blob: eabf1093328e3559dcc44725c43e14ae2d29e4d0 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2013, Lars-Peter Clausen <lars@metafoo.de>
* GDMA4740 DMAC support
*/
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/irq.h>
#include <linux/of_dma.h>
#include <linux/reset.h>
#include <linux/of_device.h>
#include "virt-dma.h"
#define GDMA_REG_SRC_ADDR(x) (0x00 + (x) * 0x10)
#define GDMA_REG_DST_ADDR(x) (0x04 + (x) * 0x10)
#define GDMA_REG_CTRL0(x) (0x08 + (x) * 0x10)
#define GDMA_REG_CTRL0_TX_MASK 0xffff
#define GDMA_REG_CTRL0_TX_SHIFT 16
#define GDMA_REG_CTRL0_CURR_MASK 0xff
#define GDMA_REG_CTRL0_CURR_SHIFT 8
#define GDMA_REG_CTRL0_SRC_ADDR_FIXED BIT(7)
#define GDMA_REG_CTRL0_DST_ADDR_FIXED BIT(6)
#define GDMA_REG_CTRL0_BURST_MASK 0x7
#define GDMA_REG_CTRL0_BURST_SHIFT 3
#define GDMA_REG_CTRL0_DONE_INT BIT(2)
#define GDMA_REG_CTRL0_ENABLE BIT(1)
#define GDMA_REG_CTRL0_SW_MODE BIT(0)
#define GDMA_REG_CTRL1(x) (0x0c + (x) * 0x10)
#define GDMA_REG_CTRL1_SEG_MASK 0xf
#define GDMA_REG_CTRL1_SEG_SHIFT 22
#define GDMA_REG_CTRL1_REQ_MASK 0x3f
#define GDMA_REG_CTRL1_SRC_REQ_SHIFT 16
#define GDMA_REG_CTRL1_DST_REQ_SHIFT 8
#define GDMA_REG_CTRL1_NEXT_MASK 0x1f
#define GDMA_REG_CTRL1_NEXT_SHIFT 3
#define GDMA_REG_CTRL1_COHERENT BIT(2)
#define GDMA_REG_CTRL1_FAIL BIT(1)
#define GDMA_REG_CTRL1_MASK BIT(0)
#define GDMA_REG_UNMASK_INT 0x200
#define GDMA_REG_DONE_INT 0x204
#define GDMA_REG_GCT 0x220
#define GDMA_REG_GCT_CHAN_MASK 0x3
#define GDMA_REG_GCT_CHAN_SHIFT 3
#define GDMA_REG_GCT_VER_MASK 0x3
#define GDMA_REG_GCT_VER_SHIFT 1
#define GDMA_REG_GCT_ARBIT_RR BIT(0)
#define GDMA_REG_REQSTS 0x2a0
#define GDMA_REG_ACKSTS 0x2a4
#define GDMA_REG_FINSTS 0x2a8
/* for RT305X gdma registers */
#define GDMA_RT305X_CTRL0_REQ_MASK 0xf
#define GDMA_RT305X_CTRL0_SRC_REQ_SHIFT 12
#define GDMA_RT305X_CTRL0_DST_REQ_SHIFT 8
#define GDMA_RT305X_CTRL1_FAIL BIT(4)
#define GDMA_RT305X_CTRL1_NEXT_MASK 0x7
#define GDMA_RT305X_CTRL1_NEXT_SHIFT 1
#define GDMA_RT305X_STATUS_INT 0x80
#define GDMA_RT305X_STATUS_SIGNAL 0x84
#define GDMA_RT305X_GCT 0x88
/* for MT7621 gdma registers */
#define GDMA_REG_PERF_START(x) (0x230 + (x) * 0x8)
#define GDMA_REG_PERF_END(x) (0x234 + (x) * 0x8)
enum gdma_dma_transfer_size {
GDMA_TRANSFER_SIZE_4BYTE = 0,
GDMA_TRANSFER_SIZE_8BYTE = 1,
GDMA_TRANSFER_SIZE_16BYTE = 2,
GDMA_TRANSFER_SIZE_32BYTE = 3,
GDMA_TRANSFER_SIZE_64BYTE = 4,
};
struct gdma_dma_sg {
dma_addr_t src_addr;
dma_addr_t dst_addr;
u32 len;
};
struct gdma_dma_desc {
struct virt_dma_desc vdesc;
enum dma_transfer_direction direction;
bool cyclic;
u32 residue;
unsigned int num_sgs;
struct gdma_dma_sg sg[];
};
struct gdma_dmaengine_chan {
struct virt_dma_chan vchan;
unsigned int id;
unsigned int slave_id;
dma_addr_t fifo_addr;
enum gdma_dma_transfer_size burst_size;
struct gdma_dma_desc *desc;
unsigned int next_sg;
};
struct gdma_dma_dev {
struct dma_device ddev;
struct device_dma_parameters dma_parms;
struct gdma_data *data;
void __iomem *base;
struct tasklet_struct task;
volatile unsigned long chan_issued;
atomic_t cnt;
struct gdma_dmaengine_chan chan[];
};
struct gdma_data {
int chancnt;
u32 done_int_reg;
void (*init)(struct gdma_dma_dev *dma_dev);
int (*start_transfer)(struct gdma_dmaengine_chan *chan);
};
static struct gdma_dma_dev *gdma_dma_chan_get_dev(
struct gdma_dmaengine_chan *chan)
{
return container_of(chan->vchan.chan.device, struct gdma_dma_dev,
ddev);
}
static struct gdma_dmaengine_chan *to_gdma_dma_chan(struct dma_chan *c)
{
return container_of(c, struct gdma_dmaengine_chan, vchan.chan);
}
static struct gdma_dma_desc *to_gdma_dma_desc(struct virt_dma_desc *vdesc)
{
return container_of(vdesc, struct gdma_dma_desc, vdesc);
}
static inline uint32_t gdma_dma_read(struct gdma_dma_dev *dma_dev,
unsigned int reg)
{
return readl(dma_dev->base + reg);
}
static inline void gdma_dma_write(struct gdma_dma_dev *dma_dev,
unsigned int reg, uint32_t val)
{
writel(val, dma_dev->base + reg);
}
static enum gdma_dma_transfer_size gdma_dma_maxburst(u32 maxburst)
{
if (maxburst < 2)
return GDMA_TRANSFER_SIZE_4BYTE;
else if (maxburst < 4)
return GDMA_TRANSFER_SIZE_8BYTE;
else if (maxburst < 8)
return GDMA_TRANSFER_SIZE_16BYTE;
else if (maxburst < 16)
return GDMA_TRANSFER_SIZE_32BYTE;
else
return GDMA_TRANSFER_SIZE_64BYTE;
}
static int gdma_dma_config(struct dma_chan *c,
struct dma_slave_config *config)
{
struct gdma_dmaengine_chan *chan = to_gdma_dma_chan(c);
struct gdma_dma_dev *dma_dev = gdma_dma_chan_get_dev(chan);
if (config->device_fc) {
dev_err(dma_dev->ddev.dev, "not support flow controller\n");
return -EINVAL;
}
switch (config->direction) {
case DMA_MEM_TO_DEV:
if (config->dst_addr_width != DMA_SLAVE_BUSWIDTH_4_BYTES) {
dev_err(dma_dev->ddev.dev, "only support 4 byte buswidth\n");
return -EINVAL;
}
chan->slave_id = config->slave_id;
chan->fifo_addr = config->dst_addr;
chan->burst_size = gdma_dma_maxburst(config->dst_maxburst);
break;
case DMA_DEV_TO_MEM:
if (config->src_addr_width != DMA_SLAVE_BUSWIDTH_4_BYTES) {
dev_err(dma_dev->ddev.dev, "only support 4 byte buswidth\n");
return -EINVAL;
}
chan->slave_id = config->slave_id;
chan->fifo_addr = config->src_addr;
chan->burst_size = gdma_dma_maxburst(config->src_maxburst);
break;
default:
dev_err(dma_dev->ddev.dev, "direction type %d error\n",
config->direction);
return -EINVAL;
}
return 0;
}
static int gdma_dma_terminate_all(struct dma_chan *c)
{
struct gdma_dmaengine_chan *chan = to_gdma_dma_chan(c);
struct gdma_dma_dev *dma_dev = gdma_dma_chan_get_dev(chan);
unsigned long flags, timeout;
LIST_HEAD(head);
int i = 0;
spin_lock_irqsave(&chan->vchan.lock, flags);
chan->desc = NULL;
clear_bit(chan->id, &dma_dev->chan_issued);
vchan_get_all_descriptors(&chan->vchan, &head);
spin_unlock_irqrestore(&chan->vchan.lock, flags);
vchan_dma_desc_free_list(&chan->vchan, &head);
/* wait dma transfer complete */
timeout = jiffies + msecs_to_jiffies(5000);
while (gdma_dma_read(dma_dev, GDMA_REG_CTRL0(chan->id)) &
GDMA_REG_CTRL0_ENABLE) {
if (time_after_eq(jiffies, timeout)) {
dev_err(dma_dev->ddev.dev, "chan %d wait timeout\n",
chan->id);
/* restore to init value */
gdma_dma_write(dma_dev, GDMA_REG_CTRL0(chan->id), 0);
break;
}
cpu_relax();
i++;
}
if (i)
dev_dbg(dma_dev->ddev.dev, "terminate chan %d loops %d\n",
chan->id, i);
return 0;
}
static void rt305x_dump_reg(struct gdma_dma_dev *dma_dev, int id)
{
dev_dbg(dma_dev->ddev.dev, "chan %d, src %08x, dst %08x, ctr0 %08x, ctr1 %08x, intr %08x, signal %08x\n",
id,
gdma_dma_read(dma_dev, GDMA_REG_SRC_ADDR(id)),
gdma_dma_read(dma_dev, GDMA_REG_DST_ADDR(id)),
gdma_dma_read(dma_dev, GDMA_REG_CTRL0(id)),
gdma_dma_read(dma_dev, GDMA_REG_CTRL1(id)),
gdma_dma_read(dma_dev, GDMA_RT305X_STATUS_INT),
gdma_dma_read(dma_dev, GDMA_RT305X_STATUS_SIGNAL));
}
static int rt305x_gdma_start_transfer(struct gdma_dmaengine_chan *chan)
{
struct gdma_dma_dev *dma_dev = gdma_dma_chan_get_dev(chan);
dma_addr_t src_addr, dst_addr;
struct gdma_dma_sg *sg;
u32 ctrl0, ctrl1;
/* verify chan is already stopped */
ctrl0 = gdma_dma_read(dma_dev, GDMA_REG_CTRL0(chan->id));
if (unlikely(ctrl0 & GDMA_REG_CTRL0_ENABLE)) {
dev_err(dma_dev->ddev.dev, "chan %d is start(%08x).\n",
chan->id, ctrl0);
rt305x_dump_reg(dma_dev, chan->id);
return -EINVAL;
}
sg = &chan->desc->sg[chan->next_sg];
if (chan->desc->direction == DMA_MEM_TO_DEV) {
src_addr = sg->src_addr;
dst_addr = chan->fifo_addr;
ctrl0 = GDMA_REG_CTRL0_DST_ADDR_FIXED |
(8 << GDMA_RT305X_CTRL0_SRC_REQ_SHIFT) |
(chan->slave_id << GDMA_RT305X_CTRL0_DST_REQ_SHIFT);
} else if (chan->desc->direction == DMA_DEV_TO_MEM) {
src_addr = chan->fifo_addr;
dst_addr = sg->dst_addr;
ctrl0 = GDMA_REG_CTRL0_SRC_ADDR_FIXED |
(chan->slave_id << GDMA_RT305X_CTRL0_SRC_REQ_SHIFT) |
(8 << GDMA_RT305X_CTRL0_DST_REQ_SHIFT);
} else if (chan->desc->direction == DMA_MEM_TO_MEM) {
/*
* TODO: memcpy function have bugs. sometime it will copy
* more 8 bytes data when using dmatest verify.
*/
src_addr = sg->src_addr;
dst_addr = sg->dst_addr;
ctrl0 = GDMA_REG_CTRL0_SW_MODE |
(8 << GDMA_REG_CTRL1_SRC_REQ_SHIFT) |
(8 << GDMA_REG_CTRL1_DST_REQ_SHIFT);
} else {
dev_err(dma_dev->ddev.dev, "direction type %d error\n",
chan->desc->direction);
return -EINVAL;
}
ctrl0 |= (sg->len << GDMA_REG_CTRL0_TX_SHIFT) |
(chan->burst_size << GDMA_REG_CTRL0_BURST_SHIFT) |
GDMA_REG_CTRL0_DONE_INT | GDMA_REG_CTRL0_ENABLE;
ctrl1 = chan->id << GDMA_REG_CTRL1_NEXT_SHIFT;
chan->next_sg++;
gdma_dma_write(dma_dev, GDMA_REG_SRC_ADDR(chan->id), src_addr);
gdma_dma_write(dma_dev, GDMA_REG_DST_ADDR(chan->id), dst_addr);
gdma_dma_write(dma_dev, GDMA_REG_CTRL1(chan->id), ctrl1);
/* make sure next_sg is update */
wmb();
gdma_dma_write(dma_dev, GDMA_REG_CTRL0(chan->id), ctrl0);
return 0;
}
static void rt3883_dump_reg(struct gdma_dma_dev *dma_dev, int id)
{
dev_dbg(dma_dev->ddev.dev, "chan %d, src %08x, dst %08x, ctr0 %08x, ctr1 %08x, unmask %08x, done %08x, req %08x, ack %08x, fin %08x\n",
id,
gdma_dma_read(dma_dev, GDMA_REG_SRC_ADDR(id)),
gdma_dma_read(dma_dev, GDMA_REG_DST_ADDR(id)),
gdma_dma_read(dma_dev, GDMA_REG_CTRL0(id)),
gdma_dma_read(dma_dev, GDMA_REG_CTRL1(id)),
gdma_dma_read(dma_dev, GDMA_REG_UNMASK_INT),
gdma_dma_read(dma_dev, GDMA_REG_DONE_INT),
gdma_dma_read(dma_dev, GDMA_REG_REQSTS),
gdma_dma_read(dma_dev, GDMA_REG_ACKSTS),
gdma_dma_read(dma_dev, GDMA_REG_FINSTS));
}
static int rt3883_gdma_start_transfer(struct gdma_dmaengine_chan *chan)
{
struct gdma_dma_dev *dma_dev = gdma_dma_chan_get_dev(chan);
dma_addr_t src_addr, dst_addr;
struct gdma_dma_sg *sg;
u32 ctrl0, ctrl1;
/* verify chan is already stopped */
ctrl0 = gdma_dma_read(dma_dev, GDMA_REG_CTRL0(chan->id));
if (unlikely(ctrl0 & GDMA_REG_CTRL0_ENABLE)) {
dev_err(dma_dev->ddev.dev, "chan %d is start(%08x).\n",
chan->id, ctrl0);
rt3883_dump_reg(dma_dev, chan->id);
return -EINVAL;
}
sg = &chan->desc->sg[chan->next_sg];
if (chan->desc->direction == DMA_MEM_TO_DEV) {
src_addr = sg->src_addr;
dst_addr = chan->fifo_addr;
ctrl0 = GDMA_REG_CTRL0_DST_ADDR_FIXED;
ctrl1 = (32 << GDMA_REG_CTRL1_SRC_REQ_SHIFT) |
(chan->slave_id << GDMA_REG_CTRL1_DST_REQ_SHIFT);
} else if (chan->desc->direction == DMA_DEV_TO_MEM) {
src_addr = chan->fifo_addr;
dst_addr = sg->dst_addr;
ctrl0 = GDMA_REG_CTRL0_SRC_ADDR_FIXED;
ctrl1 = (chan->slave_id << GDMA_REG_CTRL1_SRC_REQ_SHIFT) |
(32 << GDMA_REG_CTRL1_DST_REQ_SHIFT) |
GDMA_REG_CTRL1_COHERENT;
} else if (chan->desc->direction == DMA_MEM_TO_MEM) {
src_addr = sg->src_addr;
dst_addr = sg->dst_addr;
ctrl0 = GDMA_REG_CTRL0_SW_MODE;
ctrl1 = (32 << GDMA_REG_CTRL1_SRC_REQ_SHIFT) |
(32 << GDMA_REG_CTRL1_DST_REQ_SHIFT) |
GDMA_REG_CTRL1_COHERENT;
} else {
dev_err(dma_dev->ddev.dev, "direction type %d error\n",
chan->desc->direction);
return -EINVAL;
}
ctrl0 |= (sg->len << GDMA_REG_CTRL0_TX_SHIFT) |
(chan->burst_size << GDMA_REG_CTRL0_BURST_SHIFT) |
GDMA_REG_CTRL0_DONE_INT | GDMA_REG_CTRL0_ENABLE;
ctrl1 |= chan->id << GDMA_REG_CTRL1_NEXT_SHIFT;
chan->next_sg++;
gdma_dma_write(dma_dev, GDMA_REG_SRC_ADDR(chan->id), src_addr);
gdma_dma_write(dma_dev, GDMA_REG_DST_ADDR(chan->id), dst_addr);
gdma_dma_write(dma_dev, GDMA_REG_CTRL1(chan->id), ctrl1);
/* make sure next_sg is update */
wmb();
gdma_dma_write(dma_dev, GDMA_REG_CTRL0(chan->id), ctrl0);
return 0;
}
static inline int gdma_start_transfer(struct gdma_dma_dev *dma_dev,
struct gdma_dmaengine_chan *chan)
{
return dma_dev->data->start_transfer(chan);
}
static int gdma_next_desc(struct gdma_dmaengine_chan *chan)
{
struct virt_dma_desc *vdesc;
vdesc = vchan_next_desc(&chan->vchan);
if (!vdesc) {
chan->desc = NULL;
return 0;
}
chan->desc = to_gdma_dma_desc(vdesc);
chan->next_sg = 0;
return 1;
}
static void gdma_dma_chan_irq(struct gdma_dma_dev *dma_dev,
struct gdma_dmaengine_chan *chan)
{
struct gdma_dma_desc *desc;
unsigned long flags;
int chan_issued;
chan_issued = 0;
spin_lock_irqsave(&chan->vchan.lock, flags);
desc = chan->desc;
if (desc) {
if (desc->cyclic) {
vchan_cyclic_callback(&desc->vdesc);
if (chan->next_sg == desc->num_sgs)
chan->next_sg = 0;
chan_issued = 1;
} else {
desc->residue -= desc->sg[chan->next_sg - 1].len;
if (chan->next_sg == desc->num_sgs) {
list_del(&desc->vdesc.node);
vchan_cookie_complete(&desc->vdesc);
chan_issued = gdma_next_desc(chan);
} else {
chan_issued = 1;
}
}
} else {
dev_dbg(dma_dev->ddev.dev, "chan %d no desc to complete\n",
chan->id);
}
if (chan_issued)
set_bit(chan->id, &dma_dev->chan_issued);
spin_unlock_irqrestore(&chan->vchan.lock, flags);
}
static irqreturn_t gdma_dma_irq(int irq, void *devid)
{
struct gdma_dma_dev *dma_dev = devid;
u32 done, done_reg;
unsigned int i;
done_reg = dma_dev->data->done_int_reg;
done = gdma_dma_read(dma_dev, done_reg);
if (unlikely(!done))
return IRQ_NONE;
/* clean done bits */
gdma_dma_write(dma_dev, done_reg, done);
i = 0;
while (done) {
if (done & 0x1) {
gdma_dma_chan_irq(dma_dev, &dma_dev->chan[i]);
atomic_dec(&dma_dev->cnt);
}
done >>= 1;
i++;
}
/* start only have work to do */
if (dma_dev->chan_issued)
tasklet_schedule(&dma_dev->task);
return IRQ_HANDLED;
}
static void gdma_dma_issue_pending(struct dma_chan *c)
{
struct gdma_dmaengine_chan *chan = to_gdma_dma_chan(c);
struct gdma_dma_dev *dma_dev = gdma_dma_chan_get_dev(chan);
unsigned long flags;
spin_lock_irqsave(&chan->vchan.lock, flags);
if (vchan_issue_pending(&chan->vchan) && !chan->desc) {
if (gdma_next_desc(chan)) {
set_bit(chan->id, &dma_dev->chan_issued);
tasklet_schedule(&dma_dev->task);
} else {
dev_dbg(dma_dev->ddev.dev, "chan %d no desc to issue\n",
chan->id);
}
}
spin_unlock_irqrestore(&chan->vchan.lock, flags);
}
static struct dma_async_tx_descriptor *gdma_dma_prep_slave_sg(
struct dma_chan *c, struct scatterlist *sgl,
unsigned int sg_len, enum dma_transfer_direction direction,
unsigned long flags, void *context)
{
struct gdma_dmaengine_chan *chan = to_gdma_dma_chan(c);
struct gdma_dma_desc *desc;
struct scatterlist *sg;
unsigned int i;
desc = kzalloc(struct_size(desc, sg, sg_len), GFP_ATOMIC);
if (!desc) {
dev_err(c->device->dev, "alloc sg decs error\n");
return NULL;
}
desc->residue = 0;
for_each_sg(sgl, sg, sg_len, i) {
if (direction == DMA_MEM_TO_DEV) {
desc->sg[i].src_addr = sg_dma_address(sg);
} else if (direction == DMA_DEV_TO_MEM) {
desc->sg[i].dst_addr = sg_dma_address(sg);
} else {
dev_err(c->device->dev, "direction type %d error\n",
direction);
goto free_desc;
}
if (unlikely(sg_dma_len(sg) > GDMA_REG_CTRL0_TX_MASK)) {
dev_err(c->device->dev, "sg len too large %d\n",
sg_dma_len(sg));
goto free_desc;
}
desc->sg[i].len = sg_dma_len(sg);
desc->residue += sg_dma_len(sg);
}
desc->num_sgs = sg_len;
desc->direction = direction;
desc->cyclic = false;
return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
free_desc:
kfree(desc);
return NULL;
}
static struct dma_async_tx_descriptor *gdma_dma_prep_dma_memcpy(
struct dma_chan *c, dma_addr_t dest, dma_addr_t src,
size_t len, unsigned long flags)
{
struct gdma_dmaengine_chan *chan = to_gdma_dma_chan(c);
struct gdma_dma_desc *desc;
unsigned int num_periods, i;
size_t xfer_count;
if (len <= 0)
return NULL;
chan->burst_size = gdma_dma_maxburst(len >> 2);
xfer_count = GDMA_REG_CTRL0_TX_MASK;
num_periods = DIV_ROUND_UP(len, xfer_count);
desc = kzalloc(struct_size(desc, sg, num_periods), GFP_ATOMIC);
if (!desc) {
dev_err(c->device->dev, "alloc memcpy decs error\n");
return NULL;
}
desc->residue = len;
for (i = 0; i < num_periods; i++) {
desc->sg[i].src_addr = src;
desc->sg[i].dst_addr = dest;
if (len > xfer_count)
desc->sg[i].len = xfer_count;
else
desc->sg[i].len = len;
src += desc->sg[i].len;
dest += desc->sg[i].len;
len -= desc->sg[i].len;
}
desc->num_sgs = num_periods;
desc->direction = DMA_MEM_TO_MEM;
desc->cyclic = false;
return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
}
static struct dma_async_tx_descriptor *gdma_dma_prep_dma_cyclic(
struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len,
size_t period_len, enum dma_transfer_direction direction,
unsigned long flags)
{
struct gdma_dmaengine_chan *chan = to_gdma_dma_chan(c);
struct gdma_dma_desc *desc;
unsigned int num_periods, i;
if (buf_len % period_len)
return NULL;
if (period_len > GDMA_REG_CTRL0_TX_MASK) {
dev_err(c->device->dev, "cyclic len too large %d\n",
period_len);
return NULL;
}
num_periods = buf_len / period_len;
desc = kzalloc(struct_size(desc, sg, num_periods), GFP_ATOMIC);
if (!desc) {
dev_err(c->device->dev, "alloc cyclic decs error\n");
return NULL;
}
desc->residue = buf_len;
for (i = 0; i < num_periods; i++) {
if (direction == DMA_MEM_TO_DEV) {
desc->sg[i].src_addr = buf_addr;
} else if (direction == DMA_DEV_TO_MEM) {
desc->sg[i].dst_addr = buf_addr;
} else {
dev_err(c->device->dev, "direction type %d error\n",
direction);
goto free_desc;
}
desc->sg[i].len = period_len;
buf_addr += period_len;
}
desc->num_sgs = num_periods;
desc->direction = direction;
desc->cyclic = true;
return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
free_desc:
kfree(desc);
return NULL;
}
static enum dma_status gdma_dma_tx_status(struct dma_chan *c,
dma_cookie_t cookie,
struct dma_tx_state *state)
{
struct gdma_dmaengine_chan *chan = to_gdma_dma_chan(c);
struct virt_dma_desc *vdesc;
enum dma_status status;
unsigned long flags;
struct gdma_dma_desc *desc;
status = dma_cookie_status(c, cookie, state);
if (status == DMA_COMPLETE || !state)
return status;
spin_lock_irqsave(&chan->vchan.lock, flags);
desc = chan->desc;
if (desc && (cookie == desc->vdesc.tx.cookie)) {
/*
* We never update edesc->residue in the cyclic case, so we
* can tell the remaining room to the end of the circular
* buffer.
*/
if (desc->cyclic)
state->residue = desc->residue -
((chan->next_sg - 1) * desc->sg[0].len);
else
state->residue = desc->residue;
} else {
vdesc = vchan_find_desc(&chan->vchan, cookie);
if (vdesc)
state->residue = to_gdma_dma_desc(vdesc)->residue;
}
spin_unlock_irqrestore(&chan->vchan.lock, flags);
dev_dbg(c->device->dev, "tx residue %d bytes\n", state->residue);
return status;
}
static void gdma_dma_free_chan_resources(struct dma_chan *c)
{
vchan_free_chan_resources(to_virt_chan(c));
}
static void gdma_dma_desc_free(struct virt_dma_desc *vdesc)
{
kfree(container_of(vdesc, struct gdma_dma_desc, vdesc));
}
static void gdma_dma_tasklet(unsigned long arg)
{
struct gdma_dma_dev *dma_dev = (struct gdma_dma_dev *)arg;
struct gdma_dmaengine_chan *chan;
static unsigned int last_chan;
unsigned int i, chan_mask;
/* record last chan to round robin all chans */
i = last_chan;
chan_mask = dma_dev->data->chancnt - 1;
do {
/*
* on mt7621. when verify with dmatest with all
* channel is enable. we need to limit only two
* channel is working at the same time. otherwise the
* data will have problem.
*/
if (atomic_read(&dma_dev->cnt) >= 2) {
last_chan = i;
break;
}
if (test_and_clear_bit(i, &dma_dev->chan_issued)) {
chan = &dma_dev->chan[i];
if (chan->desc) {
atomic_inc(&dma_dev->cnt);
gdma_start_transfer(dma_dev, chan);
} else {
dev_dbg(dma_dev->ddev.dev,
"chan %d no desc to issue\n",
chan->id);
}
if (!dma_dev->chan_issued)
break;
}
i = (i + 1) & chan_mask;
} while (i != last_chan);
}
static void rt305x_gdma_init(struct gdma_dma_dev *dma_dev)
{
u32 gct;
/* all chans round robin */
gdma_dma_write(dma_dev, GDMA_RT305X_GCT, GDMA_REG_GCT_ARBIT_RR);
gct = gdma_dma_read(dma_dev, GDMA_RT305X_GCT);
dev_info(dma_dev->ddev.dev, "revision: %d, channels: %d\n",
(gct >> GDMA_REG_GCT_VER_SHIFT) & GDMA_REG_GCT_VER_MASK,
8 << ((gct >> GDMA_REG_GCT_CHAN_SHIFT) &
GDMA_REG_GCT_CHAN_MASK));
}
static void rt3883_gdma_init(struct gdma_dma_dev *dma_dev)
{
u32 gct;
/* all chans round robin */
gdma_dma_write(dma_dev, GDMA_REG_GCT, GDMA_REG_GCT_ARBIT_RR);
gct = gdma_dma_read(dma_dev, GDMA_REG_GCT);
dev_info(dma_dev->ddev.dev, "revision: %d, channels: %d\n",
(gct >> GDMA_REG_GCT_VER_SHIFT) & GDMA_REG_GCT_VER_MASK,
8 << ((gct >> GDMA_REG_GCT_CHAN_SHIFT) &
GDMA_REG_GCT_CHAN_MASK));
}
static struct gdma_data rt305x_gdma_data = {
.chancnt = 8,
.done_int_reg = GDMA_RT305X_STATUS_INT,
.init = rt305x_gdma_init,
.start_transfer = rt305x_gdma_start_transfer,
};
static struct gdma_data rt3883_gdma_data = {
.chancnt = 16,
.done_int_reg = GDMA_REG_DONE_INT,
.init = rt3883_gdma_init,
.start_transfer = rt3883_gdma_start_transfer,
};
static const struct of_device_id gdma_of_match_table[] = {
{ .compatible = "ralink,rt305x-gdma", .data = &rt305x_gdma_data },
{ .compatible = "ralink,rt3883-gdma", .data = &rt3883_gdma_data },
{ },
};
static int gdma_dma_probe(struct platform_device *pdev)
{
const struct of_device_id *match;
struct gdma_dmaengine_chan *chan;
struct gdma_dma_dev *dma_dev;
struct dma_device *dd;
unsigned int i;
int ret;
int irq;
void __iomem *base;
struct gdma_data *data;
ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
if (ret)
return ret;
match = of_match_device(gdma_of_match_table, &pdev->dev);
if (!match)
return -EINVAL;
data = (struct gdma_data *)match->data;
dma_dev = devm_kzalloc(&pdev->dev,
struct_size(dma_dev, chan, data->chancnt),
GFP_KERNEL);
if (!dma_dev)
return -EINVAL;
dma_dev->data = data;
base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(base))
return PTR_ERR(base);
dma_dev->base = base;
tasklet_init(&dma_dev->task, gdma_dma_tasklet, (unsigned long)dma_dev);
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return -EINVAL;
ret = devm_request_irq(&pdev->dev, irq, gdma_dma_irq,
0, dev_name(&pdev->dev), dma_dev);
if (ret) {
dev_err(&pdev->dev, "failed to request irq\n");
return ret;
}
device_reset(&pdev->dev);
dd = &dma_dev->ddev;
dma_cap_set(DMA_MEMCPY, dd->cap_mask);
dma_cap_set(DMA_SLAVE, dd->cap_mask);
dma_cap_set(DMA_CYCLIC, dd->cap_mask);
dd->device_free_chan_resources = gdma_dma_free_chan_resources;
dd->device_prep_dma_memcpy = gdma_dma_prep_dma_memcpy;
dd->device_prep_slave_sg = gdma_dma_prep_slave_sg;
dd->device_prep_dma_cyclic = gdma_dma_prep_dma_cyclic;
dd->device_config = gdma_dma_config;
dd->device_terminate_all = gdma_dma_terminate_all;
dd->device_tx_status = gdma_dma_tx_status;
dd->device_issue_pending = gdma_dma_issue_pending;
dd->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
dd->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
dd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
dd->residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
dd->dev = &pdev->dev;
dd->dev->dma_parms = &dma_dev->dma_parms;
dma_set_max_seg_size(dd->dev, GDMA_REG_CTRL0_TX_MASK);
INIT_LIST_HEAD(&dd->channels);
for (i = 0; i < data->chancnt; i++) {
chan = &dma_dev->chan[i];
chan->id = i;
chan->vchan.desc_free = gdma_dma_desc_free;
vchan_init(&chan->vchan, dd);
}
/* init hardware */
data->init(dma_dev);
ret = dma_async_device_register(dd);
if (ret) {
dev_err(&pdev->dev, "failed to register dma device\n");
return ret;
}
ret = of_dma_controller_register(pdev->dev.of_node,
of_dma_xlate_by_chan_id, dma_dev);
if (ret) {
dev_err(&pdev->dev, "failed to register of dma controller\n");
goto err_unregister;
}
platform_set_drvdata(pdev, dma_dev);
return 0;
err_unregister:
dma_async_device_unregister(dd);
return ret;
}
static int gdma_dma_remove(struct platform_device *pdev)
{
struct gdma_dma_dev *dma_dev = platform_get_drvdata(pdev);
tasklet_kill(&dma_dev->task);
of_dma_controller_free(pdev->dev.of_node);
dma_async_device_unregister(&dma_dev->ddev);
return 0;
}
static struct platform_driver gdma_dma_driver = {
.probe = gdma_dma_probe,
.remove = gdma_dma_remove,
.driver = {
.name = "gdma-rt2880",
.of_match_table = gdma_of_match_table,
},
};
module_platform_driver(gdma_dma_driver);
MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
MODULE_DESCRIPTION("Ralink/MTK DMA driver");
MODULE_LICENSE("GPL v2");