| // SPDX-License-Identifier: GPL-2.0 |
| |
| #include "bcachefs.h" |
| #include "buckets.h" |
| #include "journal.h" |
| #include "replicas.h" |
| #include "super-io.h" |
| |
| static int bch2_cpu_replicas_to_sb_replicas(struct bch_fs *, |
| struct bch_replicas_cpu *); |
| |
| /* Replicas tracking - in memory: */ |
| |
| static void verify_replicas_entry(struct bch_replicas_entry *e) |
| { |
| #ifdef CONFIG_BCACHEFS_DEBUG |
| unsigned i; |
| |
| BUG_ON(e->data_type >= BCH_DATA_NR); |
| BUG_ON(!e->nr_devs); |
| BUG_ON(e->nr_required > 1 && |
| e->nr_required >= e->nr_devs); |
| |
| for (i = 0; i + 1 < e->nr_devs; i++) |
| BUG_ON(e->devs[i] >= e->devs[i + 1]); |
| #endif |
| } |
| |
| void bch2_replicas_entry_sort(struct bch_replicas_entry *e) |
| { |
| bubble_sort(e->devs, e->nr_devs, u8_cmp); |
| } |
| |
| static void bch2_cpu_replicas_sort(struct bch_replicas_cpu *r) |
| { |
| eytzinger0_sort(r->entries, r->nr, r->entry_size, memcmp, NULL); |
| } |
| |
| static void bch2_replicas_entry_v0_to_text(struct printbuf *out, |
| struct bch_replicas_entry_v0 *e) |
| { |
| unsigned i; |
| |
| if (e->data_type < BCH_DATA_NR) |
| prt_printf(out, "%s", bch2_data_types[e->data_type]); |
| else |
| prt_printf(out, "(invalid data type %u)", e->data_type); |
| |
| prt_printf(out, ": %u [", e->nr_devs); |
| for (i = 0; i < e->nr_devs; i++) |
| prt_printf(out, i ? " %u" : "%u", e->devs[i]); |
| prt_printf(out, "]"); |
| } |
| |
| void bch2_replicas_entry_to_text(struct printbuf *out, |
| struct bch_replicas_entry *e) |
| { |
| unsigned i; |
| |
| if (e->data_type < BCH_DATA_NR) |
| prt_printf(out, "%s", bch2_data_types[e->data_type]); |
| else |
| prt_printf(out, "(invalid data type %u)", e->data_type); |
| |
| prt_printf(out, ": %u/%u [", e->nr_required, e->nr_devs); |
| for (i = 0; i < e->nr_devs; i++) |
| prt_printf(out, i ? " %u" : "%u", e->devs[i]); |
| prt_printf(out, "]"); |
| } |
| |
| void bch2_cpu_replicas_to_text(struct printbuf *out, |
| struct bch_replicas_cpu *r) |
| { |
| struct bch_replicas_entry *e; |
| bool first = true; |
| |
| for_each_cpu_replicas_entry(r, e) { |
| if (!first) |
| prt_printf(out, " "); |
| first = false; |
| |
| bch2_replicas_entry_to_text(out, e); |
| } |
| } |
| |
| static void extent_to_replicas(struct bkey_s_c k, |
| struct bch_replicas_entry *r) |
| { |
| struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); |
| const union bch_extent_entry *entry; |
| struct extent_ptr_decoded p; |
| |
| r->nr_required = 1; |
| |
| bkey_for_each_ptr_decode(k.k, ptrs, p, entry) { |
| if (p.ptr.cached) |
| continue; |
| |
| if (!p.has_ec) |
| r->devs[r->nr_devs++] = p.ptr.dev; |
| else |
| r->nr_required = 0; |
| } |
| } |
| |
| static void stripe_to_replicas(struct bkey_s_c k, |
| struct bch_replicas_entry *r) |
| { |
| struct bkey_s_c_stripe s = bkey_s_c_to_stripe(k); |
| const struct bch_extent_ptr *ptr; |
| |
| r->nr_required = s.v->nr_blocks - s.v->nr_redundant; |
| |
| for (ptr = s.v->ptrs; |
| ptr < s.v->ptrs + s.v->nr_blocks; |
| ptr++) |
| r->devs[r->nr_devs++] = ptr->dev; |
| } |
| |
| void bch2_bkey_to_replicas(struct bch_replicas_entry *e, |
| struct bkey_s_c k) |
| { |
| e->nr_devs = 0; |
| |
| switch (k.k->type) { |
| case KEY_TYPE_btree_ptr: |
| case KEY_TYPE_btree_ptr_v2: |
| e->data_type = BCH_DATA_btree; |
| extent_to_replicas(k, e); |
| break; |
| case KEY_TYPE_extent: |
| case KEY_TYPE_reflink_v: |
| e->data_type = BCH_DATA_user; |
| extent_to_replicas(k, e); |
| break; |
| case KEY_TYPE_stripe: |
| e->data_type = BCH_DATA_parity; |
| stripe_to_replicas(k, e); |
| break; |
| } |
| |
| bch2_replicas_entry_sort(e); |
| } |
| |
| void bch2_devlist_to_replicas(struct bch_replicas_entry *e, |
| enum bch_data_type data_type, |
| struct bch_devs_list devs) |
| { |
| unsigned i; |
| |
| BUG_ON(!data_type || |
| data_type == BCH_DATA_sb || |
| data_type >= BCH_DATA_NR); |
| |
| e->data_type = data_type; |
| e->nr_devs = 0; |
| e->nr_required = 1; |
| |
| for (i = 0; i < devs.nr; i++) |
| e->devs[e->nr_devs++] = devs.devs[i]; |
| |
| bch2_replicas_entry_sort(e); |
| } |
| |
| static struct bch_replicas_cpu |
| cpu_replicas_add_entry(struct bch_replicas_cpu *old, |
| struct bch_replicas_entry *new_entry) |
| { |
| unsigned i; |
| struct bch_replicas_cpu new = { |
| .nr = old->nr + 1, |
| .entry_size = max_t(unsigned, old->entry_size, |
| replicas_entry_bytes(new_entry)), |
| }; |
| |
| BUG_ON(!new_entry->data_type); |
| verify_replicas_entry(new_entry); |
| |
| new.entries = kcalloc(new.nr, new.entry_size, GFP_KERNEL); |
| if (!new.entries) |
| return new; |
| |
| for (i = 0; i < old->nr; i++) |
| memcpy(cpu_replicas_entry(&new, i), |
| cpu_replicas_entry(old, i), |
| old->entry_size); |
| |
| memcpy(cpu_replicas_entry(&new, old->nr), |
| new_entry, |
| replicas_entry_bytes(new_entry)); |
| |
| bch2_cpu_replicas_sort(&new); |
| return new; |
| } |
| |
| static inline int __replicas_entry_idx(struct bch_replicas_cpu *r, |
| struct bch_replicas_entry *search) |
| { |
| int idx, entry_size = replicas_entry_bytes(search); |
| |
| if (unlikely(entry_size > r->entry_size)) |
| return -1; |
| |
| verify_replicas_entry(search); |
| |
| #define entry_cmp(_l, _r, size) memcmp(_l, _r, entry_size) |
| idx = eytzinger0_find(r->entries, r->nr, r->entry_size, |
| entry_cmp, search); |
| #undef entry_cmp |
| |
| return idx < r->nr ? idx : -1; |
| } |
| |
| int bch2_replicas_entry_idx(struct bch_fs *c, |
| struct bch_replicas_entry *search) |
| { |
| bch2_replicas_entry_sort(search); |
| |
| return __replicas_entry_idx(&c->replicas, search); |
| } |
| |
| static bool __replicas_has_entry(struct bch_replicas_cpu *r, |
| struct bch_replicas_entry *search) |
| { |
| return __replicas_entry_idx(r, search) >= 0; |
| } |
| |
| bool bch2_replicas_marked(struct bch_fs *c, |
| struct bch_replicas_entry *search) |
| { |
| bool marked; |
| |
| if (!search->nr_devs) |
| return true; |
| |
| verify_replicas_entry(search); |
| |
| percpu_down_read(&c->mark_lock); |
| marked = __replicas_has_entry(&c->replicas, search) && |
| (likely((!c->replicas_gc.entries)) || |
| __replicas_has_entry(&c->replicas_gc, search)); |
| percpu_up_read(&c->mark_lock); |
| |
| return marked; |
| } |
| |
| static void __replicas_table_update(struct bch_fs_usage *dst, |
| struct bch_replicas_cpu *dst_r, |
| struct bch_fs_usage *src, |
| struct bch_replicas_cpu *src_r) |
| { |
| int src_idx, dst_idx; |
| |
| *dst = *src; |
| |
| for (src_idx = 0; src_idx < src_r->nr; src_idx++) { |
| if (!src->replicas[src_idx]) |
| continue; |
| |
| dst_idx = __replicas_entry_idx(dst_r, |
| cpu_replicas_entry(src_r, src_idx)); |
| BUG_ON(dst_idx < 0); |
| |
| dst->replicas[dst_idx] = src->replicas[src_idx]; |
| } |
| } |
| |
| static void __replicas_table_update_pcpu(struct bch_fs_usage __percpu *dst_p, |
| struct bch_replicas_cpu *dst_r, |
| struct bch_fs_usage __percpu *src_p, |
| struct bch_replicas_cpu *src_r) |
| { |
| unsigned src_nr = sizeof(struct bch_fs_usage) / sizeof(u64) + src_r->nr; |
| struct bch_fs_usage *dst, *src = (void *) |
| bch2_acc_percpu_u64s((u64 __percpu *) src_p, src_nr); |
| |
| preempt_disable(); |
| dst = this_cpu_ptr(dst_p); |
| preempt_enable(); |
| |
| __replicas_table_update(dst, dst_r, src, src_r); |
| } |
| |
| /* |
| * Resize filesystem accounting: |
| */ |
| static int replicas_table_update(struct bch_fs *c, |
| struct bch_replicas_cpu *new_r) |
| { |
| struct bch_fs_usage __percpu *new_usage[JOURNAL_BUF_NR]; |
| struct bch_fs_usage_online *new_scratch = NULL; |
| struct bch_fs_usage __percpu *new_gc = NULL; |
| struct bch_fs_usage *new_base = NULL; |
| unsigned i, bytes = sizeof(struct bch_fs_usage) + |
| sizeof(u64) * new_r->nr; |
| unsigned scratch_bytes = sizeof(struct bch_fs_usage_online) + |
| sizeof(u64) * new_r->nr; |
| int ret = 0; |
| |
| memset(new_usage, 0, sizeof(new_usage)); |
| |
| for (i = 0; i < ARRAY_SIZE(new_usage); i++) |
| if (!(new_usage[i] = __alloc_percpu_gfp(bytes, |
| sizeof(u64), GFP_KERNEL))) |
| goto err; |
| |
| if (!(new_base = kzalloc(bytes, GFP_KERNEL)) || |
| !(new_scratch = kmalloc(scratch_bytes, GFP_KERNEL)) || |
| (c->usage_gc && |
| !(new_gc = __alloc_percpu_gfp(bytes, sizeof(u64), GFP_KERNEL)))) |
| goto err; |
| |
| for (i = 0; i < ARRAY_SIZE(new_usage); i++) |
| if (c->usage[i]) |
| __replicas_table_update_pcpu(new_usage[i], new_r, |
| c->usage[i], &c->replicas); |
| if (c->usage_base) |
| __replicas_table_update(new_base, new_r, |
| c->usage_base, &c->replicas); |
| if (c->usage_gc) |
| __replicas_table_update_pcpu(new_gc, new_r, |
| c->usage_gc, &c->replicas); |
| |
| for (i = 0; i < ARRAY_SIZE(new_usage); i++) |
| swap(c->usage[i], new_usage[i]); |
| swap(c->usage_base, new_base); |
| swap(c->usage_scratch, new_scratch); |
| swap(c->usage_gc, new_gc); |
| swap(c->replicas, *new_r); |
| out: |
| free_percpu(new_gc); |
| kfree(new_scratch); |
| for (i = 0; i < ARRAY_SIZE(new_usage); i++) |
| free_percpu(new_usage[i]); |
| kfree(new_base); |
| return ret; |
| err: |
| bch_err(c, "error updating replicas table: memory allocation failure"); |
| ret = -BCH_ERR_ENOMEM_replicas_table; |
| goto out; |
| } |
| |
| static unsigned reserve_journal_replicas(struct bch_fs *c, |
| struct bch_replicas_cpu *r) |
| { |
| struct bch_replicas_entry *e; |
| unsigned journal_res_u64s = 0; |
| |
| /* nr_inodes: */ |
| journal_res_u64s += |
| DIV_ROUND_UP(sizeof(struct jset_entry_usage), sizeof(u64)); |
| |
| /* key_version: */ |
| journal_res_u64s += |
| DIV_ROUND_UP(sizeof(struct jset_entry_usage), sizeof(u64)); |
| |
| /* persistent_reserved: */ |
| journal_res_u64s += |
| DIV_ROUND_UP(sizeof(struct jset_entry_usage), sizeof(u64)) * |
| BCH_REPLICAS_MAX; |
| |
| for_each_cpu_replicas_entry(r, e) |
| journal_res_u64s += |
| DIV_ROUND_UP(sizeof(struct jset_entry_data_usage) + |
| e->nr_devs, sizeof(u64)); |
| return journal_res_u64s; |
| } |
| |
| noinline |
| static int bch2_mark_replicas_slowpath(struct bch_fs *c, |
| struct bch_replicas_entry *new_entry) |
| { |
| struct bch_replicas_cpu new_r, new_gc; |
| int ret = 0; |
| |
| verify_replicas_entry(new_entry); |
| |
| memset(&new_r, 0, sizeof(new_r)); |
| memset(&new_gc, 0, sizeof(new_gc)); |
| |
| mutex_lock(&c->sb_lock); |
| |
| if (c->replicas_gc.entries && |
| !__replicas_has_entry(&c->replicas_gc, new_entry)) { |
| new_gc = cpu_replicas_add_entry(&c->replicas_gc, new_entry); |
| if (!new_gc.entries) { |
| ret = -BCH_ERR_ENOMEM_cpu_replicas; |
| goto err; |
| } |
| } |
| |
| if (!__replicas_has_entry(&c->replicas, new_entry)) { |
| new_r = cpu_replicas_add_entry(&c->replicas, new_entry); |
| if (!new_r.entries) { |
| ret = -BCH_ERR_ENOMEM_cpu_replicas; |
| goto err; |
| } |
| |
| ret = bch2_cpu_replicas_to_sb_replicas(c, &new_r); |
| if (ret) |
| goto err; |
| |
| bch2_journal_entry_res_resize(&c->journal, |
| &c->replicas_journal_res, |
| reserve_journal_replicas(c, &new_r)); |
| } |
| |
| if (!new_r.entries && |
| !new_gc.entries) |
| goto out; |
| |
| /* allocations done, now commit: */ |
| |
| if (new_r.entries) |
| bch2_write_super(c); |
| |
| /* don't update in memory replicas until changes are persistent */ |
| percpu_down_write(&c->mark_lock); |
| if (new_r.entries) |
| ret = replicas_table_update(c, &new_r); |
| if (new_gc.entries) |
| swap(new_gc, c->replicas_gc); |
| percpu_up_write(&c->mark_lock); |
| out: |
| mutex_unlock(&c->sb_lock); |
| |
| kfree(new_r.entries); |
| kfree(new_gc.entries); |
| |
| return ret; |
| err: |
| bch_err_msg(c, ret, "adding replicas entry"); |
| goto out; |
| } |
| |
| int bch2_mark_replicas(struct bch_fs *c, struct bch_replicas_entry *r) |
| { |
| return likely(bch2_replicas_marked(c, r)) |
| ? 0 : bch2_mark_replicas_slowpath(c, r); |
| } |
| |
| /* replicas delta list: */ |
| |
| int bch2_replicas_delta_list_mark(struct bch_fs *c, |
| struct replicas_delta_list *r) |
| { |
| struct replicas_delta *d = r->d; |
| struct replicas_delta *top = (void *) r->d + r->used; |
| int ret = 0; |
| |
| for (d = r->d; !ret && d != top; d = replicas_delta_next(d)) |
| ret = bch2_mark_replicas(c, &d->r); |
| return ret; |
| } |
| |
| /* |
| * Old replicas_gc mechanism: only used for journal replicas entries now, should |
| * die at some point: |
| */ |
| |
| int bch2_replicas_gc_end(struct bch_fs *c, int ret) |
| { |
| lockdep_assert_held(&c->replicas_gc_lock); |
| |
| mutex_lock(&c->sb_lock); |
| percpu_down_write(&c->mark_lock); |
| |
| ret = ret ?: |
| bch2_cpu_replicas_to_sb_replicas(c, &c->replicas_gc) ?: |
| replicas_table_update(c, &c->replicas_gc); |
| |
| kfree(c->replicas_gc.entries); |
| c->replicas_gc.entries = NULL; |
| |
| percpu_up_write(&c->mark_lock); |
| |
| if (!ret) |
| bch2_write_super(c); |
| |
| mutex_unlock(&c->sb_lock); |
| |
| return ret; |
| } |
| |
| int bch2_replicas_gc_start(struct bch_fs *c, unsigned typemask) |
| { |
| struct bch_replicas_entry *e; |
| unsigned i = 0; |
| |
| lockdep_assert_held(&c->replicas_gc_lock); |
| |
| mutex_lock(&c->sb_lock); |
| BUG_ON(c->replicas_gc.entries); |
| |
| c->replicas_gc.nr = 0; |
| c->replicas_gc.entry_size = 0; |
| |
| for_each_cpu_replicas_entry(&c->replicas, e) |
| if (!((1 << e->data_type) & typemask)) { |
| c->replicas_gc.nr++; |
| c->replicas_gc.entry_size = |
| max_t(unsigned, c->replicas_gc.entry_size, |
| replicas_entry_bytes(e)); |
| } |
| |
| c->replicas_gc.entries = kcalloc(c->replicas_gc.nr, |
| c->replicas_gc.entry_size, |
| GFP_KERNEL); |
| if (!c->replicas_gc.entries) { |
| mutex_unlock(&c->sb_lock); |
| bch_err(c, "error allocating c->replicas_gc"); |
| return -BCH_ERR_ENOMEM_replicas_gc; |
| } |
| |
| for_each_cpu_replicas_entry(&c->replicas, e) |
| if (!((1 << e->data_type) & typemask)) |
| memcpy(cpu_replicas_entry(&c->replicas_gc, i++), |
| e, c->replicas_gc.entry_size); |
| |
| bch2_cpu_replicas_sort(&c->replicas_gc); |
| mutex_unlock(&c->sb_lock); |
| |
| return 0; |
| } |
| |
| /* |
| * New much simpler mechanism for clearing out unneeded replicas entries - drop |
| * replicas entries that have 0 sectors used. |
| * |
| * However, we don't track sector counts for journal usage, so this doesn't drop |
| * any BCH_DATA_journal entries; the old bch2_replicas_gc_(start|end) mechanism |
| * is retained for that. |
| */ |
| int bch2_replicas_gc2(struct bch_fs *c) |
| { |
| struct bch_replicas_cpu new = { 0 }; |
| unsigned i, nr; |
| int ret = 0; |
| |
| bch2_journal_meta(&c->journal); |
| retry: |
| nr = READ_ONCE(c->replicas.nr); |
| new.entry_size = READ_ONCE(c->replicas.entry_size); |
| new.entries = kcalloc(nr, new.entry_size, GFP_KERNEL); |
| if (!new.entries) { |
| bch_err(c, "error allocating c->replicas_gc"); |
| return -BCH_ERR_ENOMEM_replicas_gc; |
| } |
| |
| mutex_lock(&c->sb_lock); |
| percpu_down_write(&c->mark_lock); |
| |
| if (nr != c->replicas.nr || |
| new.entry_size != c->replicas.entry_size) { |
| percpu_up_write(&c->mark_lock); |
| mutex_unlock(&c->sb_lock); |
| kfree(new.entries); |
| goto retry; |
| } |
| |
| for (i = 0; i < c->replicas.nr; i++) { |
| struct bch_replicas_entry *e = |
| cpu_replicas_entry(&c->replicas, i); |
| |
| if (e->data_type == BCH_DATA_journal || |
| c->usage_base->replicas[i] || |
| percpu_u64_get(&c->usage[0]->replicas[i]) || |
| percpu_u64_get(&c->usage[1]->replicas[i]) || |
| percpu_u64_get(&c->usage[2]->replicas[i]) || |
| percpu_u64_get(&c->usage[3]->replicas[i])) |
| memcpy(cpu_replicas_entry(&new, new.nr++), |
| e, new.entry_size); |
| } |
| |
| bch2_cpu_replicas_sort(&new); |
| |
| ret = bch2_cpu_replicas_to_sb_replicas(c, &new) ?: |
| replicas_table_update(c, &new); |
| |
| kfree(new.entries); |
| |
| percpu_up_write(&c->mark_lock); |
| |
| if (!ret) |
| bch2_write_super(c); |
| |
| mutex_unlock(&c->sb_lock); |
| |
| return ret; |
| } |
| |
| int bch2_replicas_set_usage(struct bch_fs *c, |
| struct bch_replicas_entry *r, |
| u64 sectors) |
| { |
| int ret, idx = bch2_replicas_entry_idx(c, r); |
| |
| if (idx < 0) { |
| struct bch_replicas_cpu n; |
| |
| n = cpu_replicas_add_entry(&c->replicas, r); |
| if (!n.entries) |
| return -BCH_ERR_ENOMEM_cpu_replicas; |
| |
| ret = replicas_table_update(c, &n); |
| if (ret) |
| return ret; |
| |
| kfree(n.entries); |
| |
| idx = bch2_replicas_entry_idx(c, r); |
| BUG_ON(ret < 0); |
| } |
| |
| c->usage_base->replicas[idx] = sectors; |
| |
| return 0; |
| } |
| |
| /* Replicas tracking - superblock: */ |
| |
| static int |
| __bch2_sb_replicas_to_cpu_replicas(struct bch_sb_field_replicas *sb_r, |
| struct bch_replicas_cpu *cpu_r) |
| { |
| struct bch_replicas_entry *e, *dst; |
| unsigned nr = 0, entry_size = 0, idx = 0; |
| |
| for_each_replicas_entry(sb_r, e) { |
| entry_size = max_t(unsigned, entry_size, |
| replicas_entry_bytes(e)); |
| nr++; |
| } |
| |
| cpu_r->entries = kcalloc(nr, entry_size, GFP_KERNEL); |
| if (!cpu_r->entries) |
| return -BCH_ERR_ENOMEM_cpu_replicas; |
| |
| cpu_r->nr = nr; |
| cpu_r->entry_size = entry_size; |
| |
| for_each_replicas_entry(sb_r, e) { |
| dst = cpu_replicas_entry(cpu_r, idx++); |
| memcpy(dst, e, replicas_entry_bytes(e)); |
| bch2_replicas_entry_sort(dst); |
| } |
| |
| return 0; |
| } |
| |
| static int |
| __bch2_sb_replicas_v0_to_cpu_replicas(struct bch_sb_field_replicas_v0 *sb_r, |
| struct bch_replicas_cpu *cpu_r) |
| { |
| struct bch_replicas_entry_v0 *e; |
| unsigned nr = 0, entry_size = 0, idx = 0; |
| |
| for_each_replicas_entry(sb_r, e) { |
| entry_size = max_t(unsigned, entry_size, |
| replicas_entry_bytes(e)); |
| nr++; |
| } |
| |
| entry_size += sizeof(struct bch_replicas_entry) - |
| sizeof(struct bch_replicas_entry_v0); |
| |
| cpu_r->entries = kcalloc(nr, entry_size, GFP_KERNEL); |
| if (!cpu_r->entries) |
| return -BCH_ERR_ENOMEM_cpu_replicas; |
| |
| cpu_r->nr = nr; |
| cpu_r->entry_size = entry_size; |
| |
| for_each_replicas_entry(sb_r, e) { |
| struct bch_replicas_entry *dst = |
| cpu_replicas_entry(cpu_r, idx++); |
| |
| dst->data_type = e->data_type; |
| dst->nr_devs = e->nr_devs; |
| dst->nr_required = 1; |
| memcpy(dst->devs, e->devs, e->nr_devs); |
| bch2_replicas_entry_sort(dst); |
| } |
| |
| return 0; |
| } |
| |
| int bch2_sb_replicas_to_cpu_replicas(struct bch_fs *c) |
| { |
| struct bch_sb_field_replicas *sb_v1; |
| struct bch_sb_field_replicas_v0 *sb_v0; |
| struct bch_replicas_cpu new_r = { 0, 0, NULL }; |
| int ret = 0; |
| |
| if ((sb_v1 = bch2_sb_field_get(c->disk_sb.sb, replicas))) |
| ret = __bch2_sb_replicas_to_cpu_replicas(sb_v1, &new_r); |
| else if ((sb_v0 = bch2_sb_field_get(c->disk_sb.sb, replicas_v0))) |
| ret = __bch2_sb_replicas_v0_to_cpu_replicas(sb_v0, &new_r); |
| if (ret) |
| return ret; |
| |
| bch2_cpu_replicas_sort(&new_r); |
| |
| percpu_down_write(&c->mark_lock); |
| |
| ret = replicas_table_update(c, &new_r); |
| percpu_up_write(&c->mark_lock); |
| |
| kfree(new_r.entries); |
| |
| return 0; |
| } |
| |
| static int bch2_cpu_replicas_to_sb_replicas_v0(struct bch_fs *c, |
| struct bch_replicas_cpu *r) |
| { |
| struct bch_sb_field_replicas_v0 *sb_r; |
| struct bch_replicas_entry_v0 *dst; |
| struct bch_replicas_entry *src; |
| size_t bytes; |
| |
| bytes = sizeof(struct bch_sb_field_replicas); |
| |
| for_each_cpu_replicas_entry(r, src) |
| bytes += replicas_entry_bytes(src) - 1; |
| |
| sb_r = bch2_sb_field_resize(&c->disk_sb, replicas_v0, |
| DIV_ROUND_UP(bytes, sizeof(u64))); |
| if (!sb_r) |
| return -BCH_ERR_ENOSPC_sb_replicas; |
| |
| bch2_sb_field_delete(&c->disk_sb, BCH_SB_FIELD_replicas); |
| sb_r = bch2_sb_field_get(c->disk_sb.sb, replicas_v0); |
| |
| memset(&sb_r->entries, 0, |
| vstruct_end(&sb_r->field) - |
| (void *) &sb_r->entries); |
| |
| dst = sb_r->entries; |
| for_each_cpu_replicas_entry(r, src) { |
| dst->data_type = src->data_type; |
| dst->nr_devs = src->nr_devs; |
| memcpy(dst->devs, src->devs, src->nr_devs); |
| |
| dst = replicas_entry_next(dst); |
| |
| BUG_ON((void *) dst > vstruct_end(&sb_r->field)); |
| } |
| |
| return 0; |
| } |
| |
| static int bch2_cpu_replicas_to_sb_replicas(struct bch_fs *c, |
| struct bch_replicas_cpu *r) |
| { |
| struct bch_sb_field_replicas *sb_r; |
| struct bch_replicas_entry *dst, *src; |
| bool need_v1 = false; |
| size_t bytes; |
| |
| bytes = sizeof(struct bch_sb_field_replicas); |
| |
| for_each_cpu_replicas_entry(r, src) { |
| bytes += replicas_entry_bytes(src); |
| if (src->nr_required != 1) |
| need_v1 = true; |
| } |
| |
| if (!need_v1) |
| return bch2_cpu_replicas_to_sb_replicas_v0(c, r); |
| |
| sb_r = bch2_sb_field_resize(&c->disk_sb, replicas, |
| DIV_ROUND_UP(bytes, sizeof(u64))); |
| if (!sb_r) |
| return -BCH_ERR_ENOSPC_sb_replicas; |
| |
| bch2_sb_field_delete(&c->disk_sb, BCH_SB_FIELD_replicas_v0); |
| sb_r = bch2_sb_field_get(c->disk_sb.sb, replicas); |
| |
| memset(&sb_r->entries, 0, |
| vstruct_end(&sb_r->field) - |
| (void *) &sb_r->entries); |
| |
| dst = sb_r->entries; |
| for_each_cpu_replicas_entry(r, src) { |
| memcpy(dst, src, replicas_entry_bytes(src)); |
| |
| dst = replicas_entry_next(dst); |
| |
| BUG_ON((void *) dst > vstruct_end(&sb_r->field)); |
| } |
| |
| return 0; |
| } |
| |
| static int bch2_cpu_replicas_validate(struct bch_replicas_cpu *cpu_r, |
| struct bch_sb *sb, |
| struct printbuf *err) |
| { |
| unsigned i, j; |
| |
| sort_cmp_size(cpu_r->entries, |
| cpu_r->nr, |
| cpu_r->entry_size, |
| memcmp, NULL); |
| |
| for (i = 0; i < cpu_r->nr; i++) { |
| struct bch_replicas_entry *e = |
| cpu_replicas_entry(cpu_r, i); |
| |
| if (e->data_type >= BCH_DATA_NR) { |
| prt_printf(err, "invalid data type in entry "); |
| bch2_replicas_entry_to_text(err, e); |
| return -BCH_ERR_invalid_sb_replicas; |
| } |
| |
| if (!e->nr_devs) { |
| prt_printf(err, "no devices in entry "); |
| bch2_replicas_entry_to_text(err, e); |
| return -BCH_ERR_invalid_sb_replicas; |
| } |
| |
| if (e->nr_required > 1 && |
| e->nr_required >= e->nr_devs) { |
| prt_printf(err, "bad nr_required in entry "); |
| bch2_replicas_entry_to_text(err, e); |
| return -BCH_ERR_invalid_sb_replicas; |
| } |
| |
| for (j = 0; j < e->nr_devs; j++) |
| if (!bch2_dev_exists(sb, e->devs[j])) { |
| prt_printf(err, "invalid device %u in entry ", e->devs[j]); |
| bch2_replicas_entry_to_text(err, e); |
| return -BCH_ERR_invalid_sb_replicas; |
| } |
| |
| if (i + 1 < cpu_r->nr) { |
| struct bch_replicas_entry *n = |
| cpu_replicas_entry(cpu_r, i + 1); |
| |
| BUG_ON(memcmp(e, n, cpu_r->entry_size) > 0); |
| |
| if (!memcmp(e, n, cpu_r->entry_size)) { |
| prt_printf(err, "duplicate replicas entry "); |
| bch2_replicas_entry_to_text(err, e); |
| return -BCH_ERR_invalid_sb_replicas; |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int bch2_sb_replicas_validate(struct bch_sb *sb, struct bch_sb_field *f, |
| struct printbuf *err) |
| { |
| struct bch_sb_field_replicas *sb_r = field_to_type(f, replicas); |
| struct bch_replicas_cpu cpu_r; |
| int ret; |
| |
| ret = __bch2_sb_replicas_to_cpu_replicas(sb_r, &cpu_r); |
| if (ret) |
| return ret; |
| |
| ret = bch2_cpu_replicas_validate(&cpu_r, sb, err); |
| kfree(cpu_r.entries); |
| return ret; |
| } |
| |
| static void bch2_sb_replicas_to_text(struct printbuf *out, |
| struct bch_sb *sb, |
| struct bch_sb_field *f) |
| { |
| struct bch_sb_field_replicas *r = field_to_type(f, replicas); |
| struct bch_replicas_entry *e; |
| bool first = true; |
| |
| for_each_replicas_entry(r, e) { |
| if (!first) |
| prt_printf(out, " "); |
| first = false; |
| |
| bch2_replicas_entry_to_text(out, e); |
| } |
| prt_newline(out); |
| } |
| |
| const struct bch_sb_field_ops bch_sb_field_ops_replicas = { |
| .validate = bch2_sb_replicas_validate, |
| .to_text = bch2_sb_replicas_to_text, |
| }; |
| |
| static int bch2_sb_replicas_v0_validate(struct bch_sb *sb, struct bch_sb_field *f, |
| struct printbuf *err) |
| { |
| struct bch_sb_field_replicas_v0 *sb_r = field_to_type(f, replicas_v0); |
| struct bch_replicas_cpu cpu_r; |
| int ret; |
| |
| ret = __bch2_sb_replicas_v0_to_cpu_replicas(sb_r, &cpu_r); |
| if (ret) |
| return ret; |
| |
| ret = bch2_cpu_replicas_validate(&cpu_r, sb, err); |
| kfree(cpu_r.entries); |
| return ret; |
| } |
| |
| static void bch2_sb_replicas_v0_to_text(struct printbuf *out, |
| struct bch_sb *sb, |
| struct bch_sb_field *f) |
| { |
| struct bch_sb_field_replicas_v0 *sb_r = field_to_type(f, replicas_v0); |
| struct bch_replicas_entry_v0 *e; |
| bool first = true; |
| |
| for_each_replicas_entry(sb_r, e) { |
| if (!first) |
| prt_printf(out, " "); |
| first = false; |
| |
| bch2_replicas_entry_v0_to_text(out, e); |
| } |
| prt_newline(out); |
| } |
| |
| const struct bch_sb_field_ops bch_sb_field_ops_replicas_v0 = { |
| .validate = bch2_sb_replicas_v0_validate, |
| .to_text = bch2_sb_replicas_v0_to_text, |
| }; |
| |
| /* Query replicas: */ |
| |
| bool bch2_have_enough_devs(struct bch_fs *c, struct bch_devs_mask devs, |
| unsigned flags, bool print) |
| { |
| struct bch_replicas_entry *e; |
| bool ret = true; |
| |
| percpu_down_read(&c->mark_lock); |
| for_each_cpu_replicas_entry(&c->replicas, e) { |
| unsigned i, nr_online = 0, nr_failed = 0, dflags = 0; |
| bool metadata = e->data_type < BCH_DATA_user; |
| |
| if (e->data_type == BCH_DATA_cached) |
| continue; |
| |
| for (i = 0; i < e->nr_devs; i++) { |
| struct bch_dev *ca = bch_dev_bkey_exists(c, e->devs[i]); |
| |
| nr_online += test_bit(e->devs[i], devs.d); |
| nr_failed += ca->mi.state == BCH_MEMBER_STATE_failed; |
| } |
| |
| if (nr_failed == e->nr_devs) |
| continue; |
| |
| if (nr_online < e->nr_required) |
| dflags |= metadata |
| ? BCH_FORCE_IF_METADATA_LOST |
| : BCH_FORCE_IF_DATA_LOST; |
| |
| if (nr_online < e->nr_devs) |
| dflags |= metadata |
| ? BCH_FORCE_IF_METADATA_DEGRADED |
| : BCH_FORCE_IF_DATA_DEGRADED; |
| |
| if (dflags & ~flags) { |
| if (print) { |
| struct printbuf buf = PRINTBUF; |
| |
| bch2_replicas_entry_to_text(&buf, e); |
| bch_err(c, "insufficient devices online (%u) for replicas entry %s", |
| nr_online, buf.buf); |
| printbuf_exit(&buf); |
| } |
| ret = false; |
| break; |
| } |
| |
| } |
| percpu_up_read(&c->mark_lock); |
| |
| return ret; |
| } |
| |
| unsigned bch2_sb_dev_has_data(struct bch_sb *sb, unsigned dev) |
| { |
| struct bch_sb_field_replicas *replicas; |
| struct bch_sb_field_replicas_v0 *replicas_v0; |
| unsigned i, data_has = 0; |
| |
| replicas = bch2_sb_field_get(sb, replicas); |
| replicas_v0 = bch2_sb_field_get(sb, replicas_v0); |
| |
| if (replicas) { |
| struct bch_replicas_entry *r; |
| |
| for_each_replicas_entry(replicas, r) |
| for (i = 0; i < r->nr_devs; i++) |
| if (r->devs[i] == dev) |
| data_has |= 1 << r->data_type; |
| } else if (replicas_v0) { |
| struct bch_replicas_entry_v0 *r; |
| |
| for_each_replicas_entry_v0(replicas_v0, r) |
| for (i = 0; i < r->nr_devs; i++) |
| if (r->devs[i] == dev) |
| data_has |= 1 << r->data_type; |
| } |
| |
| |
| return data_has; |
| } |
| |
| unsigned bch2_dev_has_data(struct bch_fs *c, struct bch_dev *ca) |
| { |
| unsigned ret; |
| |
| mutex_lock(&c->sb_lock); |
| ret = bch2_sb_dev_has_data(c->disk_sb.sb, ca->dev_idx); |
| mutex_unlock(&c->sb_lock); |
| |
| return ret; |
| } |
| |
| void bch2_fs_replicas_exit(struct bch_fs *c) |
| { |
| unsigned i; |
| |
| kfree(c->usage_scratch); |
| for (i = 0; i < ARRAY_SIZE(c->usage); i++) |
| free_percpu(c->usage[i]); |
| kfree(c->usage_base); |
| kfree(c->replicas.entries); |
| kfree(c->replicas_gc.entries); |
| |
| mempool_exit(&c->replicas_delta_pool); |
| } |
| |
| int bch2_fs_replicas_init(struct bch_fs *c) |
| { |
| bch2_journal_entry_res_resize(&c->journal, |
| &c->replicas_journal_res, |
| reserve_journal_replicas(c, &c->replicas)); |
| |
| return mempool_init_kmalloc_pool(&c->replicas_delta_pool, 1, |
| REPLICAS_DELTA_LIST_MAX) ?: |
| replicas_table_update(c, &c->replicas); |
| } |