= XFS_UQUOTA_ACCT; |
| parsing_mp->m_qflags &= ~XFS_UQUOTA_ENFD; |
| return 0; |
| case Opt_pquota: |
| case Opt_prjquota: |
| parsing_mp->m_qflags |= (XFS_PQUOTA_ACCT | XFS_PQUOTA_ENFD); |
| return 0; |
| case Opt_pqnoenforce: |
| parsing_mp->m_qflags |= XFS_PQUOTA_ACCT; |
| parsing_mp->m_qflags &= ~XFS_PQUOTA_ENFD; |
| return 0; |
| case Opt_gquota: |
| case Opt_grpquota: |
| parsing_mp->m_qflags |= (XFS_GQUOTA_ACCT | XFS_GQUOTA_ENFD); |
| return 0; |
| case Opt_gqnoenforce: |
| parsing_mp->m_qflags |= XFS_GQUOTA_ACCT; |
| parsing_mp->m_qflags &= ~XFS_GQUOTA_ENFD; |
| return 0; |
| case Opt_discard: |
| parsing_mp->m_features |= XFS_FEAT_DISCARD; |
| return 0; |
| case Opt_nodiscard: |
| parsing_mp->m_features &= ~XFS_FEAT_DISCARD; |
| return 0; |
| #ifdef CONFIG_FS_DAX |
| case Opt_dax: |
| xfs_mount_set_dax_mode(parsing_mp, XFS_DAX_ALWAYS); |
| return 0; |
| case Opt_dax_enum: |
| xfs_mount_set_dax_mode(parsing_mp, result.uint_32); |
| return 0; |
| #endif |
| /* Following mount options will be removed in September 2025 */ |
| case Opt_ikeep: |
| xfs_fs_warn_deprecated(fc, param, XFS_FEAT_IKEEP, true); |
| parsing_mp->m_features |= XFS_FEAT_IKEEP; |
| return 0; |
| case Opt_noikeep: |
| xfs_fs_warn_deprecated(fc, param, XFS_FEAT_IKEEP, false); |
| parsing_mp->m_features &= ~XFS_FEAT_IKEEP; |
| return 0; |
| case Opt_attr2: |
| xfs_fs_warn_deprecated(fc, param, XFS_FEAT_ATTR2, true); |
| parsing_mp->m_features |= XFS_FEAT_ATTR2; |
| return 0; |
| case Opt_noattr2: |
| xfs_fs_warn_deprecated(fc, param, XFS_FEAT_NOATTR2, true); |
| parsing_mp->m_features |= XFS_FEAT_NOATTR2; |
| return 0; |
| default: |
| xfs_warn(parsing_mp, "unknown mount option [%s].", param->key); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int |
| xfs_fs_validate_params( |
| struct xfs_mount *mp) |
| { |
| /* No recovery flag requires a read-only mount */ |
| if (xfs_has_norecovery(mp) && !xfs_is_readonly(mp)) { |
| xfs_warn(mp, "no-recovery mounts must be read-only."); |
| return -EINVAL; |
| } |
| |
| /* |
| * We have not read the superblock at this point, so only the attr2 |
| * mount option can set the attr2 feature by this stage. |
| */ |
| if (xfs_has_attr2(mp) && xfs_has_noattr2(mp)) { |
| xfs_warn(mp, "attr2 and noattr2 cannot both be specified."); |
| return -EINVAL; |
| } |
| |
| |
| if (xfs_has_noalign(mp) && (mp->m_dalign || mp->m_swidth)) { |
| xfs_warn(mp, |
| "sunit and swidth options incompatible with the noalign option"); |
| return -EINVAL; |
| } |
| |
| if (!IS_ENABLED(CONFIG_XFS_QUOTA) && mp->m_qflags != 0) { |
| xfs_warn(mp, "quota support not available in this kernel."); |
| return -EINVAL; |
| } |
| |
| if ((mp->m_dalign && !mp->m_swidth) || |
| (!mp->m_dalign && mp->m_swidth)) { |
| xfs_warn(mp, "sunit and swidth must be specified together"); |
| return -EINVAL; |
| } |
| |
| if (mp->m_dalign && (mp->m_swidth % mp->m_dalign != 0)) { |
| xfs_warn(mp, |
| "stripe width (%d) must be a multiple of the stripe unit (%d)", |
| mp->m_swidth, mp->m_dalign); |
| return -EINVAL; |
| } |
| |
| if (mp->m_logbufs != -1 && |
| mp->m_logbufs != 0 && |
| (mp->m_logbufs < XLOG_MIN_ICLOGS || |
| mp->m_logbufs > XLOG_MAX_ICLOGS)) { |
| xfs_warn(mp, "invalid logbufs value: %d [not %d-%d]", |
| mp->m_logbufs, XLOG_MIN_ICLOGS, XLOG_MAX_ICLOGS); |
| return -EINVAL; |
| } |
| |
| if (mp->m_logbsize != -1 && |
| mp->m_logbsize != 0 && |
| (mp->m_logbsize < XLOG_MIN_RECORD_BSIZE || |
| mp->m_logbsize > XLOG_MAX_RECORD_BSIZE || |
| !is_power_of_2(mp->m_logbsize))) { |
| xfs_warn(mp, |
| "invalid logbufsize: %d [not 16k,32k,64k,128k or 256k]", |
| mp->m_logbsize); |
| return -EINVAL; |
| } |
| |
| if (xfs_has_allocsize(mp) && |
| (mp->m_allocsize_log > XFS_MAX_IO_LOG || |
| mp->m_allocsize_log < XFS_MIN_IO_LOG)) { |
| xfs_warn(mp, "invalid log iosize: %d [not %d-%d]", |
| mp->m_allocsize_log, XFS_MIN_IO_LOG, XFS_MAX_IO_LOG); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| struct dentry * |
| xfs_debugfs_mkdir( |
| const char *name, |
| struct dentry *parent) |
| { |
| struct dentry *child; |
| |
| /* Apparently we're expected to ignore error returns?? */ |
| child = debugfs_create_dir(name, parent); |
| if (IS_ERR(child)) |
| return NULL; |
| |
| return child; |
| } |
| |
| static int |
| xfs_fs_fill_super( |
| struct super_block *sb, |
| struct fs_context *fc) |
| { |
| struct xfs_mount *mp = sb->s_fs_info; |
| struct inode *root; |
| int flags = 0, error; |
| |
| mp->m_super = sb; |
| |
| /* |
| * Copy VFS mount flags from the context now that all parameter parsing |
| * is guaranteed to have been completed by either the old mount API or |
| * the newer fsopen/fsconfig API. |
| */ |
| if (fc->sb_flags & SB_RDONLY) |
| set_bit(XFS_OPSTATE_READONLY, &mp->m_opstate); |
| if (fc->sb_flags & SB_DIRSYNC) |
| mp->m_features |= XFS_FEAT_DIRSYNC; |
| if (fc->sb_flags & SB_SYNCHRONOUS) |
| mp->m_features |= XFS_FEAT_WSYNC; |
| |
| error = xfs_fs_validate_params(mp); |
| if (error) |
| return error; |
| |
| sb_min_blocksize(sb, BBSIZE); |
| sb->s_xattr = xfs_xattr_handlers; |
| sb->s_export_op = &xfs_export_operations; |
| #ifdef CONFIG_XFS_QUOTA |
| sb->s_qcop = &xfs_quotactl_operations; |
| sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; |
| #endif |
| sb->s_op = &xfs_super_operations; |
| |
| /* |
| * Delay mount work if the debug hook is set. This is debug |
| * instrumention to coordinate simulation of xfs mount failures with |
| * VFS superblock operations |
| */ |
| if (xfs_globals.mount_delay) { |
| xfs_notice(mp, "Delaying mount for %d seconds.", |
| xfs_globals.mount_delay); |
| msleep(xfs_globals.mount_delay * 1000); |
| } |
| |
| if (fc->sb_flags & SB_SILENT) |
| flags |= XFS_MFSI_QUIET; |
| |
| error = xfs_open_devices(mp); |
| if (error) |
| return error; |
| |
| if (xfs_debugfs) { |
| mp->m_debugfs = xfs_debugfs_mkdir(mp->m_super->s_id, |
| xfs_debugfs); |
| } else { |
| mp->m_debugfs = NULL; |
| } |
| |
| error = xfs_init_mount_workqueues(mp); |
| if (error) |
| goto out_shutdown_devices; |
| |
| error = xfs_init_percpu_counters(mp); |
| if (error) |
| goto out_destroy_workqueues; |
| |
| error = xfs_inodegc_init_percpu(mp); |
| if (error) |
| goto out_destroy_counters; |
| |
| /* Allocate stats memory before we do operations that might use it */ |
| mp->m_stats.xs_stats = alloc_percpu(struct xfsstats); |
| if (!mp->m_stats.xs_stats) { |
| error = -ENOMEM; |
| goto out_destroy_inodegc; |
| } |
| |
| error = xchk_mount_stats_alloc(mp); |
| if (error) |
| goto out_free_stats; |
| |
| error = xfs_readsb(mp, flags); |
| if (error) |
| goto out_free_scrub_stats; |
| |
| error = xfs_finish_flags(mp); |
| if (error) |
| goto out_free_sb; |
| |
| error = xfs_setup_devices(mp); |
| if (error) |
| goto out_free_sb; |
| |
| /* V4 support is undergoing deprecation. */ |
| if (!xfs_has_crc(mp)) { |
| #ifdef CONFIG_XFS_SUPPORT_V4 |
| xfs_warn_once(mp, |
| "Deprecated V4 format (crc=0) will not be supported after September 2030."); |
| #else |
| xfs_warn(mp, |
| "Deprecated V4 format (crc=0) not supported by kernel."); |
| error = -EINVAL; |
| goto out_free_sb; |
| #endif |
| } |
| |
| /* ASCII case insensitivity is undergoing deprecation. */ |
| if (xfs_has_asciici(mp)) { |
| #ifdef CONFIG_XFS_SUPPORT_ASCII_CI |
| xfs_warn_once(mp, |
| "Deprecated ASCII case-insensitivity feature (ascii-ci=1) will not be supported after September 2030."); |
| #else |
| xfs_warn(mp, |
| "Deprecated ASCII case-insensitivity feature (ascii-ci=1) not supported by kernel."); |
| error = -EINVAL; |
| goto out_free_sb; |
| #endif |
| } |
| |
| /* Filesystem claims it needs repair, so refuse the mount. */ |
| if (xfs_has_needsrepair(mp)) { |
| xfs_warn(mp, "Filesystem needs repair. Please run xfs_repair."); |
| error = -EFSCORRUPTED; |
| goto out_free_sb; |
| } |
| |
| /* |
| * Don't touch the filesystem if a user tool thinks it owns the primary |
| * superblock. mkfs doesn't clear the flag from secondary supers, so |
| * we don't check them at all. |
| */ |
| if (mp->m_sb.sb_inprogress) { |
| xfs_warn(mp, "Offline file system operation in progress!"); |
| error = -EFSCORRUPTED; |
| goto out_free_sb; |
| } |
| |
| /* |
| * Until this is fixed only page-sized or smaller data blocks work. |
| */ |
| if (mp->m_sb.sb_blocksize > PAGE_SIZE) { |
| xfs_warn(mp, |
| "File system with blocksize %d bytes. " |
| "Only pagesize (%ld) or less will currently work.", |
| mp->m_sb.sb_blocksize, PAGE_SIZE); |
| error = -ENOSYS; |
| goto out_free_sb; |
| } |
| |
| /* Ensure this filesystem fits in the page cache limits */ |
| if (xfs_sb_validate_fsb_count(&mp->m_sb, mp->m_sb.sb_dblocks) || |
| xfs_sb_validate_fsb_count(&mp->m_sb, mp->m_sb.sb_rblocks)) { |
| xfs_warn(mp, |
| "file system too large to be mounted on this system."); |
| error = -EFBIG; |
| goto out_free_sb; |
| } |
| |
| /* |
| * XFS block mappings use 54 bits to store the logical block offset. |
| * This should suffice to handle the maximum file size that the VFS |
| * supports (currently 2^63 bytes on 64-bit and ULONG_MAX << PAGE_SHIFT |
| * bytes on 32-bit), but as XFS and VFS have gotten the s_maxbytes |
| * calculation wrong on 32-bit kernels in the past, we'll add a WARN_ON |
| * to check this assertion. |
| * |
| * Avoid integer overflow by comparing the maximum bmbt offset to the |
| * maximum pagecache offset in units of fs blocks. |
| */ |
| if (!xfs_verify_fileoff(mp, XFS_B_TO_FSBT(mp, MAX_LFS_FILESIZE))) { |
| xfs_warn(mp, |
| "MAX_LFS_FILESIZE block offset (%llu) exceeds extent map maximum (%llu)!", |
| XFS_B_TO_FSBT(mp, MAX_LFS_FILESIZE), |
| XFS_MAX_FILEOFF); |
| error = -EINVAL; |
| goto out_free_sb; |
| } |
| |
| error = xfs_filestream_mount(mp); |
| if (error) |
| goto out_free_sb; |
| |
| /* |
| * we must configure the block size in the superblock before we run the |
| * full mount process as the mount process can lookup and cache inodes. |
| */ |
| sb->s_magic = XFS_SUPER_MAGIC; |
| sb->s_blocksize = mp->m_sb.sb_blocksize; |
| sb->s_blocksize_bits = ffs(sb->s_blocksize) - 1; |
| sb->s_maxbytes = MAX_LFS_FILESIZE; |
| sb->s_max_links = XFS_MAXLINK; |
| sb->s_time_gran = 1; |
| if (xfs_has_bigtime(mp)) { |
| sb->s_time_min = xfs_bigtime_to_unix(XFS_BIGTIME_TIME_MIN); |
| sb->s_time_max = xfs_bigtime_to_unix(XFS_BIGTIME_TIME_MAX); |
| } else { |
| sb->s_time_min = XFS_LEGACY_TIME_MIN; |
| sb->s_time_max = XFS_LEGACY_TIME_MAX; |
| } |
| trace_xfs_inode_timestamp_range(mp, sb->s_time_min, sb->s_time_max); |
| sb->s_iflags |= SB_I_CGROUPWB; |
| |
| set_posix_acl_flag(sb); |
| |
| /* version 5 superblocks support inode version counters. */ |
| if (xfs_has_crc(mp)) |
| sb->s_flags |= SB_I_VERSION; |
| |
| if (xfs_has_dax_always(mp)) { |
| error = xfs_setup_dax_always(mp); |
| if (error) |
| goto out_filestream_unmount; |
| } |
| |
| if (xfs_has_discard(mp) && !bdev_max_discard_sectors(sb->s_bdev)) { |
| xfs_warn(mp, |
| "mounting with \"discard\" option, but the device does not support discard"); |
| mp->m_features &= ~XFS_FEAT_DISCARD; |
| } |
| |
| if (xfs_has_reflink(mp)) { |
| if (mp->m_sb.sb_rblocks) { |
| xfs_alert(mp, |
| "reflink not compatible with realtime device!"); |
| error = -EINVAL; |
| goto out_filestream_unmount; |
| } |
| |
| if (xfs_globals.always_cow) { |
| xfs_info(mp, "using DEBUG-only always_cow mode."); |
| mp->m_always_cow = true; |
| } |
| } |
| |
| if (xfs_has_rmapbt(mp) && mp->m_sb.sb_rblocks) { |
| xfs_alert(mp, |
| "reverse mapping btree not compatible with realtime device!"); |
| error = -EINVAL; |
| goto out_filestream_unmount; |
| } |
| |
| error = xfs_mountfs(mp); |
| if (error) |
| goto out_filestream_unmount; |
| |
| root = igrab(VFS_I(mp->m_rootip)); |
| if (!root) { |
| error = -ENOENT; |
| goto out_unmount; |
| } |
| sb->s_root = d_make_root(root); |
| if (!sb->s_root) { |
| error = -ENOMEM; |
| goto out_unmount; |
| } |
| |
| return 0; |
| |
| out_filestream_unmount: |
| xfs_filestream_unmount(mp); |
| out_free_sb: |
| xfs_freesb(mp); |
| out_free_scrub_stats: |
| xchk_mount_stats_free(mp); |
| out_free_stats: |
| free_percpu(mp->m_stats.xs_stats); |
| out_destroy_inodegc: |
| xfs_inodegc_free_percpu(mp); |
| out_destroy_counters: |
| xfs_destroy_percpu_counters(mp); |
| out_destroy_workqueues: |
| xfs_destroy_mount_workqueues(mp); |
| out_shutdown_devices: |
| xfs_shutdown_devices(mp); |
| return error; |
| |
| out_unmount: |
| xfs_filestream_unmount(mp); |
| xfs_unmountfs(mp); |
| goto out_free_sb; |
| } |
| |
| static int |
| xfs_fs_get_tree( |
| struct fs_context *fc) |
| { |
| return get_tree_bdev(fc, xfs_fs_fill_super); |
| } |
| |
| static int |
| xfs_remount_rw( |
| struct xfs_mount *mp) |
| { |
| struct xfs_sb *sbp = &mp->m_sb; |
| int error; |
| |
| if (xfs_has_norecovery(mp)) { |
| xfs_warn(mp, |
| "ro->rw transition prohibited on norecovery mount"); |
| return -EINVAL; |
| } |
| |
| if (xfs_sb_is_v5(sbp) && |
| xfs_sb_has_ro_compat_feature(sbp, XFS_SB_FEAT_RO_COMPAT_UNKNOWN)) { |
| xfs_warn(mp, |
| "ro->rw transition prohibited on unknown (0x%x) ro-compat filesystem", |
| (sbp->sb_features_ro_compat & |
| XFS_SB_FEAT_RO_COMPAT_UNKNOWN)); |
| return -EINVAL; |
| } |
| |
| clear_bit(XFS_OPSTATE_READONLY, &mp->m_opstate); |
| |
| /* |
| * If this is the first remount to writeable state we might have some |
| * superblock changes to update. |
| */ |
| if (mp->m_update_sb) { |
| error = xfs_sync_sb(mp, false); |
| if (error) { |
| xfs_warn(mp, "failed to write sb changes"); |
| return error; |
| } |
| mp->m_update_sb = false; |
| } |
| |
| /* |
| * Fill out the reserve pool if it is empty. Use the stashed value if |
| * it is non-zero, otherwise go with the default. |
| */ |
| xfs_restore_resvblks(mp); |
| xfs_log_work_queue(mp); |
| xfs_blockgc_start(mp); |
| |
| /* Create the per-AG metadata reservation pool .*/ |
| error = xfs_fs_reserve_ag_blocks(mp); |
| if (error && error != -ENOSPC) |
| return error; |
| |
| /* Re-enable the background inode inactivation worker. */ |
| xfs_inodegc_start(mp); |
| |
| return 0; |
| } |
| |
| static int |
| xfs_remount_ro( |
| struct xfs_mount *mp) |
| { |
| struct xfs_icwalk icw = { |
| .icw_flags = XFS_ICWALK_FLAG_SYNC, |
| }; |
| int error; |
| |
| /* Flush all the dirty data to disk. */ |
| error = sync_filesystem(mp->m_super); |
| if (error) |
| return error; |
| |
| /* |
| * Cancel background eofb scanning so it cannot race with the final |
| * log force+buftarg wait and deadlock the remount. |
| */ |
| xfs_blockgc_stop(mp); |
| |
| /* |
| * Clear out all remaining COW staging extents and speculative post-EOF |
| * preallocations so that we don't leave inodes requiring inactivation |
| * cleanups during reclaim on a read-only mount. We must process every |
| * cached inode, so this requires a synchronous cache scan. |
| */ |
| error = xfs_blockgc_free_space(mp, &icw); |
| if (error) { |
| xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); |
| return error; |
| } |
| |
| /* |
| * Stop the inodegc background worker. xfs_fs_reconfigure already |
| * flushed all pending inodegc work when it sync'd the filesystem. |
| * The VFS holds s_umount, so we know that inodes cannot enter |
| * xfs_fs_destroy_inode during a remount operation. In readonly mode |
| * we send inodes straight to reclaim, so no inodes will be queued. |
| */ |
| xfs_inodegc_stop(mp); |
| |
| /* Free the per-AG metadata reservation pool. */ |
| error = xfs_fs_unreserve_ag_blocks(mp); |
| if (error) { |
| xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); |
| return error; |
| } |
| |
| /* |
| * Before we sync the metadata, we need to free up the reserve block |
| * pool so that the used block count in the superblock on disk is |
| * correct at the end of the remount. Stash the current* reserve pool |
| * size so that if we get remounted rw, we can return it to the same |
| * size. |
| */ |
| xfs_save_resvblks(mp); |
| |
| xfs_log_clean(mp); |
| set_bit(XFS_OPSTATE_READONLY, &mp->m_opstate); |
| |
| return 0; |
| } |
| |
| /* |
| * Logically we would return an error here to prevent users from believing |
| * they might have changed mount options using remount which can't be changed. |
| * |
| * But unfortunately mount(8) adds all options from mtab and fstab to the mount |
| * arguments in some cases so we can't blindly reject options, but have to |
| * check for each specified option if it actually differs from the currently |
| * set option and only reject it if that's the case. |
| * |
| * Until that is implemented we return success for every remount request, and |
| * silently ignore all options that we can't actually change. |
| */ |
| static int |
| xfs_fs_reconfigure( |
| struct fs_context *fc) |
| { |
| struct xfs_mount *mp = XFS_M(fc->root->d_sb); |
| struct xfs_mount *new_mp = fc->s_fs_info; |
| int flags = fc->sb_flags; |
| int error; |
| |
| /* version 5 superblocks always support version counters. */ |
| if (xfs_has_crc(mp)) |
| fc->sb_flags |= SB_I_VERSION; |
| |
| error = xfs_fs_validate_params(new_mp); |
| if (error) |
| return error; |
| |
| /* inode32 -> inode64 */ |
| if (xfs_has_small_inums(mp) && !xfs_has_small_inums(new_mp)) { |
| mp->m_features &= ~XFS_FEAT_SMALL_INUMS; |
| mp->m_maxagi = xfs_set_inode_alloc(mp, mp->m_sb.sb_agcount); |
| } |
| |
| /* inode64 -> inode32 */ |
| if (!xfs_has_small_inums(mp) && xfs_has_small_inums(new_mp)) { |
| mp->m_features |= XFS_FEAT_SMALL_INUMS; |
| mp->m_maxagi = xfs_set_inode_alloc(mp, mp->m_sb.sb_agcount); |
| } |
| |
| /* ro -> rw */ |
| if (xfs_is_readonly(mp) && !(flags & SB_RDONLY)) { |
| error = xfs_remount_rw(mp); |
| if (error) |
| return error; |
| } |
| |
| /* rw -> ro */ |
| if (!xfs_is_readonly(mp) && (flags & SB_RDONLY)) { |
| error = xfs_remount_ro(mp); |
| if (error) |
| return error; |
| } |
| |
| return 0; |
| } |
| |
| static void |
| xfs_fs_free( |
| struct fs_context *fc) |
| { |
| struct xfs_mount *mp = fc->s_fs_info; |
| |
| /* |
| * mp is stored in the fs_context when it is initialized. |
| * mp is transferred to the superblock on a successful mount, |
| * but if an error occurs before the transfer we have to free |
| * it here. |
| */ |
| if (mp) |
| xfs_mount_free(mp); |
| } |
| |
| static const struct fs_context_operations xfs_context_ops = { |
| .parse_param = xfs_fs_parse_param, |
| .get_tree = xfs_fs_get_tree, |
| .reconfigure = xfs_fs_reconfigure, |
| .free = xfs_fs_free, |
| }; |
| |
| /* |
| * WARNING: do not initialise any parameters in this function that depend on |
| * mount option parsing having already been performed as this can be called from |
| * fsopen() before any parameters have been set. |
| */ |
| static int xfs_init_fs_context( |
| struct fs_context *fc) |
| { |
| struct xfs_mount *mp; |
| |
| mp = kzalloc(sizeof(struct xfs_mount), GFP_KERNEL | __GFP_NOFAIL); |
| if (!mp) |
| return -ENOMEM; |
| |
| spin_lock_init(&mp->m_sb_lock); |
| INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC); |
| spin_lock_init(&mp->m_perag_lock); |
| mutex_init(&mp->m_growlock); |
| INIT_WORK(&mp->m_flush_inodes_work, xfs_flush_inodes_worker); |
| INIT_DELAYED_WORK(&mp->m_reclaim_work, xfs_reclaim_worker); |
| mp->m_kobj.kobject.kset = xfs_kset; |
| /* |
| * We don't create the finobt per-ag space reservation until after log |
| * recovery, so we must set this to true so that an ifree transaction |
| * started during log recovery will not depend on space reservations |
| * for finobt expansion. |
| */ |
| mp->m_finobt_nores = true; |
| |
| /* |
| * These can be overridden by the mount option parsing. |
| */ |
| mp->m_logbufs = -1; |
| mp->m_logbsize = -1; |
| mp->m_allocsize_log = 16; /* 64k */ |
| |
| fc->s_fs_info = mp; |
| fc->ops = &xfs_context_ops; |
| |
| return 0; |
| } |
| |
| static void |
| xfs_kill_sb( |
| struct super_block *sb) |
| { |
| kill_block_super(sb); |
| xfs_mount_free(XFS_M(sb)); |
| } |
| |
| static struct file_system_type xfs_fs_type = { |
| .owner = THIS_MODULE, |
| .name = "xfs", |
| .init_fs_context = xfs_init_fs_context, |
| .parameters = xfs_fs_parameters, |
| .kill_sb = xfs_kill_sb, |
| .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP, |
| }; |
| MODULE_ALIAS_FS("xfs"); |
| |
| STATIC int __init |
| xfs_init_caches(void) |
| { |
| int error; |
| |
| xfs_buf_cache = kmem_cache_create("xfs_buf", sizeof(struct xfs_buf), 0, |
| SLAB_HWCACHE_ALIGN | |
| SLAB_RECLAIM_ACCOUNT | |
| SLAB_MEM_SPREAD, |
| NULL); |
| if (!xfs_buf_cache) |
| goto out; |
| |
| xfs_log_ticket_cache = kmem_cache_create("xfs_log_ticket", |
| sizeof(struct xlog_ticket), |
| 0, 0, NULL); |
| if (!xfs_log_ticket_cache) |
| goto out_destroy_buf_cache; |
| |
| error = xfs_btree_init_cur_caches(); |
| if (error) |
| goto out_destroy_log_ticket_cache; |
| |
| error = xfs_defer_init_item_caches(); |
| if (error) |
| goto out_destroy_btree_cur_cache; |
| |
| xfs_da_state_cache = kmem_cache_create("xfs_da_state", |
| sizeof(struct xfs_da_state), |
| 0, 0, NULL); |
| if (!xfs_da_state_cache) |
| goto out_destroy_defer_item_cache; |
| |
| xfs_ifork_cache = kmem_cache_create("xfs_ifork", |
| sizeof(struct xfs_ifork), |
| 0, 0, NULL); |
| if (!xfs_ifork_cache) |
| goto out_destroy_da_state_cache; |
| |
| xfs_trans_cache = kmem_cache_create("xfs_trans", |
| sizeof(struct xfs_trans), |
| 0, 0, NULL); |
| if (!xfs_trans_cache) |
| goto out_destroy_ifork_cache; |
| |
| |
| /* |
| * The size of the cache-allocated buf log item is the maximum |
| * size possible under XFS. This wastes a little bit of memory, |
| * but it is much faster. |
| */ |
| xfs_buf_item_cache = kmem_cache_create("xfs_buf_item", |
| sizeof(struct xfs_buf_log_item), |
| 0, 0, NULL); |
| if (!xfs_buf_item_cache) |
| goto out_destroy_trans_cache; |
| |
| xfs_efd_cache = kmem_cache_create("xfs_efd_item", |
| xfs_efd_log_item_sizeof(XFS_EFD_MAX_FAST_EXTENTS), |
| 0, 0, NULL); |
| if (!xfs_efd_cache) |
| goto out_destroy_buf_item_cache; |
| |
| xfs_efi_cache = kmem_cache_create("xfs_efi_item", |
| xfs_efi_log_item_sizeof(XFS_EFI_MAX_FAST_EXTENTS), |
| 0, 0, NULL); |
| if (!xfs_efi_cache) |
| goto out_destroy_efd_cache; |
| |
| xfs_inode_cache = kmem_cache_create("xfs_inode", |
| sizeof(struct xfs_inode), 0, |
| (SLAB_HWCACHE_ALIGN | |
| SLAB_RECLAIM_ACCOUNT | |
| SLAB_MEM_SPREAD | SLAB_ACCOUNT), |
| xfs_fs_inode_init_once); |
| if (!xfs_inode_cache) |
| goto out_destroy_efi_cache; |
| |
| xfs_ili_cache = kmem_cache_create("xfs_ili", |
| sizeof(struct xfs_inode_log_item), 0, |
| SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, |
| NULL); |
| if (!xfs_ili_cache) |
| goto out_destroy_inode_cache; |
| |
| xfs_icreate_cache = kmem_cache_create("xfs_icr", |
| sizeof(struct xfs_icreate_item), |
| 0, 0, NULL); |
| if (!xfs_icreate_cache) |
| goto out_destroy_ili_cache; |
| |
| xfs_rud_cache = kmem_cache_create("xfs_rud_item", |
| sizeof(struct xfs_rud_log_item), |
| 0, 0, NULL); |
| if (!xfs_rud_cache) |
| goto out_destroy_icreate_cache; |
| |
| xfs_rui_cache = kmem_cache_create("xfs_rui_item", |
| xfs_rui_log_item_sizeof(XFS_RUI_MAX_FAST_EXTENTS), |
| 0, 0, NULL); |
| if (!xfs_rui_cache) |
| goto out_destroy_rud_cache; |
| |
| xfs_cud_cache = kmem_cache_create("xfs_cud_item", |
| sizeof(struct xfs_cud_log_item), |
| 0, 0, NULL); |
| if (!xfs_cud_cache) |
| goto out_destroy_rui_cache; |
| |
| xfs_cui_cache = kmem_cache_create("xfs_cui_item", |
| xfs_cui_log_item_sizeof(XFS_CUI_MAX_FAST_EXTENTS), |
| 0, 0, NULL); |
| if (!xfs_cui_cache) |
| goto out_destroy_cud_cache; |
| |
| xfs_bud_cache = kmem_cache_create("xfs_bud_item", |
| sizeof(struct xfs_bud_log_item), |
| 0, 0, NULL); |
| if (!xfs_bud_cache) |
| goto out_destroy_cui_cache; |
| |
| xfs_bui_cache = kmem_cache_create("xfs_bui_item", |
| xfs_bui_log_item_sizeof(XFS_BUI_MAX_FAST_EXTENTS), |
| 0, 0, NULL); |
| if (!xfs_bui_cache) |
| goto out_destroy_bud_cache; |
| |
| xfs_attrd_cache = kmem_cache_create("xfs_attrd_item", |
| sizeof(struct xfs_attrd_log_item), |
| 0, 0, NULL); |
| if (!xfs_attrd_cache) |
| goto out_destroy_bui_cache; |
| |
| xfs_attri_cache = kmem_cache_create("xfs_attri_item", |
| sizeof(struct xfs_attri_log_item), |
| 0, 0, NULL); |
| if (!xfs_attri_cache) |
| goto out_destroy_attrd_cache; |
| |
| xfs_iunlink_cache = kmem_cache_create("xfs_iul_item", |
| sizeof(struct xfs_iunlink_item), |
| 0, 0, NULL); |
| if (!xfs_iunlink_cache) |
| goto out_destroy_attri_cache; |
| |
| return 0; |
| |
| out_destroy_attri_cache: |
| kmem_cache_destroy(xfs_attri_cache); |
| out_destroy_attrd_cache: |
| kmem_cache_destroy(xfs_attrd_cache); |
| out_destroy_bui_cache: |
| kmem_cache_destroy(xfs_bui_cache); |
| out_destroy_bud_cache: |
| kmem_cache_destroy(xfs_bud_cache); |
| out_destroy_cui_cache: |
| kmem_cache_destroy(xfs_cui_cache); |
| out_destroy_cud_cache: |
| kmem_cache_destroy(xfs_cud_cache); |
| out_destroy_rui_cache: |
| kmem_cache_destroy(xfs_rui_cache); |
| out_destroy_rud_cache: |
| kmem_cache_destroy(xfs_rud_cache); |
| out_destroy_icreate_cache: |
| kmem_cache_destroy(xfs_icreate_cache); |
| out_destroy_ili_cache: |
| kmem_cache_destroy(xfs_ili_cache); |
| out_destroy_inode_cache: |
| kmem_cache_destroy(xfs_inode_cache); |
| out_destroy_efi_cache: |
| kmem_cache_destroy(xfs_efi_cache); |
| out_destroy_efd_cache: |
| kmem_cache_destroy(xfs_efd_cache); |
| out_destroy_buf_item_cache: |
| kmem_cache_destroy(xfs_buf_item_cache); |
| out_destroy_trans_cache: |
| kmem_cache_destroy(xfs_trans_cache); |
| out_destroy_ifork_cache: |
| kmem_cache_destroy(xfs_ifork_cache); |
| out_destroy_da_state_cache: |
| kmem_cache_destroy(xfs_da_state_cache); |
| out_destroy_defer_item_cache: |
| xfs_defer_destroy_item_caches(); |
| out_destroy_btree_cur_cache: |
| xfs_btree_destroy_cur_caches(); |
| out_destroy_log_ticket_cache: |
| kmem_cache_destroy(xfs_log_ticket_cache); |
| out_destroy_buf_cache: |
| kmem_cache_destroy(xfs_buf_cache); |
| out: |
| return -ENOMEM; |
| } |
| |
| STATIC void |
| xfs_destroy_caches(void) |
| { |
| /* |
| * Make sure all delayed rcu free are flushed before we |
| * destroy caches. |
| */ |
| rcu_barrier(); |
| kmem_cache_destroy(xfs_iunlink_cache); |
| kmem_cache_destroy(xfs_attri_cache); |
| kmem_cache_destroy(xfs_attrd_cache); |
| kmem_cache_destroy(xfs_bui_cache); |
| kmem_cache_destroy(xfs_bud_cache); |
| kmem_cache_destroy(xfs_cui_cache); |
| kmem_cache_destroy(xfs_cud_cache); |
| kmem_cache_destroy(xfs_rui_cache); |
| kmem_cache_destroy(xfs_rud_cache); |
| kmem_cache_destroy(xfs_icreate_cache); |
| kmem_cache_destroy(xfs_ili_cache); |
| kmem_cache_destroy(xfs_inode_cache); |
| kmem_cache_destroy(xfs_efi_cache); |
| kmem_cache_destroy(xfs_efd_cache); |
| kmem_cache_destroy(xfs_buf_item_cache); |
| kmem_cache_destroy(xfs_trans_cache); |
| kmem_cache_destroy(xfs_ifork_cache); |
| kmem_cache_destroy(xfs_da_state_cache); |
| xfs_defer_destroy_item_caches(); |
| xfs_btree_destroy_cur_caches(); |
| kmem_cache_destroy(xfs_log_ticket_cache); |
| kmem_cache_destroy(xfs_buf_cache); |
| } |
| |
| STATIC int __init |
| xfs_init_workqueues(void) |
| { |
| /* |
| * The allocation workqueue can be used in memory reclaim situations |
| * (writepage path), and parallelism is only limited by the number of |
| * AGs in all the filesystems mounted. Hence use the default large |
| * max_active value for this workqueue. |
| */ |
| xfs_alloc_wq = alloc_workqueue("xfsalloc", |
| XFS_WQFLAGS(WQ_MEM_RECLAIM | WQ_FREEZABLE), 0); |
| if (!xfs_alloc_wq) |
| return -ENOMEM; |
| |
| xfs_discard_wq = alloc_workqueue("xfsdiscard", XFS_WQFLAGS(WQ_UNBOUND), |
| 0); |
| if (!xfs_discard_wq) |
| goto out_free_alloc_wq; |
| |
| return 0; |
| out_free_alloc_wq: |
| destroy_workqueue(xfs_alloc_wq); |
| return -ENOMEM; |
| } |
| |
| STATIC void |
| xfs_destroy_workqueues(void) |
| { |
| destroy_workqueue(xfs_discard_wq); |
| destroy_workqueue(xfs_alloc_wq); |
| } |
| |
| STATIC int __init |
| init_xfs_fs(void) |
| { |
| int error; |
| |
| xfs_check_ondisk_structs(); |
| |
| error = xfs_dahash_test(); |
| if (error) |
| return error; |
| |
| printk(KERN_INFO XFS_VERSION_STRING " with " |
| XFS_BUILD_OPTIONS " enabled\n"); |
| |
| xfs_dir_startup(); |
| |
| error = xfs_init_caches(); |
| if (error) |
| goto out; |
| |
| error = xfs_init_workqueues(); |
| if (error) |
| goto out_destroy_caches; |
| |
| error = xfs_mru_cache_init(); |
| if (error) |
| goto out_destroy_wq; |
| |
| error = xfs_init_procfs(); |
| if (error) |
| goto out_mru_cache_uninit; |
| |
| error = xfs_sysctl_register(); |
| if (error) |
| goto out_cleanup_procfs; |
| |
| xfs_debugfs = xfs_debugfs_mkdir("xfs", NULL); |
| |
| xfs_kset = kset_create_and_add("xfs", NULL, fs_kobj); |
| if (!xfs_kset) { |
| error = -ENOMEM; |
| goto out_debugfs_unregister; |
| } |
| |
| xfsstats.xs_kobj.kobject.kset = xfs_kset; |
| |
| xfsstats.xs_stats = alloc_percpu(struct xfsstats); |
| if (!xfsstats.xs_stats) { |
| error = -ENOMEM; |
| goto out_kset_unregister; |
| } |
| |
| error = xfs_sysfs_init(&xfsstats.xs_kobj, &xfs_stats_ktype, NULL, |
| "stats"); |
| if (error) |
| goto out_free_stats; |
| |
| error = xchk_global_stats_setup(xfs_debugfs); |
| if (error) |
| goto out_remove_stats_kobj; |
| |
| #ifdef DEBUG |
| xfs_dbg_kobj.kobject.kset = xfs_kset; |
| error = xfs_sysfs_init(&xfs_dbg_kobj, &xfs_dbg_ktype, NULL, "debug"); |
| if (error) |
| goto out_remove_scrub_stats; |
| #endif |
| |
| error = xfs_qm_init(); |
| if (error) |
| goto out_remove_dbg_kobj; |
| |
| error = register_filesystem(&xfs_fs_type); |
| if (error) |
| goto out_qm_exit; |
| return 0; |
| |
| out_qm_exit: |
| xfs_qm_exit(); |
| out_remove_dbg_kobj: |
| #ifdef DEBUG |
| xfs_sysfs_del(&xfs_dbg_kobj); |
| out_remove_scrub_stats: |
| #endif |
| xchk_global_stats_teardown(); |
| out_remove_stats_kobj: |
| xfs_sysfs_del(&xfsstats.xs_kobj); |
| out_free_stats: |
| free_percpu(xfsstats.xs_stats); |
| out_kset_unregister: |
| kset_unregister(xfs_kset); |
| out_debugfs_unregister: |
| debugfs_remove(xfs_debugfs); |
| xfs_sysctl_unregister(); |
| out_cleanup_procfs: |
| xfs_cleanup_procfs(); |
| out_mru_cache_uninit: |
| xfs_mru_cache_uninit(); |
| out_destroy_wq: |
| xfs_destroy_workqueues(); |
| out_destroy_caches: |
| xfs_destroy_caches(); |
| out: |
| return error; |
| } |
| |
| STATIC void __exit |
| exit_xfs_fs(void) |
| { |
| xfs_qm_exit(); |
| unregister_filesystem(&xfs_fs_type); |
| #ifdef DEBUG |
| xfs_sysfs_del(&xfs_dbg_kobj); |
| #endif |
| xchk_global_stats_teardown(); |
| xfs_sysfs_del(&xfsstats.xs_kobj); |
| free_percpu(xfsstats.xs_stats); |
| kset_unregister(xfs_kset); |
| debugfs_remove(xfs_debugfs); |
| xfs_sysctl_unregister(); |
| xfs_cleanup_procfs(); |
| xfs_mru_cache_uninit(); |
| xfs_destroy_workqueues(); |
| xfs_destroy_caches(); |
| xfs_uuid_table_free(); |
| } |
| |
| module_init(init_xfs_fs); |
| module_exit(exit_xfs_fs); |
| |
| MODULE_AUTHOR("Silicon Graphics, Inc."); |
| MODULE_DESCRIPTION(XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled"); |
| MODULE_LICENSE("GPL"); |