| /* |
| * This file contains an ECC algorithm from Toshiba that detects and |
| * corrects 1 bit errors in a 256 byte block of data. |
| * |
| * drivers/mtd/nand/nand_ecc.c |
| * |
| * Copyright (C) 2000-2004 Steven J. Hill (sjhill@realitydiluted.com) |
| * Toshiba America Electronics Components, Inc. |
| * |
| * Copyright (C) 2006 Thomas Gleixner <tglx@linutronix.de> |
| * |
| * $Id: nand_ecc.c,v 1.15 2005/11/07 11:14:30 gleixner Exp $ |
| * |
| * This file is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License as published by the |
| * Free Software Foundation; either version 2 or (at your option) any |
| * later version. |
| * |
| * This file is distributed in the hope that it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| * for more details. |
| * |
| * You should have received a copy of the GNU General Public License along |
| * with this file; if not, write to the Free Software Foundation, Inc., |
| * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. |
| * |
| * As a special exception, if other files instantiate templates or use |
| * macros or inline functions from these files, or you compile these |
| * files and link them with other works to produce a work based on these |
| * files, these files do not by themselves cause the resulting work to be |
| * covered by the GNU General Public License. However the source code for |
| * these files must still be made available in accordance with section (3) |
| * of the GNU General Public License. |
| * |
| * This exception does not invalidate any other reasons why a work based on |
| * this file might be covered by the GNU General Public License. |
| */ |
| |
| #include <linux/types.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/mtd/nand_ecc.h> |
| |
| /* |
| * Pre-calculated 256-way 1 byte column parity |
| */ |
| static const u_char nand_ecc_precalc_table[] = { |
| 0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00, |
| 0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65, |
| 0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66, |
| 0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03, |
| 0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69, |
| 0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c, |
| 0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f, |
| 0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a, |
| 0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a, |
| 0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f, |
| 0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c, |
| 0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69, |
| 0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03, |
| 0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66, |
| 0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65, |
| 0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00 |
| }; |
| |
| /** |
| * nand_calculate_ecc - [NAND Interface] Calculate 3-byte ECC for 256-byte block |
| * @mtd: MTD block structure |
| * @dat: raw data |
| * @ecc_code: buffer for ECC |
| */ |
| int nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, |
| u_char *ecc_code) |
| { |
| uint8_t idx, reg1, reg2, reg3, tmp1, tmp2; |
| int i; |
| |
| /* Initialize variables */ |
| reg1 = reg2 = reg3 = 0; |
| |
| /* Build up column parity */ |
| for(i = 0; i < 256; i++) { |
| /* Get CP0 - CP5 from table */ |
| idx = nand_ecc_precalc_table[*dat++]; |
| reg1 ^= (idx & 0x3f); |
| |
| /* All bit XOR = 1 ? */ |
| if (idx & 0x40) { |
| reg3 ^= (uint8_t) i; |
| reg2 ^= ~((uint8_t) i); |
| } |
| } |
| |
| /* Create non-inverted ECC code from line parity */ |
| tmp1 = (reg3 & 0x80) >> 0; /* B7 -> B7 */ |
| tmp1 |= (reg2 & 0x80) >> 1; /* B7 -> B6 */ |
| tmp1 |= (reg3 & 0x40) >> 1; /* B6 -> B5 */ |
| tmp1 |= (reg2 & 0x40) >> 2; /* B6 -> B4 */ |
| tmp1 |= (reg3 & 0x20) >> 2; /* B5 -> B3 */ |
| tmp1 |= (reg2 & 0x20) >> 3; /* B5 -> B2 */ |
| tmp1 |= (reg3 & 0x10) >> 3; /* B4 -> B1 */ |
| tmp1 |= (reg2 & 0x10) >> 4; /* B4 -> B0 */ |
| |
| tmp2 = (reg3 & 0x08) << 4; /* B3 -> B7 */ |
| tmp2 |= (reg2 & 0x08) << 3; /* B3 -> B6 */ |
| tmp2 |= (reg3 & 0x04) << 3; /* B2 -> B5 */ |
| tmp2 |= (reg2 & 0x04) << 2; /* B2 -> B4 */ |
| tmp2 |= (reg3 & 0x02) << 2; /* B1 -> B3 */ |
| tmp2 |= (reg2 & 0x02) << 1; /* B1 -> B2 */ |
| tmp2 |= (reg3 & 0x01) << 1; /* B0 -> B1 */ |
| tmp2 |= (reg2 & 0x01) << 0; /* B7 -> B0 */ |
| |
| /* Calculate final ECC code */ |
| #ifdef CONFIG_MTD_NAND_ECC_SMC |
| ecc_code[0] = ~tmp2; |
| ecc_code[1] = ~tmp1; |
| #else |
| ecc_code[0] = ~tmp1; |
| ecc_code[1] = ~tmp2; |
| #endif |
| ecc_code[2] = ((~reg1) << 2) | 0x03; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(nand_calculate_ecc); |
| |
| static inline int countbits(uint32_t byte) |
| { |
| int res = 0; |
| |
| for (;byte; byte >>= 1) |
| res += byte & 0x01; |
| return res; |
| } |
| |
| /** |
| * nand_correct_data - [NAND Interface] Detect and correct bit error(s) |
| * @mtd: MTD block structure |
| * @dat: raw data read from the chip |
| * @read_ecc: ECC from the chip |
| * @calc_ecc: the ECC calculated from raw data |
| * |
| * Detect and correct a 1 bit error for 256 byte block |
| */ |
| int nand_correct_data(struct mtd_info *mtd, u_char *dat, |
| u_char *read_ecc, u_char *calc_ecc) |
| { |
| uint8_t s0, s1, s2; |
| |
| #ifdef CONFIG_MTD_NAND_ECC_SMC |
| s0 = calc_ecc[0] ^ read_ecc[0]; |
| s1 = calc_ecc[1] ^ read_ecc[1]; |
| s2 = calc_ecc[2] ^ read_ecc[2]; |
| #else |
| s1 = calc_ecc[0] ^ read_ecc[0]; |
| s0 = calc_ecc[1] ^ read_ecc[1]; |
| s2 = calc_ecc[2] ^ read_ecc[2]; |
| #endif |
| if ((s0 | s1 | s2) == 0) |
| return 0; |
| |
| /* Check for a single bit error */ |
| if( ((s0 ^ (s0 >> 1)) & 0x55) == 0x55 && |
| ((s1 ^ (s1 >> 1)) & 0x55) == 0x55 && |
| ((s2 ^ (s2 >> 1)) & 0x54) == 0x54) { |
| |
| uint32_t byteoffs, bitnum; |
| |
| byteoffs = (s1 << 0) & 0x80; |
| byteoffs |= (s1 << 1) & 0x40; |
| byteoffs |= (s1 << 2) & 0x20; |
| byteoffs |= (s1 << 3) & 0x10; |
| |
| byteoffs |= (s0 >> 4) & 0x08; |
| byteoffs |= (s0 >> 3) & 0x04; |
| byteoffs |= (s0 >> 2) & 0x02; |
| byteoffs |= (s0 >> 1) & 0x01; |
| |
| bitnum = (s2 >> 5) & 0x04; |
| bitnum |= (s2 >> 4) & 0x02; |
| bitnum |= (s2 >> 3) & 0x01; |
| |
| dat[byteoffs] ^= (1 << bitnum); |
| |
| return 1; |
| } |
| |
| if(countbits(s0 | ((uint32_t)s1 << 8) | ((uint32_t)s2 <<16)) == 1) |
| return 1; |
| |
| return -1; |
| } |
| EXPORT_SYMBOL(nand_correct_data); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>"); |
| MODULE_DESCRIPTION("Generic NAND ECC support"); |