| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * linux/drivers/mmc/core/mmc_ops.h |
| * |
| * Copyright 2006-2007 Pierre Ossman |
| */ |
| |
| #include <linux/slab.h> |
| #include <linux/export.h> |
| #include <linux/types.h> |
| #include <linux/scatterlist.h> |
| |
| #include <linux/mmc/host.h> |
| #include <linux/mmc/card.h> |
| #include <linux/mmc/mmc.h> |
| |
| #include "core.h" |
| #include "card.h" |
| #include "host.h" |
| #include "mmc_ops.h" |
| |
| #define MMC_BKOPS_TIMEOUT_MS (120 * 1000) /* 120s */ |
| #define MMC_CACHE_FLUSH_TIMEOUT_MS (30 * 1000) /* 30s */ |
| #define MMC_SANITIZE_TIMEOUT_MS (240 * 1000) /* 240s */ |
| |
| static const u8 tuning_blk_pattern_4bit[] = { |
| 0xff, 0x0f, 0xff, 0x00, 0xff, 0xcc, 0xc3, 0xcc, |
| 0xc3, 0x3c, 0xcc, 0xff, 0xfe, 0xff, 0xfe, 0xef, |
| 0xff, 0xdf, 0xff, 0xdd, 0xff, 0xfb, 0xff, 0xfb, |
| 0xbf, 0xff, 0x7f, 0xff, 0x77, 0xf7, 0xbd, 0xef, |
| 0xff, 0xf0, 0xff, 0xf0, 0x0f, 0xfc, 0xcc, 0x3c, |
| 0xcc, 0x33, 0xcc, 0xcf, 0xff, 0xef, 0xff, 0xee, |
| 0xff, 0xfd, 0xff, 0xfd, 0xdf, 0xff, 0xbf, 0xff, |
| 0xbb, 0xff, 0xf7, 0xff, 0xf7, 0x7f, 0x7b, 0xde, |
| }; |
| |
| static const u8 tuning_blk_pattern_8bit[] = { |
| 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0x00, |
| 0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc, 0xcc, |
| 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff, 0xff, |
| 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee, 0xff, |
| 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd, 0xdd, |
| 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff, 0xbb, |
| 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff, 0xff, |
| 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee, 0xff, |
| 0xff, 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00, |
| 0x00, 0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc, |
| 0xcc, 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff, |
| 0xff, 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee, |
| 0xff, 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd, |
| 0xdd, 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff, |
| 0xbb, 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff, |
| 0xff, 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee, |
| }; |
| |
| int __mmc_send_status(struct mmc_card *card, u32 *status, unsigned int retries) |
| { |
| int err; |
| struct mmc_command cmd = {}; |
| |
| cmd.opcode = MMC_SEND_STATUS; |
| if (!mmc_host_is_spi(card->host)) |
| cmd.arg = card->rca << 16; |
| cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC; |
| |
| err = mmc_wait_for_cmd(card->host, &cmd, retries); |
| if (err) |
| return err; |
| |
| /* NOTE: callers are required to understand the difference |
| * between "native" and SPI format status words! |
| */ |
| if (status) |
| *status = cmd.resp[0]; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(__mmc_send_status); |
| |
| int mmc_send_status(struct mmc_card *card, u32 *status) |
| { |
| return __mmc_send_status(card, status, MMC_CMD_RETRIES); |
| } |
| EXPORT_SYMBOL_GPL(mmc_send_status); |
| |
| static int _mmc_select_card(struct mmc_host *host, struct mmc_card *card) |
| { |
| struct mmc_command cmd = {}; |
| |
| cmd.opcode = MMC_SELECT_CARD; |
| |
| if (card) { |
| cmd.arg = card->rca << 16; |
| cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; |
| } else { |
| cmd.arg = 0; |
| cmd.flags = MMC_RSP_NONE | MMC_CMD_AC; |
| } |
| |
| return mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES); |
| } |
| |
| int mmc_select_card(struct mmc_card *card) |
| { |
| |
| return _mmc_select_card(card->host, card); |
| } |
| |
| int mmc_deselect_cards(struct mmc_host *host) |
| { |
| return _mmc_select_card(host, NULL); |
| } |
| |
| /* |
| * Write the value specified in the device tree or board code into the optional |
| * 16 bit Driver Stage Register. This can be used to tune raise/fall times and |
| * drive strength of the DAT and CMD outputs. The actual meaning of a given |
| * value is hardware dependant. |
| * The presence of the DSR register can be determined from the CSD register, |
| * bit 76. |
| */ |
| int mmc_set_dsr(struct mmc_host *host) |
| { |
| struct mmc_command cmd = {}; |
| |
| cmd.opcode = MMC_SET_DSR; |
| |
| cmd.arg = (host->dsr << 16) | 0xffff; |
| cmd.flags = MMC_RSP_NONE | MMC_CMD_AC; |
| |
| return mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES); |
| } |
| |
| int mmc_go_idle(struct mmc_host *host) |
| { |
| int err; |
| struct mmc_command cmd = {}; |
| |
| /* |
| * Non-SPI hosts need to prevent chipselect going active during |
| * GO_IDLE; that would put chips into SPI mode. Remind them of |
| * that in case of hardware that won't pull up DAT3/nCS otherwise. |
| * |
| * SPI hosts ignore ios.chip_select; it's managed according to |
| * rules that must accommodate non-MMC slaves which this layer |
| * won't even know about. |
| */ |
| if (!mmc_host_is_spi(host)) { |
| mmc_set_chip_select(host, MMC_CS_HIGH); |
| mmc_delay(1); |
| } |
| |
| cmd.opcode = MMC_GO_IDLE_STATE; |
| cmd.arg = 0; |
| cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_NONE | MMC_CMD_BC; |
| |
| err = mmc_wait_for_cmd(host, &cmd, 0); |
| |
| mmc_delay(1); |
| |
| if (!mmc_host_is_spi(host)) { |
| mmc_set_chip_select(host, MMC_CS_DONTCARE); |
| mmc_delay(1); |
| } |
| |
| host->use_spi_crc = 0; |
| |
| return err; |
| } |
| |
| int mmc_send_op_cond(struct mmc_host *host, u32 ocr, u32 *rocr) |
| { |
| struct mmc_command cmd = {}; |
| int i, err = 0; |
| |
| cmd.opcode = MMC_SEND_OP_COND; |
| cmd.arg = mmc_host_is_spi(host) ? 0 : ocr; |
| cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R3 | MMC_CMD_BCR; |
| |
| for (i = 100; i; i--) { |
| err = mmc_wait_for_cmd(host, &cmd, 0); |
| if (err) |
| break; |
| |
| /* wait until reset completes */ |
| if (mmc_host_is_spi(host)) { |
| if (!(cmd.resp[0] & R1_SPI_IDLE)) |
| break; |
| } else { |
| if (cmd.resp[0] & MMC_CARD_BUSY) |
| break; |
| } |
| |
| err = -ETIMEDOUT; |
| |
| mmc_delay(10); |
| |
| /* |
| * According to eMMC specification v5.1 section 6.4.3, we |
| * should issue CMD1 repeatedly in the idle state until |
| * the eMMC is ready. Otherwise some eMMC devices seem to enter |
| * the inactive mode after mmc_init_card() issued CMD0 when |
| * the eMMC device is busy. |
| */ |
| if (!ocr && !mmc_host_is_spi(host)) |
| cmd.arg = cmd.resp[0] | BIT(30); |
| } |
| |
| if (rocr && !mmc_host_is_spi(host)) |
| *rocr = cmd.resp[0]; |
| |
| return err; |
| } |
| |
| int mmc_set_relative_addr(struct mmc_card *card) |
| { |
| struct mmc_command cmd = {}; |
| |
| cmd.opcode = MMC_SET_RELATIVE_ADDR; |
| cmd.arg = card->rca << 16; |
| cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; |
| |
| return mmc_wait_for_cmd(card->host, &cmd, MMC_CMD_RETRIES); |
| } |
| |
| static int |
| mmc_send_cxd_native(struct mmc_host *host, u32 arg, u32 *cxd, int opcode) |
| { |
| int err; |
| struct mmc_command cmd = {}; |
| |
| cmd.opcode = opcode; |
| cmd.arg = arg; |
| cmd.flags = MMC_RSP_R2 | MMC_CMD_AC; |
| |
| err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES); |
| if (err) |
| return err; |
| |
| memcpy(cxd, cmd.resp, sizeof(u32) * 4); |
| |
| return 0; |
| } |
| |
| /* |
| * NOTE: void *buf, caller for the buf is required to use DMA-capable |
| * buffer or on-stack buffer (with some overhead in callee). |
| */ |
| static int |
| mmc_send_cxd_data(struct mmc_card *card, struct mmc_host *host, |
| u32 opcode, void *buf, unsigned len) |
| { |
| struct mmc_request mrq = {}; |
| struct mmc_command cmd = {}; |
| struct mmc_data data = {}; |
| struct scatterlist sg; |
| |
| mrq.cmd = &cmd; |
| mrq.data = &data; |
| |
| cmd.opcode = opcode; |
| cmd.arg = 0; |
| |
| /* NOTE HACK: the MMC_RSP_SPI_R1 is always correct here, but we |
| * rely on callers to never use this with "native" calls for reading |
| * CSD or CID. Native versions of those commands use the R2 type, |
| * not R1 plus a data block. |
| */ |
| cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; |
| |
| data.blksz = len; |
| data.blocks = 1; |
| data.flags = MMC_DATA_READ; |
| data.sg = &sg; |
| data.sg_len = 1; |
| |
| sg_init_one(&sg, buf, len); |
| |
| if (opcode == MMC_SEND_CSD || opcode == MMC_SEND_CID) { |
| /* |
| * The spec states that CSR and CID accesses have a timeout |
| * of 64 clock cycles. |
| */ |
| data.timeout_ns = 0; |
| data.timeout_clks = 64; |
| } else |
| mmc_set_data_timeout(&data, card); |
| |
| mmc_wait_for_req(host, &mrq); |
| |
| if (cmd.error) |
| return cmd.error; |
| if (data.error) |
| return data.error; |
| |
| return 0; |
| } |
| |
| static int mmc_spi_send_csd(struct mmc_card *card, u32 *csd) |
| { |
| int ret, i; |
| __be32 *csd_tmp; |
| |
| csd_tmp = kzalloc(16, GFP_KERNEL); |
| if (!csd_tmp) |
| return -ENOMEM; |
| |
| ret = mmc_send_cxd_data(card, card->host, MMC_SEND_CSD, csd_tmp, 16); |
| if (ret) |
| goto err; |
| |
| for (i = 0; i < 4; i++) |
| csd[i] = be32_to_cpu(csd_tmp[i]); |
| |
| err: |
| kfree(csd_tmp); |
| return ret; |
| } |
| |
| int mmc_send_csd(struct mmc_card *card, u32 *csd) |
| { |
| if (mmc_host_is_spi(card->host)) |
| return mmc_spi_send_csd(card, csd); |
| |
| return mmc_send_cxd_native(card->host, card->rca << 16, csd, |
| MMC_SEND_CSD); |
| } |
| |
| static int mmc_spi_send_cid(struct mmc_host *host, u32 *cid) |
| { |
| int ret, i; |
| __be32 *cid_tmp; |
| |
| cid_tmp = kzalloc(16, GFP_KERNEL); |
| if (!cid_tmp) |
| return -ENOMEM; |
| |
| ret = mmc_send_cxd_data(NULL, host, MMC_SEND_CID, cid_tmp, 16); |
| if (ret) |
| goto err; |
| |
| for (i = 0; i < 4; i++) |
| cid[i] = be32_to_cpu(cid_tmp[i]); |
| |
| err: |
| kfree(cid_tmp); |
| return ret; |
| } |
| |
| int mmc_send_cid(struct mmc_host *host, u32 *cid) |
| { |
| if (mmc_host_is_spi(host)) |
| return mmc_spi_send_cid(host, cid); |
| |
| return mmc_send_cxd_native(host, 0, cid, MMC_ALL_SEND_CID); |
| } |
| |
| int mmc_get_ext_csd(struct mmc_card *card, u8 **new_ext_csd) |
| { |
| int err; |
| u8 *ext_csd; |
| |
| if (!card || !new_ext_csd) |
| return -EINVAL; |
| |
| if (!mmc_can_ext_csd(card)) |
| return -EOPNOTSUPP; |
| |
| /* |
| * As the ext_csd is so large and mostly unused, we don't store the |
| * raw block in mmc_card. |
| */ |
| ext_csd = kzalloc(512, GFP_KERNEL); |
| if (!ext_csd) |
| return -ENOMEM; |
| |
| err = mmc_send_cxd_data(card, card->host, MMC_SEND_EXT_CSD, ext_csd, |
| 512); |
| if (err) |
| kfree(ext_csd); |
| else |
| *new_ext_csd = ext_csd; |
| |
| return err; |
| } |
| EXPORT_SYMBOL_GPL(mmc_get_ext_csd); |
| |
| int mmc_spi_read_ocr(struct mmc_host *host, int highcap, u32 *ocrp) |
| { |
| struct mmc_command cmd = {}; |
| int err; |
| |
| cmd.opcode = MMC_SPI_READ_OCR; |
| cmd.arg = highcap ? (1 << 30) : 0; |
| cmd.flags = MMC_RSP_SPI_R3; |
| |
| err = mmc_wait_for_cmd(host, &cmd, 0); |
| |
| *ocrp = cmd.resp[1]; |
| return err; |
| } |
| |
| int mmc_spi_set_crc(struct mmc_host *host, int use_crc) |
| { |
| struct mmc_command cmd = {}; |
| int err; |
| |
| cmd.opcode = MMC_SPI_CRC_ON_OFF; |
| cmd.flags = MMC_RSP_SPI_R1; |
| cmd.arg = use_crc; |
| |
| err = mmc_wait_for_cmd(host, &cmd, 0); |
| if (!err) |
| host->use_spi_crc = use_crc; |
| return err; |
| } |
| |
| static int mmc_switch_status_error(struct mmc_host *host, u32 status) |
| { |
| if (mmc_host_is_spi(host)) { |
| if (status & R1_SPI_ILLEGAL_COMMAND) |
| return -EBADMSG; |
| } else { |
| if (R1_STATUS(status)) |
| pr_warn("%s: unexpected status %#x after switch\n", |
| mmc_hostname(host), status); |
| if (status & R1_SWITCH_ERROR) |
| return -EBADMSG; |
| } |
| return 0; |
| } |
| |
| /* Caller must hold re-tuning */ |
| int mmc_switch_status(struct mmc_card *card, bool crc_err_fatal) |
| { |
| u32 status; |
| int err; |
| |
| err = mmc_send_status(card, &status); |
| if (!crc_err_fatal && err == -EILSEQ) |
| return 0; |
| if (err) |
| return err; |
| |
| return mmc_switch_status_error(card->host, status); |
| } |
| |
| static int mmc_busy_status(struct mmc_card *card, bool retry_crc_err, |
| enum mmc_busy_cmd busy_cmd, bool *busy) |
| { |
| struct mmc_host *host = card->host; |
| u32 status = 0; |
| int err; |
| |
| if (host->ops->card_busy) { |
| *busy = host->ops->card_busy(host); |
| return 0; |
| } |
| |
| err = mmc_send_status(card, &status); |
| if (retry_crc_err && err == -EILSEQ) { |
| *busy = true; |
| return 0; |
| } |
| if (err) |
| return err; |
| |
| switch (busy_cmd) { |
| case MMC_BUSY_CMD6: |
| err = mmc_switch_status_error(card->host, status); |
| break; |
| case MMC_BUSY_ERASE: |
| err = R1_STATUS(status) ? -EIO : 0; |
| break; |
| case MMC_BUSY_HPI: |
| break; |
| default: |
| err = -EINVAL; |
| } |
| |
| if (err) |
| return err; |
| |
| *busy = !mmc_ready_for_data(status); |
| return 0; |
| } |
| |
| static int __mmc_poll_for_busy(struct mmc_card *card, unsigned int timeout_ms, |
| bool send_status, bool retry_crc_err, |
| enum mmc_busy_cmd busy_cmd) |
| { |
| struct mmc_host *host = card->host; |
| int err; |
| unsigned long timeout; |
| unsigned int udelay = 32, udelay_max = 32768; |
| bool expired = false; |
| bool busy = false; |
| |
| /* |
| * In cases when not allowed to poll by using CMD13 or because we aren't |
| * capable of polling by using ->card_busy(), then rely on waiting the |
| * stated timeout to be sufficient. |
| */ |
| if (!send_status && !host->ops->card_busy) { |
| mmc_delay(timeout_ms); |
| return 0; |
| } |
| |
| timeout = jiffies + msecs_to_jiffies(timeout_ms) + 1; |
| do { |
| /* |
| * Due to the possibility of being preempted while polling, |
| * check the expiration time first. |
| */ |
| expired = time_after(jiffies, timeout); |
| |
| err = mmc_busy_status(card, retry_crc_err, busy_cmd, &busy); |
| if (err) |
| return err; |
| |
| /* Timeout if the device still remains busy. */ |
| if (expired && busy) { |
| pr_err("%s: Card stuck being busy! %s\n", |
| mmc_hostname(host), __func__); |
| return -ETIMEDOUT; |
| } |
| |
| /* Throttle the polling rate to avoid hogging the CPU. */ |
| if (busy) { |
| usleep_range(udelay, udelay * 2); |
| if (udelay < udelay_max) |
| udelay *= 2; |
| } |
| } while (busy); |
| |
| return 0; |
| } |
| |
| int mmc_poll_for_busy(struct mmc_card *card, unsigned int timeout_ms, |
| enum mmc_busy_cmd busy_cmd) |
| { |
| return __mmc_poll_for_busy(card, timeout_ms, true, false, busy_cmd); |
| } |
| |
| /** |
| * __mmc_switch - modify EXT_CSD register |
| * @card: the MMC card associated with the data transfer |
| * @set: cmd set values |
| * @index: EXT_CSD register index |
| * @value: value to program into EXT_CSD register |
| * @timeout_ms: timeout (ms) for operation performed by register write, |
| * timeout of zero implies maximum possible timeout |
| * @timing: new timing to change to |
| * @send_status: send status cmd to poll for busy |
| * @retry_crc_err: retry when CRC errors when polling with CMD13 for busy |
| * |
| * Modifies the EXT_CSD register for selected card. |
| */ |
| int __mmc_switch(struct mmc_card *card, u8 set, u8 index, u8 value, |
| unsigned int timeout_ms, unsigned char timing, |
| bool send_status, bool retry_crc_err) |
| { |
| struct mmc_host *host = card->host; |
| int err; |
| struct mmc_command cmd = {}; |
| bool use_r1b_resp = true; |
| unsigned char old_timing = host->ios.timing; |
| |
| mmc_retune_hold(host); |
| |
| if (!timeout_ms) { |
| pr_warn("%s: unspecified timeout for CMD6 - use generic\n", |
| mmc_hostname(host)); |
| timeout_ms = card->ext_csd.generic_cmd6_time; |
| } |
| |
| /* |
| * If the max_busy_timeout of the host is specified, make sure it's |
| * enough to fit the used timeout_ms. In case it's not, let's instruct |
| * the host to avoid HW busy detection, by converting to a R1 response |
| * instead of a R1B. Note, some hosts requires R1B, which also means |
| * they are on their own when it comes to deal with the busy timeout. |
| */ |
| if (!(host->caps & MMC_CAP_NEED_RSP_BUSY) && host->max_busy_timeout && |
| (timeout_ms > host->max_busy_timeout)) |
| use_r1b_resp = false; |
| |
| cmd.opcode = MMC_SWITCH; |
| cmd.arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) | |
| (index << 16) | |
| (value << 8) | |
| set; |
| cmd.flags = MMC_CMD_AC; |
| if (use_r1b_resp) { |
| cmd.flags |= MMC_RSP_SPI_R1B | MMC_RSP_R1B; |
| cmd.busy_timeout = timeout_ms; |
| } else { |
| cmd.flags |= MMC_RSP_SPI_R1 | MMC_RSP_R1; |
| } |
| |
| err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES); |
| if (err) |
| goto out; |
| |
| /*If SPI or used HW busy detection above, then we don't need to poll. */ |
| if (((host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp) || |
| mmc_host_is_spi(host)) |
| goto out_tim; |
| |
| /* Let's try to poll to find out when the command is completed. */ |
| err = __mmc_poll_for_busy(card, timeout_ms, send_status, retry_crc_err, |
| MMC_BUSY_CMD6); |
| if (err) |
| goto out; |
| |
| out_tim: |
| /* Switch to new timing before check switch status. */ |
| if (timing) |
| mmc_set_timing(host, timing); |
| |
| if (send_status) { |
| err = mmc_switch_status(card, true); |
| if (err && timing) |
| mmc_set_timing(host, old_timing); |
| } |
| out: |
| mmc_retune_release(host); |
| |
| return err; |
| } |
| |
| int mmc_switch(struct mmc_card *card, u8 set, u8 index, u8 value, |
| unsigned int timeout_ms) |
| { |
| return __mmc_switch(card, set, index, value, timeout_ms, 0, |
| true, false); |
| } |
| EXPORT_SYMBOL_GPL(mmc_switch); |
| |
| int mmc_send_tuning(struct mmc_host *host, u32 opcode, int *cmd_error) |
| { |
| struct mmc_request mrq = {}; |
| struct mmc_command cmd = {}; |
| struct mmc_data data = {}; |
| struct scatterlist sg; |
| struct mmc_ios *ios = &host->ios; |
| const u8 *tuning_block_pattern; |
| int size, err = 0; |
| u8 *data_buf; |
| |
| if (ios->bus_width == MMC_BUS_WIDTH_8) { |
| tuning_block_pattern = tuning_blk_pattern_8bit; |
| size = sizeof(tuning_blk_pattern_8bit); |
| } else if (ios->bus_width == MMC_BUS_WIDTH_4) { |
| tuning_block_pattern = tuning_blk_pattern_4bit; |
| size = sizeof(tuning_blk_pattern_4bit); |
| } else |
| return -EINVAL; |
| |
| data_buf = kzalloc(size, GFP_KERNEL); |
| if (!data_buf) |
| return -ENOMEM; |
| |
| mrq.cmd = &cmd; |
| mrq.data = &data; |
| |
| cmd.opcode = opcode; |
| cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC; |
| |
| data.blksz = size; |
| data.blocks = 1; |
| data.flags = MMC_DATA_READ; |
| |
| /* |
| * According to the tuning specs, Tuning process |
| * is normally shorter 40 executions of CMD19, |
| * and timeout value should be shorter than 150 ms |
| */ |
| data.timeout_ns = 150 * NSEC_PER_MSEC; |
| |
| data.sg = &sg; |
| data.sg_len = 1; |
| sg_init_one(&sg, data_buf, size); |
| |
| mmc_wait_for_req(host, &mrq); |
| |
| if (cmd_error) |
| *cmd_error = cmd.error; |
| |
| if (cmd.error) { |
| err = cmd.error; |
| goto out; |
| } |
| |
| if (data.error) { |
| err = data.error; |
| goto out; |
| } |
| |
| if (memcmp(data_buf, tuning_block_pattern, size)) |
| err = -EIO; |
| |
| out: |
| kfree(data_buf); |
| return err; |
| } |
| EXPORT_SYMBOL_GPL(mmc_send_tuning); |
| |
| int mmc_abort_tuning(struct mmc_host *host, u32 opcode) |
| { |
| struct mmc_command cmd = {}; |
| |
| /* |
| * eMMC specification specifies that CMD12 can be used to stop a tuning |
| * command, but SD specification does not, so do nothing unless it is |
| * eMMC. |
| */ |
| if (opcode != MMC_SEND_TUNING_BLOCK_HS200) |
| return 0; |
| |
| cmd.opcode = MMC_STOP_TRANSMISSION; |
| cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; |
| |
| /* |
| * For drivers that override R1 to R1b, set an arbitrary timeout based |
| * on the tuning timeout i.e. 150ms. |
| */ |
| cmd.busy_timeout = 150; |
| |
| return mmc_wait_for_cmd(host, &cmd, 0); |
| } |
| EXPORT_SYMBOL_GPL(mmc_abort_tuning); |
| |
| static int |
| mmc_send_bus_test(struct mmc_card *card, struct mmc_host *host, u8 opcode, |
| u8 len) |
| { |
| struct mmc_request mrq = {}; |
| struct mmc_command cmd = {}; |
| struct mmc_data data = {}; |
| struct scatterlist sg; |
| u8 *data_buf; |
| u8 *test_buf; |
| int i, err; |
| static u8 testdata_8bit[8] = { 0x55, 0xaa, 0, 0, 0, 0, 0, 0 }; |
| static u8 testdata_4bit[4] = { 0x5a, 0, 0, 0 }; |
| |
| /* dma onto stack is unsafe/nonportable, but callers to this |
| * routine normally provide temporary on-stack buffers ... |
| */ |
| data_buf = kmalloc(len, GFP_KERNEL); |
| if (!data_buf) |
| return -ENOMEM; |
| |
| if (len == 8) |
| test_buf = testdata_8bit; |
| else if (len == 4) |
| test_buf = testdata_4bit; |
| else { |
| pr_err("%s: Invalid bus_width %d\n", |
| mmc_hostname(host), len); |
| kfree(data_buf); |
| return -EINVAL; |
| } |
| |
| if (opcode == MMC_BUS_TEST_W) |
| memcpy(data_buf, test_buf, len); |
| |
| mrq.cmd = &cmd; |
| mrq.data = &data; |
| cmd.opcode = opcode; |
| cmd.arg = 0; |
| |
| /* NOTE HACK: the MMC_RSP_SPI_R1 is always correct here, but we |
| * rely on callers to never use this with "native" calls for reading |
| * CSD or CID. Native versions of those commands use the R2 type, |
| * not R1 plus a data block. |
| */ |
| cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; |
| |
| data.blksz = len; |
| data.blocks = 1; |
| if (opcode == MMC_BUS_TEST_R) |
| data.flags = MMC_DATA_READ; |
| else |
| data.flags = MMC_DATA_WRITE; |
| |
| data.sg = &sg; |
| data.sg_len = 1; |
| mmc_set_data_timeout(&data, card); |
| sg_init_one(&sg, data_buf, len); |
| mmc_wait_for_req(host, &mrq); |
| err = 0; |
| if (opcode == MMC_BUS_TEST_R) { |
| for (i = 0; i < len / 4; i++) |
| if ((test_buf[i] ^ data_buf[i]) != 0xff) { |
| err = -EIO; |
| break; |
| } |
| } |
| kfree(data_buf); |
| |
| if (cmd.error) |
| return cmd.error; |
| if (data.error) |
| return data.error; |
| |
| return err; |
| } |
| |
| int mmc_bus_test(struct mmc_card *card, u8 bus_width) |
| { |
| int width; |
| |
| if (bus_width == MMC_BUS_WIDTH_8) |
| width = 8; |
| else if (bus_width == MMC_BUS_WIDTH_4) |
| width = 4; |
| else if (bus_width == MMC_BUS_WIDTH_1) |
| return 0; /* no need for test */ |
| else |
| return -EINVAL; |
| |
| /* |
| * Ignore errors from BUS_TEST_W. BUS_TEST_R will fail if there |
| * is a problem. This improves chances that the test will work. |
| */ |
| mmc_send_bus_test(card, card->host, MMC_BUS_TEST_W, width); |
| return mmc_send_bus_test(card, card->host, MMC_BUS_TEST_R, width); |
| } |
| |
| static int mmc_send_hpi_cmd(struct mmc_card *card) |
| { |
| unsigned int busy_timeout_ms = card->ext_csd.out_of_int_time; |
| struct mmc_host *host = card->host; |
| bool use_r1b_resp = true; |
| struct mmc_command cmd = {}; |
| int err; |
| |
| cmd.opcode = card->ext_csd.hpi_cmd; |
| cmd.arg = card->rca << 16 | 1; |
| |
| /* |
| * Make sure the host's max_busy_timeout fit the needed timeout for HPI. |
| * In case it doesn't, let's instruct the host to avoid HW busy |
| * detection, by using a R1 response instead of R1B. |
| */ |
| if (host->max_busy_timeout && busy_timeout_ms > host->max_busy_timeout) |
| use_r1b_resp = false; |
| |
| if (cmd.opcode == MMC_STOP_TRANSMISSION && use_r1b_resp) { |
| cmd.flags = MMC_RSP_R1B | MMC_CMD_AC; |
| cmd.busy_timeout = busy_timeout_ms; |
| } else { |
| cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; |
| use_r1b_resp = false; |
| } |
| |
| err = mmc_wait_for_cmd(host, &cmd, 0); |
| if (err) { |
| pr_warn("%s: HPI error %d. Command response %#x\n", |
| mmc_hostname(host), err, cmd.resp[0]); |
| return err; |
| } |
| |
| /* No need to poll when using HW busy detection. */ |
| if (host->caps & MMC_CAP_WAIT_WHILE_BUSY && use_r1b_resp) |
| return 0; |
| |
| /* Let's poll to find out when the HPI request completes. */ |
| return mmc_poll_for_busy(card, busy_timeout_ms, MMC_BUSY_HPI); |
| } |
| |
| /** |
| * mmc_interrupt_hpi - Issue for High priority Interrupt |
| * @card: the MMC card associated with the HPI transfer |
| * |
| * Issued High Priority Interrupt, and check for card status |
| * until out-of prg-state. |
| */ |
| int mmc_interrupt_hpi(struct mmc_card *card) |
| { |
| int err; |
| u32 status; |
| |
| if (!card->ext_csd.hpi_en) { |
| pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host)); |
| return 1; |
| } |
| |
| err = mmc_send_status(card, &status); |
| if (err) { |
| pr_err("%s: Get card status fail\n", mmc_hostname(card->host)); |
| goto out; |
| } |
| |
| switch (R1_CURRENT_STATE(status)) { |
| case R1_STATE_IDLE: |
| case R1_STATE_READY: |
| case R1_STATE_STBY: |
| case R1_STATE_TRAN: |
| /* |
| * In idle and transfer states, HPI is not needed and the caller |
| * can issue the next intended command immediately |
| */ |
| goto out; |
| case R1_STATE_PRG: |
| break; |
| default: |
| /* In all other states, it's illegal to issue HPI */ |
| pr_debug("%s: HPI cannot be sent. Card state=%d\n", |
| mmc_hostname(card->host), R1_CURRENT_STATE(status)); |
| err = -EINVAL; |
| goto out; |
| } |
| |
| err = mmc_send_hpi_cmd(card); |
| out: |
| return err; |
| } |
| |
| int mmc_can_ext_csd(struct mmc_card *card) |
| { |
| return (card && card->csd.mmca_vsn > CSD_SPEC_VER_3); |
| } |
| |
| static int mmc_read_bkops_status(struct mmc_card *card) |
| { |
| int err; |
| u8 *ext_csd; |
| |
| err = mmc_get_ext_csd(card, &ext_csd); |
| if (err) |
| return err; |
| |
| card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS]; |
| card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS]; |
| kfree(ext_csd); |
| return 0; |
| } |
| |
| /** |
| * mmc_run_bkops - Run BKOPS for supported cards |
| * @card: MMC card to run BKOPS for |
| * |
| * Run background operations synchronously for cards having manual BKOPS |
| * enabled and in case it reports urgent BKOPS level. |
| */ |
| void mmc_run_bkops(struct mmc_card *card) |
| { |
| int err; |
| |
| if (!card->ext_csd.man_bkops_en) |
| return; |
| |
| err = mmc_read_bkops_status(card); |
| if (err) { |
| pr_err("%s: Failed to read bkops status: %d\n", |
| mmc_hostname(card->host), err); |
| return; |
| } |
| |
| if (!card->ext_csd.raw_bkops_status || |
| card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2) |
| return; |
| |
| mmc_retune_hold(card->host); |
| |
| /* |
| * For urgent BKOPS status, LEVEL_2 and higher, let's execute |
| * synchronously. Future wise, we may consider to start BKOPS, for less |
| * urgent levels by using an asynchronous background task, when idle. |
| */ |
| err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, |
| EXT_CSD_BKOPS_START, 1, MMC_BKOPS_TIMEOUT_MS); |
| if (err) |
| pr_warn("%s: Error %d starting bkops\n", |
| mmc_hostname(card->host), err); |
| |
| mmc_retune_release(card->host); |
| } |
| EXPORT_SYMBOL(mmc_run_bkops); |
| |
| /* |
| * Flush the cache to the non-volatile storage. |
| */ |
| int mmc_flush_cache(struct mmc_card *card) |
| { |
| int err = 0; |
| |
| if (mmc_card_mmc(card) && |
| (card->ext_csd.cache_size > 0) && |
| (card->ext_csd.cache_ctrl & 1)) { |
| err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, |
| EXT_CSD_FLUSH_CACHE, 1, |
| MMC_CACHE_FLUSH_TIMEOUT_MS); |
| if (err) |
| pr_err("%s: cache flush error %d\n", |
| mmc_hostname(card->host), err); |
| } |
| |
| return err; |
| } |
| EXPORT_SYMBOL(mmc_flush_cache); |
| |
| static int mmc_cmdq_switch(struct mmc_card *card, bool enable) |
| { |
| u8 val = enable ? EXT_CSD_CMDQ_MODE_ENABLED : 0; |
| int err; |
| |
| if (!card->ext_csd.cmdq_support) |
| return -EOPNOTSUPP; |
| |
| err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_CMDQ_MODE_EN, |
| val, card->ext_csd.generic_cmd6_time); |
| if (!err) |
| card->ext_csd.cmdq_en = enable; |
| |
| return err; |
| } |
| |
| int mmc_cmdq_enable(struct mmc_card *card) |
| { |
| return mmc_cmdq_switch(card, true); |
| } |
| EXPORT_SYMBOL_GPL(mmc_cmdq_enable); |
| |
| int mmc_cmdq_disable(struct mmc_card *card) |
| { |
| return mmc_cmdq_switch(card, false); |
| } |
| EXPORT_SYMBOL_GPL(mmc_cmdq_disable); |
| |
| int mmc_sanitize(struct mmc_card *card) |
| { |
| struct mmc_host *host = card->host; |
| int err; |
| |
| if (!mmc_can_sanitize(card)) { |
| pr_warn("%s: Sanitize not supported\n", mmc_hostname(host)); |
| return -EOPNOTSUPP; |
| } |
| |
| pr_debug("%s: Sanitize in progress...\n", mmc_hostname(host)); |
| |
| mmc_retune_hold(host); |
| |
| err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_SANITIZE_START, |
| 1, MMC_SANITIZE_TIMEOUT_MS); |
| if (err) |
| pr_err("%s: Sanitize failed err=%d\n", mmc_hostname(host), err); |
| |
| /* |
| * If the sanitize operation timed out, the card is probably still busy |
| * in the R1_STATE_PRG. Rather than continue to wait, let's try to abort |
| * it with a HPI command to get back into R1_STATE_TRAN. |
| */ |
| if (err == -ETIMEDOUT && !mmc_interrupt_hpi(card)) |
| pr_warn("%s: Sanitize aborted\n", mmc_hostname(host)); |
| |
| mmc_retune_release(host); |
| |
| pr_debug("%s: Sanitize completed\n", mmc_hostname(host)); |
| return err; |
| } |
| EXPORT_SYMBOL_GPL(mmc_sanitize); |