| /* |
| * Common Flash Interface support: |
| * Intel Extended Vendor Command Set (ID 0x0001) |
| * |
| * (C) 2000 Red Hat. GPL'd |
| * |
| * |
| * 10/10/2000 Nicolas Pitre <nico@fluxnic.net> |
| * - completely revamped method functions so they are aware and |
| * independent of the flash geometry (buswidth, interleave, etc.) |
| * - scalability vs code size is completely set at compile-time |
| * (see include/linux/mtd/cfi.h for selection) |
| * - optimized write buffer method |
| * 02/05/2002 Christopher Hoover <ch@hpl.hp.com>/<ch@murgatroid.com> |
| * - reworked lock/unlock/erase support for var size flash |
| * 21/03/2007 Rodolfo Giometti <giometti@linux.it> |
| * - auto unlock sectors on resume for auto locking flash on power up |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/types.h> |
| #include <linux/kernel.h> |
| #include <linux/sched.h> |
| #include <asm/io.h> |
| #include <asm/byteorder.h> |
| |
| #include <linux/errno.h> |
| #include <linux/slab.h> |
| #include <linux/delay.h> |
| #include <linux/interrupt.h> |
| #include <linux/reboot.h> |
| #include <linux/bitmap.h> |
| #include <linux/mtd/xip.h> |
| #include <linux/mtd/map.h> |
| #include <linux/mtd/mtd.h> |
| #include <linux/mtd/cfi.h> |
| |
| /* #define CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE */ |
| /* #define CMDSET0001_DISABLE_WRITE_SUSPEND */ |
| |
| // debugging, turns off buffer write mode if set to 1 |
| #define FORCE_WORD_WRITE 0 |
| |
| /* Intel chips */ |
| #define I82802AB 0x00ad |
| #define I82802AC 0x00ac |
| #define PF38F4476 0x881c |
| /* STMicroelectronics chips */ |
| #define M50LPW080 0x002F |
| #define M50FLW080A 0x0080 |
| #define M50FLW080B 0x0081 |
| /* Atmel chips */ |
| #define AT49BV640D 0x02de |
| #define AT49BV640DT 0x02db |
| /* Sharp chips */ |
| #define LH28F640BFHE_PTTL90 0x00b0 |
| #define LH28F640BFHE_PBTL90 0x00b1 |
| #define LH28F640BFHE_PTTL70A 0x00b2 |
| #define LH28F640BFHE_PBTL70A 0x00b3 |
| |
| static int cfi_intelext_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *); |
| static int cfi_intelext_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *); |
| static int cfi_intelext_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *); |
| static int cfi_intelext_writev(struct mtd_info *, const struct kvec *, unsigned long, loff_t, size_t *); |
| static int cfi_intelext_erase_varsize(struct mtd_info *, struct erase_info *); |
| static void cfi_intelext_sync (struct mtd_info *); |
| static int cfi_intelext_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len); |
| static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len); |
| static int cfi_intelext_is_locked(struct mtd_info *mtd, loff_t ofs, |
| uint64_t len); |
| #ifdef CONFIG_MTD_OTP |
| static int cfi_intelext_read_fact_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *); |
| static int cfi_intelext_read_user_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *); |
| static int cfi_intelext_write_user_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *); |
| static int cfi_intelext_lock_user_prot_reg (struct mtd_info *, loff_t, size_t); |
| static int cfi_intelext_get_fact_prot_info(struct mtd_info *, size_t, |
| size_t *, struct otp_info *); |
| static int cfi_intelext_get_user_prot_info(struct mtd_info *, size_t, |
| size_t *, struct otp_info *); |
| #endif |
| static int cfi_intelext_suspend (struct mtd_info *); |
| static void cfi_intelext_resume (struct mtd_info *); |
| static int cfi_intelext_reboot (struct notifier_block *, unsigned long, void *); |
| |
| static void cfi_intelext_destroy(struct mtd_info *); |
| |
| struct mtd_info *cfi_cmdset_0001(struct map_info *, int); |
| |
| static struct mtd_info *cfi_intelext_setup (struct mtd_info *); |
| static int cfi_intelext_partition_fixup(struct mtd_info *, struct cfi_private **); |
| |
| static int cfi_intelext_point (struct mtd_info *mtd, loff_t from, size_t len, |
| size_t *retlen, void **virt, resource_size_t *phys); |
| static int cfi_intelext_unpoint(struct mtd_info *mtd, loff_t from, size_t len); |
| |
| static int chip_ready (struct map_info *map, struct flchip *chip, unsigned long adr, int mode); |
| static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode); |
| static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr); |
| #include "fwh_lock.h" |
| |
| |
| |
| /* |
| * *********** SETUP AND PROBE BITS *********** |
| */ |
| |
| static struct mtd_chip_driver cfi_intelext_chipdrv = { |
| .probe = NULL, /* Not usable directly */ |
| .destroy = cfi_intelext_destroy, |
| .name = "cfi_cmdset_0001", |
| .module = THIS_MODULE |
| }; |
| |
| /* #define DEBUG_LOCK_BITS */ |
| /* #define DEBUG_CFI_FEATURES */ |
| |
| #ifdef DEBUG_CFI_FEATURES |
| static void cfi_tell_features(struct cfi_pri_intelext *extp) |
| { |
| int i; |
| printk(" Extended Query version %c.%c\n", extp->MajorVersion, extp->MinorVersion); |
| printk(" Feature/Command Support: %4.4X\n", extp->FeatureSupport); |
| printk(" - Chip Erase: %s\n", extp->FeatureSupport&1?"supported":"unsupported"); |
| printk(" - Suspend Erase: %s\n", extp->FeatureSupport&2?"supported":"unsupported"); |
| printk(" - Suspend Program: %s\n", extp->FeatureSupport&4?"supported":"unsupported"); |
| printk(" - Legacy Lock/Unlock: %s\n", extp->FeatureSupport&8?"supported":"unsupported"); |
| printk(" - Queued Erase: %s\n", extp->FeatureSupport&16?"supported":"unsupported"); |
| printk(" - Instant block lock: %s\n", extp->FeatureSupport&32?"supported":"unsupported"); |
| printk(" - Protection Bits: %s\n", extp->FeatureSupport&64?"supported":"unsupported"); |
| printk(" - Page-mode read: %s\n", extp->FeatureSupport&128?"supported":"unsupported"); |
| printk(" - Synchronous read: %s\n", extp->FeatureSupport&256?"supported":"unsupported"); |
| printk(" - Simultaneous operations: %s\n", extp->FeatureSupport&512?"supported":"unsupported"); |
| printk(" - Extended Flash Array: %s\n", extp->FeatureSupport&1024?"supported":"unsupported"); |
| for (i=11; i<32; i++) { |
| if (extp->FeatureSupport & (1<<i)) |
| printk(" - Unknown Bit %X: supported\n", i); |
| } |
| |
| printk(" Supported functions after Suspend: %2.2X\n", extp->SuspendCmdSupport); |
| printk(" - Program after Erase Suspend: %s\n", extp->SuspendCmdSupport&1?"supported":"unsupported"); |
| for (i=1; i<8; i++) { |
| if (extp->SuspendCmdSupport & (1<<i)) |
| printk(" - Unknown Bit %X: supported\n", i); |
| } |
| |
| printk(" Block Status Register Mask: %4.4X\n", extp->BlkStatusRegMask); |
| printk(" - Lock Bit Active: %s\n", extp->BlkStatusRegMask&1?"yes":"no"); |
| printk(" - Lock-Down Bit Active: %s\n", extp->BlkStatusRegMask&2?"yes":"no"); |
| for (i=2; i<3; i++) { |
| if (extp->BlkStatusRegMask & (1<<i)) |
| printk(" - Unknown Bit %X Active: yes\n",i); |
| } |
| printk(" - EFA Lock Bit: %s\n", extp->BlkStatusRegMask&16?"yes":"no"); |
| printk(" - EFA Lock-Down Bit: %s\n", extp->BlkStatusRegMask&32?"yes":"no"); |
| for (i=6; i<16; i++) { |
| if (extp->BlkStatusRegMask & (1<<i)) |
| printk(" - Unknown Bit %X Active: yes\n",i); |
| } |
| |
| printk(" Vcc Logic Supply Optimum Program/Erase Voltage: %d.%d V\n", |
| extp->VccOptimal >> 4, extp->VccOptimal & 0xf); |
| if (extp->VppOptimal) |
| printk(" Vpp Programming Supply Optimum Program/Erase Voltage: %d.%d V\n", |
| extp->VppOptimal >> 4, extp->VppOptimal & 0xf); |
| } |
| #endif |
| |
| /* Atmel chips don't use the same PRI format as Intel chips */ |
| static void fixup_convert_atmel_pri(struct mtd_info *mtd) |
| { |
| struct map_info *map = mtd->priv; |
| struct cfi_private *cfi = map->fldrv_priv; |
| struct cfi_pri_intelext *extp = cfi->cmdset_priv; |
| struct cfi_pri_atmel atmel_pri; |
| uint32_t features = 0; |
| |
| /* Reverse byteswapping */ |
| extp->FeatureSupport = cpu_to_le32(extp->FeatureSupport); |
| extp->BlkStatusRegMask = cpu_to_le16(extp->BlkStatusRegMask); |
| extp->ProtRegAddr = cpu_to_le16(extp->ProtRegAddr); |
| |
| memcpy(&atmel_pri, extp, sizeof(atmel_pri)); |
| memset((char *)extp + 5, 0, sizeof(*extp) - 5); |
| |
| printk(KERN_ERR "atmel Features: %02x\n", atmel_pri.Features); |
| |
| if (atmel_pri.Features & 0x01) /* chip erase supported */ |
| features |= (1<<0); |
| if (atmel_pri.Features & 0x02) /* erase suspend supported */ |
| features |= (1<<1); |
| if (atmel_pri.Features & 0x04) /* program suspend supported */ |
| features |= (1<<2); |
| if (atmel_pri.Features & 0x08) /* simultaneous operations supported */ |
| features |= (1<<9); |
| if (atmel_pri.Features & 0x20) /* page mode read supported */ |
| features |= (1<<7); |
| if (atmel_pri.Features & 0x40) /* queued erase supported */ |
| features |= (1<<4); |
| if (atmel_pri.Features & 0x80) /* Protection bits supported */ |
| features |= (1<<6); |
| |
| extp->FeatureSupport = features; |
| |
| /* burst write mode not supported */ |
| cfi->cfiq->BufWriteTimeoutTyp = 0; |
| cfi->cfiq->BufWriteTimeoutMax = 0; |
| } |
| |
| static void fixup_at49bv640dx_lock(struct mtd_info *mtd) |
| { |
| struct map_info *map = mtd->priv; |
| struct cfi_private *cfi = map->fldrv_priv; |
| struct cfi_pri_intelext *cfip = cfi->cmdset_priv; |
| |
| cfip->FeatureSupport |= (1 << 5); |
| mtd->flags |= MTD_POWERUP_LOCK; |
| } |
| |
| #ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE |
| /* Some Intel Strata Flash prior to FPO revision C has bugs in this area */ |
| static void fixup_intel_strataflash(struct mtd_info *mtd) |
| { |
| struct map_info *map = mtd->priv; |
| struct cfi_private *cfi = map->fldrv_priv; |
| struct cfi_pri_intelext *extp = cfi->cmdset_priv; |
| |
| printk(KERN_WARNING "cfi_cmdset_0001: Suspend " |
| "erase on write disabled.\n"); |
| extp->SuspendCmdSupport &= ~1; |
| } |
| #endif |
| |
| #ifdef CMDSET0001_DISABLE_WRITE_SUSPEND |
| static void fixup_no_write_suspend(struct mtd_info *mtd) |
| { |
| struct map_info *map = mtd->priv; |
| struct cfi_private *cfi = map->fldrv_priv; |
| struct cfi_pri_intelext *cfip = cfi->cmdset_priv; |
| |
| if (cfip && (cfip->FeatureSupport&4)) { |
| cfip->FeatureSupport &= ~4; |
| printk(KERN_WARNING "cfi_cmdset_0001: write suspend disabled\n"); |
| } |
| } |
| #endif |
| |
| static void fixup_st_m28w320ct(struct mtd_info *mtd) |
| { |
| struct map_info *map = mtd->priv; |
| struct cfi_private *cfi = map->fldrv_priv; |
| |
| cfi->cfiq->BufWriteTimeoutTyp = 0; /* Not supported */ |
| cfi->cfiq->BufWriteTimeoutMax = 0; /* Not supported */ |
| } |
| |
| static void fixup_st_m28w320cb(struct mtd_info *mtd) |
| { |
| struct map_info *map = mtd->priv; |
| struct cfi_private *cfi = map->fldrv_priv; |
| |
| /* Note this is done after the region info is endian swapped */ |
| cfi->cfiq->EraseRegionInfo[1] = |
| (cfi->cfiq->EraseRegionInfo[1] & 0xffff0000) | 0x3e; |
| }; |
| |
| static int is_LH28F640BF(struct cfi_private *cfi) |
| { |
| /* Sharp LH28F640BF Family */ |
| if (cfi->mfr == CFI_MFR_SHARP && ( |
| cfi->id == LH28F640BFHE_PTTL90 || cfi->id == LH28F640BFHE_PBTL90 || |
| cfi->id == LH28F640BFHE_PTTL70A || cfi->id == LH28F640BFHE_PBTL70A)) |
| return 1; |
| return 0; |
| } |
| |
| static void fixup_LH28F640BF(struct mtd_info *mtd) |
| { |
| struct map_info *map = mtd->priv; |
| struct cfi_private *cfi = map->fldrv_priv; |
| struct cfi_pri_intelext *extp = cfi->cmdset_priv; |
| |
| /* Reset the Partition Configuration Register on LH28F640BF |
| * to a single partition (PCR = 0x000): PCR is embedded into A0-A15. */ |
| if (is_LH28F640BF(cfi)) { |
| printk(KERN_INFO "Reset Partition Config. Register: 1 Partition of 4 planes\n"); |
| map_write(map, CMD(0x60), 0); |
| map_write(map, CMD(0x04), 0); |
| |
| /* We have set one single partition thus |
| * Simultaneous Operations are not allowed */ |
| printk(KERN_INFO "cfi_cmdset_0001: Simultaneous Operations disabled\n"); |
| extp->FeatureSupport &= ~512; |
| } |
| } |
| |
| static void fixup_use_point(struct mtd_info *mtd) |
| { |
| struct map_info *map = mtd->priv; |
| if (!mtd->_point && map_is_linear(map)) { |
| mtd->_point = cfi_intelext_point; |
| mtd->_unpoint = cfi_intelext_unpoint; |
| } |
| } |
| |
| static void fixup_use_write_buffers(struct mtd_info *mtd) |
| { |
| struct map_info *map = mtd->priv; |
| struct cfi_private *cfi = map->fldrv_priv; |
| if (cfi->cfiq->BufWriteTimeoutTyp) { |
| printk(KERN_INFO "Using buffer write method\n" ); |
| mtd->_write = cfi_intelext_write_buffers; |
| mtd->_writev = cfi_intelext_writev; |
| } |
| } |
| |
| /* |
| * Some chips power-up with all sectors locked by default. |
| */ |
| static void fixup_unlock_powerup_lock(struct mtd_info *mtd) |
| { |
| struct map_info *map = mtd->priv; |
| struct cfi_private *cfi = map->fldrv_priv; |
| struct cfi_pri_intelext *cfip = cfi->cmdset_priv; |
| |
| if (cfip->FeatureSupport&32) { |
| printk(KERN_INFO "Using auto-unlock on power-up/resume\n" ); |
| mtd->flags |= MTD_POWERUP_LOCK; |
| } |
| } |
| |
| static struct cfi_fixup cfi_fixup_table[] = { |
| { CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri }, |
| { CFI_MFR_ATMEL, AT49BV640D, fixup_at49bv640dx_lock }, |
| { CFI_MFR_ATMEL, AT49BV640DT, fixup_at49bv640dx_lock }, |
| #ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE |
| { CFI_MFR_ANY, CFI_ID_ANY, fixup_intel_strataflash }, |
| #endif |
| #ifdef CMDSET0001_DISABLE_WRITE_SUSPEND |
| { CFI_MFR_ANY, CFI_ID_ANY, fixup_no_write_suspend }, |
| #endif |
| #if !FORCE_WORD_WRITE |
| { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers }, |
| #endif |
| { CFI_MFR_ST, 0x00ba, /* M28W320CT */ fixup_st_m28w320ct }, |
| { CFI_MFR_ST, 0x00bb, /* M28W320CB */ fixup_st_m28w320cb }, |
| { CFI_MFR_INTEL, CFI_ID_ANY, fixup_unlock_powerup_lock }, |
| { CFI_MFR_SHARP, CFI_ID_ANY, fixup_unlock_powerup_lock }, |
| { CFI_MFR_SHARP, CFI_ID_ANY, fixup_LH28F640BF }, |
| { 0, 0, NULL } |
| }; |
| |
| static struct cfi_fixup jedec_fixup_table[] = { |
| { CFI_MFR_INTEL, I82802AB, fixup_use_fwh_lock }, |
| { CFI_MFR_INTEL, I82802AC, fixup_use_fwh_lock }, |
| { CFI_MFR_ST, M50LPW080, fixup_use_fwh_lock }, |
| { CFI_MFR_ST, M50FLW080A, fixup_use_fwh_lock }, |
| { CFI_MFR_ST, M50FLW080B, fixup_use_fwh_lock }, |
| { 0, 0, NULL } |
| }; |
| static struct cfi_fixup fixup_table[] = { |
| /* The CFI vendor ids and the JEDEC vendor IDs appear |
| * to be common. It is like the devices id's are as |
| * well. This table is to pick all cases where |
| * we know that is the case. |
| */ |
| { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_point }, |
| { 0, 0, NULL } |
| }; |
| |
| static void cfi_fixup_major_minor(struct cfi_private *cfi, |
| struct cfi_pri_intelext *extp) |
| { |
| if (cfi->mfr == CFI_MFR_INTEL && |
| cfi->id == PF38F4476 && extp->MinorVersion == '3') |
| extp->MinorVersion = '1'; |
| } |
| |
| static inline struct cfi_pri_intelext * |
| read_pri_intelext(struct map_info *map, __u16 adr) |
| { |
| struct cfi_private *cfi = map->fldrv_priv; |
| struct cfi_pri_intelext *extp; |
| unsigned int extra_size = 0; |
| unsigned int extp_size = sizeof(*extp); |
| |
| again: |
| extp = (struct cfi_pri_intelext *)cfi_read_pri(map, adr, extp_size, "Intel/Sharp"); |
| if (!extp) |
| return NULL; |
| |
| cfi_fixup_major_minor(cfi, extp); |
| |
| if (extp->MajorVersion != '1' || |
| (extp->MinorVersion < '0' || extp->MinorVersion > '5')) { |
| printk(KERN_ERR " Unknown Intel/Sharp Extended Query " |
| "version %c.%c.\n", extp->MajorVersion, |
| extp->MinorVersion); |
| kfree(extp); |
| return NULL; |
| } |
| |
| /* Do some byteswapping if necessary */ |
| extp->FeatureSupport = le32_to_cpu(extp->FeatureSupport); |
| extp->BlkStatusRegMask = le16_to_cpu(extp->BlkStatusRegMask); |
| extp->ProtRegAddr = le16_to_cpu(extp->ProtRegAddr); |
| |
| if (extp->MinorVersion >= '0') { |
| extra_size = 0; |
| |
| /* Protection Register info */ |
| extra_size += (extp->NumProtectionFields - 1) * |
| sizeof(struct cfi_intelext_otpinfo); |
| } |
| |
| if (extp->MinorVersion >= '1') { |
| /* Burst Read info */ |
| extra_size += 2; |
| if (extp_size < sizeof(*extp) + extra_size) |
| goto need_more; |
| extra_size += extp->extra[extra_size - 1]; |
| } |
| |
| if (extp->MinorVersion >= '3') { |
| int nb_parts, i; |
| |
| /* Number of hardware-partitions */ |
| extra_size += 1; |
| if (extp_size < sizeof(*extp) + extra_size) |
| goto need_more; |
| nb_parts = extp->extra[extra_size - 1]; |
| |
| /* skip the sizeof(partregion) field in CFI 1.4 */ |
| if (extp->MinorVersion >= '4') |
| extra_size += 2; |
| |
| for (i = 0; i < nb_parts; i++) { |
| struct cfi_intelext_regioninfo *rinfo; |
| rinfo = (struct cfi_intelext_regioninfo *)&extp->extra[extra_size]; |
| extra_size += sizeof(*rinfo); |
| if (extp_size < sizeof(*extp) + extra_size) |
| goto need_more; |
| rinfo->NumIdentPartitions=le16_to_cpu(rinfo->NumIdentPartitions); |
| extra_size += (rinfo->NumBlockTypes - 1) |
| * sizeof(struct cfi_intelext_blockinfo); |
| } |
| |
| if (extp->MinorVersion >= '4') |
| extra_size += sizeof(struct cfi_intelext_programming_regioninfo); |
| |
| if (extp_size < sizeof(*extp) + extra_size) { |
| need_more: |
| extp_size = sizeof(*extp) + extra_size; |
| kfree(extp); |
| if (extp_size > 4096) { |
| printk(KERN_ERR |
| "%s: cfi_pri_intelext is too fat\n", |
| __func__); |
| return NULL; |
| } |
| goto again; |
| } |
| } |
| |
| return extp; |
| } |
| |
| struct mtd_info *cfi_cmdset_0001(struct map_info *map, int primary) |
| { |
| struct cfi_private *cfi = map->fldrv_priv; |
| struct mtd_info *mtd; |
| int i; |
| |
| mtd = kzalloc(sizeof(*mtd), GFP_KERNEL); |
| if (!mtd) |
| return NULL; |
| mtd->priv = map; |
| mtd->type = MTD_NORFLASH; |
| |
| /* Fill in the default mtd operations */ |
| mtd->_erase = cfi_intelext_erase_varsize; |
| mtd->_read = cfi_intelext_read; |
| mtd->_write = cfi_intelext_write_words; |
| mtd->_sync = cfi_intelext_sync; |
| mtd->_lock = cfi_intelext_lock; |
| mtd->_unlock = cfi_intelext_unlock; |
| mtd->_is_locked = cfi_intelext_is_locked; |
| mtd->_suspend = cfi_intelext_suspend; |
| mtd->_resume = cfi_intelext_resume; |
| mtd->flags = MTD_CAP_NORFLASH; |
| mtd->name = map->name; |
| mtd->writesize = 1; |
| mtd->writebufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize; |
| |
| mtd->reboot_notifier.notifier_call = cfi_intelext_reboot; |
| |
| if (cfi->cfi_mode == CFI_MODE_CFI) { |
| /* |
| * It's a real CFI chip, not one for which the probe |
| * routine faked a CFI structure. So we read the feature |
| * table from it. |
| */ |
| __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR; |
| struct cfi_pri_intelext *extp; |
| |
| extp = read_pri_intelext(map, adr); |
| if (!extp) { |
| kfree(mtd); |
| return NULL; |
| } |
| |
| /* Install our own private info structure */ |
| cfi->cmdset_priv = extp; |
| |
| cfi_fixup(mtd, cfi_fixup_table); |
| |
| #ifdef DEBUG_CFI_FEATURES |
| /* Tell the user about it in lots of lovely detail */ |
| cfi_tell_features(extp); |
| #endif |
| |
| if(extp->SuspendCmdSupport & 1) { |
| printk(KERN_NOTICE "cfi_cmdset_0001: Erase suspend on write enabled\n"); |
| } |
| } |
| else if (cfi->cfi_mode == CFI_MODE_JEDEC) { |
| /* Apply jedec specific fixups */ |
| cfi_fixup(mtd, jedec_fixup_table); |
| } |
| /* Apply generic fixups */ |
| cfi_fixup(mtd, fixup_table); |
| |
| for (i=0; i< cfi->numchips; i++) { |
| if (cfi->cfiq->WordWriteTimeoutTyp) |
| cfi->chips[i].word_write_time = |
| 1<<cfi->cfiq->WordWriteTimeoutTyp; |
| else |
| cfi->chips[i].word_write_time = 50000; |
| |
| if (cfi->cfiq->BufWriteTimeoutTyp) |
| cfi->chips[i].buffer_write_time = |
| 1<<cfi->cfiq->BufWriteTimeoutTyp; |
| /* No default; if it isn't specified, we won't use it */ |
| |
| if (cfi->cfiq->BlockEraseTimeoutTyp) |
| cfi->chips[i].erase_time = |
| 1000<<cfi->cfiq->BlockEraseTimeoutTyp; |
| else |
| cfi->chips[i].erase_time = 2000000; |
| |
| if (cfi->cfiq->WordWriteTimeoutTyp && |
| cfi->cfiq->WordWriteTimeoutMax) |
| cfi->chips[i].word_write_time_max = |
| 1<<(cfi->cfiq->WordWriteTimeoutTyp + |
| cfi->cfiq->WordWriteTimeoutMax); |
| else |
| cfi->chips[i].word_write_time_max = 50000 * 8; |
| |
| if (cfi->cfiq->BufWriteTimeoutTyp && |
| cfi->cfiq->BufWriteTimeoutMax) |
| cfi->chips[i].buffer_write_time_max = |
| 1<<(cfi->cfiq->BufWriteTimeoutTyp + |
| cfi->cfiq->BufWriteTimeoutMax); |
| |
| if (cfi->cfiq->BlockEraseTimeoutTyp && |
| cfi->cfiq->BlockEraseTimeoutMax) |
| cfi->chips[i].erase_time_max = |
| 1000<<(cfi->cfiq->BlockEraseTimeoutTyp + |
| cfi->cfiq->BlockEraseTimeoutMax); |
| else |
| cfi->chips[i].erase_time_max = 2000000 * 8; |
| |
| cfi->chips[i].ref_point_counter = 0; |
| init_waitqueue_head(&(cfi->chips[i].wq)); |
| } |
| |
| map->fldrv = &cfi_intelext_chipdrv; |
| |
| return cfi_intelext_setup(mtd); |
| } |
| struct mtd_info *cfi_cmdset_0003(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0001"))); |
| struct mtd_info *cfi_cmdset_0200(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0001"))); |
| EXPORT_SYMBOL_GPL(cfi_cmdset_0001); |
| EXPORT_SYMBOL_GPL(cfi_cmdset_0003); |
| EXPORT_SYMBOL_GPL(cfi_cmdset_0200); |
| |
| static struct mtd_info *cfi_intelext_setup(struct mtd_info *mtd) |
| { |
| struct map_info *map = mtd->priv; |
| struct cfi_private *cfi = map->fldrv_priv; |
| unsigned long offset = 0; |
| int i,j; |
| unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave; |
| |
| //printk(KERN_DEBUG "number of CFI chips: %d\n", cfi->numchips); |
| |
| mtd->size = devsize * cfi->numchips; |
| |
| mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips; |
| mtd->eraseregions = kzalloc(sizeof(struct mtd_erase_region_info) |
| * mtd->numeraseregions, GFP_KERNEL); |
| if (!mtd->eraseregions) |
| goto setup_err; |
| |
| for (i=0; i<cfi->cfiq->NumEraseRegions; i++) { |
| unsigned long ernum, ersize; |
| ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave; |
| ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1; |
| |
| if (mtd->erasesize < ersize) { |
| mtd->erasesize = ersize; |
| } |
| for (j=0; j<cfi->numchips; j++) { |
| mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset; |
| mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize; |
| mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum; |
| mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].lockmap = kmalloc(ernum / 8 + 1, GFP_KERNEL); |
| if (!mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].lockmap) |
| goto setup_err; |
| } |
| offset += (ersize * ernum); |
| } |
| |
| if (offset != devsize) { |
| /* Argh */ |
| printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize); |
| goto setup_err; |
| } |
| |
| for (i=0; i<mtd->numeraseregions;i++){ |
| printk(KERN_DEBUG "erase region %d: offset=0x%llx,size=0x%x,blocks=%d\n", |
| i,(unsigned long long)mtd->eraseregions[i].offset, |
| mtd->eraseregions[i].erasesize, |
| mtd->eraseregions[i].numblocks); |
| } |
| |
| #ifdef CONFIG_MTD_OTP |
| mtd->_read_fact_prot_reg = cfi_intelext_read_fact_prot_reg; |
| mtd->_read_user_prot_reg = cfi_intelext_read_user_prot_reg; |
| mtd->_write_user_prot_reg = cfi_intelext_write_user_prot_reg; |
| mtd->_lock_user_prot_reg = cfi_intelext_lock_user_prot_reg; |
| mtd->_get_fact_prot_info = cfi_intelext_get_fact_prot_info; |
| mtd->_get_user_prot_info = cfi_intelext_get_user_prot_info; |
| #endif |
| |
| /* This function has the potential to distort the reality |
| a bit and therefore should be called last. */ |
| if (cfi_intelext_partition_fixup(mtd, &cfi) != 0) |
| goto setup_err; |
| |
| __module_get(THIS_MODULE); |
| register_reboot_notifier(&mtd->reboot_notifier); |
| return mtd; |
| |
| setup_err: |
| if (mtd->eraseregions) |
| for (i=0; i<cfi->cfiq->NumEraseRegions; i++) |
| for (j=0; j<cfi->numchips; j++) |
| kfree(mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].lockmap); |
| kfree(mtd->eraseregions); |
| kfree(mtd); |
| kfree(cfi->cmdset_priv); |
| return NULL; |
| } |
| |
| static int cfi_intelext_partition_fixup(struct mtd_info *mtd, |
| struct cfi_private **pcfi) |
| { |
| struct map_info *map = mtd->priv; |
| struct cfi_private *cfi = *pcfi; |
| struct cfi_pri_intelext *extp = cfi->cmdset_priv; |
| |
| /* |
| * Probing of multi-partition flash chips. |
| * |
| * To support multiple partitions when available, we simply arrange |
| * for each of them to have their own flchip structure even if they |
| * are on the same physical chip. This means completely recreating |
| * a new cfi_private structure right here which is a blatent code |
| * layering violation, but this is still the least intrusive |
| * arrangement at this point. This can be rearranged in the future |
| * if someone feels motivated enough. --nico |
| */ |
| if (extp && extp->MajorVersion == '1' && extp->MinorVersion >= '3' |
| && extp->FeatureSupport & (1 << 9)) { |
| struct cfi_private *newcfi; |
| struct flchip *chip; |
| struct flchip_shared *shared; |
| int offs, numregions, numparts, partshift, numvirtchips, i, j; |
| |
| /* Protection Register info */ |
| offs = (extp->NumProtectionFields - 1) * |
| sizeof(struct cfi_intelext_otpinfo); |
| |
| /* Burst Read info */ |
| offs += extp->extra[offs+1]+2; |
| |
| /* Number of partition regions */ |
| numregions = extp->extra[offs]; |
| offs += 1; |
| |
| /* skip the sizeof(partregion) field in CFI 1.4 */ |
| if (extp->MinorVersion >= '4') |
| offs += 2; |
| |
| /* Number of hardware partitions */ |
| numparts = 0; |
| for (i = 0; i < numregions; i++) { |
| struct cfi_intelext_regioninfo *rinfo; |
| rinfo = (struct cfi_intelext_regioninfo *)&extp->extra[offs]; |
| numparts += rinfo->NumIdentPartitions; |
| offs += sizeof(*rinfo) |
| + (rinfo->NumBlockTypes - 1) * |
| sizeof(struct cfi_intelext_blockinfo); |
| } |
| |
| if (!numparts) |
| numparts = 1; |
| |
| /* Programming Region info */ |
| if (extp->MinorVersion >= '4') { |
| struct cfi_intelext_programming_regioninfo *prinfo; |
| prinfo = (struct cfi_intelext_programming_regioninfo *)&extp->extra[offs]; |
| mtd->writesize = cfi->interleave << prinfo->ProgRegShift; |
| mtd->flags &= ~MTD_BIT_WRITEABLE; |
| printk(KERN_DEBUG "%s: program region size/ctrl_valid/ctrl_inval = %d/%d/%d\n", |
| map->name, mtd->writesize, |
| cfi->interleave * prinfo->ControlValid, |
| cfi->interleave * prinfo->ControlInvalid); |
| } |
| |
| /* |
| * All functions below currently rely on all chips having |
| * the same geometry so we'll just assume that all hardware |
| * partitions are of the same size too. |
| */ |
| partshift = cfi->chipshift - __ffs(numparts); |
| |
| if ((1 << partshift) < mtd->erasesize) { |
| printk( KERN_ERR |
| "%s: bad number of hw partitions (%d)\n", |
| __func__, numparts); |
| return -EINVAL; |
| } |
| |
| numvirtchips = cfi->numchips * numparts; |
| newcfi = kmalloc(sizeof(struct cfi_private) + numvirtchips * sizeof(struct flchip), GFP_KERNEL); |
| if (!newcfi) |
| return -ENOMEM; |
| shared = kmalloc(sizeof(struct flchip_shared) * cfi->numchips, GFP_KERNEL); |
| if (!shared) { |
| kfree(newcfi); |
| return -ENOMEM; |
| } |
| memcpy(newcfi, cfi, sizeof(struct cfi_private)); |
| newcfi->numchips = numvirtchips; |
| newcfi->chipshift = partshift; |
| |
| chip = &newcfi->chips[0]; |
| for (i = 0; i < cfi->numchips; i++) { |
| shared[i].writing = shared[i].erasing = NULL; |
| mutex_init(&shared[i].lock); |
| for (j = 0; j < numparts; j++) { |
| *chip = cfi->chips[i]; |
| chip->start += j << partshift; |
| chip->priv = &shared[i]; |
| /* those should be reset too since |
| they create memory references. */ |
| init_waitqueue_head(&chip->wq); |
| mutex_init(&chip->mutex); |
| chip++; |
| } |
| } |
| |
| printk(KERN_DEBUG "%s: %d set(s) of %d interleaved chips " |
| "--> %d partitions of %d KiB\n", |
| map->name, cfi->numchips, cfi->interleave, |
| newcfi->numchips, 1<<(newcfi->chipshift-10)); |
| |
| map->fldrv_priv = newcfi; |
| *pcfi = newcfi; |
| kfree(cfi); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * *********** CHIP ACCESS FUNCTIONS *********** |
| */ |
| static int chip_ready (struct map_info *map, struct flchip *chip, unsigned long adr, int mode) |
| { |
| DECLARE_WAITQUEUE(wait, current); |
| struct cfi_private *cfi = map->fldrv_priv; |
| map_word status, status_OK = CMD(0x80), status_PWS = CMD(0x01); |
| struct cfi_pri_intelext *cfip = cfi->cmdset_priv; |
| unsigned long timeo = jiffies + HZ; |
| |
| /* Prevent setting state FL_SYNCING for chip in suspended state. */ |
| if (mode == FL_SYNCING && chip->oldstate != FL_READY) |
| goto sleep; |
| |
| switch (chip->state) { |
| |
| case FL_STATUS: |
| for (;;) { |
| status = map_read(map, adr); |
| if (map_word_andequal(map, status, status_OK, status_OK)) |
| break; |
| |
| /* At this point we're fine with write operations |
| in other partitions as they don't conflict. */ |
| if (chip->priv && map_word_andequal(map, status, status_PWS, status_PWS)) |
| break; |
| |
| mutex_unlock(&chip->mutex); |
| cfi_udelay(1); |
| mutex_lock(&chip->mutex); |
| /* Someone else might have been playing with it. */ |
| return -EAGAIN; |
| } |
| /* Fall through */ |
| case FL_READY: |
| case FL_CFI_QUERY: |
| case FL_JEDEC_QUERY: |
| return 0; |
| |
| case FL_ERASING: |
| if (!cfip || |
| !(cfip->FeatureSupport & 2) || |
| !(mode == FL_READY || mode == FL_POINT || |
| (mode == FL_WRITING && (cfip->SuspendCmdSupport & 1)))) |
| goto sleep; |
| |
| |
| /* Erase suspend */ |
| map_write(map, CMD(0xB0), adr); |
| |
| /* If the flash has finished erasing, then 'erase suspend' |
| * appears to make some (28F320) flash devices switch to |
| * 'read' mode. Make sure that we switch to 'read status' |
| * mode so we get the right data. --rmk |
| */ |
| map_write(map, CMD(0x70), adr); |
| chip->oldstate = FL_ERASING; |
| chip->state = FL_ERASE_SUSPENDING; |
| chip->erase_suspended = 1; |
| for (;;) { |
| status = map_read(map, adr); |
| if (map_word_andequal(map, status, status_OK, status_OK)) |
| break; |
| |
| if (time_after(jiffies, timeo)) { |
| /* Urgh. Resume and pretend we weren't here. |
| * Make sure we're in 'read status' mode if it had finished */ |
| put_chip(map, chip, adr); |
| printk(KERN_ERR "%s: Chip not ready after erase " |
| "suspended: status = 0x%lx\n", map->name, status.x[0]); |
| return -EIO; |
| } |
| |
| mutex_unlock(&chip->mutex); |
| cfi_udelay(1); |
| mutex_lock(&chip->mutex); |
| /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING. |
| So we can just loop here. */ |
| } |
| chip->state = FL_STATUS; |
| return 0; |
| |
| case FL_XIP_WHILE_ERASING: |
| if (mode != FL_READY && mode != FL_POINT && |
| (mode != FL_WRITING || !cfip || !(cfip->SuspendCmdSupport&1))) |
| goto sleep; |
| chip->oldstate = chip->state; |
| chip->state = FL_READY; |
| return 0; |
| |
| case FL_SHUTDOWN: |
| /* The machine is rebooting now,so no one can get chip anymore */ |
| return -EIO; |
| case FL_POINT: |
| /* Only if there's no operation suspended... */ |
| if (mode == FL_READY && chip->oldstate == FL_READY) |
| return 0; |
| /* Fall through */ |
| default: |
| sleep: |
| set_current_state(TASK_UNINTERRUPTIBLE); |
| add_wait_queue(&chip->wq, &wait); |
| mutex_unlock(&chip->mutex); |
| schedule(); |
| remove_wait_queue(&chip->wq, &wait); |
| mutex_lock(&chip->mutex); |
| return -EAGAIN; |
| } |
| } |
| |
| static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode) |
| { |
| int ret; |
| DECLARE_WAITQUEUE(wait, current); |
| |
| retry: |
| if (chip->priv && |
| (mode == FL_WRITING || mode == FL_ERASING || mode == FL_OTP_WRITE |
| || mode == FL_SHUTDOWN) && chip->state != FL_SYNCING) { |
| /* |
| * OK. We have possibility for contention on the write/erase |
| * operations which are global to the real chip and not per |
| * partition. So let's fight it over in the partition which |
| * currently has authority on the operation. |
| * |
| * The rules are as follows: |
| * |
| * - any write operation must own shared->writing. |
| * |
| * - any erase operation must own _both_ shared->writing and |
| * shared->erasing. |
| * |
| * - contention arbitration is handled in the owner's context. |
| * |
| * The 'shared' struct can be read and/or written only when |
| * its lock is taken. |
| */ |
| struct flchip_shared *shared = chip->priv; |
| struct flchip *contender; |
| mutex_lock(&shared->lock); |
| contender = shared->writing; |
| if (contender && contender != chip) { |
| /* |
| * The engine to perform desired operation on this |
| * partition is already in use by someone else. |
| * Let's fight over it in the context of the chip |
| * currently using it. If it is possible to suspend, |
| * that other partition will do just that, otherwise |
| * it'll happily send us to sleep. In any case, when |
| * get_chip returns success we're clear to go ahead. |
| */ |
| ret = mutex_trylock(&contender->mutex); |
| mutex_unlock(&shared->lock); |
| if (!ret) |
| goto retry; |
| mutex_unlock(&chip->mutex); |
| ret = chip_ready(map, contender, contender->start, mode); |
| mutex_lock(&chip->mutex); |
| |
| if (ret == -EAGAIN) { |
| mutex_unlock(&contender->mutex); |
| goto retry; |
| } |
| if (ret) { |
| mutex_unlock(&contender->mutex); |
| return ret; |
| } |
| mutex_lock(&shared->lock); |
| |
| /* We should not own chip if it is already |
| * in FL_SYNCING state. Put contender and retry. */ |
| if (chip->state == FL_SYNCING) { |
| put_chip(map, contender, contender->start); |
| mutex_unlock(&contender->mutex); |
| goto retry; |
| } |
| mutex_unlock(&contender->mutex); |
| } |
| |
| /* Check if we already have suspended erase |
| * on this chip. Sleep. */ |
| if (mode == FL_ERASING && shared->erasing |
| && shared->erasing->oldstate == FL_ERASING) { |
| mutex_unlock(&shared->lock); |
| set_current_state(TASK_UNINTERRUPTIBLE); |
| add_wait_queue(&chip->wq, &wait); |
| mutex_unlock(&chip->mutex); |
| schedule(); |
| remove_wait_queue(&chip->wq, &wait); |
| mutex_lock(&chip->mutex); |
| goto retry; |
| } |
| |
| /* We now own it */ |
| shared->writing = chip; |
| if (mode == FL_ERASING) |
| shared->erasing = chip; |
| mutex_unlock(&shared->lock); |
| } |
| ret = chip_ready(map, chip, adr, mode); |
| if (ret == -EAGAIN) |
| goto retry; |
| |
| return ret; |
| } |
| |
| static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr) |
| { |
| struct cfi_private *cfi = map->fldrv_priv; |
| |
| if (chip->priv) { |
| struct flchip_shared *shared = chip->priv; |
| mutex_lock(&shared->lock); |
| if (shared->writing == chip && chip->oldstate == FL_READY) { |
| /* We own the ability to write, but we're done */ |
| shared->writing = shared->erasing; |
| if (shared->writing && shared->writing != chip) { |
| /* give back ownership to who we loaned it from */ |
| struct flchip *loaner = shared->writing; |
| mutex_lock(&loaner->mutex); |
| mutex_unlock(&shared->lock); |
| mutex_unlock(&chip->mutex); |
| put_chip(map, loaner, loaner->start); |
| mutex_lock(&chip->mutex); |
| mutex_unlock(&loaner->mutex); |
| wake_up(&chip->wq); |
| return; |
| } |
| shared->erasing = NULL; |
| shared->writing = NULL; |
| } else if (shared->erasing == chip && shared->writing != chip) { |
| /* |
| * We own the ability to erase without the ability |
| * to write, which means the erase was suspended |
| * and some other partition is currently writing. |
| * Don't let the switch below mess things up since |
| * we don't have ownership to resume anything. |
| */ |
| mutex_unlock(&shared->lock); |
| wake_up(&chip->wq); |
| return; |
| } |
| mutex_unlock(&shared->lock); |
| } |
| |
| switch(chip->oldstate) { |
| case FL_ERASING: |
| /* What if one interleaved chip has finished and the |
| other hasn't? The old code would leave the finished |
| one in READY mode. That's bad, and caused -EROFS |
| errors to be returned from do_erase_oneblock because |
| that's the only bit it checked for at the time. |
| As the state machine appears to explicitly allow |
| sending the 0x70 (Read Status) command to an erasing |
| chip and expecting it to be ignored, that's what we |
| do. */ |
| map_write(map, CMD(0xd0), adr); |
| map_write(map, CMD(0x70), adr); |
| chip->oldstate = FL_READY; |
| chip->state = FL_ERASING; |
| break; |
| |
| case FL_XIP_WHILE_ERASING: |
| chip->state = chip->oldstate; |
| chip->oldstate = FL_READY; |
| break; |
| |
| case FL_READY: |
| case FL_STATUS: |
| case FL_JEDEC_QUERY: |
| break; |
| default: |
| printk(KERN_ERR "%s: put_chip() called with oldstate %d!!\n", map->name, chip->oldstate); |
| } |
| wake_up(&chip->wq); |
| } |
| |
| #ifdef CONFIG_MTD_XIP |
| |
| /* |
| * No interrupt what so ever can be serviced while the flash isn't in array |
| * mode. This is ensured by the xip_disable() and xip_enable() functions |
| * enclosing any code path where the flash is known not to be in array mode. |
| * And within a XIP disabled code path, only functions marked with __xipram |
| * may be called and nothing else (it's a good thing to inspect generated |
| * assembly to make sure inline functions were actually inlined and that gcc |
| * didn't emit calls to its own support functions). Also configuring MTD CFI |
| * support to a single buswidth and a single interleave is also recommended. |
| */ |
| |
| static void xip_disable(struct map_info *map, struct flchip *chip, |
| unsigned long adr) |
| { |
| /* TODO: chips with no XIP use should ignore and return */ |
| (void) map_read(map, adr); /* ensure mmu mapping is up to date */ |
| local_irq_disable(); |
| } |
| |
| static void __xipram xip_enable(struct map_info *map, struct flchip *chip, |
| unsigned long adr) |
| { |
| struct cfi_private *cfi = map->fldrv_priv; |
| if (chip->state != FL_POINT && chip->state != FL_READY) { |
| map_write(map, CMD(0xff), adr); |
| chip->state = FL_READY; |
| } |
| (void) map_read(map, adr); |
| xip_iprefetch(); |
| local_irq_enable(); |
| } |
| |
| /* |
| * When a delay is required for the flash operation to complete, the |
| * xip_wait_for_operation() function is polling for both the given timeout |
| * and pending (but still masked) hardware interrupts. Whenever there is an |
| * interrupt pending then the flash erase or write operation is suspended, |
| * array mode restored and interrupts unmasked. Task scheduling might also |
| * happen at that point. The CPU eventually returns from the interrupt or |
| * the call to schedule() and the suspended flash operation is resumed for |
| * the remaining of the delay period. |
| * |
| * Warning: this function _will_ fool interrupt latency tracing tools. |
| */ |
| |
| static int __xipram xip_wait_for_operation( |
| struct map_info *map, struct flchip *chip, |
| unsigned long adr, unsigned int chip_op_time_max) |
| { |
| struct cfi_private *cfi = map->fldrv_priv; |
| struct cfi_pri_intelext *cfip = cfi->cmdset_priv; |
| map_word status, OK = CMD(0x80); |
| unsigned long usec, suspended, start, done; |
| flstate_t oldstate, newstate; |
| |
| start = xip_currtime(); |
| usec = chip_op_time_max; |
| if (usec == 0) |
| usec = 500000; |
| done = 0; |
| |
| do { |
| cpu_relax(); |
| if (xip_irqpending() && cfip && |
| ((chip->state == FL_ERASING && (cfip->FeatureSupport&2)) || |
| (chip->state == FL_WRITING && (cfip->FeatureSupport&4))) && |
| (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) { |
| /* |
| * Let's suspend the erase or write operation when |
| * supported. Note that we currently don't try to |
| * suspend interleaved chips if there is already |
| * another operation suspended (imagine what happens |
| * when one chip was already done with the current |
| * operation while another chip suspended it, then |
| * we resume the whole thing at once). Yes, it |
| * can happen! |
| */ |
| usec -= done; |
| map_write(map, CMD(0xb0), adr); |
| map_write(map, CMD(0x70), adr); |
| suspended = xip_currtime(); |
| do { |
| if (xip_elapsed_since(suspended) > 100000) { |
| /* |
| * The chip doesn't want to suspend |
| * after waiting for 100 msecs. |
| * This is a critical error but there |
| * is not much we can do here. |
| */ |
| return -EIO; |
| } |
| status = map_read(map, adr); |
| } while (!map_word_andequal(map, status, OK, OK)); |
| |
| /* Suspend succeeded */ |
| oldstate = chip->state; |
| if (oldstate == FL_ERASING) { |
| if (!map_word_bitsset(map, status, CMD(0x40))) |
| break; |
| newstate = FL_XIP_WHILE_ERASING; |
| chip->erase_suspended = 1; |
| } else { |
| if (!map_word_bitsset(map, status, CMD(0x04))) |
| break; |
| newstate = FL_XIP_WHILE_WRITING; |
| chip->write_suspended = 1; |
| } |
| chip->state = newstate; |
| map_write(map, CMD(0xff), adr); |
| (void) map_read(map, adr); |
| xip_iprefetch(); |
| local_irq_enable(); |
| mutex_unlock(&chip->mutex); |
| xip_iprefetch(); |
| cond_resched(); |
| |
| /* |
| * We're back. However someone else might have |
| * decided to go write to the chip if we are in |
| * a suspended erase state. If so let's wait |
| * until it's done. |
| */ |
| mutex_lock(&chip->mutex); |
| while (chip->state != newstate) { |
| DECLARE_WAITQUEUE(wait, current); |
| set_current_state(TASK_UNINTERRUPTIBLE); |
| add_wait_queue(&chip->wq, &wait); |
| mutex_unlock(&chip->mutex); |
| schedule(); |
| remove_wait_queue(&chip->wq, &wait); |
| mutex_lock(&chip->mutex); |
| } |
| /* Disallow XIP again */ |
| local_irq_disable(); |
| |
| /* Resume the write or erase operation */ |
| map_write(map, CMD(0xd0), adr); |
| map_write(map, CMD(0x70), adr); |
| chip->state = oldstate; |
| start = xip_currtime(); |
| } else if (usec >= 1000000/HZ) { |
| /* |
| * Try to save on CPU power when waiting delay |
| * is at least a system timer tick period. |
| * No need to be extremely accurate here. |
| */ |
| xip_cpu_idle(); |
| } |
| status = map_read(map, adr); |
| done = xip_elapsed_since(start); |
| } while (!map_word_andequal(map, status, OK, OK) |
| && done < usec); |
| |
| return (done >= usec) ? -ETIME : 0; |
| } |
| |
| /* |
| * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while |
| * the flash is actively programming or erasing since we have to poll for |
| * the operation to complete anyway. We can't do that in a generic way with |
| * a XIP setup so do it before the actual flash operation in this case |
| * and stub it out from INVAL_CACHE_AND_WAIT. |
| */ |
| #define XIP_INVAL_CACHED_RANGE(map, from, size) \ |
| INVALIDATE_CACHED_RANGE(map, from, size) |
| |
| #define INVAL_CACHE_AND_WAIT(map, chip, cmd_adr, inval_adr, inval_len, usec, usec_max) \ |
| xip_wait_for_operation(map, chip, cmd_adr, usec_max) |
| |
| #else |
| |
| #define xip_disable(map, chip, adr) |
| #define xip_enable(map, chip, adr) |
| #define XIP_INVAL_CACHED_RANGE(x...) |
| #define INVAL_CACHE_AND_WAIT inval_cache_and_wait_for_operation |
| |
| static int inval_cache_and_wait_for_operation( |
| struct map_info *map, struct flchip *chip, |
| unsigned long cmd_adr, unsigned long inval_adr, int inval_len, |
| unsigned int chip_op_time, unsigned int chip_op_time_max) |
| { |
| struct cfi_private *cfi = map->fldrv_priv; |
| map_word status, status_OK = CMD(0x80); |
| int chip_state = chip->state; |
| unsigned int timeo, sleep_time, reset_timeo; |
| |
| mutex_unlock(&chip->mutex); |
| if (inval_len) |
| INVALIDATE_CACHED_RANGE(map, inval_adr, inval_len); |
| mutex_lock(&chip->mutex); |
| |
| timeo = chip_op_time_max; |
| if (!timeo) |
| timeo = 500000; |
| reset_timeo = timeo; |
| sleep_time = chip_op_time / 2; |
| |
| for (;;) { |
| if (chip->state != chip_state) { |
| /* Someone's suspended the operation: sleep */ |
| DECLARE_WAITQUEUE(wait, current); |
| set_current_state(TASK_UNINTERRUPTIBLE); |
| add_wait_queue(&chip->wq, &wait); |
| mutex_unlock(&chip->mutex); |
| schedule(); |
| remove_wait_queue(&chip->wq, &wait); |
| mutex_lock(&chip->mutex); |
| continue; |
| } |
| |
| status = map_read(map, cmd_adr); |
| if (map_word_andequal(map, status, status_OK, status_OK)) |
| break; |
| |
| if (chip->erase_suspended && chip_state == FL_ERASING) { |
| /* Erase suspend occurred while sleep: reset timeout */ |
| timeo = reset_timeo; |
| chip->erase_suspended = 0; |
| } |
| if (chip->write_suspended && chip_state == FL_WRITING) { |
| /* Write suspend occurred while sleep: reset timeout */ |
| timeo = reset_timeo; |
| chip->write_suspended = 0; |
| } |
| if (!timeo) { |
| map_write(map, CMD(0x70), cmd_adr); |
| chip->state = FL_STATUS; |
| return -ETIME; |
| } |
| |
| /* OK Still waiting. Drop the lock, wait a while and retry. */ |
| mutex_unlock(&chip->mutex); |
| if (sleep_time >= 1000000/HZ) { |
| /* |
| * Half of the normal delay still remaining |
| * can be performed with a sleeping delay instead |
| * of busy waiting. |
| */ |
| msleep(sleep_time/1000); |
| timeo -= sleep_time; |
| sleep_time = 1000000/HZ; |
| } else { |
| udelay(1); |
| cond_resched(); |
| timeo--; |
| } |
| mutex_lock(&chip->mutex); |
| } |
| |
| /* Done and happy. */ |
| chip->state = FL_STATUS; |
| return 0; |
| } |
| |
| #endif |
| |
| #define WAIT_TIMEOUT(map, chip, adr, udelay, udelay_max) \ |
| INVAL_CACHE_AND_WAIT(map, chip, adr, 0, 0, udelay, udelay_max); |
| |
| |
| static int do_point_onechip (struct map_info *map, struct flchip *chip, loff_t adr, size_t len) |
| { |
| unsigned long cmd_addr; |
| struct cfi_private *cfi = map->fldrv_priv; |
| int ret = 0; |
| |
| adr += chip->start; |
| |
| /* Ensure cmd read/writes are aligned. */ |
| cmd_addr = adr & ~(map_bankwidth(map)-1); |
| |
| mutex_lock(&chip->mutex); |
| |
| ret = get_chip(map, chip, cmd_addr, FL_POINT); |
| |
| if (!ret) { |
| if (chip->state != FL_POINT && chip->state != FL_READY) |
| map_write(map, CMD(0xff), cmd_addr); |
| |
| chip->state = FL_POINT; |
| chip->ref_point_counter++; |
| } |
| mutex_unlock(&chip->mutex); |
| |
| return ret; |
| } |
| |
| static int cfi_intelext_point(struct mtd_info *mtd, loff_t from, size_t len, |
| size_t *retlen, void **virt, resource_size_t *phys) |
| { |
| struct map_info *map = mtd->priv; |
| struct cfi_private *cfi = map->fldrv_priv; |
| unsigned long ofs, last_end = 0; |
| int chipnum; |
| int ret = 0; |
| |
| if (!map->virt) |
| return -EINVAL; |
| |
| /* Now lock the chip(s) to POINT state */ |
| |
| /* ofs: offset within the first chip that the first read should start */ |
| chipnum = (from >> cfi->chipshift); |
| ofs = from - (chipnum << cfi->chipshift); |
| |
| *virt = map->virt + cfi->chips[chipnum].start + ofs; |
| if (phys) |
| *phys = map->phys + cfi->chips[chipnum].start + ofs; |
| |
| while (len) { |
| unsigned long thislen; |
| |
| if (chipnum >= cfi->numchips) |
| break; |
| |
| /* We cannot point across chips that are virtually disjoint */ |
| if (!last_end) |
| last_end = cfi->chips[chipnum].start; |
| else if (cfi->chips[chipnum].start != last_end) |
| break; |
| |
| if ((len + ofs -1) >> cfi->chipshift) |
| thislen = (1<<cfi->chipshift) - ofs; |
| else |
| thislen = len; |
| |
| ret = do_point_onechip(map, &cfi->chips[chipnum], ofs, thislen); |
| if (ret) |
| break; |
| |
| *retlen += thislen; |
| len -= thislen; |
| |
| ofs = 0; |
| last_end += 1 << cfi->chipshift; |
| chipnum++; |
| } |
| return 0; |
| } |
| |
| static int cfi_intelext_unpoint(struct mtd_info *mtd, loff_t from, size_t len) |
| { |
| struct map_info *map = mtd->priv; |
| struct cfi_private *cfi = map->fldrv_priv; |
| unsigned long ofs; |
| int chipnum, err = 0; |
| |
| /* Now unlock the chip(s) POINT state */ |
| |
| /* ofs: offset within the first chip that the first read should start */ |
| chipnum = (from >> cfi->chipshift); |
| ofs = from - (chipnum << cfi->chipshift); |
| |
| while (len && !err) { |
| unsigned long thislen; |
| struct flchip *chip; |
| |
| chip = &cfi->chips[chipnum]; |
| if (chipnum >= cfi->numchips) |
| break; |
| |
| if ((len + ofs -1) >> cfi->chipshift) |
| thislen = (1<<cfi->chipshift) - ofs; |
| else |
| thislen = len; |
| |
| mutex_lock(&chip->mutex); |
| if (chip->state == FL_POINT) { |
| chip->ref_point_counter--; |
| if(chip->ref_point_counter == 0) |
| chip->state = FL_READY; |
| } else { |
| printk(KERN_ERR "%s: Error: unpoint called on non pointed region\n", map->name); |
| err = -EINVAL; |
| } |
| |
| put_chip(map, chip, chip->start); |
| mutex_unlock(&chip->mutex); |
| |
| len -= thislen; |
| ofs = 0; |
| chipnum++; |
| } |
| |
| return err; |
| } |
| |
| static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf) |
| { |
| unsigned long cmd_addr; |
| struct cfi_private *cfi = map->fldrv_priv; |
| int ret; |
| |
| adr += chip->start; |
| |
| /* Ensure cmd read/writes are aligned. */ |
| cmd_addr = adr & ~(map_bankwidth(map)-1); |
| |
| mutex_lock(&chip->mutex); |
| ret = get_chip(map, chip, cmd_addr, FL_READY); |
| if (ret) { |
| mutex_unlock(&chip->mutex); |
| return ret; |
| } |
| |
| if (chip->state != FL_POINT && chip->state != FL_READY) { |
| map_write(map, CMD(0xff), cmd_addr); |
| |
| chip->state = FL_READY; |
| } |
| |
| map_copy_from(map, buf, adr, len); |
| |
| put_chip(map, chip, cmd_addr); |
| |
| mutex_unlock(&chip->mutex); |
| return 0; |
| } |
| |
| static int cfi_intelext_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) |
| { |
| struct map_info *map = mtd->priv; |
| struct cfi_private *cfi = map->fldrv_priv; |
| unsigned long ofs; |
| int chipnum; |
| int ret = 0; |
| |
| /* ofs: offset within the first chip that the first read should start */ |
| chipnum = (from >> cfi->chipshift); |
| ofs = from - (chipnum << cfi->chipshift); |
| |
| while (len) { |
| unsigned long thislen; |
| |
| if (chipnum >= cfi->numchips) |
| break; |
| |
| if ((len + ofs -1) >> cfi->chipshift) |
| thislen = (1<<cfi->chipshift) - ofs; |
| else |
| thislen = len; |
| |
| ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf); |
| if (ret) |
| break; |
| |
| *retlen += thislen; |
| len -= thislen; |
| buf += thislen; |
| |
| ofs = 0; |
| chipnum++; |
| } |
| return ret; |
| } |
| |
| static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip, |
| unsigned long adr, map_word datum, int mode) |
| { |
| struct cfi_private *cfi = map->fldrv_priv; |
| map_word status, write_cmd; |
| int ret=0; |
| |
| adr += chip->start; |
| |
| switch (mode) { |
| case FL_WRITING: |
| write_cmd = (cfi->cfiq->P_ID != P_ID_INTEL_PERFORMANCE) ? CMD(0x40) : CMD(0x41); |
| break; |
| case FL_OTP_WRITE: |
| write_cmd = CMD(0xc0); |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| mutex_lock(&chip->mutex); |
| ret = get_chip(map, chip, adr, mode); |
| if (ret) { |
| mutex_unlock(&chip->mutex); |
| return ret; |
| } |
| |
| XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map)); |
| ENABLE_VPP(map); |
| xip_disable(map, chip, adr); |
| map_write(map, write_cmd, adr); |
| map_write(map, datum, adr); |
| chip->state = mode; |
| |
| ret = INVAL_CACHE_AND_WAIT(map, chip, adr, |
| adr, map_bankwidth(map), |
| chip->word_write_time, |
| chip->word_write_time_max); |
| if (ret) { |
| xip_enable(map, chip, adr); |
| printk(KERN_ERR "%s: word write error (status timeout)\n", map->name); |
| goto out; |
| } |
| |
| /* check for errors */ |
| status = map_read(map, adr); |
| if (map_word_bitsset(map, status, CMD(0x1a))) { |
| unsigned long chipstatus = MERGESTATUS(status); |
| |
| /* reset status */ |
| map_write(map, CMD(0x50), adr); |
| map_write(map, CMD(0x70), adr); |
| xip_enable(map, chip, adr); |
| |
| if (chipstatus & 0x02) { |
| ret = -EROFS; |
| } else if (chipstatus & 0x08) { |
| printk(KERN_ERR "%s: word write error (bad VPP)\n", map->name); |
| ret = -EIO; |
| } else { |
| printk(KERN_ERR "%s: word write error (status 0x%lx)\n", map->name, chipstatus); |
| ret = -EINVAL; |
| } |
| |
| goto out; |
| } |
| |
| xip_enable(map, chip, adr); |
| out: DISABLE_VPP(map); |
| put_chip(map, chip, adr); |
| mutex_unlock(&chip->mutex); |
| return ret; |
| } |
| |
| |
| static int cfi_intelext_write_words (struct mtd_info *mtd, loff_t to , size_t len, size_t *retlen, const u_char *buf) |
| { |
| struct map_info *map = mtd->priv; |
| struct cfi_private *cfi = map->fldrv_priv; |
| int ret = 0; |
| int chipnum; |
| unsigned long ofs; |
| |
| chipnum = to >> cfi->chipshift; |
| ofs = to - (chipnum << cfi->chipshift); |
| |
| /* If it's not bus-aligned, do the first byte write */ |
| if (ofs & (map_bankwidth(map)-1)) { |
| unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1); |
| int gap = ofs - bus_ofs; |
| int n; |
| map_word datum; |
| |
| n = min_t(int, len, map_bankwidth(map)-gap); |
| datum = map_word_ff(map); |
| datum = map_word_load_partial(map, datum, buf, gap, n); |
| |
| ret = do_write_oneword(map, &cfi->chips[chipnum], |
| bus_ofs, datum, FL_WRITING); |
| if (ret) |
| return ret; |
| |
| len -= n; |
| ofs += n; |
| buf += n; |
| (*retlen) += n; |
| |
| if (ofs >> cfi->chipshift) { |
| chipnum ++; |
| ofs = 0; |
| if (chipnum == cfi->numchips) |
| return 0; |
| } |
| } |
| |
| while(len >= map_bankwidth(map)) { |
| map_word datum = map_word_load(map, buf); |
| |
| ret = do_write_oneword(map, &cfi->chips[chipnum], |
| ofs, datum, FL_WRITING); |
| if (ret) |
| return ret; |
| |
| ofs += map_bankwidth(map); |
| buf += map_bankwidth(map); |
| (*retlen) += map_bankwidth(map); |
| len -= map_bankwidth(map); |
| |
| if (ofs >> cfi->chipshift) { |
| chipnum ++; |
| ofs = 0; |
| if (chipnum == cfi->numchips) |
| return 0; |
| } |
| } |
| |
| if (len & (map_bankwidth(map)-1)) { |
| map_word datum; |
| |
| datum = map_word_ff(map); |
| datum = map_word_load_partial(map, datum, buf, 0, len); |
| |
| ret = do_write_oneword(map, &cfi->chips[chipnum], |
| ofs, datum, FL_WRITING); |
| if (ret) |
| return ret; |
| |
| (*retlen) += len; |
| } |
| |
| return 0; |
| } |
| |
| |
| static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip, |
| unsigned long adr, const struct kvec **pvec, |
| unsigned long *pvec_seek, int len) |
| { |
| struct cfi_private *cfi = map->fldrv_priv; |
| map_word status, write_cmd, datum; |
| unsigned long cmd_adr; |
| int ret, wbufsize, word_gap, words; |
| const struct kvec *vec; |
| unsigned long vec_seek; |
| unsigned long initial_adr; |
| int initial_len = len; |
| |
| wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize; |
| adr += chip->start; |
| initial_adr = adr; |
| cmd_adr = adr & ~(wbufsize-1); |
| |
| /* Sharp LH28F640BF chips need the first address for the |
| * Page Buffer Program command. See Table 5 of |
| * LH28F320BF, LH28F640BF, LH28F128BF Series (Appendix FUM00701) */ |
| if (is_LH28F640BF(cfi)) |
| cmd_adr = adr; |
| |
| /* Let's determine this according to the interleave only once */ |
| write_cmd = (cfi->cfiq->P_ID != P_ID_INTEL_PERFORMANCE) ? CMD(0xe8) : CMD(0xe9); |
| |
| mutex_lock(&chip->mutex); |
| ret = get_chip(map, chip, cmd_adr, FL_WRITING); |
| if (ret) { |
| mutex_unlock(&chip->mutex); |
| return ret; |
| } |
| |
| XIP_INVAL_CACHED_RANGE(map, initial_adr, initial_len); |
| ENABLE_VPP(map); |
| xip_disable(map, chip, cmd_adr); |
| |
| /* §4.8 of the 28FxxxJ3A datasheet says "Any time SR.4 and/or SR.5 is set |
| [...], the device will not accept any more Write to Buffer commands". |
| So we must check here and reset those bits if they're set. Otherwise |
| we're just pissing in the wind */ |
| if (chip->state != FL_STATUS) { |
| map_write(map, CMD(0x70), cmd_adr); |
| chip->state = FL_STATUS; |
| } |
| status = map_read(map, cmd_adr); |
| if (map_word_bitsset(map, status, CMD(0x30))) { |
| xip_enable(map, chip, cmd_adr); |
| printk(KERN_WARNING "SR.4 or SR.5 bits set in buffer write (status %lx). Clearing.\n", status.x[0]); |
| xip_disable(map, chip, cmd_adr); |
| map_write(map, CMD(0x50), cmd_adr); |
| map_write(map, CMD(0x70), cmd_adr); |
| } |
| |
| chip->state = FL_WRITING_TO_BUFFER; |
| map_write(map, write_cmd, cmd_adr); |
| ret = WAIT_TIMEOUT(map, chip, cmd_adr, 0, 0); |
| if (ret) { |
| /* Argh. Not ready for write to buffer */ |
| map_word Xstatus = map_read(map, cmd_adr); |
| map_write(map, CMD(0x70), cmd_adr); |
| chip->state = FL_STATUS; |
| status = map_read(map, cmd_adr); |
| map_write(map, CMD(0x50), cmd_adr); |
| map_write(map, CMD(0x70), cmd_adr); |
| xip_enable(map, chip, cmd_adr); |
| printk(KERN_ERR "%s: Chip not ready for buffer write. Xstatus = %lx, status = %lx\n", |
| map->name, Xstatus.x[0], status.x[0]); |
| goto out; |
| } |
| |
| /* Figure out the number of words to write */ |
| word_gap = (-adr & (map_bankwidth(map)-1)); |
| words = DIV_ROUND_UP(len - word_gap, map_bankwidth(map)); |
| if (!word_gap) { |
| words--; |
| } else { |
| word_gap = map_bankwidth(map) - word_gap; |
| adr -= word_gap; |
| datum = map_word_ff(map); |
| } |
| |
| /* Write length of data to come */ |
| map_write(map, CMD(words), cmd_adr ); |
| |
| /* Write data */ |
| vec = *pvec; |
| vec_seek = *pvec_seek; |
| do { |
| int n = map_bankwidth(map) - word_gap; |
| if (n > vec->iov_len - vec_seek) |
| n = vec->iov_len - vec_seek; |
| if (n > len) |
| n = len; |
| |
| if (!word_gap && len < map_bankwidth(map)) |
| datum = map_word_ff(map); |
| |
| datum = map_word_load_partial(map, datum, |
| vec->iov_base + vec_seek, |
| word_gap, n); |
| |
| len -= n; |
| word_gap += n; |
| if (!len || word_gap == map_bankwidth(map)) { |
| map_write(map, datum, adr); |
| adr += map_bankwidth(map); |
| word_gap = 0; |
| } |
| |
| vec_seek += n; |
| if (vec_seek == vec->iov_len) { |
| vec++; |
| vec_seek = 0; |
| } |
| } while (len); |
| *pvec = vec; |
| *pvec_seek = vec_seek; |
| |
| /* GO GO GO */ |
| map_write(map, CMD(0xd0), cmd_adr); |
| chip->state = FL_WRITING; |
| |
| ret = INVAL_CACHE_AND_WAIT(map, chip, cmd_adr, |
| initial_adr, initial_len, |
| chip->buffer_write_time, |
| chip->buffer_write_time_max); |
| if (ret) { |
| map_write(map, CMD(0x70), cmd_adr); |
| chip->state = FL_STATUS; |
| xip_enable(map, chip, cmd_adr); |
| printk(KERN_ERR "%s: buffer write error (status timeout)\n", map->name); |
| goto out; |
| } |
| |
| /* check for errors */ |
| status = map_read(map, cmd_adr); |
| if (map_word_bitsset(map, status, CMD(0x1a))) { |
| unsigned long chipstatus = MERGESTATUS(status); |
| |
| /* reset status */ |
| map_write(map, CMD(0x50), cmd_adr); |
| map_write(map, CMD(0x70), cmd_adr); |
| xip_enable(map, chip, cmd_adr); |
| |
| if (chipstatus & 0x02) { |
| ret = -EROFS; |
| } else if (chipstatus & 0x08) { |
| printk(KERN_ERR "%s: buffer write error (bad VPP)\n", map->name); |
| ret = -EIO; |
| } else { |
| printk(KERN_ERR "%s: buffer write error (status 0x%lx)\n", map->name, chipstatus); |
| ret = -EINVAL; |
| } |
| |
| goto out; |
| } |
| |
| xip_enable(map, chip, cmd_adr); |
| out: DISABLE_VPP(map); |
| put_chip(map, chip, cmd_adr); |
| mutex_unlock(&chip->mutex); |
| return ret; |
| } |
| |
| static int cfi_intelext_writev (struct mtd_info *mtd, const struct kvec *vecs, |
| unsigned long count, loff_t to, size_t *retlen) |
| { |
| struct map_info *map = mtd->priv; |
| struct cfi_private *cfi = map->fldrv_priv; |
| int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize; |
| int ret = 0; |
| int chipnum; |
| unsigned long ofs, vec_seek, i; |
| size_t len = 0; |
| |
| for (i = 0; i < count; i++) |
| len += vecs[i].iov_len; |
| |
| if (!len) |
| return 0; |
| |
| chipnum = to >> cfi->chipshift; |
| ofs = to - (chipnum << cfi->chipshift); |
| vec_seek = 0; |
| |
| do { |
| /* We must not cross write block boundaries */ |
| int size = wbufsize - (ofs & (wbufsize-1)); |
| |
| if (size > len) |
| size = len; |
| ret = do_write_buffer(map, &cfi->chips[chipnum], |
| ofs, &vecs, &vec_seek, size); |
| if (ret) |
| return ret; |
| |
| ofs += size; |
| (*retlen) += size; |
| len -= size; |
| |
| if (ofs >> cfi->chipshift) { |
| chipnum ++; |
| ofs = 0; |
| if (chipnum == cfi->numchips) |
| return 0; |
| } |
| |
| /* Be nice and reschedule with the chip in a usable state for other |
| processes. */ |
| cond_resched(); |
| |
| } while (len); |
| |
| return 0; |
| } |
| |
| static int cfi_intelext_write_buffers (struct mtd_info *mtd, loff_t to, |
| size_t len, size_t *retlen, const u_char *buf) |
| { |
| struct kvec vec; |
| |
| vec.iov_base = (void *) buf; |
| vec.iov_len = len; |
| |
| return cfi_intelext_writev(mtd, &vec, 1, to, retlen); |
| } |
| |
| static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, |
| unsigned long adr, int len, void *thunk) |
| { |
| struct cfi_private *cfi = map->fldrv_priv; |
| map_word status; |
| int retries = 3; |
| int ret; |
| |
| adr += chip->start; |
| |
| retry: |
| mutex_lock(&chip->mutex); |
| ret = get_chip(map, chip, adr, FL_ERASING); |
| if (ret) { |
| mutex_unlock(&chip->mutex); |
| return ret; |
| } |
| |
| XIP_INVAL_CACHED_RANGE(map, adr, len); |
| ENABLE_VPP(map); |
| xip_disable(map, chip, adr); |
| |
| /* Clear the status register first */ |
| map_write(map, CMD(0x50), adr); |
| |
| /* Now erase */ |
| map_write(map, CMD(0x20), adr); |
| map_write(map, CMD(0xD0), adr); |
| chip->state = FL_ERASING; |
| chip->erase_suspended = 0; |
| |
| ret = INVAL_CACHE_AND_WAIT(map, chip, adr, |
| adr, len, |
| chip->erase_time, |
| chip->erase_time_max); |
| if (ret) { |
| map_write(map, CMD(0x70), adr); |
| chip->state = FL_STATUS; |
| xip_enable(map, chip, adr); |
| printk(KERN_ERR "%s: block erase error: (status timeout)\n", map->name); |
| goto out; |
| } |
| |
| /* We've broken this before. It doesn't hurt to be safe */ |
| map_write(map, CMD(0x70), adr); |
| chip->state = FL_STATUS; |
| status = map_read(map, adr); |
| |
| /* check for errors */ |
| if (map_word_bitsset(map, status, CMD(0x3a))) { |
| unsigned long chipstatus = MERGESTATUS(status); |
| |
| /* Reset the error bits */ |
| map_write(map, CMD(0x50), adr); |
| map_write(map, CMD(0x70), adr); |
| xip_enable(map, chip, adr); |
| |
| if ((chipstatus & 0x30) == 0x30) { |
| printk(KERN_ERR "%s: block erase error: (bad command sequence, status 0x%lx)\n", map->name, chipstatus); |
| ret = -EINVAL; |
| } else if (chipstatus & 0x02) { |
| /* Protection bit set */ |
| ret = -EROFS; |
| } else if (chipstatus & 0x8) { |
| /* Voltage */ |
| printk(KERN_ERR "%s: block erase error: (bad VPP)\n", map->name); |
| ret = -EIO; |
| } else if (chipstatus & 0x20 && retries--) { |
| printk(KERN_DEBUG "block erase failed at 0x%08lx: status 0x%lx. Retrying...\n", adr, chipstatus); |
| DISABLE_VPP(map); |
| put_chip(map, chip, adr); |
| mutex_unlock(&chip->mutex); |
| goto retry; |
| } else { |
| printk(KERN_ERR "%s: block erase failed at 0x%08lx (status 0x%lx)\n", map->name, adr, chipstatus); |
| ret = -EIO; |
| } |
| |
| goto out; |
| } |
| |
| xip_enable(map, chip, adr); |
| out: DISABLE_VPP(map); |
| put_chip(map, chip, adr); |
| mutex_unlock(&chip->mutex); |
| return ret; |
| } |
| |
| static int cfi_intelext_erase_varsize(struct mtd_info *mtd, struct erase_info *instr) |
| { |
| unsigned long ofs, len; |
| int ret; |
| |
| ofs = instr->addr; |
| len = instr->len; |
| |
| ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL); |
| if (ret) |
| return ret; |
| |
| instr->state = MTD_ERASE_DONE; |
| mtd_erase_callback(instr); |
| |
| return 0; |
| } |
| |
| static void cfi_intelext_sync (struct mtd_info *mtd) |
| { |
| struct map_info *map = mtd->priv; |
| struct cfi_private *cfi = map->fldrv_priv; |
| int i; |
| struct flchip *chip; |
| int ret = 0; |
| |
| for (i=0; !ret && i<cfi->numchips; i++) { |
| chip = &cfi->chips[i]; |
| |
| mutex_lock(&chip->mutex); |
| ret = get_chip(map, chip, chip->start, FL_SYNCING); |
| |
| if (!ret) { |
| chip->oldstate = chip->state; |
| chip->state = FL_SYNCING; |
| /* No need to wake_up() on this state change - |
| * as the whole point is that nobody can do anything |
| * with the chip now anyway. |
| */ |
| } |
| mutex_unlock(&chip->mutex); |
| } |
| |
| /* Unlock the chips again */ |
| |
| for (i--; i >=0; i--) { |
| chip = &cfi->chips[i]; |
| |
| mutex_lock(&chip->mutex); |
| |
| if (chip->state == FL_SYNCING) { |
| chip->state = chip->oldstate; |
| chip->oldstate = FL_READY; |
| wake_up(&chip->wq); |
| } |
| mutex_unlock(&chip->mutex); |
| } |
| } |
| |
| static int __xipram do_getlockstatus_oneblock(struct map_info *map, |
| struct flchip *chip, |
| unsigned long adr, |
| int len, void *thunk) |
| { |
| struct cfi_private *cfi = map->fldrv_priv; |
| int status, ofs_factor = cfi->interleave * cfi->device_type; |
| |
| adr += chip->start; |
| xip_disable(map, chip, adr+(2*ofs_factor)); |
| map_write(map, CMD(0x90), adr+(2*ofs_factor)); |
| chip->state = FL_JEDEC_QUERY; |
| status = cfi_read_query(map, adr+(2*ofs_factor)); |
| xip_enable(map, chip, 0); |
| return status; |
| } |
| |
| #ifdef DEBUG_LOCK_BITS |
| static int __xipram do_printlockstatus_oneblock(struct map_info *map, |
| struct flchip *chip, |
| unsigned long adr, |
| int len, void *thunk) |
| { |
| printk(KERN_DEBUG "block status register for 0x%08lx is %x\n", |
| adr, do_getlockstatus_oneblock(map, chip, adr, len, thunk)); |
| return 0; |
| } |
| #endif |
| |
| #define DO_XXLOCK_ONEBLOCK_LOCK ((void *) 1) |
| #define DO_XXLOCK_ONEBLOCK_UNLOCK ((void *) 2) |
| |
| static int __xipram do_xxlock_oneblock(struct map_info *map, struct flchip *chip, |
| unsigned long adr, int len, void *thunk) |
| { |
| struct cfi_private *cfi = map->fldrv_priv; |
| struct cfi_pri_intelext *extp = cfi->cmdset_priv; |
| int mdelay; |
| int ret; |
| |
| adr += chip->start; |
| |
| mutex_lock(&chip->mutex); |
| ret = get_chip(map, chip, adr, FL_LOCKING); |
| if (ret) { |
| mutex_unlock(&chip->mutex); |
| return ret; |
| } |
| |
| ENABLE_VPP(map); |
| xip_disable(map, chip, adr); |
| |
| map_write(map, CMD(0x60), adr); |
| if (thunk == DO_XXLOCK_ONEBLOCK_LOCK) { |
| map_write(map, CMD(0x01), adr); |
| chip->state = FL_LOCKING; |
| } else if (thunk == DO_XXLOCK_ONEBLOCK_UNLOCK) { |
| map_write(map, CMD(0xD0), adr); |
| chip->state = FL_UNLOCKING; |
| } else |
| BUG(); |
| |
| /* |
| * If Instant Individual Block Locking supported then no need |
| * to delay. |
| */ |
| /* |
| * Unlocking may take up to 1.4 seconds on some Intel flashes. So |
| * lets use a max of 1.5 seconds (1500ms) as timeout. |
| * |
| * See "Clear Block Lock-Bits Time" on page 40 in |
| * "3 Volt Intel StrataFlash Memory" 28F128J3,28F640J3,28F320J3 manual |
| * from February 2003 |
| */ |
| mdelay = (!extp || !(extp->FeatureSupport & (1 << 5))) ? 1500 : 0; |
| |
| ret = WAIT_TIMEOUT(map, chip, adr, mdelay, mdelay * 1000); |
| if (ret) { |
| map_write(map, CMD(0x70), adr); |
| chip->state = FL_STATUS; |
| xip_enable(map, chip, adr); |
| printk(KERN_ERR "%s: block unlock error: (status timeout)\n", map->name); |
| goto out; |
| } |
| |
| xip_enable(map, chip, adr); |
| out: DISABLE_VPP(map); |
| put_chip(map, chip, adr); |
| mutex_unlock(&chip->mutex); |
| return ret; |
| } |
| |
| static int cfi_intelext_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) |
| { |
| int ret; |
| |
| #ifdef DEBUG_LOCK_BITS |
| printk(KERN_DEBUG "%s: lock status before, ofs=0x%08llx, len=0x%08X\n", |
| __func__, ofs, len); |
| cfi_varsize_frob(mtd, do_printlockstatus_oneblock, |
| ofs, len, NULL); |
| #endif |
| |
| ret = cfi_varsize_frob(mtd, do_xxlock_oneblock, |
| ofs, len, DO_XXLOCK_ONEBLOCK_LOCK); |
| |
| #ifdef DEBUG_LOCK_BITS |
| printk(KERN_DEBUG "%s: lock status after, ret=%d\n", |
| __func__, ret); |
| cfi_varsize_frob(mtd, do_printlockstatus_oneblock, |
| ofs, len, NULL); |
| #endif |
| |
| return ret; |
| } |
| |
| static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) |
| { |
| int ret; |
| |
| #ifdef DEBUG_LOCK_BITS |
| printk(KERN_DEBUG "%s: lock status before, ofs=0x%08llx, len=0x%08X\n", |
| __func__, ofs, len); |
| cfi_varsize_frob(mtd, do_printlockstatus_oneblock, |
| ofs, len, NULL); |
| #endif |
| |
| ret = cfi_varsize_frob(mtd, do_xxlock_oneblock, |
| ofs, len, DO_XXLOCK_ONEBLOCK_UNLOCK); |
| |
| #ifdef DEBUG_LOCK_BITS |
| printk(KERN_DEBUG "%s: lock status after, ret=%d\n", |
| __func__, ret); |
| cfi_varsize_frob(mtd, do_printlockstatus_oneblock, |
| ofs, len, NULL); |
| #endif |
| |
| return ret; |
| } |
| |
| static int cfi_intelext_is_locked(struct mtd_info *mtd, loff_t ofs, |
| uint64_t len) |
| { |
| return cfi_varsize_frob(mtd, do_getlockstatus_oneblock, |
| ofs, len, NULL) ? 1 : 0; |
| } |
| |
| #ifdef CONFIG_MTD_OTP |
| |
| typedef int (*otp_op_t)(struct map_info *map, struct flchip *chip, |
| u_long data_offset, u_char *buf, u_int size, |
| u_long prot_offset, u_int groupno, u_int groupsize); |
| |
| static int __xipram |
| do_otp_read(struct map_info *map, struct flchip *chip, u_long offset, |
| u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz) |
| { |
| struct cfi_private *cfi = map->fldrv_priv; |
| int ret; |
| |
| mutex_lock(&chip->mutex); |
| ret = get_chip(map, chip, chip->start, FL_JEDEC_QUERY); |
| if (ret) { |
| mutex_unlock(&chip->mutex); |
| return ret; |
| } |
| |
| /* let's ensure we're not reading back cached data from array mode */ |
| INVALIDATE_CACHED_RANGE(map, chip->start + offset, size); |
| |
| xip_disable(map, chip, chip->start); |
| if (chip->state != FL_JEDEC_QUERY) { |
| map_write(map, CMD(0x90), chip->start); |
| chip->state = FL_JEDEC_QUERY; |
| } |
| map_copy_from(map, buf, chip->start + offset, size); |
| xip_enable(map, chip, chip->start); |
| |
| /* then ensure we don't keep OTP data in the cache */ |
| INVALIDATE_CACHED_RANGE(map, chip->start + offset, size); |
| |
| put_chip(map, chip, chip->start); |
| mutex_unlock(&chip->mutex); |
| return 0; |
| } |
| |
| static int |
| do_otp_write(struct map_info *map, struct flchip *chip, u_long offset, |
| u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz) |
| { |
| int ret; |
| |
| while (size) { |
| unsigned long bus_ofs = offset & ~(map_bankwidth(map)-1); |
| int gap = offset - bus_ofs; |
| int n = min_t(int, size, map_bankwidth(map)-gap); |
| map_word datum = map_word_ff(map); |
| |
| datum = map_word_load_partial(map, datum, buf, gap, n); |
| ret = do_write_oneword(map, chip, bus_ofs, datum, FL_OTP_WRITE); |
| if (ret) |
| return ret; |
| |
| offset += n; |
| buf += n; |
| size -= n; |
| } |
| |
| return 0; |
| } |
| |
| static int |
| do_otp_lock(struct map_info *map, struct flchip *chip, u_long offset, |
| u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz) |
| { |
| struct cfi_private *cfi = map->fldrv_priv; |
| map_word datum; |
| |
| /* make sure area matches group boundaries */ |
| if (size != grpsz) |
| return -EXDEV; |
| |
| datum = map_word_ff(map); |
| datum = map_word_clr(map, datum, CMD(1 << grpno)); |
| return do_write_oneword(map, chip, prot, datum, FL_OTP_WRITE); |
| } |
| |
| static int cfi_intelext_otp_walk(struct mtd_info *mtd, loff_t from, size_t len, |
| size_t *retlen, u_char *buf, |
| otp_op_t action, int user_regs) |
| { |
| struct map_info *map = mtd->priv; |
| struct cfi_private *cfi = map->fldrv_priv; |
| struct cfi_pri_intelext *extp = cfi->cmdset_priv; |
| struct flchip *chip; |
| struct cfi_intelext_otpinfo *otp; |
| u_long devsize, reg_prot_offset, data_offset; |
| u_int chip_num, chip_step, field, reg_fact_size, reg_user_size; |
| u_int groups, groupno, groupsize, reg_fact_groups, reg_user_groups; |
| int ret; |
| |
| *retlen = 0; |
| |
| /* Check that we actually have some OTP registers */ |
| if (!extp || !(extp->FeatureSupport & 64) || !extp->NumProtectionFields) |
| return -ENODATA; |
| |
| /* we need real chips here not virtual ones */ |
| devsize = (1 << cfi->cfiq->DevSize) * cfi->interleave; |
| chip_step = devsize >> cfi->chipshift; |
| chip_num = 0; |
| |
| /* Some chips have OTP located in the _top_ partition only. |
| For example: Intel 28F256L18T (T means top-parameter device) */ |
| if (cfi->mfr == CFI_MFR_INTEL) { |
| switch (cfi->id) { |
| case 0x880b: |
| case 0x880c: |
| case 0x880d: |
| chip_num = chip_step - 1; |
| } |
| } |
| |
| for ( ; chip_num < cfi->numchips; chip_num += chip_step) { |
| chip = &cfi->chips[chip_num]; |
| otp = (struct cfi_intelext_otpinfo *)&extp->extra[0]; |
| |
| /* first OTP region */ |
| field = 0; |
| reg_prot_offset = extp->ProtRegAddr; |
| reg_fact_groups = 1; |
| reg_fact_size = 1 << extp->FactProtRegSize; |
| reg_user_groups = 1; |
| reg_user_size = 1 << extp->UserProtRegSize; |
| |
| while (len > 0) { |
| /* flash geometry fixup */ |
| data_offset = reg_prot_offset + 1; |
| data_offset *= cfi->interleave * cfi->device_type; |
| reg_prot_offset *= cfi->interleave * cfi->device_type; |
| reg_fact_size *= cfi->interleave; |
| reg_user_size *= cfi->interleave; |
| |
| if (user_regs) { |
| groups = reg_user_groups; |
| groupsize = reg_user_size; |
| /* skip over factory reg area */ |
| groupno = reg_fact_groups; |
| data_offset += reg_fact_groups * reg_fact_size; |
| } else { |
| groups = reg_fact_groups; |
| groupsize = reg_fact_size; |
| groupno = 0; |
| } |
| |
| while (len > 0 && groups > 0) { |
| if (!action) { |
| /* |
| * Special case: if action is NULL |
| * we fill buf with otp_info records. |
| */ |
| struct otp_info *otpinfo; |
| map_word lockword; |
| len -= sizeof(struct otp_info); |
| if (len <= 0) |
| return -ENOSPC; |
| ret = do_otp_read(map, chip, |
| reg_prot_offset, |
| (u_char *)&lockword, |
| map_bankwidth(map), |
| 0, 0, 0); |
| if (ret) |
| return ret; |
| otpinfo = (struct otp_info *)buf; |
| otpinfo->start = from; |
| otpinfo->length = groupsize; |
| otpinfo->locked = |
| !map_word_bitsset(map, lockword, |
| CMD(1 << groupno)); |
| from += groupsize; |
| buf += sizeof(*otpinfo); |
| *retlen += sizeof(*otpinfo); |
| } else if (from >= groupsize) { |
| from -= groupsize; |
| data_offset += groupsize; |
| } else { |
| int size = groupsize; |
| data_offset += from; |
| size -= from; |
| from = 0; |
| if (size > len) |
| size = len; |
| ret = action(map, chip, data_offset, |
| buf, size, reg_prot_offset, |
| groupno, groupsize); |
| if (ret < 0) |
| return ret; |
| buf += size; |
| len -= size; |
| *retlen += size; |
| data_offset += size; |
| } |
| groupno++; |
| groups--; |
| } |
| |
| /* next OTP region */ |
| if (++field == extp->NumProtectionFields) |
| break; |
| reg_prot_offset = otp->ProtRegAddr; |
| reg_fact_groups = otp->FactGroups; |
| reg_fact_size = 1 << otp->FactProtRegSize; |
| reg_user_groups = otp->UserGroups; |
| reg_user_size = 1 << otp->UserProtRegSize; |
| otp++; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int cfi_intelext_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, |
| size_t len, size_t *retlen, |
| u_char *buf) |
| { |
| return cfi_intelext_otp_walk(mtd, from, len, retlen, |
| buf, do_otp_read, 0); |
| } |
| |
| static int cfi_intelext_read_user_prot_reg(struct mtd_info *mtd, loff_t from, |
| size_t len, size_t *retlen, |
| u_char *buf) |
| { |
| return cfi_intelext_otp_walk(mtd, from, len, retlen, |
| buf, do_otp_read, 1); |
| } |
| |
| static int cfi_intelext_write_user_prot_reg(struct mtd_info *mtd, loff_t from, |
| size_t len, size_t *retlen, |
| u_char *buf) |
| { |
| return cfi_intelext_otp_walk(mtd, from, len, retlen, |
| buf, do_otp_write, 1); |
| } |
| |
| static int cfi_intelext_lock_user_prot_reg(struct mtd_info *mtd, |
| loff_t from, size_t len) |
| { |
| size_t retlen; |
| return cfi_intelext_otp_walk(mtd, from, len, &retlen, |
| NULL, do_otp_lock, 1); |
| } |
| |
| static int cfi_intelext_get_fact_prot_info(struct mtd_info *mtd, size_t len, |
| size_t *retlen, struct otp_info *buf) |
| |
| { |
| return cfi_intelext_otp_walk(mtd, 0, len, retlen, (u_char *)buf, |
| NULL, 0); |
| } |
| |
| static int cfi_intelext_get_user_prot_info(struct mtd_info *mtd, size_t len, |
| size_t *retlen, struct otp_info *buf) |
| { |
| return cfi_intelext_otp_walk(mtd, 0, len, retlen, (u_char *)buf, |
| NULL, 1); |
| } |
| |
| #endif |
| |
| static void cfi_intelext_save_locks(struct mtd_info *mtd) |
| { |
| struct mtd_erase_region_info *region; |
| int block, status, i; |
| unsigned long adr; |
| size_t len; |
| |
| for (i = 0; i < mtd->numeraseregions; i++) { |
| region = &mtd->eraseregions[i]; |
| if (!region->lockmap) |
| continue; |
| |
| for (block = 0; block < region->numblocks; block++){ |
| len = region->erasesize; |
| adr = region->offset + block * len; |
| |
| status = cfi_varsize_frob(mtd, |
| do_getlockstatus_oneblock, adr, len, NULL); |
| if (status) |
| set_bit(block, region->lockmap); |
| else |
| clear_bit(block, region->lockmap); |
| } |
| } |
| } |
| |
| static int cfi_intelext_suspend(struct mtd_info *mtd) |
| { |
| struct map_info *map = mtd->priv; |
| struct cfi_private *cfi = map->fldrv_priv; |
| struct cfi_pri_intelext *extp = cfi->cmdset_priv; |
| int i; |
| struct flchip *chip; |
| int ret = 0; |
| |
| if ((mtd->flags & MTD_POWERUP_LOCK) |
| && extp && (extp->FeatureSupport & (1 << 5))) |
| cfi_intelext_save_locks(mtd); |
| |
| for (i=0; !ret && i<cfi->numchips; i++) { |
| chip = &cfi->chips[i]; |
| |
| mutex_lock(&chip->mutex); |
| |
| switch (chip->state) { |
| case FL_READY: |
| case FL_STATUS: |
| case FL_CFI_QUERY: |
| case FL_JEDEC_QUERY: |
| if (chip->oldstate == FL_READY) { |
| /* place the chip in a known state before suspend */ |
| map_write(map, CMD(0xFF), cfi->chips[i].start); |
| chip->oldstate = chip->state; |
| chip->state = FL_PM_SUSPENDED; |
| /* No need to wake_up() on this state change - |
| * as the whole point is that nobody can do anything |
| * with the chip now anyway. |
| */ |
| } else { |
| /* There seems to be an operation pending. We must wait for it. */ |
| printk(KERN_NOTICE "Flash device refused suspend due to pending operation (oldstate %d)\n", chip->oldstate); |
| ret = -EAGAIN; |
| } |
| break; |
| default: |
| /* Should we actually wait? Once upon a time these routines weren't |
| allowed to. Or should we return -EAGAIN, because the upper layers |
| ought to have already shut down anything which was using the device |
| anyway? The latter for now. */ |
| printk(KERN_NOTICE "Flash device refused suspend due to active operation (state %d)\n", chip->state); |
| ret = -EAGAIN; |
| case FL_PM_SUSPENDED: |
| break; |
| } |
| mutex_unlock(&chip->mutex); |
| } |
| |
| /* Unlock the chips again */ |
| |
| if (ret) { |
| for (i--; i >=0; i--) { |
| chip = &cfi->chips[i]; |
| |
| mutex_lock(&chip->mutex); |
| |
| if (chip->state == FL_PM_SUSPENDED) { |
| /* No need to force it into a known state here, |
| because we're returning failure, and it didn't |
| get power cycled */ |
| chip->state = chip->oldstate; |
| chip->oldstate = FL_READY; |
| wake_up(&chip->wq); |
| } |
| mutex_unlock(&chip->mutex); |
| } |
| } |
| |
| return ret; |
| } |
| |
| static void cfi_intelext_restore_locks(struct mtd_info *mtd) |
| { |
| struct mtd_erase_region_info *region; |
| int block, i; |
| unsigned long adr; |
| size_t len; |
| |
| for (i = 0; i < mtd->numeraseregions; i++) { |
| region = &mtd->eraseregions[i]; |
| if (!region->lockmap) |
| continue; |
| |
| for_each_clear_bit(block, region->lockmap, region->numblocks) { |
| len = region->erasesize; |
| adr = region->offset + block * len; |
| cfi_intelext_unlock(mtd, adr, len); |
| } |
| } |
| } |
| |
| static void cfi_intelext_resume(struct mtd_info *mtd) |
| { |
| struct map_info *map = mtd->priv; |
| struct cfi_private *cfi = map->fldrv_priv; |
| struct cfi_pri_intelext *extp = cfi->cmdset_priv; |
| int i; |
| struct flchip *chip; |
| |
| for (i=0; i<cfi->numchips; i++) { |
| |
| chip = &cfi->chips[i]; |
| |
| mutex_lock(&chip->mutex); |
| |
| /* Go to known state. Chip may have been power cycled */ |
| if (chip->state == FL_PM_SUSPENDED) { |
| /* Refresh LH28F640BF Partition Config. Register */ |
| fixup_LH28F640BF(mtd); |
| map_write(map, CMD(0xFF), cfi->chips[i].start); |
| chip->oldstate = chip->state = FL_READY; |
| wake_up(&chip->wq); |
| } |
| |
| mutex_unlock(&chip->mutex); |
| } |
| |
| if ((mtd->flags & MTD_POWERUP_LOCK) |
| && extp && (extp->FeatureSupport & (1 << 5))) |
| cfi_intelext_restore_locks(mtd); |
| } |
| |
| static int cfi_intelext_reset(struct mtd_info *mtd) |
| { |
| struct map_info *map = mtd->priv; |
| struct cfi_private *cfi = map->fldrv_priv; |
| int i, ret; |
| |
| for (i=0; i < cfi->numchips; i++) { |
| struct flchip *chip = &cfi->chips[i]; |
| |
| /* force the completion of any ongoing operation |
| and switch to array mode so any bootloader in |
| flash is accessible for soft reboot. */ |
| mutex_lock(&chip->mutex); |
| ret = get_chip(map, chip, chip->start, FL_SHUTDOWN); |
| if (!ret) { |
| map_write(map, CMD(0xff), chip->start); |
| chip->state = FL_SHUTDOWN; |
| put_chip(map, chip, chip->start); |
| } |
| mutex_unlock(&chip->mutex); |
| } |
| |
| return 0; |
| } |
| |
| static int cfi_intelext_reboot(struct notifier_block *nb, unsigned long val, |
| void *v) |
| { |
| struct mtd_info *mtd; |
| |
| mtd = container_of(nb, struct mtd_info, reboot_notifier); |
| cfi_intelext_reset(mtd); |
| return NOTIFY_DONE; |
| } |
| |
| static void cfi_intelext_destroy(struct mtd_info *mtd) |
| { |
| struct map_info *map = mtd->priv; |
| struct cfi_private *cfi = map->fldrv_priv; |
| struct mtd_erase_region_info *region; |
| int i; |
| cfi_intelext_reset(mtd); |
| unregister_reboot_notifier(&mtd->reboot_notifier); |
| kfree(cfi->cmdset_priv); |
| kfree(cfi->cfiq); |
| kfree(cfi->chips[0].priv); |
| kfree(cfi); |
| for (i = 0; i < mtd->numeraseregions; i++) { |
| region = &mtd->eraseregions[i]; |
| kfree(region->lockmap); |
| } |
| kfree(mtd->eraseregions); |
| } |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org> et al."); |
| MODULE_DESCRIPTION("MTD chip driver for Intel/Sharp flash chips"); |
| MODULE_ALIAS("cfi_cmdset_0003"); |
| MODULE_ALIAS("cfi_cmdset_0200"); |