| /* |
| * rotary_encoder.c |
| * |
| * (c) 2009 Daniel Mack <daniel@caiaq.de> |
| * Copyright (C) 2011 Johan Hovold <jhovold@gmail.com> |
| * |
| * state machine code inspired by code from Tim Ruetz |
| * |
| * A generic driver for rotary encoders connected to GPIO lines. |
| * See file:Documentation/input/rotary-encoder.txt for more information |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/interrupt.h> |
| #include <linux/input.h> |
| #include <linux/device.h> |
| #include <linux/platform_device.h> |
| #include <linux/gpio.h> |
| #include <linux/rotary_encoder.h> |
| #include <linux/slab.h> |
| #include <linux/of.h> |
| #include <linux/of_platform.h> |
| #include <linux/of_gpio.h> |
| #include <linux/pm.h> |
| |
| #define DRV_NAME "rotary-encoder" |
| |
| struct rotary_encoder { |
| struct input_dev *input; |
| const struct rotary_encoder_platform_data *pdata; |
| |
| unsigned int axis; |
| unsigned int pos; |
| |
| unsigned int irq_a; |
| unsigned int irq_b; |
| |
| bool armed; |
| unsigned char dir; /* 0 - clockwise, 1 - CCW */ |
| |
| char last_stable; |
| }; |
| |
| static int rotary_encoder_get_state(const struct rotary_encoder_platform_data *pdata) |
| { |
| int a = !!gpio_get_value(pdata->gpio_a); |
| int b = !!gpio_get_value(pdata->gpio_b); |
| |
| a ^= pdata->inverted_a; |
| b ^= pdata->inverted_b; |
| |
| return ((a << 1) | b); |
| } |
| |
| static void rotary_encoder_report_event(struct rotary_encoder *encoder) |
| { |
| const struct rotary_encoder_platform_data *pdata = encoder->pdata; |
| |
| if (pdata->relative_axis) { |
| input_report_rel(encoder->input, |
| pdata->axis, encoder->dir ? -1 : 1); |
| } else { |
| unsigned int pos = encoder->pos; |
| |
| if (encoder->dir) { |
| /* turning counter-clockwise */ |
| if (pdata->rollover) |
| pos += pdata->steps; |
| if (pos) |
| pos--; |
| } else { |
| /* turning clockwise */ |
| if (pdata->rollover || pos < pdata->steps) |
| pos++; |
| } |
| |
| if (pdata->rollover) |
| pos %= pdata->steps; |
| |
| encoder->pos = pos; |
| input_report_abs(encoder->input, pdata->axis, encoder->pos); |
| } |
| |
| input_sync(encoder->input); |
| } |
| |
| static irqreturn_t rotary_encoder_irq(int irq, void *dev_id) |
| { |
| struct rotary_encoder *encoder = dev_id; |
| int state; |
| |
| state = rotary_encoder_get_state(encoder->pdata); |
| |
| switch (state) { |
| case 0x0: |
| if (encoder->armed) { |
| rotary_encoder_report_event(encoder); |
| encoder->armed = false; |
| } |
| break; |
| |
| case 0x1: |
| case 0x2: |
| if (encoder->armed) |
| encoder->dir = state - 1; |
| break; |
| |
| case 0x3: |
| encoder->armed = true; |
| break; |
| } |
| |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t rotary_encoder_half_period_irq(int irq, void *dev_id) |
| { |
| struct rotary_encoder *encoder = dev_id; |
| int state; |
| |
| state = rotary_encoder_get_state(encoder->pdata); |
| |
| switch (state) { |
| case 0x00: |
| case 0x03: |
| if (state != encoder->last_stable) { |
| rotary_encoder_report_event(encoder); |
| encoder->last_stable = state; |
| } |
| break; |
| |
| case 0x01: |
| case 0x02: |
| encoder->dir = (encoder->last_stable + state) & 0x01; |
| break; |
| } |
| |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t rotary_encoder_quarter_period_irq(int irq, void *dev_id) |
| { |
| struct rotary_encoder *encoder = dev_id; |
| unsigned char sum; |
| int state; |
| |
| state = rotary_encoder_get_state(encoder->pdata); |
| |
| /* |
| * We encode the previous and the current state using a byte. |
| * The previous state in the MSB nibble, the current state in the LSB |
| * nibble. Then use a table to decide the direction of the turn. |
| */ |
| sum = (encoder->last_stable << 4) + state; |
| switch (sum) { |
| case 0x31: |
| case 0x10: |
| case 0x02: |
| case 0x23: |
| encoder->dir = 0; /* clockwise */ |
| break; |
| |
| case 0x13: |
| case 0x01: |
| case 0x20: |
| case 0x32: |
| encoder->dir = 1; /* counter-clockwise */ |
| break; |
| |
| default: |
| /* |
| * Ignore all other values. This covers the case when the |
| * state didn't change (a spurious interrupt) and the |
| * cases where the state changed by two steps, making it |
| * impossible to tell the direction. |
| * |
| * In either case, don't report any event and save the |
| * state for later. |
| */ |
| goto out; |
| } |
| |
| rotary_encoder_report_event(encoder); |
| |
| out: |
| encoder->last_stable = state; |
| return IRQ_HANDLED; |
| } |
| |
| #ifdef CONFIG_OF |
| static const struct of_device_id rotary_encoder_of_match[] = { |
| { .compatible = "rotary-encoder", }, |
| { }, |
| }; |
| MODULE_DEVICE_TABLE(of, rotary_encoder_of_match); |
| |
| static struct rotary_encoder_platform_data *rotary_encoder_parse_dt(struct device *dev) |
| { |
| const struct of_device_id *of_id = |
| of_match_device(rotary_encoder_of_match, dev); |
| struct device_node *np = dev->of_node; |
| struct rotary_encoder_platform_data *pdata; |
| enum of_gpio_flags flags; |
| int error; |
| |
| if (!of_id || !np) |
| return NULL; |
| |
| pdata = kzalloc(sizeof(struct rotary_encoder_platform_data), |
| GFP_KERNEL); |
| if (!pdata) |
| return ERR_PTR(-ENOMEM); |
| |
| of_property_read_u32(np, "rotary-encoder,steps", &pdata->steps); |
| of_property_read_u32(np, "linux,axis", &pdata->axis); |
| |
| pdata->gpio_a = of_get_gpio_flags(np, 0, &flags); |
| pdata->inverted_a = flags & OF_GPIO_ACTIVE_LOW; |
| |
| pdata->gpio_b = of_get_gpio_flags(np, 1, &flags); |
| pdata->inverted_b = flags & OF_GPIO_ACTIVE_LOW; |
| |
| pdata->relative_axis = |
| of_property_read_bool(np, "rotary-encoder,relative-axis"); |
| pdata->rollover = of_property_read_bool(np, "rotary-encoder,rollover"); |
| |
| error = of_property_read_u32(np, "rotary-encoder,steps-per-period", |
| &pdata->steps_per_period); |
| if (error) { |
| /* |
| * The 'half-period' property has been deprecated, you must use |
| * 'steps-per-period' and set an appropriate value, but we still |
| * need to parse it to maintain compatibility. |
| */ |
| if (of_property_read_bool(np, "rotary-encoder,half-period")) { |
| pdata->steps_per_period = 2; |
| } else { |
| /* Fallback to one step per period behavior */ |
| pdata->steps_per_period = 1; |
| } |
| } |
| |
| pdata->wakeup_source = of_property_read_bool(np, "wakeup-source"); |
| |
| return pdata; |
| } |
| #else |
| static inline struct rotary_encoder_platform_data * |
| rotary_encoder_parse_dt(struct device *dev) |
| { |
| return NULL; |
| } |
| #endif |
| |
| static int rotary_encoder_probe(struct platform_device *pdev) |
| { |
| struct device *dev = &pdev->dev; |
| const struct rotary_encoder_platform_data *pdata = dev_get_platdata(dev); |
| struct rotary_encoder *encoder; |
| struct input_dev *input; |
| irq_handler_t handler; |
| int err; |
| |
| if (!pdata) { |
| pdata = rotary_encoder_parse_dt(dev); |
| if (IS_ERR(pdata)) |
| return PTR_ERR(pdata); |
| |
| if (!pdata) { |
| dev_err(dev, "missing platform data\n"); |
| return -EINVAL; |
| } |
| } |
| |
| encoder = kzalloc(sizeof(struct rotary_encoder), GFP_KERNEL); |
| input = input_allocate_device(); |
| if (!encoder || !input) { |
| err = -ENOMEM; |
| goto exit_free_mem; |
| } |
| |
| encoder->input = input; |
| encoder->pdata = pdata; |
| |
| input->name = pdev->name; |
| input->id.bustype = BUS_HOST; |
| input->dev.parent = dev; |
| |
| if (pdata->relative_axis) { |
| input->evbit[0] = BIT_MASK(EV_REL); |
| input->relbit[0] = BIT_MASK(pdata->axis); |
| } else { |
| input->evbit[0] = BIT_MASK(EV_ABS); |
| input_set_abs_params(encoder->input, |
| pdata->axis, 0, pdata->steps, 0, 1); |
| } |
| |
| /* request the GPIOs */ |
| err = gpio_request_one(pdata->gpio_a, GPIOF_IN, dev_name(dev)); |
| if (err) { |
| dev_err(dev, "unable to request GPIO %d\n", pdata->gpio_a); |
| goto exit_free_mem; |
| } |
| |
| err = gpio_request_one(pdata->gpio_b, GPIOF_IN, dev_name(dev)); |
| if (err) { |
| dev_err(dev, "unable to request GPIO %d\n", pdata->gpio_b); |
| goto exit_free_gpio_a; |
| } |
| |
| encoder->irq_a = gpio_to_irq(pdata->gpio_a); |
| encoder->irq_b = gpio_to_irq(pdata->gpio_b); |
| |
| switch (pdata->steps_per_period) { |
| case 4: |
| handler = &rotary_encoder_quarter_period_irq; |
| encoder->last_stable = rotary_encoder_get_state(pdata); |
| break; |
| case 2: |
| handler = &rotary_encoder_half_period_irq; |
| encoder->last_stable = rotary_encoder_get_state(pdata); |
| break; |
| case 1: |
| handler = &rotary_encoder_irq; |
| break; |
| default: |
| dev_err(dev, "'%d' is not a valid steps-per-period value\n", |
| pdata->steps_per_period); |
| err = -EINVAL; |
| goto exit_free_gpio_b; |
| } |
| |
| err = request_irq(encoder->irq_a, handler, |
| IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING, |
| DRV_NAME, encoder); |
| if (err) { |
| dev_err(dev, "unable to request IRQ %d\n", encoder->irq_a); |
| goto exit_free_gpio_b; |
| } |
| |
| err = request_irq(encoder->irq_b, handler, |
| IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING, |
| DRV_NAME, encoder); |
| if (err) { |
| dev_err(dev, "unable to request IRQ %d\n", encoder->irq_b); |
| goto exit_free_irq_a; |
| } |
| |
| err = input_register_device(input); |
| if (err) { |
| dev_err(dev, "failed to register input device\n"); |
| goto exit_free_irq_b; |
| } |
| |
| device_init_wakeup(&pdev->dev, pdata->wakeup_source); |
| |
| platform_set_drvdata(pdev, encoder); |
| |
| return 0; |
| |
| exit_free_irq_b: |
| free_irq(encoder->irq_b, encoder); |
| exit_free_irq_a: |
| free_irq(encoder->irq_a, encoder); |
| exit_free_gpio_b: |
| gpio_free(pdata->gpio_b); |
| exit_free_gpio_a: |
| gpio_free(pdata->gpio_a); |
| exit_free_mem: |
| input_free_device(input); |
| kfree(encoder); |
| if (!dev_get_platdata(&pdev->dev)) |
| kfree(pdata); |
| |
| return err; |
| } |
| |
| static int rotary_encoder_remove(struct platform_device *pdev) |
| { |
| struct rotary_encoder *encoder = platform_get_drvdata(pdev); |
| const struct rotary_encoder_platform_data *pdata = encoder->pdata; |
| |
| device_init_wakeup(&pdev->dev, false); |
| |
| free_irq(encoder->irq_a, encoder); |
| free_irq(encoder->irq_b, encoder); |
| gpio_free(pdata->gpio_a); |
| gpio_free(pdata->gpio_b); |
| |
| input_unregister_device(encoder->input); |
| kfree(encoder); |
| |
| if (!dev_get_platdata(&pdev->dev)) |
| kfree(pdata); |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_PM_SLEEP |
| static int rotary_encoder_suspend(struct device *dev) |
| { |
| struct rotary_encoder *encoder = dev_get_drvdata(dev); |
| |
| if (device_may_wakeup(dev)) { |
| enable_irq_wake(encoder->irq_a); |
| enable_irq_wake(encoder->irq_b); |
| } |
| |
| return 0; |
| } |
| |
| static int rotary_encoder_resume(struct device *dev) |
| { |
| struct rotary_encoder *encoder = dev_get_drvdata(dev); |
| |
| if (device_may_wakeup(dev)) { |
| disable_irq_wake(encoder->irq_a); |
| disable_irq_wake(encoder->irq_b); |
| } |
| |
| return 0; |
| } |
| #endif |
| |
| static SIMPLE_DEV_PM_OPS(rotary_encoder_pm_ops, |
| rotary_encoder_suspend, rotary_encoder_resume); |
| |
| static struct platform_driver rotary_encoder_driver = { |
| .probe = rotary_encoder_probe, |
| .remove = rotary_encoder_remove, |
| .driver = { |
| .name = DRV_NAME, |
| .pm = &rotary_encoder_pm_ops, |
| .of_match_table = of_match_ptr(rotary_encoder_of_match), |
| } |
| }; |
| module_platform_driver(rotary_encoder_driver); |
| |
| MODULE_ALIAS("platform:" DRV_NAME); |
| MODULE_DESCRIPTION("GPIO rotary encoder driver"); |
| MODULE_AUTHOR("Daniel Mack <daniel@caiaq.de>, Johan Hovold"); |
| MODULE_LICENSE("GPL v2"); |