| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * Copyright 2016,2017 IBM Corporation. |
| */ |
| |
| #define pr_fmt(fmt) "xive: " fmt |
| |
| #include <linux/types.h> |
| #include <linux/threads.h> |
| #include <linux/kernel.h> |
| #include <linux/irq.h> |
| #include <linux/debugfs.h> |
| #include <linux/smp.h> |
| #include <linux/interrupt.h> |
| #include <linux/seq_file.h> |
| #include <linux/init.h> |
| #include <linux/cpu.h> |
| #include <linux/of.h> |
| #include <linux/slab.h> |
| #include <linux/spinlock.h> |
| #include <linux/msi.h> |
| |
| #include <asm/prom.h> |
| #include <asm/io.h> |
| #include <asm/smp.h> |
| #include <asm/machdep.h> |
| #include <asm/irq.h> |
| #include <asm/errno.h> |
| #include <asm/xive.h> |
| #include <asm/xive-regs.h> |
| #include <asm/xmon.h> |
| |
| #include "xive-internal.h" |
| |
| #undef DEBUG_FLUSH |
| #undef DEBUG_ALL |
| |
| #ifdef DEBUG_ALL |
| #define DBG_VERBOSE(fmt, ...) pr_devel("cpu %d - " fmt, \ |
| smp_processor_id(), ## __VA_ARGS__) |
| #else |
| #define DBG_VERBOSE(fmt...) do { } while(0) |
| #endif |
| |
| bool __xive_enabled; |
| EXPORT_SYMBOL_GPL(__xive_enabled); |
| bool xive_cmdline_disabled; |
| |
| /* We use only one priority for now */ |
| static u8 xive_irq_priority; |
| |
| /* TIMA exported to KVM */ |
| void __iomem *xive_tima; |
| EXPORT_SYMBOL_GPL(xive_tima); |
| u32 xive_tima_offset; |
| |
| /* Backend ops */ |
| static const struct xive_ops *xive_ops; |
| |
| /* Our global interrupt domain */ |
| static struct irq_domain *xive_irq_domain; |
| |
| #ifdef CONFIG_SMP |
| /* The IPIs all use the same logical irq number */ |
| static u32 xive_ipi_irq; |
| #endif |
| |
| /* Xive state for each CPU */ |
| static DEFINE_PER_CPU(struct xive_cpu *, xive_cpu); |
| |
| /* |
| * A "disabled" interrupt should never fire, to catch problems |
| * we set its logical number to this |
| */ |
| #define XIVE_BAD_IRQ 0x7fffffff |
| #define XIVE_MAX_IRQ (XIVE_BAD_IRQ - 1) |
| |
| /* An invalid CPU target */ |
| #define XIVE_INVALID_TARGET (-1) |
| |
| /* |
| * Read the next entry in a queue, return its content if it's valid |
| * or 0 if there is no new entry. |
| * |
| * The queue pointer is moved forward unless "just_peek" is set |
| */ |
| static u32 xive_read_eq(struct xive_q *q, bool just_peek) |
| { |
| u32 cur; |
| |
| if (!q->qpage) |
| return 0; |
| cur = be32_to_cpup(q->qpage + q->idx); |
| |
| /* Check valid bit (31) vs current toggle polarity */ |
| if ((cur >> 31) == q->toggle) |
| return 0; |
| |
| /* If consuming from the queue ... */ |
| if (!just_peek) { |
| /* Next entry */ |
| q->idx = (q->idx + 1) & q->msk; |
| |
| /* Wrap around: flip valid toggle */ |
| if (q->idx == 0) |
| q->toggle ^= 1; |
| } |
| /* Mask out the valid bit (31) */ |
| return cur & 0x7fffffff; |
| } |
| |
| /* |
| * Scans all the queue that may have interrupts in them |
| * (based on "pending_prio") in priority order until an |
| * interrupt is found or all the queues are empty. |
| * |
| * Then updates the CPPR (Current Processor Priority |
| * Register) based on the most favored interrupt found |
| * (0xff if none) and return what was found (0 if none). |
| * |
| * If just_peek is set, return the most favored pending |
| * interrupt if any but don't update the queue pointers. |
| * |
| * Note: This function can operate generically on any number |
| * of queues (up to 8). The current implementation of the XIVE |
| * driver only uses a single queue however. |
| * |
| * Note2: This will also "flush" "the pending_count" of a queue |
| * into the "count" when that queue is observed to be empty. |
| * This is used to keep track of the amount of interrupts |
| * targetting a queue. When an interrupt is moved away from |
| * a queue, we only decrement that queue count once the queue |
| * has been observed empty to avoid races. |
| */ |
| static u32 xive_scan_interrupts(struct xive_cpu *xc, bool just_peek) |
| { |
| u32 irq = 0; |
| u8 prio = 0; |
| |
| /* Find highest pending priority */ |
| while (xc->pending_prio != 0) { |
| struct xive_q *q; |
| |
| prio = ffs(xc->pending_prio) - 1; |
| DBG_VERBOSE("scan_irq: trying prio %d\n", prio); |
| |
| /* Try to fetch */ |
| irq = xive_read_eq(&xc->queue[prio], just_peek); |
| |
| /* Found something ? That's it */ |
| if (irq) { |
| if (just_peek || irq_to_desc(irq)) |
| break; |
| /* |
| * We should never get here; if we do then we must |
| * have failed to synchronize the interrupt properly |
| * when shutting it down. |
| */ |
| pr_crit("xive: got interrupt %d without descriptor, dropping\n", |
| irq); |
| WARN_ON(1); |
| continue; |
| } |
| |
| /* Clear pending bits */ |
| xc->pending_prio &= ~(1 << prio); |
| |
| /* |
| * Check if the queue count needs adjusting due to |
| * interrupts being moved away. See description of |
| * xive_dec_target_count() |
| */ |
| q = &xc->queue[prio]; |
| if (atomic_read(&q->pending_count)) { |
| int p = atomic_xchg(&q->pending_count, 0); |
| if (p) { |
| WARN_ON(p > atomic_read(&q->count)); |
| atomic_sub(p, &q->count); |
| } |
| } |
| } |
| |
| /* If nothing was found, set CPPR to 0xff */ |
| if (irq == 0) |
| prio = 0xff; |
| |
| /* Update HW CPPR to match if necessary */ |
| if (prio != xc->cppr) { |
| DBG_VERBOSE("scan_irq: adjusting CPPR to %d\n", prio); |
| xc->cppr = prio; |
| out_8(xive_tima + xive_tima_offset + TM_CPPR, prio); |
| } |
| |
| return irq; |
| } |
| |
| /* |
| * This is used to perform the magic loads from an ESB |
| * described in xive-regs.h |
| */ |
| static notrace u8 xive_esb_read(struct xive_irq_data *xd, u32 offset) |
| { |
| u64 val; |
| |
| /* Handle HW errata */ |
| if (xd->flags & XIVE_IRQ_FLAG_SHIFT_BUG) |
| offset |= offset << 4; |
| |
| if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw) |
| val = xive_ops->esb_rw(xd->hw_irq, offset, 0, 0); |
| else |
| val = in_be64(xd->eoi_mmio + offset); |
| |
| return (u8)val; |
| } |
| |
| static void xive_esb_write(struct xive_irq_data *xd, u32 offset, u64 data) |
| { |
| /* Handle HW errata */ |
| if (xd->flags & XIVE_IRQ_FLAG_SHIFT_BUG) |
| offset |= offset << 4; |
| |
| if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw) |
| xive_ops->esb_rw(xd->hw_irq, offset, data, 1); |
| else |
| out_be64(xd->eoi_mmio + offset, data); |
| } |
| |
| #ifdef CONFIG_XMON |
| static notrace void xive_dump_eq(const char *name, struct xive_q *q) |
| { |
| u32 i0, i1, idx; |
| |
| if (!q->qpage) |
| return; |
| idx = q->idx; |
| i0 = be32_to_cpup(q->qpage + idx); |
| idx = (idx + 1) & q->msk; |
| i1 = be32_to_cpup(q->qpage + idx); |
| xmon_printf("%s idx=%d T=%d %08x %08x ...", name, |
| q->idx, q->toggle, i0, i1); |
| } |
| |
| notrace void xmon_xive_do_dump(int cpu) |
| { |
| struct xive_cpu *xc = per_cpu(xive_cpu, cpu); |
| |
| xmon_printf("CPU %d:", cpu); |
| if (xc) { |
| xmon_printf("pp=%02x CPPR=%02x ", xc->pending_prio, xc->cppr); |
| |
| #ifdef CONFIG_SMP |
| { |
| u64 val = xive_esb_read(&xc->ipi_data, XIVE_ESB_GET); |
| |
| xmon_printf("IPI=0x%08x PQ=%c%c ", xc->hw_ipi, |
| val & XIVE_ESB_VAL_P ? 'P' : '-', |
| val & XIVE_ESB_VAL_Q ? 'Q' : '-'); |
| } |
| #endif |
| xive_dump_eq("EQ", &xc->queue[xive_irq_priority]); |
| } |
| xmon_printf("\n"); |
| } |
| |
| int xmon_xive_get_irq_config(u32 hw_irq, struct irq_data *d) |
| { |
| int rc; |
| u32 target; |
| u8 prio; |
| u32 lirq; |
| |
| rc = xive_ops->get_irq_config(hw_irq, &target, &prio, &lirq); |
| if (rc) { |
| xmon_printf("IRQ 0x%08x : no config rc=%d\n", hw_irq, rc); |
| return rc; |
| } |
| |
| xmon_printf("IRQ 0x%08x : target=0x%x prio=%02x lirq=0x%x ", |
| hw_irq, target, prio, lirq); |
| |
| if (d) { |
| struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); |
| u64 val = xive_esb_read(xd, XIVE_ESB_GET); |
| |
| xmon_printf("PQ=%c%c", |
| val & XIVE_ESB_VAL_P ? 'P' : '-', |
| val & XIVE_ESB_VAL_Q ? 'Q' : '-'); |
| } |
| |
| xmon_printf("\n"); |
| return 0; |
| } |
| |
| #endif /* CONFIG_XMON */ |
| |
| static unsigned int xive_get_irq(void) |
| { |
| struct xive_cpu *xc = __this_cpu_read(xive_cpu); |
| u32 irq; |
| |
| /* |
| * This can be called either as a result of a HW interrupt or |
| * as a "replay" because EOI decided there was still something |
| * in one of the queues. |
| * |
| * First we perform an ACK cycle in order to update our mask |
| * of pending priorities. This will also have the effect of |
| * updating the CPPR to the most favored pending interrupts. |
| * |
| * In the future, if we have a way to differentiate a first |
| * entry (on HW interrupt) from a replay triggered by EOI, |
| * we could skip this on replays unless we soft-mask tells us |
| * that a new HW interrupt occurred. |
| */ |
| xive_ops->update_pending(xc); |
| |
| DBG_VERBOSE("get_irq: pending=%02x\n", xc->pending_prio); |
| |
| /* Scan our queue(s) for interrupts */ |
| irq = xive_scan_interrupts(xc, false); |
| |
| DBG_VERBOSE("get_irq: got irq 0x%x, new pending=0x%02x\n", |
| irq, xc->pending_prio); |
| |
| /* Return pending interrupt if any */ |
| if (irq == XIVE_BAD_IRQ) |
| return 0; |
| return irq; |
| } |
| |
| /* |
| * After EOI'ing an interrupt, we need to re-check the queue |
| * to see if another interrupt is pending since multiple |
| * interrupts can coalesce into a single notification to the |
| * CPU. |
| * |
| * If we find that there is indeed more in there, we call |
| * force_external_irq_replay() to make Linux synthetize an |
| * external interrupt on the next call to local_irq_restore(). |
| */ |
| static void xive_do_queue_eoi(struct xive_cpu *xc) |
| { |
| if (xive_scan_interrupts(xc, true) != 0) { |
| DBG_VERBOSE("eoi: pending=0x%02x\n", xc->pending_prio); |
| force_external_irq_replay(); |
| } |
| } |
| |
| /* |
| * EOI an interrupt at the source. There are several methods |
| * to do this depending on the HW version and source type |
| */ |
| static void xive_do_source_eoi(u32 hw_irq, struct xive_irq_data *xd) |
| { |
| xd->stale_p = false; |
| /* If the XIVE supports the new "store EOI facility, use it */ |
| if (xd->flags & XIVE_IRQ_FLAG_STORE_EOI) |
| xive_esb_write(xd, XIVE_ESB_STORE_EOI, 0); |
| else if (hw_irq && xd->flags & XIVE_IRQ_FLAG_EOI_FW) { |
| /* |
| * The FW told us to call it. This happens for some |
| * interrupt sources that need additional HW whacking |
| * beyond the ESB manipulation. For example LPC interrupts |
| * on P9 DD1.0 needed a latch to be clared in the LPC bridge |
| * itself. The Firmware will take care of it. |
| */ |
| if (WARN_ON_ONCE(!xive_ops->eoi)) |
| return; |
| xive_ops->eoi(hw_irq); |
| } else { |
| u8 eoi_val; |
| |
| /* |
| * Otherwise for EOI, we use the special MMIO that does |
| * a clear of both P and Q and returns the old Q, |
| * except for LSIs where we use the "EOI cycle" special |
| * load. |
| * |
| * This allows us to then do a re-trigger if Q was set |
| * rather than synthesizing an interrupt in software |
| * |
| * For LSIs the HW EOI cycle is used rather than PQ bits, |
| * as they are automatically re-triggred in HW when still |
| * pending. |
| */ |
| if (xd->flags & XIVE_IRQ_FLAG_LSI) |
| xive_esb_read(xd, XIVE_ESB_LOAD_EOI); |
| else { |
| eoi_val = xive_esb_read(xd, XIVE_ESB_SET_PQ_00); |
| DBG_VERBOSE("eoi_val=%x\n", eoi_val); |
| |
| /* Re-trigger if needed */ |
| if ((eoi_val & XIVE_ESB_VAL_Q) && xd->trig_mmio) |
| out_be64(xd->trig_mmio, 0); |
| } |
| } |
| } |
| |
| /* irq_chip eoi callback, called with irq descriptor lock held */ |
| static void xive_irq_eoi(struct irq_data *d) |
| { |
| struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); |
| struct xive_cpu *xc = __this_cpu_read(xive_cpu); |
| |
| DBG_VERBOSE("eoi_irq: irq=%d [0x%lx] pending=%02x\n", |
| d->irq, irqd_to_hwirq(d), xc->pending_prio); |
| |
| /* |
| * EOI the source if it hasn't been disabled and hasn't |
| * been passed-through to a KVM guest |
| */ |
| if (!irqd_irq_disabled(d) && !irqd_is_forwarded_to_vcpu(d) && |
| !(xd->flags & XIVE_IRQ_NO_EOI)) |
| xive_do_source_eoi(irqd_to_hwirq(d), xd); |
| else |
| xd->stale_p = true; |
| |
| /* |
| * Clear saved_p to indicate that it's no longer occupying |
| * a queue slot on the target queue |
| */ |
| xd->saved_p = false; |
| |
| /* Check for more work in the queue */ |
| xive_do_queue_eoi(xc); |
| } |
| |
| /* |
| * Helper used to mask and unmask an interrupt source. This |
| * is only called for normal interrupts that do not require |
| * masking/unmasking via firmware. |
| */ |
| static void xive_do_source_set_mask(struct xive_irq_data *xd, |
| bool mask) |
| { |
| u64 val; |
| |
| /* |
| * If the interrupt had P set, it may be in a queue. |
| * |
| * We need to make sure we don't re-enable it until it |
| * has been fetched from that queue and EOId. We keep |
| * a copy of that P state and use it to restore the |
| * ESB accordingly on unmask. |
| */ |
| if (mask) { |
| val = xive_esb_read(xd, XIVE_ESB_SET_PQ_01); |
| if (!xd->stale_p && !!(val & XIVE_ESB_VAL_P)) |
| xd->saved_p = true; |
| xd->stale_p = false; |
| } else if (xd->saved_p) { |
| xive_esb_read(xd, XIVE_ESB_SET_PQ_10); |
| xd->saved_p = false; |
| } else { |
| xive_esb_read(xd, XIVE_ESB_SET_PQ_00); |
| xd->stale_p = false; |
| } |
| } |
| |
| /* |
| * Try to chose "cpu" as a new interrupt target. Increments |
| * the queue accounting for that target if it's not already |
| * full. |
| */ |
| static bool xive_try_pick_target(int cpu) |
| { |
| struct xive_cpu *xc = per_cpu(xive_cpu, cpu); |
| struct xive_q *q = &xc->queue[xive_irq_priority]; |
| int max; |
| |
| /* |
| * Calculate max number of interrupts in that queue. |
| * |
| * We leave a gap of 1 just in case... |
| */ |
| max = (q->msk + 1) - 1; |
| return !!atomic_add_unless(&q->count, 1, max); |
| } |
| |
| /* |
| * Un-account an interrupt for a target CPU. We don't directly |
| * decrement q->count since the interrupt might still be present |
| * in the queue. |
| * |
| * Instead increment a separate counter "pending_count" which |
| * will be substracted from "count" later when that CPU observes |
| * the queue to be empty. |
| */ |
| static void xive_dec_target_count(int cpu) |
| { |
| struct xive_cpu *xc = per_cpu(xive_cpu, cpu); |
| struct xive_q *q = &xc->queue[xive_irq_priority]; |
| |
| if (WARN_ON(cpu < 0 || !xc)) { |
| pr_err("%s: cpu=%d xc=%p\n", __func__, cpu, xc); |
| return; |
| } |
| |
| /* |
| * We increment the "pending count" which will be used |
| * to decrement the target queue count whenever it's next |
| * processed and found empty. This ensure that we don't |
| * decrement while we still have the interrupt there |
| * occupying a slot. |
| */ |
| atomic_inc(&q->pending_count); |
| } |
| |
| /* Find a tentative CPU target in a CPU mask */ |
| static int xive_find_target_in_mask(const struct cpumask *mask, |
| unsigned int fuzz) |
| { |
| int cpu, first, num, i; |
| |
| /* Pick up a starting point CPU in the mask based on fuzz */ |
| num = min_t(int, cpumask_weight(mask), nr_cpu_ids); |
| first = fuzz % num; |
| |
| /* Locate it */ |
| cpu = cpumask_first(mask); |
| for (i = 0; i < first && cpu < nr_cpu_ids; i++) |
| cpu = cpumask_next(cpu, mask); |
| |
| /* Sanity check */ |
| if (WARN_ON(cpu >= nr_cpu_ids)) |
| cpu = cpumask_first(cpu_online_mask); |
| |
| /* Remember first one to handle wrap-around */ |
| first = cpu; |
| |
| /* |
| * Now go through the entire mask until we find a valid |
| * target. |
| */ |
| do { |
| /* |
| * We re-check online as the fallback case passes us |
| * an untested affinity mask |
| */ |
| if (cpu_online(cpu) && xive_try_pick_target(cpu)) |
| return cpu; |
| cpu = cpumask_next(cpu, mask); |
| /* Wrap around */ |
| if (cpu >= nr_cpu_ids) |
| cpu = cpumask_first(mask); |
| } while (cpu != first); |
| |
| return -1; |
| } |
| |
| /* |
| * Pick a target CPU for an interrupt. This is done at |
| * startup or if the affinity is changed in a way that |
| * invalidates the current target. |
| */ |
| static int xive_pick_irq_target(struct irq_data *d, |
| const struct cpumask *affinity) |
| { |
| static unsigned int fuzz; |
| struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); |
| cpumask_var_t mask; |
| int cpu = -1; |
| |
| /* |
| * If we have chip IDs, first we try to build a mask of |
| * CPUs matching the CPU and find a target in there |
| */ |
| if (xd->src_chip != XIVE_INVALID_CHIP_ID && |
| zalloc_cpumask_var(&mask, GFP_ATOMIC)) { |
| /* Build a mask of matching chip IDs */ |
| for_each_cpu_and(cpu, affinity, cpu_online_mask) { |
| struct xive_cpu *xc = per_cpu(xive_cpu, cpu); |
| if (xc->chip_id == xd->src_chip) |
| cpumask_set_cpu(cpu, mask); |
| } |
| /* Try to find a target */ |
| if (cpumask_empty(mask)) |
| cpu = -1; |
| else |
| cpu = xive_find_target_in_mask(mask, fuzz++); |
| free_cpumask_var(mask); |
| if (cpu >= 0) |
| return cpu; |
| fuzz--; |
| } |
| |
| /* No chip IDs, fallback to using the affinity mask */ |
| return xive_find_target_in_mask(affinity, fuzz++); |
| } |
| |
| static unsigned int xive_irq_startup(struct irq_data *d) |
| { |
| struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); |
| unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); |
| int target, rc; |
| |
| xd->saved_p = false; |
| xd->stale_p = false; |
| pr_devel("xive_irq_startup: irq %d [0x%x] data @%p\n", |
| d->irq, hw_irq, d); |
| |
| #ifdef CONFIG_PCI_MSI |
| /* |
| * The generic MSI code returns with the interrupt disabled on the |
| * card, using the MSI mask bits. Firmware doesn't appear to unmask |
| * at that level, so we do it here by hand. |
| */ |
| if (irq_data_get_msi_desc(d)) |
| pci_msi_unmask_irq(d); |
| #endif |
| |
| /* Pick a target */ |
| target = xive_pick_irq_target(d, irq_data_get_affinity_mask(d)); |
| if (target == XIVE_INVALID_TARGET) { |
| /* Try again breaking affinity */ |
| target = xive_pick_irq_target(d, cpu_online_mask); |
| if (target == XIVE_INVALID_TARGET) |
| return -ENXIO; |
| pr_warn("irq %d started with broken affinity\n", d->irq); |
| } |
| |
| /* Sanity check */ |
| if (WARN_ON(target == XIVE_INVALID_TARGET || |
| target >= nr_cpu_ids)) |
| target = smp_processor_id(); |
| |
| xd->target = target; |
| |
| /* |
| * Configure the logical number to be the Linux IRQ number |
| * and set the target queue |
| */ |
| rc = xive_ops->configure_irq(hw_irq, |
| get_hard_smp_processor_id(target), |
| xive_irq_priority, d->irq); |
| if (rc) |
| return rc; |
| |
| /* Unmask the ESB */ |
| xive_do_source_set_mask(xd, false); |
| |
| return 0; |
| } |
| |
| /* called with irq descriptor lock held */ |
| static void xive_irq_shutdown(struct irq_data *d) |
| { |
| struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); |
| unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); |
| |
| pr_devel("xive_irq_shutdown: irq %d [0x%x] data @%p\n", |
| d->irq, hw_irq, d); |
| |
| if (WARN_ON(xd->target == XIVE_INVALID_TARGET)) |
| return; |
| |
| /* Mask the interrupt at the source */ |
| xive_do_source_set_mask(xd, true); |
| |
| /* |
| * Mask the interrupt in HW in the IVT/EAS and set the number |
| * to be the "bad" IRQ number |
| */ |
| xive_ops->configure_irq(hw_irq, |
| get_hard_smp_processor_id(xd->target), |
| 0xff, XIVE_BAD_IRQ); |
| |
| xive_dec_target_count(xd->target); |
| xd->target = XIVE_INVALID_TARGET; |
| } |
| |
| static void xive_irq_unmask(struct irq_data *d) |
| { |
| struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); |
| |
| pr_devel("xive_irq_unmask: irq %d data @%p\n", d->irq, xd); |
| |
| /* |
| * This is a workaround for PCI LSI problems on P9, for |
| * these, we call FW to set the mask. The problems might |
| * be fixed by P9 DD2.0, if that is the case, firmware |
| * will no longer set that flag. |
| */ |
| if (xd->flags & XIVE_IRQ_FLAG_MASK_FW) { |
| unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); |
| xive_ops->configure_irq(hw_irq, |
| get_hard_smp_processor_id(xd->target), |
| xive_irq_priority, d->irq); |
| return; |
| } |
| |
| xive_do_source_set_mask(xd, false); |
| } |
| |
| static void xive_irq_mask(struct irq_data *d) |
| { |
| struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); |
| |
| pr_devel("xive_irq_mask: irq %d data @%p\n", d->irq, xd); |
| |
| /* |
| * This is a workaround for PCI LSI problems on P9, for |
| * these, we call OPAL to set the mask. The problems might |
| * be fixed by P9 DD2.0, if that is the case, firmware |
| * will no longer set that flag. |
| */ |
| if (xd->flags & XIVE_IRQ_FLAG_MASK_FW) { |
| unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); |
| xive_ops->configure_irq(hw_irq, |
| get_hard_smp_processor_id(xd->target), |
| 0xff, d->irq); |
| return; |
| } |
| |
| xive_do_source_set_mask(xd, true); |
| } |
| |
| static int xive_irq_set_affinity(struct irq_data *d, |
| const struct cpumask *cpumask, |
| bool force) |
| { |
| struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); |
| unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); |
| u32 target, old_target; |
| int rc = 0; |
| |
| pr_devel("xive_irq_set_affinity: irq %d\n", d->irq); |
| |
| /* Is this valid ? */ |
| if (cpumask_any_and(cpumask, cpu_online_mask) >= nr_cpu_ids) |
| return -EINVAL; |
| |
| /* Don't do anything if the interrupt isn't started */ |
| if (!irqd_is_started(d)) |
| return IRQ_SET_MASK_OK; |
| |
| /* |
| * If existing target is already in the new mask, and is |
| * online then do nothing. |
| */ |
| if (xd->target != XIVE_INVALID_TARGET && |
| cpu_online(xd->target) && |
| cpumask_test_cpu(xd->target, cpumask)) |
| return IRQ_SET_MASK_OK; |
| |
| /* Pick a new target */ |
| target = xive_pick_irq_target(d, cpumask); |
| |
| /* No target found */ |
| if (target == XIVE_INVALID_TARGET) |
| return -ENXIO; |
| |
| /* Sanity check */ |
| if (WARN_ON(target >= nr_cpu_ids)) |
| target = smp_processor_id(); |
| |
| old_target = xd->target; |
| |
| /* |
| * Only configure the irq if it's not currently passed-through to |
| * a KVM guest |
| */ |
| if (!irqd_is_forwarded_to_vcpu(d)) |
| rc = xive_ops->configure_irq(hw_irq, |
| get_hard_smp_processor_id(target), |
| xive_irq_priority, d->irq); |
| if (rc < 0) { |
| pr_err("Error %d reconfiguring irq %d\n", rc, d->irq); |
| return rc; |
| } |
| |
| pr_devel(" target: 0x%x\n", target); |
| xd->target = target; |
| |
| /* Give up previous target */ |
| if (old_target != XIVE_INVALID_TARGET) |
| xive_dec_target_count(old_target); |
| |
| return IRQ_SET_MASK_OK; |
| } |
| |
| static int xive_irq_set_type(struct irq_data *d, unsigned int flow_type) |
| { |
| struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); |
| |
| /* |
| * We only support these. This has really no effect other than setting |
| * the corresponding descriptor bits mind you but those will in turn |
| * affect the resend function when re-enabling an edge interrupt. |
| * |
| * Set set the default to edge as explained in map(). |
| */ |
| if (flow_type == IRQ_TYPE_DEFAULT || flow_type == IRQ_TYPE_NONE) |
| flow_type = IRQ_TYPE_EDGE_RISING; |
| |
| if (flow_type != IRQ_TYPE_EDGE_RISING && |
| flow_type != IRQ_TYPE_LEVEL_LOW) |
| return -EINVAL; |
| |
| irqd_set_trigger_type(d, flow_type); |
| |
| /* |
| * Double check it matches what the FW thinks |
| * |
| * NOTE: We don't know yet if the PAPR interface will provide |
| * the LSI vs MSI information apart from the device-tree so |
| * this check might have to move into an optional backend call |
| * that is specific to the native backend |
| */ |
| if ((flow_type == IRQ_TYPE_LEVEL_LOW) != |
| !!(xd->flags & XIVE_IRQ_FLAG_LSI)) { |
| pr_warn("Interrupt %d (HW 0x%x) type mismatch, Linux says %s, FW says %s\n", |
| d->irq, (u32)irqd_to_hwirq(d), |
| (flow_type == IRQ_TYPE_LEVEL_LOW) ? "Level" : "Edge", |
| (xd->flags & XIVE_IRQ_FLAG_LSI) ? "Level" : "Edge"); |
| } |
| |
| return IRQ_SET_MASK_OK_NOCOPY; |
| } |
| |
| static int xive_irq_retrigger(struct irq_data *d) |
| { |
| struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); |
| |
| /* This should be only for MSIs */ |
| if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI)) |
| return 0; |
| |
| /* |
| * To perform a retrigger, we first set the PQ bits to |
| * 11, then perform an EOI. |
| */ |
| xive_esb_read(xd, XIVE_ESB_SET_PQ_11); |
| |
| /* |
| * Note: We pass "0" to the hw_irq argument in order to |
| * avoid calling into the backend EOI code which we don't |
| * want to do in the case of a re-trigger. Backends typically |
| * only do EOI for LSIs anyway. |
| */ |
| xive_do_source_eoi(0, xd); |
| |
| return 1; |
| } |
| |
| /* |
| * Caller holds the irq descriptor lock, so this won't be called |
| * concurrently with xive_get_irqchip_state on the same interrupt. |
| */ |
| static int xive_irq_set_vcpu_affinity(struct irq_data *d, void *state) |
| { |
| struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); |
| unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); |
| int rc; |
| u8 pq; |
| |
| /* |
| * We only support this on interrupts that do not require |
| * firmware calls for masking and unmasking |
| */ |
| if (xd->flags & XIVE_IRQ_FLAG_MASK_FW) |
| return -EIO; |
| |
| /* |
| * This is called by KVM with state non-NULL for enabling |
| * pass-through or NULL for disabling it |
| */ |
| if (state) { |
| irqd_set_forwarded_to_vcpu(d); |
| |
| /* Set it to PQ=10 state to prevent further sends */ |
| pq = xive_esb_read(xd, XIVE_ESB_SET_PQ_10); |
| if (!xd->stale_p) { |
| xd->saved_p = !!(pq & XIVE_ESB_VAL_P); |
| xd->stale_p = !xd->saved_p; |
| } |
| |
| /* No target ? nothing to do */ |
| if (xd->target == XIVE_INVALID_TARGET) { |
| /* |
| * An untargetted interrupt should have been |
| * also masked at the source |
| */ |
| WARN_ON(xd->saved_p); |
| |
| return 0; |
| } |
| |
| /* |
| * If P was set, adjust state to PQ=11 to indicate |
| * that a resend is needed for the interrupt to reach |
| * the guest. Also remember the value of P. |
| * |
| * This also tells us that it's in flight to a host queue |
| * or has already been fetched but hasn't been EOIed yet |
| * by the host. This it's potentially using up a host |
| * queue slot. This is important to know because as long |
| * as this is the case, we must not hard-unmask it when |
| * "returning" that interrupt to the host. |
| * |
| * This saved_p is cleared by the host EOI, when we know |
| * for sure the queue slot is no longer in use. |
| */ |
| if (xd->saved_p) { |
| xive_esb_read(xd, XIVE_ESB_SET_PQ_11); |
| |
| /* |
| * Sync the XIVE source HW to ensure the interrupt |
| * has gone through the EAS before we change its |
| * target to the guest. That should guarantee us |
| * that we *will* eventually get an EOI for it on |
| * the host. Otherwise there would be a small window |
| * for P to be seen here but the interrupt going |
| * to the guest queue. |
| */ |
| if (xive_ops->sync_source) |
| xive_ops->sync_source(hw_irq); |
| } |
| } else { |
| irqd_clr_forwarded_to_vcpu(d); |
| |
| /* No host target ? hard mask and return */ |
| if (xd->target == XIVE_INVALID_TARGET) { |
| xive_do_source_set_mask(xd, true); |
| return 0; |
| } |
| |
| /* |
| * Sync the XIVE source HW to ensure the interrupt |
| * has gone through the EAS before we change its |
| * target to the host. |
| */ |
| if (xive_ops->sync_source) |
| xive_ops->sync_source(hw_irq); |
| |
| /* |
| * By convention we are called with the interrupt in |
| * a PQ=10 or PQ=11 state, ie, it won't fire and will |
| * have latched in Q whether there's a pending HW |
| * interrupt or not. |
| * |
| * First reconfigure the target. |
| */ |
| rc = xive_ops->configure_irq(hw_irq, |
| get_hard_smp_processor_id(xd->target), |
| xive_irq_priority, d->irq); |
| if (rc) |
| return rc; |
| |
| /* |
| * Then if saved_p is not set, effectively re-enable the |
| * interrupt with an EOI. If it is set, we know there is |
| * still a message in a host queue somewhere that will be |
| * EOId eventually. |
| * |
| * Note: We don't check irqd_irq_disabled(). Effectively, |
| * we *will* let the irq get through even if masked if the |
| * HW is still firing it in order to deal with the whole |
| * saved_p business properly. If the interrupt triggers |
| * while masked, the generic code will re-mask it anyway. |
| */ |
| if (!xd->saved_p) |
| xive_do_source_eoi(hw_irq, xd); |
| |
| } |
| return 0; |
| } |
| |
| /* Called with irq descriptor lock held. */ |
| static int xive_get_irqchip_state(struct irq_data *data, |
| enum irqchip_irq_state which, bool *state) |
| { |
| struct xive_irq_data *xd = irq_data_get_irq_handler_data(data); |
| |
| switch (which) { |
| case IRQCHIP_STATE_ACTIVE: |
| *state = !xd->stale_p && |
| (xd->saved_p || |
| !!(xive_esb_read(xd, XIVE_ESB_GET) & XIVE_ESB_VAL_P)); |
| return 0; |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| static struct irq_chip xive_irq_chip = { |
| .name = "XIVE-IRQ", |
| .irq_startup = xive_irq_startup, |
| .irq_shutdown = xive_irq_shutdown, |
| .irq_eoi = xive_irq_eoi, |
| .irq_mask = xive_irq_mask, |
| .irq_unmask = xive_irq_unmask, |
| .irq_set_affinity = xive_irq_set_affinity, |
| .irq_set_type = xive_irq_set_type, |
| .irq_retrigger = xive_irq_retrigger, |
| .irq_set_vcpu_affinity = xive_irq_set_vcpu_affinity, |
| .irq_get_irqchip_state = xive_get_irqchip_state, |
| }; |
| |
| bool is_xive_irq(struct irq_chip *chip) |
| { |
| return chip == &xive_irq_chip; |
| } |
| EXPORT_SYMBOL_GPL(is_xive_irq); |
| |
| void xive_cleanup_irq_data(struct xive_irq_data *xd) |
| { |
| if (xd->eoi_mmio) { |
| iounmap(xd->eoi_mmio); |
| if (xd->eoi_mmio == xd->trig_mmio) |
| xd->trig_mmio = NULL; |
| xd->eoi_mmio = NULL; |
| } |
| if (xd->trig_mmio) { |
| iounmap(xd->trig_mmio); |
| xd->trig_mmio = NULL; |
| } |
| } |
| EXPORT_SYMBOL_GPL(xive_cleanup_irq_data); |
| |
| static int xive_irq_alloc_data(unsigned int virq, irq_hw_number_t hw) |
| { |
| struct xive_irq_data *xd; |
| int rc; |
| |
| xd = kzalloc(sizeof(struct xive_irq_data), GFP_KERNEL); |
| if (!xd) |
| return -ENOMEM; |
| rc = xive_ops->populate_irq_data(hw, xd); |
| if (rc) { |
| kfree(xd); |
| return rc; |
| } |
| xd->target = XIVE_INVALID_TARGET; |
| irq_set_handler_data(virq, xd); |
| |
| return 0; |
| } |
| |
| static void xive_irq_free_data(unsigned int virq) |
| { |
| struct xive_irq_data *xd = irq_get_handler_data(virq); |
| |
| if (!xd) |
| return; |
| irq_set_handler_data(virq, NULL); |
| xive_cleanup_irq_data(xd); |
| kfree(xd); |
| } |
| |
| #ifdef CONFIG_SMP |
| |
| static void xive_cause_ipi(int cpu) |
| { |
| struct xive_cpu *xc; |
| struct xive_irq_data *xd; |
| |
| xc = per_cpu(xive_cpu, cpu); |
| |
| DBG_VERBOSE("IPI CPU %d -> %d (HW IRQ 0x%x)\n", |
| smp_processor_id(), cpu, xc->hw_ipi); |
| |
| xd = &xc->ipi_data; |
| if (WARN_ON(!xd->trig_mmio)) |
| return; |
| out_be64(xd->trig_mmio, 0); |
| } |
| |
| static irqreturn_t xive_muxed_ipi_action(int irq, void *dev_id) |
| { |
| return smp_ipi_demux(); |
| } |
| |
| static void xive_ipi_eoi(struct irq_data *d) |
| { |
| struct xive_cpu *xc = __this_cpu_read(xive_cpu); |
| |
| /* Handle possible race with unplug and drop stale IPIs */ |
| if (!xc) |
| return; |
| |
| DBG_VERBOSE("IPI eoi: irq=%d [0x%lx] (HW IRQ 0x%x) pending=%02x\n", |
| d->irq, irqd_to_hwirq(d), xc->hw_ipi, xc->pending_prio); |
| |
| xive_do_source_eoi(xc->hw_ipi, &xc->ipi_data); |
| xive_do_queue_eoi(xc); |
| } |
| |
| static void xive_ipi_do_nothing(struct irq_data *d) |
| { |
| /* |
| * Nothing to do, we never mask/unmask IPIs, but the callback |
| * has to exist for the struct irq_chip. |
| */ |
| } |
| |
| static struct irq_chip xive_ipi_chip = { |
| .name = "XIVE-IPI", |
| .irq_eoi = xive_ipi_eoi, |
| .irq_mask = xive_ipi_do_nothing, |
| .irq_unmask = xive_ipi_do_nothing, |
| }; |
| |
| static void __init xive_request_ipi(void) |
| { |
| unsigned int virq; |
| |
| /* |
| * Initialization failed, move on, we might manage to |
| * reach the point where we display our errors before |
| * the system falls appart |
| */ |
| if (!xive_irq_domain) |
| return; |
| |
| /* Initialize it */ |
| virq = irq_create_mapping(xive_irq_domain, 0); |
| xive_ipi_irq = virq; |
| |
| WARN_ON(request_irq(virq, xive_muxed_ipi_action, |
| IRQF_PERCPU | IRQF_NO_THREAD, "IPI", NULL)); |
| } |
| |
| static int xive_setup_cpu_ipi(unsigned int cpu) |
| { |
| struct xive_cpu *xc; |
| int rc; |
| |
| pr_debug("Setting up IPI for CPU %d\n", cpu); |
| |
| xc = per_cpu(xive_cpu, cpu); |
| |
| /* Check if we are already setup */ |
| if (xc->hw_ipi != 0) |
| return 0; |
| |
| /* Grab an IPI from the backend, this will populate xc->hw_ipi */ |
| if (xive_ops->get_ipi(cpu, xc)) |
| return -EIO; |
| |
| /* |
| * Populate the IRQ data in the xive_cpu structure and |
| * configure the HW / enable the IPIs. |
| */ |
| rc = xive_ops->populate_irq_data(xc->hw_ipi, &xc->ipi_data); |
| if (rc) { |
| pr_err("Failed to populate IPI data on CPU %d\n", cpu); |
| return -EIO; |
| } |
| rc = xive_ops->configure_irq(xc->hw_ipi, |
| get_hard_smp_processor_id(cpu), |
| xive_irq_priority, xive_ipi_irq); |
| if (rc) { |
| pr_err("Failed to map IPI CPU %d\n", cpu); |
| return -EIO; |
| } |
| pr_devel("CPU %d HW IPI %x, virq %d, trig_mmio=%p\n", cpu, |
| xc->hw_ipi, xive_ipi_irq, xc->ipi_data.trig_mmio); |
| |
| /* Unmask it */ |
| xive_do_source_set_mask(&xc->ipi_data, false); |
| |
| return 0; |
| } |
| |
| static void xive_cleanup_cpu_ipi(unsigned int cpu, struct xive_cpu *xc) |
| { |
| /* Disable the IPI and free the IRQ data */ |
| |
| /* Already cleaned up ? */ |
| if (xc->hw_ipi == 0) |
| return; |
| |
| /* Mask the IPI */ |
| xive_do_source_set_mask(&xc->ipi_data, true); |
| |
| /* |
| * Note: We don't call xive_cleanup_irq_data() to free |
| * the mappings as this is called from an IPI on kexec |
| * which is not a safe environment to call iounmap() |
| */ |
| |
| /* Deconfigure/mask in the backend */ |
| xive_ops->configure_irq(xc->hw_ipi, hard_smp_processor_id(), |
| 0xff, xive_ipi_irq); |
| |
| /* Free the IPIs in the backend */ |
| xive_ops->put_ipi(cpu, xc); |
| } |
| |
| void __init xive_smp_probe(void) |
| { |
| smp_ops->cause_ipi = xive_cause_ipi; |
| |
| /* Register the IPI */ |
| xive_request_ipi(); |
| |
| /* Allocate and setup IPI for the boot CPU */ |
| xive_setup_cpu_ipi(smp_processor_id()); |
| } |
| |
| #endif /* CONFIG_SMP */ |
| |
| static int xive_irq_domain_map(struct irq_domain *h, unsigned int virq, |
| irq_hw_number_t hw) |
| { |
| int rc; |
| |
| /* |
| * Mark interrupts as edge sensitive by default so that resend |
| * actually works. Will fix that up below if needed. |
| */ |
| irq_clear_status_flags(virq, IRQ_LEVEL); |
| |
| #ifdef CONFIG_SMP |
| /* IPIs are special and come up with HW number 0 */ |
| if (hw == 0) { |
| /* |
| * IPIs are marked per-cpu. We use separate HW interrupts under |
| * the hood but associated with the same "linux" interrupt |
| */ |
| irq_set_chip_and_handler(virq, &xive_ipi_chip, |
| handle_percpu_irq); |
| return 0; |
| } |
| #endif |
| |
| rc = xive_irq_alloc_data(virq, hw); |
| if (rc) |
| return rc; |
| |
| irq_set_chip_and_handler(virq, &xive_irq_chip, handle_fasteoi_irq); |
| |
| return 0; |
| } |
| |
| static void xive_irq_domain_unmap(struct irq_domain *d, unsigned int virq) |
| { |
| struct irq_data *data = irq_get_irq_data(virq); |
| unsigned int hw_irq; |
| |
| /* XXX Assign BAD number */ |
| if (!data) |
| return; |
| hw_irq = (unsigned int)irqd_to_hwirq(data); |
| if (hw_irq) |
| xive_irq_free_data(virq); |
| } |
| |
| static int xive_irq_domain_xlate(struct irq_domain *h, struct device_node *ct, |
| const u32 *intspec, unsigned int intsize, |
| irq_hw_number_t *out_hwirq, unsigned int *out_flags) |
| |
| { |
| *out_hwirq = intspec[0]; |
| |
| /* |
| * If intsize is at least 2, we look for the type in the second cell, |
| * we assume the LSB indicates a level interrupt. |
| */ |
| if (intsize > 1) { |
| if (intspec[1] & 1) |
| *out_flags = IRQ_TYPE_LEVEL_LOW; |
| else |
| *out_flags = IRQ_TYPE_EDGE_RISING; |
| } else |
| *out_flags = IRQ_TYPE_LEVEL_LOW; |
| |
| return 0; |
| } |
| |
| static int xive_irq_domain_match(struct irq_domain *h, struct device_node *node, |
| enum irq_domain_bus_token bus_token) |
| { |
| return xive_ops->match(node); |
| } |
| |
| static const struct irq_domain_ops xive_irq_domain_ops = { |
| .match = xive_irq_domain_match, |
| .map = xive_irq_domain_map, |
| .unmap = xive_irq_domain_unmap, |
| .xlate = xive_irq_domain_xlate, |
| }; |
| |
| static void __init xive_init_host(void) |
| { |
| xive_irq_domain = irq_domain_add_nomap(NULL, XIVE_MAX_IRQ, |
| &xive_irq_domain_ops, NULL); |
| if (WARN_ON(xive_irq_domain == NULL)) |
| return; |
| irq_set_default_host(xive_irq_domain); |
| } |
| |
| static void xive_cleanup_cpu_queues(unsigned int cpu, struct xive_cpu *xc) |
| { |
| if (xc->queue[xive_irq_priority].qpage) |
| xive_ops->cleanup_queue(cpu, xc, xive_irq_priority); |
| } |
| |
| static int xive_setup_cpu_queues(unsigned int cpu, struct xive_cpu *xc) |
| { |
| int rc = 0; |
| |
| /* We setup 1 queues for now with a 64k page */ |
| if (!xc->queue[xive_irq_priority].qpage) |
| rc = xive_ops->setup_queue(cpu, xc, xive_irq_priority); |
| |
| return rc; |
| } |
| |
| static int xive_prepare_cpu(unsigned int cpu) |
| { |
| struct xive_cpu *xc; |
| |
| xc = per_cpu(xive_cpu, cpu); |
| if (!xc) { |
| struct device_node *np; |
| |
| xc = kzalloc_node(sizeof(struct xive_cpu), |
| GFP_KERNEL, cpu_to_node(cpu)); |
| if (!xc) |
| return -ENOMEM; |
| np = of_get_cpu_node(cpu, NULL); |
| if (np) |
| xc->chip_id = of_get_ibm_chip_id(np); |
| of_node_put(np); |
| |
| per_cpu(xive_cpu, cpu) = xc; |
| } |
| |
| /* Setup EQs if not already */ |
| return xive_setup_cpu_queues(cpu, xc); |
| } |
| |
| static void xive_setup_cpu(void) |
| { |
| struct xive_cpu *xc = __this_cpu_read(xive_cpu); |
| |
| /* The backend might have additional things to do */ |
| if (xive_ops->setup_cpu) |
| xive_ops->setup_cpu(smp_processor_id(), xc); |
| |
| /* Set CPPR to 0xff to enable flow of interrupts */ |
| xc->cppr = 0xff; |
| out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff); |
| } |
| |
| #ifdef CONFIG_SMP |
| void xive_smp_setup_cpu(void) |
| { |
| pr_devel("SMP setup CPU %d\n", smp_processor_id()); |
| |
| /* This will have already been done on the boot CPU */ |
| if (smp_processor_id() != boot_cpuid) |
| xive_setup_cpu(); |
| |
| } |
| |
| int xive_smp_prepare_cpu(unsigned int cpu) |
| { |
| int rc; |
| |
| /* Allocate per-CPU data and queues */ |
| rc = xive_prepare_cpu(cpu); |
| if (rc) |
| return rc; |
| |
| /* Allocate and setup IPI for the new CPU */ |
| return xive_setup_cpu_ipi(cpu); |
| } |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| static void xive_flush_cpu_queue(unsigned int cpu, struct xive_cpu *xc) |
| { |
| u32 irq; |
| |
| /* We assume local irqs are disabled */ |
| WARN_ON(!irqs_disabled()); |
| |
| /* Check what's already in the CPU queue */ |
| while ((irq = xive_scan_interrupts(xc, false)) != 0) { |
| /* |
| * We need to re-route that interrupt to its new destination. |
| * First get and lock the descriptor |
| */ |
| struct irq_desc *desc = irq_to_desc(irq); |
| struct irq_data *d = irq_desc_get_irq_data(desc); |
| struct xive_irq_data *xd; |
| unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); |
| |
| /* |
| * Ignore anything that isn't a XIVE irq and ignore |
| * IPIs, so can just be dropped. |
| */ |
| if (d->domain != xive_irq_domain || hw_irq == 0) |
| continue; |
| |
| /* |
| * The IRQ should have already been re-routed, it's just a |
| * stale in the old queue, so re-trigger it in order to make |
| * it reach is new destination. |
| */ |
| #ifdef DEBUG_FLUSH |
| pr_info("CPU %d: Got irq %d while offline, re-sending...\n", |
| cpu, irq); |
| #endif |
| raw_spin_lock(&desc->lock); |
| xd = irq_desc_get_handler_data(desc); |
| |
| /* |
| * Clear saved_p to indicate that it's no longer pending |
| */ |
| xd->saved_p = false; |
| |
| /* |
| * For LSIs, we EOI, this will cause a resend if it's |
| * still asserted. Otherwise do an MSI retrigger. |
| */ |
| if (xd->flags & XIVE_IRQ_FLAG_LSI) |
| xive_do_source_eoi(irqd_to_hwirq(d), xd); |
| else |
| xive_irq_retrigger(d); |
| |
| raw_spin_unlock(&desc->lock); |
| } |
| } |
| |
| void xive_smp_disable_cpu(void) |
| { |
| struct xive_cpu *xc = __this_cpu_read(xive_cpu); |
| unsigned int cpu = smp_processor_id(); |
| |
| /* Migrate interrupts away from the CPU */ |
| irq_migrate_all_off_this_cpu(); |
| |
| /* Set CPPR to 0 to disable flow of interrupts */ |
| xc->cppr = 0; |
| out_8(xive_tima + xive_tima_offset + TM_CPPR, 0); |
| |
| /* Flush everything still in the queue */ |
| xive_flush_cpu_queue(cpu, xc); |
| |
| /* Re-enable CPPR */ |
| xc->cppr = 0xff; |
| out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff); |
| } |
| |
| void xive_flush_interrupt(void) |
| { |
| struct xive_cpu *xc = __this_cpu_read(xive_cpu); |
| unsigned int cpu = smp_processor_id(); |
| |
| /* Called if an interrupt occurs while the CPU is hot unplugged */ |
| xive_flush_cpu_queue(cpu, xc); |
| } |
| |
| #endif /* CONFIG_HOTPLUG_CPU */ |
| |
| #endif /* CONFIG_SMP */ |
| |
| void xive_teardown_cpu(void) |
| { |
| struct xive_cpu *xc = __this_cpu_read(xive_cpu); |
| unsigned int cpu = smp_processor_id(); |
| |
| /* Set CPPR to 0 to disable flow of interrupts */ |
| xc->cppr = 0; |
| out_8(xive_tima + xive_tima_offset + TM_CPPR, 0); |
| |
| if (xive_ops->teardown_cpu) |
| xive_ops->teardown_cpu(cpu, xc); |
| |
| #ifdef CONFIG_SMP |
| /* Get rid of IPI */ |
| xive_cleanup_cpu_ipi(cpu, xc); |
| #endif |
| |
| /* Disable and free the queues */ |
| xive_cleanup_cpu_queues(cpu, xc); |
| } |
| |
| void xive_shutdown(void) |
| { |
| xive_ops->shutdown(); |
| } |
| |
| bool __init xive_core_init(const struct xive_ops *ops, void __iomem *area, u32 offset, |
| u8 max_prio) |
| { |
| xive_tima = area; |
| xive_tima_offset = offset; |
| xive_ops = ops; |
| xive_irq_priority = max_prio; |
| |
| ppc_md.get_irq = xive_get_irq; |
| __xive_enabled = true; |
| |
| pr_devel("Initializing host..\n"); |
| xive_init_host(); |
| |
| pr_devel("Initializing boot CPU..\n"); |
| |
| /* Allocate per-CPU data and queues */ |
| xive_prepare_cpu(smp_processor_id()); |
| |
| /* Get ready for interrupts */ |
| xive_setup_cpu(); |
| |
| pr_info("Interrupt handling initialized with %s backend\n", |
| xive_ops->name); |
| pr_info("Using priority %d for all interrupts\n", max_prio); |
| |
| return true; |
| } |
| |
| __be32 *xive_queue_page_alloc(unsigned int cpu, u32 queue_shift) |
| { |
| unsigned int alloc_order; |
| struct page *pages; |
| __be32 *qpage; |
| |
| alloc_order = xive_alloc_order(queue_shift); |
| pages = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, alloc_order); |
| if (!pages) |
| return ERR_PTR(-ENOMEM); |
| qpage = (__be32 *)page_address(pages); |
| memset(qpage, 0, 1 << queue_shift); |
| |
| return qpage; |
| } |
| |
| static int __init xive_off(char *arg) |
| { |
| xive_cmdline_disabled = true; |
| return 0; |
| } |
| __setup("xive=off", xive_off); |