blob: dc96a6fbf514e14edaf94134cf2e2d19098ef340 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
//
// Driver for Microchip S/PDIF TX Controller
//
// Copyright (C) 2020 Microchip Technology Inc. and its subsidiaries
//
// Author: Codrin Ciubotariu <codrin.ciubotariu@microchip.com>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/pm_runtime.h>
#include <linux/spinlock.h>
#include <sound/asoundef.h>
#include <sound/dmaengine_pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
/*
* ---- S/PDIF Transmitter Controller Register map ----
*/
#define SPDIFTX_CR 0x00 /* Control Register */
#define SPDIFTX_MR 0x04 /* Mode Register */
#define SPDIFTX_CDR 0x0C /* Common Data Register */
#define SPDIFTX_IER 0x14 /* Interrupt Enable Register */
#define SPDIFTX_IDR 0x18 /* Interrupt Disable Register */
#define SPDIFTX_IMR 0x1C /* Interrupt Mask Register */
#define SPDIFTX_ISR 0x20 /* Interrupt Status Register */
#define SPDIFTX_CH1UD(reg) (0x50 + (reg) * 4) /* User Data 1 Register x */
#define SPDIFTX_CH1S(reg) (0x80 + (reg) * 4) /* Channel Status 1 Register x */
#define SPDIFTX_VERSION 0xF0
/*
* ---- Control Register (Write-only) ----
*/
#define SPDIFTX_CR_SWRST BIT(0) /* Software Reset */
#define SPDIFTX_CR_FCLR BIT(1) /* FIFO clear */
/*
* ---- Mode Register (Read/Write) ----
*/
/* Transmit Enable */
#define SPDIFTX_MR_TXEN_MASK GENMASK(0, 0)
#define SPDIFTX_MR_TXEN_DISABLE (0 << 0)
#define SPDIFTX_MR_TXEN_ENABLE (1 << 0)
/* Multichannel Transfer */
#define SPDIFTX_MR_MULTICH_MASK GENAMSK(1, 1)
#define SPDIFTX_MR_MULTICH_MONO (0 << 1)
#define SPDIFTX_MR_MULTICH_DUAL (1 << 1)
/* Data Word Endian Mode */
#define SPDIFTX_MR_ENDIAN_MASK GENMASK(2, 2)
#define SPDIFTX_MR_ENDIAN_LITTLE (0 << 2)
#define SPDIFTX_MR_ENDIAN_BIG (1 << 2)
/* Data Justification */
#define SPDIFTX_MR_JUSTIFY_MASK GENMASK(3, 3)
#define SPDIFTX_MR_JUSTIFY_LSB (0 << 3)
#define SPDIFTX_MR_JUSTIFY_MSB (1 << 3)
/* Common Audio Register Transfer Mode */
#define SPDIFTX_MR_CMODE_MASK GENMASK(5, 4)
#define SPDIFTX_MR_CMODE_INDEX_ACCESS (0 << 4)
#define SPDIFTX_MR_CMODE_TOGGLE_ACCESS (1 << 4)
#define SPDIFTX_MR_CMODE_INTERLVD_ACCESS (2 << 4)
/* Valid Bits per Sample */
#define SPDIFTX_MR_VBPS_MASK GENMASK(13, 8)
#define SPDIFTX_MR_VBPS(bps) (((bps) << 8) & SPDIFTX_MR_VBPS_MASK)
/* Chunk Size */
#define SPDIFTX_MR_CHUNK_MASK GENMASK(19, 16)
#define SPDIFTX_MR_CHUNK(size) (((size) << 16) & SPDIFTX_MR_CHUNK_MASK)
/* Validity Bits for Channels 1 and 2 */
#define SPDIFTX_MR_VALID1 BIT(24)
#define SPDIFTX_MR_VALID2 BIT(25)
/* Disable Null Frame on underrun */
#define SPDIFTX_MR_DNFR_MASK GENMASK(27, 27)
#define SPDIFTX_MR_DNFR_INVALID (0 << 27)
#define SPDIFTX_MR_DNFR_VALID (1 << 27)
/* Bytes per Sample */
#define SPDIFTX_MR_BPS_MASK GENMASK(29, 28)
#define SPDIFTX_MR_BPS(bytes) \
((((bytes) - 1) << 28) & SPDIFTX_MR_BPS_MASK)
/*
* ---- Interrupt Enable/Disable/Mask/Status Register (Write/Read-only) ----
*/
#define SPDIFTX_IR_TXRDY BIT(0)
#define SPDIFTX_IR_TXEMPTY BIT(1)
#define SPDIFTX_IR_TXFULL BIT(2)
#define SPDIFTX_IR_TXCHUNK BIT(3)
#define SPDIFTX_IR_TXUDR BIT(4)
#define SPDIFTX_IR_TXOVR BIT(5)
#define SPDIFTX_IR_CSRDY BIT(6)
#define SPDIFTX_IR_UDRDY BIT(7)
#define SPDIFTX_IR_TXRDYCH(ch) BIT((ch) + 8)
#define SPDIFTX_IR_SECE BIT(10)
#define SPDIFTX_IR_TXUDRCH(ch) BIT((ch) + 11)
#define SPDIFTX_IR_BEND BIT(13)
static bool mchp_spdiftx_readable_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case SPDIFTX_MR:
case SPDIFTX_IMR:
case SPDIFTX_ISR:
case SPDIFTX_CH1UD(0):
case SPDIFTX_CH1UD(1):
case SPDIFTX_CH1UD(2):
case SPDIFTX_CH1UD(3):
case SPDIFTX_CH1UD(4):
case SPDIFTX_CH1UD(5):
case SPDIFTX_CH1S(0):
case SPDIFTX_CH1S(1):
case SPDIFTX_CH1S(2):
case SPDIFTX_CH1S(3):
case SPDIFTX_CH1S(4):
case SPDIFTX_CH1S(5):
return true;
default:
return false;
}
}
static bool mchp_spdiftx_writeable_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case SPDIFTX_CR:
case SPDIFTX_MR:
case SPDIFTX_CDR:
case SPDIFTX_IER:
case SPDIFTX_IDR:
case SPDIFTX_CH1UD(0):
case SPDIFTX_CH1UD(1):
case SPDIFTX_CH1UD(2):
case SPDIFTX_CH1UD(3):
case SPDIFTX_CH1UD(4):
case SPDIFTX_CH1UD(5):
case SPDIFTX_CH1S(0):
case SPDIFTX_CH1S(1):
case SPDIFTX_CH1S(2):
case SPDIFTX_CH1S(3):
case SPDIFTX_CH1S(4):
case SPDIFTX_CH1S(5):
return true;
default:
return false;
}
}
static bool mchp_spdiftx_precious_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case SPDIFTX_CDR:
case SPDIFTX_ISR:
return true;
default:
return false;
}
}
static const struct regmap_config mchp_spdiftx_regmap_config = {
.reg_bits = 32,
.reg_stride = 4,
.val_bits = 32,
.max_register = SPDIFTX_VERSION,
.readable_reg = mchp_spdiftx_readable_reg,
.writeable_reg = mchp_spdiftx_writeable_reg,
.precious_reg = mchp_spdiftx_precious_reg,
.cache_type = REGCACHE_FLAT,
};
#define SPDIFTX_GCLK_RATIO 128
#define SPDIFTX_CS_BITS 192
#define SPDIFTX_UD_BITS 192
struct mchp_spdiftx_mixer_control {
unsigned char ch_stat[SPDIFTX_CS_BITS / 8];
unsigned char user_data[SPDIFTX_UD_BITS / 8];
spinlock_t lock; /* exclusive access to control data */
};
struct mchp_spdiftx_dev {
struct mchp_spdiftx_mixer_control control;
struct snd_dmaengine_dai_dma_data playback;
struct device *dev;
struct regmap *regmap;
struct clk *pclk;
struct clk *gclk;
unsigned int fmt;
unsigned int suspend_irq;
};
static inline int mchp_spdiftx_is_running(struct mchp_spdiftx_dev *dev)
{
u32 mr;
regmap_read(dev->regmap, SPDIFTX_MR, &mr);
return !!(mr & SPDIFTX_MR_TXEN_ENABLE);
}
static void mchp_spdiftx_channel_status_write(struct mchp_spdiftx_dev *dev)
{
struct mchp_spdiftx_mixer_control *ctrl = &dev->control;
u32 val;
int i;
for (i = 0; i < ARRAY_SIZE(ctrl->ch_stat) / 4; i++) {
val = (ctrl->ch_stat[(i * 4) + 0] << 0) |
(ctrl->ch_stat[(i * 4) + 1] << 8) |
(ctrl->ch_stat[(i * 4) + 2] << 16) |
(ctrl->ch_stat[(i * 4) + 3] << 24);
regmap_write(dev->regmap, SPDIFTX_CH1S(i), val);
}
}
static void mchp_spdiftx_user_data_write(struct mchp_spdiftx_dev *dev)
{
struct mchp_spdiftx_mixer_control *ctrl = &dev->control;
u32 val;
int i;
for (i = 0; i < ARRAY_SIZE(ctrl->user_data) / 4; i++) {
val = (ctrl->user_data[(i * 4) + 0] << 0) |
(ctrl->user_data[(i * 4) + 1] << 8) |
(ctrl->user_data[(i * 4) + 2] << 16) |
(ctrl->user_data[(i * 4) + 3] << 24);
regmap_write(dev->regmap, SPDIFTX_CH1UD(i), val);
}
}
static irqreturn_t mchp_spdiftx_interrupt(int irq, void *dev_id)
{
struct mchp_spdiftx_dev *dev = dev_id;
struct mchp_spdiftx_mixer_control *ctrl = &dev->control;
u32 sr, imr, pending, idr = 0;
regmap_read(dev->regmap, SPDIFTX_ISR, &sr);
regmap_read(dev->regmap, SPDIFTX_IMR, &imr);
pending = sr & imr;
if (!pending)
return IRQ_NONE;
if (pending & SPDIFTX_IR_TXUDR) {
dev_warn(dev->dev, "underflow detected\n");
idr |= SPDIFTX_IR_TXUDR;
}
if (pending & SPDIFTX_IR_TXOVR) {
dev_warn(dev->dev, "overflow detected\n");
idr |= SPDIFTX_IR_TXOVR;
}
if (pending & SPDIFTX_IR_UDRDY) {
spin_lock(&ctrl->lock);
mchp_spdiftx_user_data_write(dev);
spin_unlock(&ctrl->lock);
idr |= SPDIFTX_IR_UDRDY;
}
if (pending & SPDIFTX_IR_CSRDY) {
spin_lock(&ctrl->lock);
mchp_spdiftx_channel_status_write(dev);
spin_unlock(&ctrl->lock);
idr |= SPDIFTX_IR_CSRDY;
}
regmap_write(dev->regmap, SPDIFTX_IDR, idr);
return IRQ_HANDLED;
}
static int mchp_spdiftx_dai_startup(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct mchp_spdiftx_dev *dev = snd_soc_dai_get_drvdata(dai);
/* Software reset the IP */
regmap_write(dev->regmap, SPDIFTX_CR,
SPDIFTX_CR_SWRST | SPDIFTX_CR_FCLR);
return 0;
}
static void mchp_spdiftx_dai_shutdown(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct mchp_spdiftx_dev *dev = snd_soc_dai_get_drvdata(dai);
/* Disable interrupts */
regmap_write(dev->regmap, SPDIFTX_IDR, 0xffffffff);
}
static int mchp_spdiftx_trigger(struct snd_pcm_substream *substream, int cmd,
struct snd_soc_dai *dai)
{
struct mchp_spdiftx_dev *dev = snd_soc_dai_get_drvdata(dai);
struct mchp_spdiftx_mixer_control *ctrl = &dev->control;
u32 mr;
int running;
int ret;
/* do not start/stop while channel status or user data is updated */
spin_lock(&ctrl->lock);
regmap_read(dev->regmap, SPDIFTX_MR, &mr);
running = !!(mr & SPDIFTX_MR_TXEN_ENABLE);
switch (cmd) {
case SNDRV_PCM_TRIGGER_RESUME:
case SNDRV_PCM_TRIGGER_START:
regmap_write(dev->regmap, SPDIFTX_IER, dev->suspend_irq |
SPDIFTX_IR_TXUDR | SPDIFTX_IR_TXOVR);
dev->suspend_irq = 0;
fallthrough;
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
if (!running) {
mr &= ~SPDIFTX_MR_TXEN_MASK;
mr |= SPDIFTX_MR_TXEN_ENABLE;
}
break;
case SNDRV_PCM_TRIGGER_SUSPEND:
regmap_read(dev->regmap, SPDIFTX_IMR, &dev->suspend_irq);
fallthrough;
case SNDRV_PCM_TRIGGER_STOP:
regmap_write(dev->regmap, SPDIFTX_IDR, dev->suspend_irq |
SPDIFTX_IR_TXUDR | SPDIFTX_IR_TXOVR);
fallthrough;
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
if (running) {
mr &= ~SPDIFTX_MR_TXEN_MASK;
mr |= SPDIFTX_MR_TXEN_DISABLE;
}
break;
default:
spin_unlock(&ctrl->lock);
return -EINVAL;
}
ret = regmap_write(dev->regmap, SPDIFTX_MR, mr);
spin_unlock(&ctrl->lock);
if (ret)
dev_err(dev->dev, "unable to disable TX: %d\n", ret);
return ret;
}
static int mchp_spdiftx_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
unsigned long flags;
struct mchp_spdiftx_dev *dev = snd_soc_dai_get_drvdata(dai);
struct mchp_spdiftx_mixer_control *ctrl = &dev->control;
u32 mr;
unsigned int bps = params_physical_width(params) / 8;
unsigned char aes3;
int ret;
dev_dbg(dev->dev, "%s() rate=%u format=%#x width=%u channels=%u\n",
__func__, params_rate(params), params_format(params),
params_width(params), params_channels(params));
if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) {
dev_err(dev->dev, "Capture is not supported\n");
return -EINVAL;
}
regmap_read(dev->regmap, SPDIFTX_MR, &mr);
if (mr & SPDIFTX_MR_TXEN_ENABLE) {
dev_err(dev->dev, "PCM already running\n");
return -EBUSY;
}
/* Defaults: Toggle mode, justify to LSB, chunksize 1 */
mr = SPDIFTX_MR_CMODE_TOGGLE_ACCESS | SPDIFTX_MR_JUSTIFY_LSB;
dev->playback.maxburst = 1;
switch (params_channels(params)) {
case 1:
mr |= SPDIFTX_MR_MULTICH_MONO;
break;
case 2:
mr |= SPDIFTX_MR_MULTICH_DUAL;
if (bps > 2)
dev->playback.maxburst = 2;
break;
default:
dev_err(dev->dev, "unsupported number of channels: %d\n",
params_channels(params));
return -EINVAL;
}
mr |= SPDIFTX_MR_CHUNK(dev->playback.maxburst);
switch (params_format(params)) {
case SNDRV_PCM_FORMAT_S8:
mr |= SPDIFTX_MR_VBPS(8);
break;
case SNDRV_PCM_FORMAT_S16_BE:
mr |= SPDIFTX_MR_ENDIAN_BIG;
fallthrough;
case SNDRV_PCM_FORMAT_S16_LE:
mr |= SPDIFTX_MR_VBPS(16);
break;
case SNDRV_PCM_FORMAT_S18_3BE:
mr |= SPDIFTX_MR_ENDIAN_BIG;
fallthrough;
case SNDRV_PCM_FORMAT_S18_3LE:
mr |= SPDIFTX_MR_VBPS(18);
break;
case SNDRV_PCM_FORMAT_S20_3BE:
mr |= SPDIFTX_MR_ENDIAN_BIG;
fallthrough;
case SNDRV_PCM_FORMAT_S20_3LE:
mr |= SPDIFTX_MR_VBPS(20);
break;
case SNDRV_PCM_FORMAT_S24_3BE:
mr |= SPDIFTX_MR_ENDIAN_BIG;
fallthrough;
case SNDRV_PCM_FORMAT_S24_3LE:
mr |= SPDIFTX_MR_VBPS(24);
break;
case SNDRV_PCM_FORMAT_S24_BE:
mr |= SPDIFTX_MR_ENDIAN_BIG;
fallthrough;
case SNDRV_PCM_FORMAT_S24_LE:
mr |= SPDIFTX_MR_VBPS(24);
break;
case SNDRV_PCM_FORMAT_S32_BE:
mr |= SPDIFTX_MR_ENDIAN_BIG;
fallthrough;
case SNDRV_PCM_FORMAT_S32_LE:
mr |= SPDIFTX_MR_VBPS(32);
break;
default:
dev_err(dev->dev, "unsupported PCM format: %d\n",
params_format(params));
return -EINVAL;
}
mr |= SPDIFTX_MR_BPS(bps);
switch (params_rate(params)) {
case 22050:
aes3 = IEC958_AES3_CON_FS_22050;
break;
case 24000:
aes3 = IEC958_AES3_CON_FS_24000;
break;
case 32000:
aes3 = IEC958_AES3_CON_FS_32000;
break;
case 44100:
aes3 = IEC958_AES3_CON_FS_44100;
break;
case 48000:
aes3 = IEC958_AES3_CON_FS_48000;
break;
case 88200:
aes3 = IEC958_AES3_CON_FS_88200;
break;
case 96000:
aes3 = IEC958_AES3_CON_FS_96000;
break;
case 176400:
aes3 = IEC958_AES3_CON_FS_176400;
break;
case 192000:
aes3 = IEC958_AES3_CON_FS_192000;
break;
case 8000:
case 11025:
case 16000:
case 64000:
aes3 = IEC958_AES3_CON_FS_NOTID;
break;
default:
dev_err(dev->dev, "unsupported sample frequency: %u\n",
params_rate(params));
return -EINVAL;
}
spin_lock_irqsave(&ctrl->lock, flags);
ctrl->ch_stat[3] &= ~IEC958_AES3_CON_FS;
ctrl->ch_stat[3] |= aes3;
mchp_spdiftx_channel_status_write(dev);
spin_unlock_irqrestore(&ctrl->lock, flags);
/* GCLK is enabled by runtime PM. */
clk_disable_unprepare(dev->gclk);
ret = clk_set_rate(dev->gclk, params_rate(params) *
SPDIFTX_GCLK_RATIO);
if (ret) {
dev_err(dev->dev,
"unable to change gclk rate to: rate %u * ratio %u\n",
params_rate(params), SPDIFTX_GCLK_RATIO);
return ret;
}
ret = clk_prepare_enable(dev->gclk);
if (ret) {
dev_err(dev->dev, "unable to enable gclk: %d\n", ret);
return ret;
}
dev_dbg(dev->dev, "%s(): GCLK set to %d\n", __func__,
params_rate(params) * SPDIFTX_GCLK_RATIO);
regmap_write(dev->regmap, SPDIFTX_MR, mr);
return 0;
}
static int mchp_spdiftx_hw_free(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct mchp_spdiftx_dev *dev = snd_soc_dai_get_drvdata(dai);
return regmap_write(dev->regmap, SPDIFTX_CR,
SPDIFTX_CR_SWRST | SPDIFTX_CR_FCLR);
}
static const struct snd_soc_dai_ops mchp_spdiftx_dai_ops = {
.startup = mchp_spdiftx_dai_startup,
.shutdown = mchp_spdiftx_dai_shutdown,
.trigger = mchp_spdiftx_trigger,
.hw_params = mchp_spdiftx_hw_params,
.hw_free = mchp_spdiftx_hw_free,
};
#define MCHP_SPDIFTX_RATES SNDRV_PCM_RATE_8000_192000
#define MCHP_SPDIFTX_FORMATS (SNDRV_PCM_FMTBIT_S8 | \
SNDRV_PCM_FMTBIT_S16_LE | \
SNDRV_PCM_FMTBIT_U16_BE | \
SNDRV_PCM_FMTBIT_S18_3LE | \
SNDRV_PCM_FMTBIT_S18_3BE | \
SNDRV_PCM_FMTBIT_S20_3LE | \
SNDRV_PCM_FMTBIT_S20_3BE | \
SNDRV_PCM_FMTBIT_S24_3LE | \
SNDRV_PCM_FMTBIT_S24_3BE | \
SNDRV_PCM_FMTBIT_S24_LE | \
SNDRV_PCM_FMTBIT_S24_BE | \
SNDRV_PCM_FMTBIT_S32_LE | \
SNDRV_PCM_FMTBIT_S32_BE \
)
static int mchp_spdiftx_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
uinfo->count = 1;
return 0;
}
static int mchp_spdiftx_cs_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *uvalue)
{
unsigned long flags;
struct snd_soc_dai *dai = snd_kcontrol_chip(kcontrol);
struct mchp_spdiftx_dev *dev = snd_soc_dai_get_drvdata(dai);
struct mchp_spdiftx_mixer_control *ctrl = &dev->control;
spin_lock_irqsave(&ctrl->lock, flags);
memcpy(uvalue->value.iec958.status, ctrl->ch_stat,
sizeof(ctrl->ch_stat));
spin_unlock_irqrestore(&ctrl->lock, flags);
return 0;
}
static int mchp_spdiftx_cs_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *uvalue)
{
unsigned long flags;
struct snd_soc_dai *dai = snd_kcontrol_chip(kcontrol);
struct mchp_spdiftx_dev *dev = snd_soc_dai_get_drvdata(dai);
struct mchp_spdiftx_mixer_control *ctrl = &dev->control;
int changed = 0;
int i;
spin_lock_irqsave(&ctrl->lock, flags);
for (i = 0; i < ARRAY_SIZE(ctrl->ch_stat); i++) {
if (ctrl->ch_stat[i] != uvalue->value.iec958.status[i])
changed = 1;
ctrl->ch_stat[i] = uvalue->value.iec958.status[i];
}
if (changed) {
/* don't enable IP while we copy the channel status */
if (mchp_spdiftx_is_running(dev)) {
/*
* if SPDIF is running, wait for interrupt to write
* channel status
*/
regmap_write(dev->regmap, SPDIFTX_IER,
SPDIFTX_IR_CSRDY);
} else {
mchp_spdiftx_channel_status_write(dev);
}
}
spin_unlock_irqrestore(&ctrl->lock, flags);
return changed;
}
static int mchp_spdiftx_cs_mask(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *uvalue)
{
memset(uvalue->value.iec958.status, 0xff,
sizeof(uvalue->value.iec958.status));
return 0;
}
static int mchp_spdiftx_subcode_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *uvalue)
{
struct snd_soc_dai *dai = snd_kcontrol_chip(kcontrol);
struct mchp_spdiftx_dev *dev = snd_soc_dai_get_drvdata(dai);
struct mchp_spdiftx_mixer_control *ctrl = &dev->control;
unsigned long flags;
spin_lock_irqsave(&ctrl->lock, flags);
memcpy(uvalue->value.iec958.subcode, ctrl->user_data,
sizeof(ctrl->user_data));
spin_unlock_irqrestore(&ctrl->lock, flags);
return 0;
}
static int mchp_spdiftx_subcode_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *uvalue)
{
unsigned long flags;
struct snd_soc_dai *dai = snd_kcontrol_chip(kcontrol);
struct mchp_spdiftx_dev *dev = snd_soc_dai_get_drvdata(dai);
struct mchp_spdiftx_mixer_control *ctrl = &dev->control;
int changed = 0;
int i;
spin_lock_irqsave(&ctrl->lock, flags);
for (i = 0; i < ARRAY_SIZE(ctrl->user_data); i++) {
if (ctrl->user_data[i] != uvalue->value.iec958.subcode[i])
changed = 1;
ctrl->user_data[i] = uvalue->value.iec958.subcode[i];
}
if (changed) {
if (mchp_spdiftx_is_running(dev)) {
/*
* if SPDIF is running, wait for interrupt to write
* user data
*/
regmap_write(dev->regmap, SPDIFTX_IER,
SPDIFTX_IR_UDRDY);
} else {
mchp_spdiftx_user_data_write(dev);
}
}
spin_unlock_irqrestore(&ctrl->lock, flags);
return changed;
}
static struct snd_kcontrol_new mchp_spdiftx_ctrls[] = {
/* Channel status controller */
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
SNDRV_CTL_ELEM_ACCESS_VOLATILE,
.info = mchp_spdiftx_info,
.get = mchp_spdiftx_cs_get,
.put = mchp_spdiftx_cs_put,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, MASK),
.access = SNDRV_CTL_ELEM_ACCESS_READ,
SNDRV_CTL_ELEM_ACCESS_VOLATILE,
.info = mchp_spdiftx_info,
.get = mchp_spdiftx_cs_mask,
},
/* User bits controller */
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = "IEC958 Subcode Playback Default",
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
.info = mchp_spdiftx_info,
.get = mchp_spdiftx_subcode_get,
.put = mchp_spdiftx_subcode_put,
},
};
static int mchp_spdiftx_dai_probe(struct snd_soc_dai *dai)
{
struct mchp_spdiftx_dev *dev = snd_soc_dai_get_drvdata(dai);
snd_soc_dai_init_dma_data(dai, &dev->playback, NULL);
/* Add controls */
snd_soc_add_dai_controls(dai, mchp_spdiftx_ctrls,
ARRAY_SIZE(mchp_spdiftx_ctrls));
return 0;
}
static struct snd_soc_dai_driver mchp_spdiftx_dai = {
.name = "mchp-spdiftx",
.probe = mchp_spdiftx_dai_probe,
.playback = {
.stream_name = "S/PDIF Playback",
.channels_min = 1,
.channels_max = 2,
.rates = MCHP_SPDIFTX_RATES,
.formats = MCHP_SPDIFTX_FORMATS,
},
.ops = &mchp_spdiftx_dai_ops,
};
static const struct snd_soc_component_driver mchp_spdiftx_component = {
.name = "mchp-spdiftx",
.legacy_dai_naming = 1,
};
static const struct of_device_id mchp_spdiftx_dt_ids[] = {
{
.compatible = "microchip,sama7g5-spdiftx",
},
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, mchp_spdiftx_dt_ids);
static int mchp_spdiftx_runtime_suspend(struct device *dev)
{
struct mchp_spdiftx_dev *spdiftx = dev_get_drvdata(dev);
regcache_cache_only(spdiftx->regmap, true);
clk_disable_unprepare(spdiftx->gclk);
clk_disable_unprepare(spdiftx->pclk);
return 0;
}
static int mchp_spdiftx_runtime_resume(struct device *dev)
{
struct mchp_spdiftx_dev *spdiftx = dev_get_drvdata(dev);
int ret;
ret = clk_prepare_enable(spdiftx->pclk);
if (ret) {
dev_err(spdiftx->dev,
"failed to enable the peripheral clock: %d\n", ret);
return ret;
}
ret = clk_prepare_enable(spdiftx->gclk);
if (ret) {
dev_err(spdiftx->dev,
"failed to enable generic clock: %d\n", ret);
goto disable_pclk;
}
regcache_cache_only(spdiftx->regmap, false);
regcache_mark_dirty(spdiftx->regmap);
ret = regcache_sync(spdiftx->regmap);
if (ret) {
regcache_cache_only(spdiftx->regmap, true);
clk_disable_unprepare(spdiftx->gclk);
disable_pclk:
clk_disable_unprepare(spdiftx->pclk);
}
return ret;
}
static const struct dev_pm_ops mchp_spdiftx_pm_ops = {
SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, pm_runtime_force_resume)
RUNTIME_PM_OPS(mchp_spdiftx_runtime_suspend, mchp_spdiftx_runtime_resume,
NULL)
};
static int mchp_spdiftx_probe(struct platform_device *pdev)
{
struct mchp_spdiftx_dev *dev;
struct resource *mem;
struct regmap *regmap;
void __iomem *base;
struct mchp_spdiftx_mixer_control *ctrl;
int irq;
int err;
/* Get memory for driver data. */
dev = devm_kzalloc(&pdev->dev, sizeof(*dev), GFP_KERNEL);
if (!dev)
return -ENOMEM;
/* Map I/O registers. */
base = devm_platform_get_and_ioremap_resource(pdev, 0, &mem);
if (IS_ERR(base))
return PTR_ERR(base);
regmap = devm_regmap_init_mmio(&pdev->dev, base,
&mchp_spdiftx_regmap_config);
if (IS_ERR(regmap))
return PTR_ERR(regmap);
/* Request IRQ */
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
err = devm_request_irq(&pdev->dev, irq, mchp_spdiftx_interrupt, 0,
dev_name(&pdev->dev), dev);
if (err)
return err;
/* Get the peripheral clock */
dev->pclk = devm_clk_get(&pdev->dev, "pclk");
if (IS_ERR(dev->pclk)) {
err = PTR_ERR(dev->pclk);
dev_err(&pdev->dev,
"failed to get the peripheral clock: %d\n", err);
return err;
}
/* Get the generic clock */
dev->gclk = devm_clk_get(&pdev->dev, "gclk");
if (IS_ERR(dev->gclk)) {
err = PTR_ERR(dev->gclk);
dev_err(&pdev->dev,
"failed to get the PMC generic clock: %d\n", err);
return err;
}
ctrl = &dev->control;
spin_lock_init(&ctrl->lock);
/* Init channel status */
ctrl->ch_stat[0] = IEC958_AES0_CON_NOT_COPYRIGHT |
IEC958_AES0_CON_EMPHASIS_NONE;
dev->dev = &pdev->dev;
dev->regmap = regmap;
platform_set_drvdata(pdev, dev);
pm_runtime_enable(dev->dev);
if (!pm_runtime_enabled(dev->dev)) {
err = mchp_spdiftx_runtime_resume(dev->dev);
if (err)
return err;
}
dev->playback.addr = (dma_addr_t)mem->start + SPDIFTX_CDR;
dev->playback.addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
err = devm_snd_dmaengine_pcm_register(&pdev->dev, NULL, 0);
if (err) {
dev_err(&pdev->dev, "failed to register PMC: %d\n", err);
goto pm_runtime_suspend;
}
err = devm_snd_soc_register_component(&pdev->dev,
&mchp_spdiftx_component,
&mchp_spdiftx_dai, 1);
if (err) {
dev_err(&pdev->dev, "failed to register component: %d\n", err);
goto pm_runtime_suspend;
}
return 0;
pm_runtime_suspend:
if (!pm_runtime_status_suspended(dev->dev))
mchp_spdiftx_runtime_suspend(dev->dev);
pm_runtime_disable(dev->dev);
return err;
}
static int mchp_spdiftx_remove(struct platform_device *pdev)
{
struct mchp_spdiftx_dev *dev = platform_get_drvdata(pdev);
if (!pm_runtime_status_suspended(dev->dev))
mchp_spdiftx_runtime_suspend(dev->dev);
pm_runtime_disable(dev->dev);
return 0;
}
static struct platform_driver mchp_spdiftx_driver = {
.probe = mchp_spdiftx_probe,
.remove = mchp_spdiftx_remove,
.driver = {
.name = "mchp_spdiftx",
.of_match_table = of_match_ptr(mchp_spdiftx_dt_ids),
.pm = pm_ptr(&mchp_spdiftx_pm_ops)
},
};
module_platform_driver(mchp_spdiftx_driver);
MODULE_AUTHOR("Codrin Ciubotariu <codrin.ciubotariu@microchip.com>");
MODULE_DESCRIPTION("Microchip S/PDIF TX Controller Driver");
MODULE_LICENSE("GPL v2");