blob: a2e8bd452ed9dfed2ae3f324b19cab9e0672075f [file] [log] [blame]
/*
* Copyright 2008 Pavel Machek <pavel@ucw.cz>
*
* Distribute under GPLv2.
*
* The original driver was written by:
* Jeff Lee <YY_Lee@issc.com.tw>
*
* and was adapted to the 2.6 kernel by:
* Costantino Leandro (Rxart Desktop) <le_costantino@pixartargentina.com.ar>
*/
#include <net/mac80211.h>
#include <linux/usb.h>
#include "core.h"
#include "mds_f.h"
#include "mto.h"
#include "wbhal.h"
#include "wb35reg_f.h"
#include "wb35tx_f.h"
#include "wb35rx_f.h"
MODULE_DESCRIPTION("IS89C35 802.11bg WLAN USB Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION("0.1");
static const struct usb_device_id wb35_table[] __devinitconst = {
{ USB_DEVICE(0x0416, 0x0035) },
{ USB_DEVICE(0x18E8, 0x6201) },
{ USB_DEVICE(0x18E8, 0x6206) },
{ USB_DEVICE(0x18E8, 0x6217) },
{ USB_DEVICE(0x18E8, 0x6230) },
{ USB_DEVICE(0x18E8, 0x6233) },
{ USB_DEVICE(0x1131, 0x2035) },
{ 0, }
};
MODULE_DEVICE_TABLE(usb, wb35_table);
static struct ieee80211_rate wbsoft_rates[] = {
{ .bitrate = 10, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
};
static struct ieee80211_channel wbsoft_channels[] = {
{ .center_freq = 2412 },
};
static struct ieee80211_supported_band wbsoft_band_2GHz = {
.channels = wbsoft_channels,
.n_channels = ARRAY_SIZE(wbsoft_channels),
.bitrates = wbsoft_rates,
.n_bitrates = ARRAY_SIZE(wbsoft_rates),
};
static void hal_set_beacon_period(struct hw_data *pHwData, u16 beacon_period)
{
u32 tmp;
if (pHwData->SurpriseRemove)
return;
pHwData->BeaconPeriod = beacon_period;
tmp = pHwData->BeaconPeriod << 16;
tmp |= pHwData->ProbeDelay;
Wb35Reg_Write(pHwData, 0x0848, tmp);
}
static int wbsoft_add_interface(struct ieee80211_hw *dev,
struct ieee80211_vif *vif)
{
struct wbsoft_priv *priv = dev->priv;
hal_set_beacon_period(&priv->sHwData, vif->bss_conf.beacon_int);
return 0;
}
static void wbsoft_remove_interface(struct ieee80211_hw *dev,
struct ieee80211_vif *vif)
{
printk("wbsoft_remove interface called\n");
}
static void wbsoft_stop(struct ieee80211_hw *hw)
{
printk(KERN_INFO "%s called\n", __func__);
}
static int wbsoft_get_stats(struct ieee80211_hw *hw,
struct ieee80211_low_level_stats *stats)
{
printk(KERN_INFO "%s called\n", __func__);
return 0;
}
static u64 wbsoft_prepare_multicast(struct ieee80211_hw *hw,
struct netdev_hw_addr_list *mc_list)
{
return netdev_hw_addr_list_count(mc_list);
}
static void wbsoft_configure_filter(struct ieee80211_hw *dev,
unsigned int changed_flags,
unsigned int *total_flags,
u64 multicast)
{
unsigned int new_flags;
new_flags = 0;
if (*total_flags & FIF_PROMISC_IN_BSS)
new_flags |= FIF_PROMISC_IN_BSS;
else if ((*total_flags & FIF_ALLMULTI) || (multicast > 32))
new_flags |= FIF_ALLMULTI;
dev->flags &= ~IEEE80211_HW_RX_INCLUDES_FCS;
*total_flags = new_flags;
}
static void wbsoft_tx(struct ieee80211_hw *dev, struct sk_buff *skb)
{
struct wbsoft_priv *priv = dev->priv;
if (priv->sMlmeFrame.IsInUsed != PACKET_FREE_TO_USE) {
priv->sMlmeFrame.wNumTxMMPDUDiscarded++;
kfree_skb(skb);
return;
}
priv->sMlmeFrame.IsInUsed = PACKET_COME_FROM_MLME;
priv->sMlmeFrame.pMMPDU = skb->data;
priv->sMlmeFrame.DataType = FRAME_TYPE_802_11_MANAGEMENT;
priv->sMlmeFrame.len = skb->len;
priv->sMlmeFrame.wNumTxMMPDU++;
/*
* H/W will enter power save by set the register. S/W don't send null
* frame with PWRMgt bit enbled to enter power save now.
*/
Mds_Tx(priv);
}
static int wbsoft_start(struct ieee80211_hw *dev)
{
struct wbsoft_priv *priv = dev->priv;
priv->enabled = true;
return 0;
}
static void hal_set_radio_mode(struct hw_data *pHwData, unsigned char radio_off)
{
struct wb35_reg *reg = &pHwData->reg;
if (pHwData->SurpriseRemove)
return;
if (radio_off) { /* disable Baseband receive off */
pHwData->CurrentRadioSw = 1; /* off */
reg->M24_MacControl &= 0xffffffbf;
} else {
pHwData->CurrentRadioSw = 0; /* on */
reg->M24_MacControl |= 0x00000040;
}
Wb35Reg_Write(pHwData, 0x0824, reg->M24_MacControl);
}
static void hal_set_current_channel_ex(struct hw_data *pHwData, struct chan_info channel)
{
struct wb35_reg *reg = &pHwData->reg;
if (pHwData->SurpriseRemove)
return;
printk("Going to channel: %d/%d\n", channel.band, channel.ChanNo);
RFSynthesizer_SwitchingChannel(pHwData, channel); /* Switch channel */
pHwData->Channel = channel.ChanNo;
pHwData->band = channel.band;
pr_debug("Set channel is %d, band =%d\n", pHwData->Channel, pHwData->band);
reg->M28_MacControl &= ~0xff; /* Clean channel information field */
reg->M28_MacControl |= channel.ChanNo;
Wb35Reg_WriteWithCallbackValue(pHwData, 0x0828, reg->M28_MacControl,
(s8 *) &channel,
sizeof(struct chan_info));
}
static void hal_set_current_channel(struct hw_data *pHwData, struct chan_info channel)
{
hal_set_current_channel_ex(pHwData, channel);
}
static void hal_set_accept_broadcast(struct hw_data *pHwData, u8 enable)
{
struct wb35_reg *reg = &pHwData->reg;
if (pHwData->SurpriseRemove)
return;
reg->M00_MacControl &= ~0x02000000; /* The HW value */
if (enable)
reg->M00_MacControl |= 0x02000000; /* The HW value */
Wb35Reg_Write(pHwData, 0x0800, reg->M00_MacControl);
}
/* For wep key error detection, we need to accept broadcast packets to be received temporary. */
static void hal_set_accept_promiscuous(struct hw_data *pHwData, u8 enable)
{
struct wb35_reg *reg = &pHwData->reg;
if (pHwData->SurpriseRemove)
return;
if (enable) {
reg->M00_MacControl |= 0x00400000;
Wb35Reg_Write(pHwData, 0x0800, reg->M00_MacControl);
} else {
reg->M00_MacControl &= ~0x00400000;
Wb35Reg_Write(pHwData, 0x0800, reg->M00_MacControl);
}
}
static void hal_set_accept_multicast(struct hw_data *pHwData, u8 enable)
{
struct wb35_reg *reg = &pHwData->reg;
if (pHwData->SurpriseRemove)
return;
reg->M00_MacControl &= ~0x01000000; /* The HW value */
if (enable)
reg->M00_MacControl |= 0x01000000; /* The HW value */
Wb35Reg_Write(pHwData, 0x0800, reg->M00_MacControl);
}
static void hal_set_accept_beacon(struct hw_data *pHwData, u8 enable)
{
struct wb35_reg *reg = &pHwData->reg;
if (pHwData->SurpriseRemove)
return;
if (!enable) /* Due to SME and MLME are not suitable for 35 */
return;
reg->M00_MacControl &= ~0x04000000; /* The HW value */
if (enable)
reg->M00_MacControl |= 0x04000000; /* The HW value */
Wb35Reg_Write(pHwData, 0x0800, reg->M00_MacControl);
}
static int wbsoft_config(struct ieee80211_hw *dev, u32 changed)
{
struct wbsoft_priv *priv = dev->priv;
struct chan_info ch;
printk("wbsoft_config called\n");
/* Should use channel_num, or something, as that is already pre-translated */
ch.band = 1;
ch.ChanNo = 1;
hal_set_current_channel(&priv->sHwData, ch);
hal_set_accept_broadcast(&priv->sHwData, 1);
hal_set_accept_promiscuous(&priv->sHwData, 1);
hal_set_accept_multicast(&priv->sHwData, 1);
hal_set_accept_beacon(&priv->sHwData, 1);
hal_set_radio_mode(&priv->sHwData, 0);
return 0;
}
static u64 wbsoft_get_tsf(struct ieee80211_hw *dev, struct ieee80211_vif *vif)
{
printk("wbsoft_get_tsf called\n");
return 0;
}
static const struct ieee80211_ops wbsoft_ops = {
.tx = wbsoft_tx,
.start = wbsoft_start,
.stop = wbsoft_stop,
.add_interface = wbsoft_add_interface,
.remove_interface = wbsoft_remove_interface,
.config = wbsoft_config,
.prepare_multicast = wbsoft_prepare_multicast,
.configure_filter = wbsoft_configure_filter,
.get_stats = wbsoft_get_stats,
.get_tsf = wbsoft_get_tsf,
};
static void hal_set_ethernet_address(struct hw_data *pHwData, u8 *current_address)
{
u32 ltmp[2];
if (pHwData->SurpriseRemove)
return;
memcpy(pHwData->CurrentMacAddress, current_address, ETH_ALEN);
ltmp[0] = cpu_to_le32(*(u32 *) pHwData->CurrentMacAddress);
ltmp[1] = cpu_to_le32(*(u32 *) (pHwData->CurrentMacAddress + 4)) & 0xffff;
Wb35Reg_BurstWrite(pHwData, 0x03e8, ltmp, 2, AUTO_INCREMENT);
}
static void hal_get_permanent_address(struct hw_data *pHwData, u8 *pethernet_address)
{
if (pHwData->SurpriseRemove)
return;
memcpy(pethernet_address, pHwData->PermanentMacAddress, 6);
}
static void hal_stop(struct hw_data *pHwData)
{
struct wb35_reg *reg = &pHwData->reg;
pHwData->Wb35Rx.rx_halt = 1;
Wb35Rx_stop(pHwData);
pHwData->Wb35Tx.tx_halt = 1;
Wb35Tx_stop(pHwData);
reg->D00_DmaControl &= ~0xc0000000; /* Tx Off, Rx Off */
Wb35Reg_Write(pHwData, 0x0400, reg->D00_DmaControl);
}
static unsigned char hal_idle(struct hw_data *pHwData)
{
struct wb35_reg *reg = &pHwData->reg;
if (!pHwData->SurpriseRemove && reg->EP0vm_state != VM_STOP)
return false;
return true;
}
u8 hal_get_antenna_number(struct hw_data *pHwData)
{
struct wb35_reg *reg = &pHwData->reg;
if ((reg->BB2C & BIT(11)) == 0)
return 0;
else
return 1;
}
/* 0 : radio on; 1: radio off */
static u8 hal_get_hw_radio_off(struct hw_data *pHwData)
{
struct wb35_reg *reg = &pHwData->reg;
if (pHwData->SurpriseRemove)
return 1;
/* read the bit16 of register U1B0 */
Wb35Reg_Read(pHwData, 0x3b0, &reg->U1B0);
if ((reg->U1B0 & 0x00010000)) {
pHwData->CurrentRadioHw = 1;
return 1;
} else {
pHwData->CurrentRadioHw = 0;
return 0;
}
}
static u8 LED_GRAY[20] = {
0, 3, 4, 6, 8, 10, 11, 12, 13, 14, 15, 14, 13, 12, 11, 10, 8, 6, 4, 2
};
static u8 LED_GRAY2[30] = {
7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 15, 14, 13, 12, 11, 10, 9, 8
};
static void hal_led_control(unsigned long data)
{
struct wbsoft_priv *adapter = (struct wbsoft_priv *)data;
struct hw_data *pHwData = &adapter->sHwData;
struct wb35_reg *reg = &pHwData->reg;
u32 LEDSet = (pHwData->SoftwareSet & HAL_LED_SET_MASK) >> HAL_LED_SET_SHIFT;
u32 TimeInterval = 500, ltmp, ltmp2;
ltmp = 0;
if (pHwData->SurpriseRemove)
return;
if (pHwData->LED_control) {
ltmp2 = pHwData->LED_control & 0xff;
if (ltmp2 == 5) { /* 5 is WPS mode */
TimeInterval = 100;
ltmp2 = (pHwData->LED_control >> 8) & 0xff;
switch (ltmp2) {
case 1: /* [0.2 On][0.1 Off]... */
pHwData->LED_Blinking %= 3;
ltmp = 0x1010; /* Led 1 & 0 Green and Red */
if (pHwData->LED_Blinking == 2) /* Turn off */
ltmp = 0;
break;
case 2: /* [0.1 On][0.1 Off]... */
pHwData->LED_Blinking %= 2;
ltmp = 0x0010; /* Led 0 red color */
if (pHwData->LED_Blinking) /* Turn off */
ltmp = 0;
break;
case 3: /* [0.1 On][0.1 Off][0.1 On][0.1 Off][0.1 On][0.1 Off][0.1 On][0.1 Off][0.1 On][0.1 Off][0.5 Off]... */
pHwData->LED_Blinking %= 15;
ltmp = 0x0010; /* Led 0 red color */
if ((pHwData->LED_Blinking >= 9) || (pHwData->LED_Blinking % 2)) /* Turn off 0.6 sec */
ltmp = 0;
break;
case 4: /* [300 On][ off ] */
ltmp = 0x1000; /* Led 1 Green color */
if (pHwData->LED_Blinking >= 3000)
ltmp = 0; /* led maybe on after 300sec * 32bit counter overlap. */
break;
}
pHwData->LED_Blinking++;
reg->U1BC_LEDConfigure = ltmp;
if (LEDSet != 7) { /* Only 111 mode has 2 LEDs on PCB. */
reg->U1BC_LEDConfigure |= (ltmp & 0xff) << 8; /* Copy LED result to each LED control register */
reg->U1BC_LEDConfigure |= (ltmp & 0xff00) >> 8;
}
Wb35Reg_Write(pHwData, 0x03bc, reg->U1BC_LEDConfigure);
}
} else if (pHwData->CurrentRadioSw || pHwData->CurrentRadioHw) { /* If radio off */
if (reg->U1BC_LEDConfigure & 0x1010) {
reg->U1BC_LEDConfigure &= ~0x1010;
Wb35Reg_Write(pHwData, 0x03bc, reg->U1BC_LEDConfigure);
}
} else {
switch (LEDSet) {
case 4: /* [100] Only 1 Led be placed on PCB and use pin 21 of IC. Use LED_0 for showing */
if (!pHwData->LED_LinkOn) { /* Blink only if not Link On */
/* Blinking if scanning is on progress */
if (pHwData->LED_Scanning) {
if (pHwData->LED_Blinking == 0) {
reg->U1BC_LEDConfigure |= 0x10;
Wb35Reg_Write(pHwData, 0x03bc, reg->U1BC_LEDConfigure); /* LED_0 On */
pHwData->LED_Blinking = 1;
TimeInterval = 300;
} else {
reg->U1BC_LEDConfigure &= ~0x10;
Wb35Reg_Write(pHwData, 0x03bc, reg->U1BC_LEDConfigure); /* LED_0 Off */
pHwData->LED_Blinking = 0;
TimeInterval = 300;
}
} else {
/* Turn Off LED_0 */
if (reg->U1BC_LEDConfigure & 0x10) {
reg->U1BC_LEDConfigure &= ~0x10;
Wb35Reg_Write(pHwData, 0x03bc, reg->U1BC_LEDConfigure); /* LED_0 Off */
}
}
} else {
/* Turn On LED_0 */
if ((reg->U1BC_LEDConfigure & 0x10) == 0) {
reg->U1BC_LEDConfigure |= 0x10;
Wb35Reg_Write(pHwData, 0x03bc, reg->U1BC_LEDConfigure); /* LED_0 Off */
}
}
break;
case 6: /* [110] Only 1 Led be placed on PCB and use pin 21 of IC. Use LED_0 for showing */
if (!pHwData->LED_LinkOn) { /* Blink only if not Link On */
/* Blinking if scanning is on progress */
if (pHwData->LED_Scanning) {
if (pHwData->LED_Blinking == 0) {
reg->U1BC_LEDConfigure &= ~0xf;
reg->U1BC_LEDConfigure |= 0x10;
Wb35Reg_Write(pHwData, 0x03bc, reg->U1BC_LEDConfigure); /* LED_0 On */
pHwData->LED_Blinking = 1;
TimeInterval = 300;
} else {
reg->U1BC_LEDConfigure &= ~0x1f;
Wb35Reg_Write(pHwData, 0x03bc, reg->U1BC_LEDConfigure); /* LED_0 Off */
pHwData->LED_Blinking = 0;
TimeInterval = 300;
}
} else {
/* Gray blinking if in disconnect state and not scanning */
ltmp = reg->U1BC_LEDConfigure;
reg->U1BC_LEDConfigure &= ~0x1f;
if (LED_GRAY2[(pHwData->LED_Blinking % 30)]) {
reg->U1BC_LEDConfigure |= 0x10;
reg->U1BC_LEDConfigure |=
LED_GRAY2[(pHwData->LED_Blinking % 30)];
}
pHwData->LED_Blinking++;
if (reg->U1BC_LEDConfigure != ltmp)
Wb35Reg_Write(pHwData, 0x03bc, reg->U1BC_LEDConfigure); /* LED_0 Off */
TimeInterval = 100;
}
} else {
/* Turn On LED_0 */
if ((reg->U1BC_LEDConfigure & 0x10) == 0) {
reg->U1BC_LEDConfigure |= 0x10;
Wb35Reg_Write(pHwData, 0x03bc, reg->U1BC_LEDConfigure); /* LED_0 Off */
}
}
break;
case 5: /* [101] Only 1 Led be placed on PCB and use LED_1 for showing */
if (!pHwData->LED_LinkOn) { /* Blink only if not Link On */
/* Blinking if scanning is on progress */
if (pHwData->LED_Scanning) {
if (pHwData->LED_Blinking == 0) {
reg->U1BC_LEDConfigure |= 0x1000;
Wb35Reg_Write(pHwData, 0x03bc, reg->U1BC_LEDConfigure); /* LED_1 On */
pHwData->LED_Blinking = 1;
TimeInterval = 300;
} else {
reg->U1BC_LEDConfigure &= ~0x1000;
Wb35Reg_Write(pHwData, 0x03bc, reg->U1BC_LEDConfigure); /* LED_1 Off */
pHwData->LED_Blinking = 0;
TimeInterval = 300;
}
} else {
/* Turn Off LED_1 */
if (reg->U1BC_LEDConfigure & 0x1000) {
reg->U1BC_LEDConfigure &= ~0x1000;
Wb35Reg_Write(pHwData, 0x03bc, reg->U1BC_LEDConfigure); /* LED_1 Off */
}
}
} else {
/* Is transmitting/receiving ?? */
if ((adapter->RxByteCount !=
pHwData->RxByteCountLast)
|| (adapter->TxByteCount !=
pHwData->TxByteCountLast)) {
if ((reg->U1BC_LEDConfigure & 0x3000) !=
0x3000) {
reg->U1BC_LEDConfigure |= 0x3000;
Wb35Reg_Write(pHwData, 0x03bc, reg->U1BC_LEDConfigure); /* LED_1 On */
}
/* Update variable */
pHwData->RxByteCountLast =
adapter->RxByteCount;
pHwData->TxByteCountLast =
adapter->TxByteCount;
TimeInterval = 200;
} else {
/* Turn On LED_1 and blinking if transmitting/receiving */
if ((reg->U1BC_LEDConfigure & 0x3000) !=
0x1000) {
reg->U1BC_LEDConfigure &=
~0x3000;
reg->U1BC_LEDConfigure |=
0x1000;
Wb35Reg_Write(pHwData, 0x03bc, reg->U1BC_LEDConfigure); /* LED_1 On */
}
}
}
break;
default: /* Default setting. 2 LED be placed on PCB. LED_0: Link On LED_1 Active */
if ((reg->U1BC_LEDConfigure & 0x3000) != 0x3000) {
reg->U1BC_LEDConfigure |= 0x3000; /* LED_1 is always on and event enable */
Wb35Reg_Write(pHwData, 0x03bc,
reg->U1BC_LEDConfigure);
}
if (pHwData->LED_Blinking) {
/* Gray blinking */
reg->U1BC_LEDConfigure &= ~0x0f;
reg->U1BC_LEDConfigure |= 0x10;
reg->U1BC_LEDConfigure |=
LED_GRAY[(pHwData->LED_Blinking - 1) % 20];
Wb35Reg_Write(pHwData, 0x03bc,
reg->U1BC_LEDConfigure);
pHwData->LED_Blinking += 2;
if (pHwData->LED_Blinking < 40)
TimeInterval = 100;
else {
pHwData->LED_Blinking = 0; /* Stop blinking */
reg->U1BC_LEDConfigure &= ~0x0f;
Wb35Reg_Write(pHwData, 0x03bc,
reg->U1BC_LEDConfigure);
}
break;
}
if (pHwData->LED_LinkOn) {
if (!(reg->U1BC_LEDConfigure & 0x10)) { /* Check the LED_0 */
/* Try to turn ON LED_0 after gray blinking */
reg->U1BC_LEDConfigure |= 0x10;
pHwData->LED_Blinking = 1; /* Start blinking */
TimeInterval = 50;
}
} else {
if (reg->U1BC_LEDConfigure & 0x10) { /* Check the LED_0 */
reg->U1BC_LEDConfigure &= ~0x10;
Wb35Reg_Write(pHwData, 0x03bc,
reg->U1BC_LEDConfigure);
}
}
break;
}
}
pHwData->time_count += TimeInterval;
Wb35Tx_CurrentTime(adapter, pHwData->time_count);
pHwData->LEDTimer.expires = jiffies + msecs_to_jiffies(TimeInterval);
add_timer(&pHwData->LEDTimer);
}
static int hal_init_hardware(struct ieee80211_hw *hw)
{
struct wbsoft_priv *priv = hw->priv;
struct hw_data *pHwData = &priv->sHwData;
u16 SoftwareSet;
pHwData->MaxReceiveLifeTime = DEFAULT_MSDU_LIFE_TIME;
pHwData->FragmentThreshold = DEFAULT_FRAGMENT_THRESHOLD;
if (!Wb35Reg_initial(pHwData))
goto error_reg_destroy;
if (!Wb35Tx_initial(pHwData))
goto error_tx_destroy;
if (!Wb35Rx_initial(pHwData))
goto error_rx_destroy;
init_timer(&pHwData->LEDTimer);
pHwData->LEDTimer.function = hal_led_control;
pHwData->LEDTimer.data = (unsigned long)priv;
pHwData->LEDTimer.expires = jiffies + msecs_to_jiffies(1000);
add_timer(&pHwData->LEDTimer);
SoftwareSet = hal_software_set(pHwData);
Wb35Rx_start(hw);
Wb35Tx_EP2VM_start(priv);
return 0;
error_rx_destroy:
Wb35Rx_destroy(pHwData);
error_tx_destroy:
Wb35Tx_destroy(pHwData);
error_reg_destroy:
Wb35Reg_destroy(pHwData);
pHwData->SurpriseRemove = 1;
return -EINVAL;
}
static int wb35_hw_init(struct ieee80211_hw *hw)
{
struct wbsoft_priv *priv = hw->priv;
struct hw_data *pHwData = &priv->sHwData;
u8 EEPROM_region;
u8 HwRadioOff;
u8 *pMacAddr2;
u8 *pMacAddr;
int err;
pHwData->phy_type = RF_DECIDE_BY_INF;
priv->Mds.TxRTSThreshold = DEFAULT_RTSThreshold;
priv->Mds.TxFragmentThreshold = DEFAULT_FRAGMENT_THRESHOLD;
priv->sLocalPara.region_INF = REGION_AUTO;
priv->sLocalPara.TxRateMode = RATE_AUTO;
priv->sLocalPara.bMacOperationMode = MODE_802_11_BG;
priv->sLocalPara.MTUsize = MAX_ETHERNET_PACKET_SIZE;
priv->sLocalPara.bPreambleMode = AUTO_MODE;
priv->sLocalPara.bWepKeyError = false;
priv->sLocalPara.bToSelfPacketReceived = false;
priv->sLocalPara.WepKeyDetectTimerCount = 2 * 100; /* 2 seconds */
priv->sLocalPara.RadioOffStatus.boSwRadioOff = false;
err = hal_init_hardware(hw);
if (err)
goto error;
EEPROM_region = hal_get_region_from_EEPROM(pHwData);
if (EEPROM_region != REGION_AUTO)
priv->sLocalPara.region = EEPROM_region;
else {
if (priv->sLocalPara.region_INF != REGION_AUTO)
priv->sLocalPara.region = priv->sLocalPara.region_INF;
else
priv->sLocalPara.region = REGION_USA; /* default setting */
}
Mds_initial(priv);
/*
* If no user-defined address in the registry, use the address
* "burned" on the NIC instead.
*/
pMacAddr = priv->sLocalPara.ThisMacAddress;
pMacAddr2 = priv->sLocalPara.PermanentAddress;
/* Reading ethernet address from EEPROM */
hal_get_permanent_address(pHwData, priv->sLocalPara.PermanentAddress);
if (memcmp(pMacAddr, "\x00\x00\x00\x00\x00\x00", MAC_ADDR_LENGTH) == 0)
memcpy(pMacAddr, pMacAddr2, MAC_ADDR_LENGTH);
else {
/* Set the user define MAC address */
hal_set_ethernet_address(pHwData,
priv->sLocalPara.ThisMacAddress);
}
priv->sLocalPara.bAntennaNo = hal_get_antenna_number(pHwData);
pr_debug("Driver init, antenna no = %d\n", priv->sLocalPara.bAntennaNo);
hal_get_hw_radio_off(pHwData);
/* Waiting for HAL setting OK */
while (!hal_idle(pHwData))
msleep(10);
MTO_Init(priv);
HwRadioOff = hal_get_hw_radio_off(pHwData);
priv->sLocalPara.RadioOffStatus.boHwRadioOff = !!HwRadioOff;
hal_set_radio_mode(pHwData,
(unsigned char)(priv->sLocalPara.RadioOffStatus.
boSwRadioOff
|| priv->sLocalPara.RadioOffStatus.
boHwRadioOff));
/* Notify hal that the driver is ready now. */
hal_driver_init_OK(pHwData) = 1;
error:
return err;
}
static int wb35_probe(struct usb_interface *intf,
const struct usb_device_id *id_table)
{
struct usb_device *udev = interface_to_usbdev(intf);
struct usb_endpoint_descriptor *endpoint;
struct usb_host_interface *interface;
struct ieee80211_hw *dev;
struct wbsoft_priv *priv;
int nr, err;
u32 ltmp;
usb_get_dev(udev);
/* Check the device if it already be opened */
nr = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
0x01,
USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_IN,
0x0, 0x400, &ltmp, 4, HZ * 100);
if (nr < 0) {
err = nr;
goto error;
}
/* Is already initialized? */
ltmp = cpu_to_le32(ltmp);
if (ltmp) {
err = -EBUSY;
goto error;
}
dev = ieee80211_alloc_hw(sizeof(*priv), &wbsoft_ops);
if (!dev) {
err = -ENOMEM;
goto error;
}
priv = dev->priv;
priv->sHwData.udev = udev;
interface = intf->cur_altsetting;
endpoint = &interface->endpoint[0].desc;
if (endpoint[2].wMaxPacketSize == 512)
printk("[w35und] Working on USB 2.0\n");
err = wb35_hw_init(dev);
if (err)
goto error_free_hw;
SET_IEEE80211_DEV(dev, &udev->dev);
{
struct hw_data *pHwData = &priv->sHwData;
unsigned char dev_addr[MAX_ADDR_LEN];
hal_get_permanent_address(pHwData, dev_addr);
SET_IEEE80211_PERM_ADDR(dev, dev_addr);
}
dev->extra_tx_headroom = 12; /* FIXME */
dev->flags = IEEE80211_HW_SIGNAL_UNSPEC;
dev->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
dev->channel_change_time = 1000;
dev->max_signal = 100;
dev->queues = 1;
dev->wiphy->bands[IEEE80211_BAND_2GHZ] = &wbsoft_band_2GHz;
err = ieee80211_register_hw(dev);
if (err)
goto error_free_hw;
usb_set_intfdata(intf, dev);
return 0;
error_free_hw:
ieee80211_free_hw(dev);
error:
usb_put_dev(udev);
return err;
}
static void hal_halt(struct hw_data *pHwData)
{
del_timer_sync(&pHwData->LEDTimer);
/* XXX: Wait for Timer DPC exit. */
msleep(100);
Wb35Rx_destroy(pHwData);
Wb35Tx_destroy(pHwData);
Wb35Reg_destroy(pHwData);
}
static void wb35_hw_halt(struct wbsoft_priv *adapter)
{
/* Turn off Rx and Tx hardware ability */
hal_stop(&adapter->sHwData);
pr_debug("[w35und] Hal_stop O.K.\n");
/* Waiting Irp completed */
msleep(100);
hal_halt(&adapter->sHwData);
}
static void wb35_disconnect(struct usb_interface *intf)
{
struct ieee80211_hw *hw = usb_get_intfdata(intf);
struct wbsoft_priv *priv = hw->priv;
wb35_hw_halt(priv);
ieee80211_stop_queues(hw);
ieee80211_unregister_hw(hw);
ieee80211_free_hw(hw);
usb_set_intfdata(intf, NULL);
usb_put_dev(interface_to_usbdev(intf));
}
static struct usb_driver wb35_driver = {
.name = "w35und",
.id_table = wb35_table,
.probe = wb35_probe,
.disconnect = wb35_disconnect,
};
static int __init wb35_init(void)
{
return usb_register(&wb35_driver);
}
static void __exit wb35_exit(void)
{
usb_deregister(&wb35_driver);
}
module_init(wb35_init);
module_exit(wb35_exit);