| /* Kernel module help for PPC64. |
| Copyright (C) 2001, 2003 Rusty Russell IBM Corporation. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 2 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program; if not, write to the Free Software |
| Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/module.h> |
| #include <linux/elf.h> |
| #include <linux/moduleloader.h> |
| #include <linux/err.h> |
| #include <linux/vmalloc.h> |
| #include <linux/ftrace.h> |
| #include <linux/bug.h> |
| #include <linux/uaccess.h> |
| #include <asm/module.h> |
| #include <asm/firmware.h> |
| #include <asm/code-patching.h> |
| #include <linux/sort.h> |
| #include <asm/setup.h> |
| #include <asm/sections.h> |
| |
| /* FIXME: We don't do .init separately. To do this, we'd need to have |
| a separate r2 value in the init and core section, and stub between |
| them, too. |
| |
| Using a magic allocator which places modules within 32MB solves |
| this, and makes other things simpler. Anton? |
| --RR. */ |
| |
| #ifdef PPC64_ELF_ABI_v2 |
| |
| /* An address is simply the address of the function. */ |
| typedef unsigned long func_desc_t; |
| |
| static func_desc_t func_desc(unsigned long addr) |
| { |
| return addr; |
| } |
| static unsigned long func_addr(unsigned long addr) |
| { |
| return addr; |
| } |
| static unsigned long stub_func_addr(func_desc_t func) |
| { |
| return func; |
| } |
| |
| /* PowerPC64 specific values for the Elf64_Sym st_other field. */ |
| #define STO_PPC64_LOCAL_BIT 5 |
| #define STO_PPC64_LOCAL_MASK (7 << STO_PPC64_LOCAL_BIT) |
| #define PPC64_LOCAL_ENTRY_OFFSET(other) \ |
| (((1 << (((other) & STO_PPC64_LOCAL_MASK) >> STO_PPC64_LOCAL_BIT)) >> 2) << 2) |
| |
| static unsigned int local_entry_offset(const Elf64_Sym *sym) |
| { |
| /* sym->st_other indicates offset to local entry point |
| * (otherwise it will assume r12 is the address of the start |
| * of function and try to derive r2 from it). */ |
| return PPC64_LOCAL_ENTRY_OFFSET(sym->st_other); |
| } |
| #else |
| |
| /* An address is address of the OPD entry, which contains address of fn. */ |
| typedef struct ppc64_opd_entry func_desc_t; |
| |
| static func_desc_t func_desc(unsigned long addr) |
| { |
| return *(struct ppc64_opd_entry *)addr; |
| } |
| static unsigned long func_addr(unsigned long addr) |
| { |
| return func_desc(addr).funcaddr; |
| } |
| static unsigned long stub_func_addr(func_desc_t func) |
| { |
| return func.funcaddr; |
| } |
| static unsigned int local_entry_offset(const Elf64_Sym *sym) |
| { |
| return 0; |
| } |
| |
| void *dereference_module_function_descriptor(struct module *mod, void *ptr) |
| { |
| if (ptr < (void *)mod->arch.start_opd || |
| ptr >= (void *)mod->arch.end_opd) |
| return ptr; |
| |
| return dereference_function_descriptor(ptr); |
| } |
| #endif |
| |
| #define STUB_MAGIC 0x73747562 /* stub */ |
| |
| /* Like PPC32, we need little trampolines to do > 24-bit jumps (into |
| the kernel itself). But on PPC64, these need to be used for every |
| jump, actually, to reset r2 (TOC+0x8000). */ |
| struct ppc64_stub_entry |
| { |
| /* 28 byte jump instruction sequence (7 instructions). We only |
| * need 6 instructions on ABIv2 but we always allocate 7 so |
| * so we don't have to modify the trampoline load instruction. */ |
| u32 jump[7]; |
| /* Used by ftrace to identify stubs */ |
| u32 magic; |
| /* Data for the above code */ |
| func_desc_t funcdata; |
| }; |
| |
| /* |
| * PPC64 uses 24 bit jumps, but we need to jump into other modules or |
| * the kernel which may be further. So we jump to a stub. |
| * |
| * For ELFv1 we need to use this to set up the new r2 value (aka TOC |
| * pointer). For ELFv2 it's the callee's responsibility to set up the |
| * new r2, but for both we need to save the old r2. |
| * |
| * We could simply patch the new r2 value and function pointer into |
| * the stub, but it's significantly shorter to put these values at the |
| * end of the stub code, and patch the stub address (32-bits relative |
| * to the TOC ptr, r2) into the stub. |
| */ |
| |
| static u32 ppc64_stub_insns[] = { |
| 0x3d620000, /* addis r11,r2, <high> */ |
| 0x396b0000, /* addi r11,r11, <low> */ |
| /* Save current r2 value in magic place on the stack. */ |
| 0xf8410000|R2_STACK_OFFSET, /* std r2,R2_STACK_OFFSET(r1) */ |
| 0xe98b0020, /* ld r12,32(r11) */ |
| #ifdef PPC64_ELF_ABI_v1 |
| /* Set up new r2 from function descriptor */ |
| 0xe84b0028, /* ld r2,40(r11) */ |
| #endif |
| 0x7d8903a6, /* mtctr r12 */ |
| 0x4e800420 /* bctr */ |
| }; |
| |
| #ifdef CONFIG_DYNAMIC_FTRACE |
| int module_trampoline_target(struct module *mod, unsigned long addr, |
| unsigned long *target) |
| { |
| struct ppc64_stub_entry *stub; |
| func_desc_t funcdata; |
| u32 magic; |
| |
| if (!within_module_core(addr, mod)) { |
| pr_err("%s: stub %lx not in module %s\n", __func__, addr, mod->name); |
| return -EFAULT; |
| } |
| |
| stub = (struct ppc64_stub_entry *)addr; |
| |
| if (probe_kernel_read(&magic, &stub->magic, sizeof(magic))) { |
| pr_err("%s: fault reading magic for stub %lx for %s\n", __func__, addr, mod->name); |
| return -EFAULT; |
| } |
| |
| if (magic != STUB_MAGIC) { |
| pr_err("%s: bad magic for stub %lx for %s\n", __func__, addr, mod->name); |
| return -EFAULT; |
| } |
| |
| if (probe_kernel_read(&funcdata, &stub->funcdata, sizeof(funcdata))) { |
| pr_err("%s: fault reading funcdata for stub %lx for %s\n", __func__, addr, mod->name); |
| return -EFAULT; |
| } |
| |
| *target = stub_func_addr(funcdata); |
| |
| return 0; |
| } |
| #endif |
| |
| /* Count how many different 24-bit relocations (different symbol, |
| different addend) */ |
| static unsigned int count_relocs(const Elf64_Rela *rela, unsigned int num) |
| { |
| unsigned int i, r_info, r_addend, _count_relocs; |
| |
| /* FIXME: Only count external ones --RR */ |
| _count_relocs = 0; |
| r_info = 0; |
| r_addend = 0; |
| for (i = 0; i < num; i++) |
| /* Only count 24-bit relocs, others don't need stubs */ |
| if (ELF64_R_TYPE(rela[i].r_info) == R_PPC_REL24 && |
| (r_info != ELF64_R_SYM(rela[i].r_info) || |
| r_addend != rela[i].r_addend)) { |
| _count_relocs++; |
| r_info = ELF64_R_SYM(rela[i].r_info); |
| r_addend = rela[i].r_addend; |
| } |
| |
| return _count_relocs; |
| } |
| |
| static int relacmp(const void *_x, const void *_y) |
| { |
| const Elf64_Rela *x, *y; |
| |
| y = (Elf64_Rela *)_x; |
| x = (Elf64_Rela *)_y; |
| |
| /* Compare the entire r_info (as opposed to ELF64_R_SYM(r_info) only) to |
| * make the comparison cheaper/faster. It won't affect the sorting or |
| * the counting algorithms' performance |
| */ |
| if (x->r_info < y->r_info) |
| return -1; |
| else if (x->r_info > y->r_info) |
| return 1; |
| else if (x->r_addend < y->r_addend) |
| return -1; |
| else if (x->r_addend > y->r_addend) |
| return 1; |
| else |
| return 0; |
| } |
| |
| static void relaswap(void *_x, void *_y, int size) |
| { |
| uint64_t *x, *y, tmp; |
| int i; |
| |
| y = (uint64_t *)_x; |
| x = (uint64_t *)_y; |
| |
| for (i = 0; i < sizeof(Elf64_Rela) / sizeof(uint64_t); i++) { |
| tmp = x[i]; |
| x[i] = y[i]; |
| y[i] = tmp; |
| } |
| } |
| |
| /* Get size of potential trampolines required. */ |
| static unsigned long get_stubs_size(const Elf64_Ehdr *hdr, |
| const Elf64_Shdr *sechdrs) |
| { |
| /* One extra reloc so it's always 0-funcaddr terminated */ |
| unsigned long relocs = 1; |
| unsigned i; |
| |
| /* Every relocated section... */ |
| for (i = 1; i < hdr->e_shnum; i++) { |
| if (sechdrs[i].sh_type == SHT_RELA) { |
| pr_debug("Found relocations in section %u\n", i); |
| pr_debug("Ptr: %p. Number: %Lu\n", |
| (void *)sechdrs[i].sh_addr, |
| sechdrs[i].sh_size / sizeof(Elf64_Rela)); |
| |
| /* Sort the relocation information based on a symbol and |
| * addend key. This is a stable O(n*log n) complexity |
| * alogrithm but it will reduce the complexity of |
| * count_relocs() to linear complexity O(n) |
| */ |
| sort((void *)sechdrs[i].sh_addr, |
| sechdrs[i].sh_size / sizeof(Elf64_Rela), |
| sizeof(Elf64_Rela), relacmp, relaswap); |
| |
| relocs += count_relocs((void *)sechdrs[i].sh_addr, |
| sechdrs[i].sh_size |
| / sizeof(Elf64_Rela)); |
| } |
| } |
| |
| #ifdef CONFIG_DYNAMIC_FTRACE |
| /* make the trampoline to the ftrace_caller */ |
| relocs++; |
| #ifdef CONFIG_DYNAMIC_FTRACE_WITH_REGS |
| /* an additional one for ftrace_regs_caller */ |
| relocs++; |
| #endif |
| #endif |
| |
| pr_debug("Looks like a total of %lu stubs, max\n", relocs); |
| return relocs * sizeof(struct ppc64_stub_entry); |
| } |
| |
| /* Still needed for ELFv2, for .TOC. */ |
| static void dedotify_versions(struct modversion_info *vers, |
| unsigned long size) |
| { |
| struct modversion_info *end; |
| |
| for (end = (void *)vers + size; vers < end; vers++) |
| if (vers->name[0] == '.') { |
| memmove(vers->name, vers->name+1, strlen(vers->name)); |
| } |
| } |
| |
| /* |
| * Undefined symbols which refer to .funcname, hack to funcname. Make .TOC. |
| * seem to be defined (value set later). |
| */ |
| static void dedotify(Elf64_Sym *syms, unsigned int numsyms, char *strtab) |
| { |
| unsigned int i; |
| |
| for (i = 1; i < numsyms; i++) { |
| if (syms[i].st_shndx == SHN_UNDEF) { |
| char *name = strtab + syms[i].st_name; |
| if (name[0] == '.') { |
| if (strcmp(name+1, "TOC.") == 0) |
| syms[i].st_shndx = SHN_ABS; |
| syms[i].st_name++; |
| } |
| } |
| } |
| } |
| |
| static Elf64_Sym *find_dot_toc(Elf64_Shdr *sechdrs, |
| const char *strtab, |
| unsigned int symindex) |
| { |
| unsigned int i, numsyms; |
| Elf64_Sym *syms; |
| |
| syms = (Elf64_Sym *)sechdrs[symindex].sh_addr; |
| numsyms = sechdrs[symindex].sh_size / sizeof(Elf64_Sym); |
| |
| for (i = 1; i < numsyms; i++) { |
| if (syms[i].st_shndx == SHN_ABS |
| && strcmp(strtab + syms[i].st_name, "TOC.") == 0) |
| return &syms[i]; |
| } |
| return NULL; |
| } |
| |
| int module_frob_arch_sections(Elf64_Ehdr *hdr, |
| Elf64_Shdr *sechdrs, |
| char *secstrings, |
| struct module *me) |
| { |
| unsigned int i; |
| |
| /* Find .toc and .stubs sections, symtab and strtab */ |
| for (i = 1; i < hdr->e_shnum; i++) { |
| char *p; |
| if (strcmp(secstrings + sechdrs[i].sh_name, ".stubs") == 0) |
| me->arch.stubs_section = i; |
| else if (strcmp(secstrings + sechdrs[i].sh_name, ".toc") == 0) { |
| me->arch.toc_section = i; |
| if (sechdrs[i].sh_addralign < 8) |
| sechdrs[i].sh_addralign = 8; |
| } |
| else if (strcmp(secstrings+sechdrs[i].sh_name,"__versions")==0) |
| dedotify_versions((void *)hdr + sechdrs[i].sh_offset, |
| sechdrs[i].sh_size); |
| else if (!strcmp(secstrings + sechdrs[i].sh_name, ".opd")) { |
| me->arch.start_opd = sechdrs[i].sh_addr; |
| me->arch.end_opd = sechdrs[i].sh_addr + |
| sechdrs[i].sh_size; |
| } |
| |
| /* We don't handle .init for the moment: rename to _init */ |
| while ((p = strstr(secstrings + sechdrs[i].sh_name, ".init"))) |
| p[0] = '_'; |
| |
| if (sechdrs[i].sh_type == SHT_SYMTAB) |
| dedotify((void *)hdr + sechdrs[i].sh_offset, |
| sechdrs[i].sh_size / sizeof(Elf64_Sym), |
| (void *)hdr |
| + sechdrs[sechdrs[i].sh_link].sh_offset); |
| } |
| |
| if (!me->arch.stubs_section) { |
| pr_err("%s: doesn't contain .stubs.\n", me->name); |
| return -ENOEXEC; |
| } |
| |
| /* If we don't have a .toc, just use .stubs. We need to set r2 |
| to some reasonable value in case the module calls out to |
| other functions via a stub, or if a function pointer escapes |
| the module by some means. */ |
| if (!me->arch.toc_section) |
| me->arch.toc_section = me->arch.stubs_section; |
| |
| /* Override the stubs size */ |
| sechdrs[me->arch.stubs_section].sh_size = get_stubs_size(hdr, sechdrs); |
| return 0; |
| } |
| |
| /* |
| * r2 is the TOC pointer: it actually points 0x8000 into the TOC (this gives the |
| * value maximum span in an instruction which uses a signed offset). Round down |
| * to a 256 byte boundary for the odd case where we are setting up r2 without a |
| * .toc section. |
| */ |
| static inline unsigned long my_r2(const Elf64_Shdr *sechdrs, struct module *me) |
| { |
| return (sechdrs[me->arch.toc_section].sh_addr & ~0xfful) + 0x8000; |
| } |
| |
| /* Both low and high 16 bits are added as SIGNED additions, so if low |
| 16 bits has high bit set, high 16 bits must be adjusted. These |
| macros do that (stolen from binutils). */ |
| #define PPC_LO(v) ((v) & 0xffff) |
| #define PPC_HI(v) (((v) >> 16) & 0xffff) |
| #define PPC_HA(v) PPC_HI ((v) + 0x8000) |
| |
| /* Patch stub to reference function and correct r2 value. */ |
| static inline int create_stub(const Elf64_Shdr *sechdrs, |
| struct ppc64_stub_entry *entry, |
| unsigned long addr, |
| struct module *me) |
| { |
| long reladdr; |
| |
| memcpy(entry->jump, ppc64_stub_insns, sizeof(ppc64_stub_insns)); |
| |
| /* Stub uses address relative to r2. */ |
| reladdr = (unsigned long)entry - my_r2(sechdrs, me); |
| if (reladdr > 0x7FFFFFFF || reladdr < -(0x80000000L)) { |
| pr_err("%s: Address %p of stub out of range of %p.\n", |
| me->name, (void *)reladdr, (void *)my_r2); |
| return 0; |
| } |
| pr_debug("Stub %p get data from reladdr %li\n", entry, reladdr); |
| |
| entry->jump[0] |= PPC_HA(reladdr); |
| entry->jump[1] |= PPC_LO(reladdr); |
| entry->funcdata = func_desc(addr); |
| entry->magic = STUB_MAGIC; |
| |
| return 1; |
| } |
| |
| /* Create stub to jump to function described in this OPD/ptr: we need the |
| stub to set up the TOC ptr (r2) for the function. */ |
| static unsigned long stub_for_addr(const Elf64_Shdr *sechdrs, |
| unsigned long addr, |
| struct module *me) |
| { |
| struct ppc64_stub_entry *stubs; |
| unsigned int i, num_stubs; |
| |
| num_stubs = sechdrs[me->arch.stubs_section].sh_size / sizeof(*stubs); |
| |
| /* Find this stub, or if that fails, the next avail. entry */ |
| stubs = (void *)sechdrs[me->arch.stubs_section].sh_addr; |
| for (i = 0; stub_func_addr(stubs[i].funcdata); i++) { |
| if (WARN_ON(i >= num_stubs)) |
| return 0; |
| |
| if (stub_func_addr(stubs[i].funcdata) == func_addr(addr)) |
| return (unsigned long)&stubs[i]; |
| } |
| |
| if (!create_stub(sechdrs, &stubs[i], addr, me)) |
| return 0; |
| |
| return (unsigned long)&stubs[i]; |
| } |
| |
| #ifdef CC_USING_MPROFILE_KERNEL |
| static bool is_mprofile_mcount_callsite(const char *name, u32 *instruction) |
| { |
| if (strcmp("_mcount", name)) |
| return false; |
| |
| /* |
| * Check if this is one of the -mprofile-kernel sequences. |
| */ |
| if (instruction[-1] == PPC_INST_STD_LR && |
| instruction[-2] == PPC_INST_MFLR) |
| return true; |
| |
| if (instruction[-1] == PPC_INST_MFLR) |
| return true; |
| |
| return false; |
| } |
| |
| /* |
| * In case of _mcount calls, do not save the current callee's TOC (in r2) into |
| * the original caller's stack frame. If we did we would clobber the saved TOC |
| * value of the original caller. |
| */ |
| static void squash_toc_save_inst(const char *name, unsigned long addr) |
| { |
| struct ppc64_stub_entry *stub = (struct ppc64_stub_entry *)addr; |
| |
| /* Only for calls to _mcount */ |
| if (strcmp("_mcount", name) != 0) |
| return; |
| |
| stub->jump[2] = PPC_INST_NOP; |
| } |
| #else |
| static void squash_toc_save_inst(const char *name, unsigned long addr) { } |
| |
| static bool is_mprofile_mcount_callsite(const char *name, u32 *instruction) |
| { |
| return false; |
| } |
| #endif |
| |
| /* We expect a noop next: if it is, replace it with instruction to |
| restore r2. */ |
| static int restore_r2(const char *name, u32 *instruction, struct module *me) |
| { |
| u32 *prev_insn = instruction - 1; |
| |
| if (is_mprofile_mcount_callsite(name, prev_insn)) |
| return 1; |
| |
| /* |
| * Make sure the branch isn't a sibling call. Sibling calls aren't |
| * "link" branches and they don't return, so they don't need the r2 |
| * restore afterwards. |
| */ |
| if (!instr_is_relative_link_branch(*prev_insn)) |
| return 1; |
| |
| if (*instruction != PPC_INST_NOP) { |
| pr_err("%s: Expected nop after call, got %08x at %pS\n", |
| me->name, *instruction, instruction); |
| return 0; |
| } |
| /* ld r2,R2_STACK_OFFSET(r1) */ |
| *instruction = PPC_INST_LD_TOC; |
| return 1; |
| } |
| |
| int apply_relocate_add(Elf64_Shdr *sechdrs, |
| const char *strtab, |
| unsigned int symindex, |
| unsigned int relsec, |
| struct module *me) |
| { |
| unsigned int i; |
| Elf64_Rela *rela = (void *)sechdrs[relsec].sh_addr; |
| Elf64_Sym *sym; |
| unsigned long *location; |
| unsigned long value; |
| |
| pr_debug("Applying ADD relocate section %u to %u\n", relsec, |
| sechdrs[relsec].sh_info); |
| |
| /* First time we're called, we can fix up .TOC. */ |
| if (!me->arch.toc_fixed) { |
| sym = find_dot_toc(sechdrs, strtab, symindex); |
| /* It's theoretically possible that a module doesn't want a |
| * .TOC. so don't fail it just for that. */ |
| if (sym) |
| sym->st_value = my_r2(sechdrs, me); |
| me->arch.toc_fixed = true; |
| } |
| |
| for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rela); i++) { |
| /* This is where to make the change */ |
| location = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr |
| + rela[i].r_offset; |
| /* This is the symbol it is referring to */ |
| sym = (Elf64_Sym *)sechdrs[symindex].sh_addr |
| + ELF64_R_SYM(rela[i].r_info); |
| |
| pr_debug("RELOC at %p: %li-type as %s (0x%lx) + %li\n", |
| location, (long)ELF64_R_TYPE(rela[i].r_info), |
| strtab + sym->st_name, (unsigned long)sym->st_value, |
| (long)rela[i].r_addend); |
| |
| /* `Everything is relative'. */ |
| value = sym->st_value + rela[i].r_addend; |
| |
| switch (ELF64_R_TYPE(rela[i].r_info)) { |
| case R_PPC64_ADDR32: |
| /* Simply set it */ |
| *(u32 *)location = value; |
| break; |
| |
| case R_PPC64_ADDR64: |
| /* Simply set it */ |
| *(unsigned long *)location = value; |
| break; |
| |
| case R_PPC64_TOC: |
| *(unsigned long *)location = my_r2(sechdrs, me); |
| break; |
| |
| case R_PPC64_TOC16: |
| /* Subtract TOC pointer */ |
| value -= my_r2(sechdrs, me); |
| if (value + 0x8000 > 0xffff) { |
| pr_err("%s: bad TOC16 relocation (0x%lx)\n", |
| me->name, value); |
| return -ENOEXEC; |
| } |
| *((uint16_t *) location) |
| = (*((uint16_t *) location) & ~0xffff) |
| | (value & 0xffff); |
| break; |
| |
| case R_PPC64_TOC16_LO: |
| /* Subtract TOC pointer */ |
| value -= my_r2(sechdrs, me); |
| *((uint16_t *) location) |
| = (*((uint16_t *) location) & ~0xffff) |
| | (value & 0xffff); |
| break; |
| |
| case R_PPC64_TOC16_DS: |
| /* Subtract TOC pointer */ |
| value -= my_r2(sechdrs, me); |
| if ((value & 3) != 0 || value + 0x8000 > 0xffff) { |
| pr_err("%s: bad TOC16_DS relocation (0x%lx)\n", |
| me->name, value); |
| return -ENOEXEC; |
| } |
| *((uint16_t *) location) |
| = (*((uint16_t *) location) & ~0xfffc) |
| | (value & 0xfffc); |
| break; |
| |
| case R_PPC64_TOC16_LO_DS: |
| /* Subtract TOC pointer */ |
| value -= my_r2(sechdrs, me); |
| if ((value & 3) != 0) { |
| pr_err("%s: bad TOC16_LO_DS relocation (0x%lx)\n", |
| me->name, value); |
| return -ENOEXEC; |
| } |
| *((uint16_t *) location) |
| = (*((uint16_t *) location) & ~0xfffc) |
| | (value & 0xfffc); |
| break; |
| |
| case R_PPC64_TOC16_HA: |
| /* Subtract TOC pointer */ |
| value -= my_r2(sechdrs, me); |
| value = ((value + 0x8000) >> 16); |
| *((uint16_t *) location) |
| = (*((uint16_t *) location) & ~0xffff) |
| | (value & 0xffff); |
| break; |
| |
| case R_PPC_REL24: |
| /* FIXME: Handle weak symbols here --RR */ |
| if (sym->st_shndx == SHN_UNDEF || |
| sym->st_shndx == SHN_LIVEPATCH) { |
| /* External: go via stub */ |
| value = stub_for_addr(sechdrs, value, me); |
| if (!value) |
| return -ENOENT; |
| if (!restore_r2(strtab + sym->st_name, |
| (u32 *)location + 1, me)) |
| return -ENOEXEC; |
| |
| squash_toc_save_inst(strtab + sym->st_name, value); |
| } else |
| value += local_entry_offset(sym); |
| |
| /* Convert value to relative */ |
| value -= (unsigned long)location; |
| if (value + 0x2000000 > 0x3ffffff || (value & 3) != 0){ |
| pr_err("%s: REL24 %li out of range!\n", |
| me->name, (long int)value); |
| return -ENOEXEC; |
| } |
| |
| /* Only replace bits 2 through 26 */ |
| *(uint32_t *)location |
| = (*(uint32_t *)location & ~0x03fffffc) |
| | (value & 0x03fffffc); |
| break; |
| |
| case R_PPC64_REL64: |
| /* 64 bits relative (used by features fixups) */ |
| *location = value - (unsigned long)location; |
| break; |
| |
| case R_PPC64_REL32: |
| /* 32 bits relative (used by relative exception tables) */ |
| *(u32 *)location = value - (unsigned long)location; |
| break; |
| |
| case R_PPC64_TOCSAVE: |
| /* |
| * Marker reloc indicates we don't have to save r2. |
| * That would only save us one instruction, so ignore |
| * it. |
| */ |
| break; |
| |
| case R_PPC64_ENTRY: |
| /* |
| * Optimize ELFv2 large code model entry point if |
| * the TOC is within 2GB range of current location. |
| */ |
| value = my_r2(sechdrs, me) - (unsigned long)location; |
| if (value + 0x80008000 > 0xffffffff) |
| break; |
| /* |
| * Check for the large code model prolog sequence: |
| * ld r2, ...(r12) |
| * add r2, r2, r12 |
| */ |
| if ((((uint32_t *)location)[0] & ~0xfffc) |
| != 0xe84c0000) |
| break; |
| if (((uint32_t *)location)[1] != 0x7c426214) |
| break; |
| /* |
| * If found, replace it with: |
| * addis r2, r12, (.TOC.-func)@ha |
| * addi r2, r12, (.TOC.-func)@l |
| */ |
| ((uint32_t *)location)[0] = 0x3c4c0000 + PPC_HA(value); |
| ((uint32_t *)location)[1] = 0x38420000 + PPC_LO(value); |
| break; |
| |
| case R_PPC64_REL16_HA: |
| /* Subtract location pointer */ |
| value -= (unsigned long)location; |
| value = ((value + 0x8000) >> 16); |
| *((uint16_t *) location) |
| = (*((uint16_t *) location) & ~0xffff) |
| | (value & 0xffff); |
| break; |
| |
| case R_PPC64_REL16_LO: |
| /* Subtract location pointer */ |
| value -= (unsigned long)location; |
| *((uint16_t *) location) |
| = (*((uint16_t *) location) & ~0xffff) |
| | (value & 0xffff); |
| break; |
| |
| default: |
| pr_err("%s: Unknown ADD relocation: %lu\n", |
| me->name, |
| (unsigned long)ELF64_R_TYPE(rela[i].r_info)); |
| return -ENOEXEC; |
| } |
| } |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_DYNAMIC_FTRACE |
| |
| #ifdef CC_USING_MPROFILE_KERNEL |
| |
| #define PACATOC offsetof(struct paca_struct, kernel_toc) |
| |
| /* |
| * For mprofile-kernel we use a special stub for ftrace_caller() because we |
| * can't rely on r2 containing this module's TOC when we enter the stub. |
| * |
| * That can happen if the function calling us didn't need to use the toc. In |
| * that case it won't have setup r2, and the r2 value will be either the |
| * kernel's toc, or possibly another modules toc. |
| * |
| * To deal with that this stub uses the kernel toc, which is always accessible |
| * via the paca (in r13). The target (ftrace_caller()) is responsible for |
| * saving and restoring the toc before returning. |
| */ |
| static unsigned long create_ftrace_stub(const Elf64_Shdr *sechdrs, |
| struct module *me, unsigned long addr) |
| { |
| struct ppc64_stub_entry *entry; |
| unsigned int i, num_stubs; |
| static u32 stub_insns[] = { |
| 0xe98d0000 | PACATOC, /* ld r12,PACATOC(r13) */ |
| 0x3d8c0000, /* addis r12,r12,<high> */ |
| 0x398c0000, /* addi r12,r12,<low> */ |
| 0x7d8903a6, /* mtctr r12 */ |
| 0x4e800420, /* bctr */ |
| }; |
| long reladdr; |
| |
| num_stubs = sechdrs[me->arch.stubs_section].sh_size / sizeof(*entry); |
| |
| /* Find the next available stub entry */ |
| entry = (void *)sechdrs[me->arch.stubs_section].sh_addr; |
| for (i = 0; i < num_stubs && stub_func_addr(entry->funcdata); i++, entry++); |
| |
| if (i >= num_stubs) { |
| pr_err("%s: Unable to find a free slot for ftrace stub.\n", me->name); |
| return 0; |
| } |
| |
| memcpy(entry->jump, stub_insns, sizeof(stub_insns)); |
| |
| /* Stub uses address relative to kernel toc (from the paca) */ |
| reladdr = addr - kernel_toc_addr(); |
| if (reladdr > 0x7FFFFFFF || reladdr < -(0x80000000L)) { |
| pr_err("%s: Address of %ps out of range of kernel_toc.\n", |
| me->name, (void *)addr); |
| return 0; |
| } |
| |
| entry->jump[1] |= PPC_HA(reladdr); |
| entry->jump[2] |= PPC_LO(reladdr); |
| |
| /* Eventhough we don't use funcdata in the stub, it's needed elsewhere. */ |
| entry->funcdata = func_desc(addr); |
| entry->magic = STUB_MAGIC; |
| |
| return (unsigned long)entry; |
| } |
| #else |
| static unsigned long create_ftrace_stub(const Elf64_Shdr *sechdrs, |
| struct module *me, unsigned long addr) |
| { |
| return stub_for_addr(sechdrs, addr, me); |
| } |
| #endif |
| |
| int module_finalize_ftrace(struct module *mod, const Elf_Shdr *sechdrs) |
| { |
| mod->arch.tramp = create_ftrace_stub(sechdrs, mod, |
| (unsigned long)ftrace_caller); |
| #ifdef CONFIG_DYNAMIC_FTRACE_WITH_REGS |
| mod->arch.tramp_regs = create_ftrace_stub(sechdrs, mod, |
| (unsigned long)ftrace_regs_caller); |
| if (!mod->arch.tramp_regs) |
| return -ENOENT; |
| #endif |
| |
| if (!mod->arch.tramp) |
| return -ENOENT; |
| |
| return 0; |
| } |
| #endif |