| /* |
| * Copyright (c) 2006, Intel Corporation. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms and conditions of the GNU General Public License, |
| * version 2, as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| * more details. |
| * |
| * You should have received a copy of the GNU General Public License along with |
| * this program; if not, write to the Free Software Foundation, Inc., 59 Temple |
| * Place - Suite 330, Boston, MA 02111-1307 USA. |
| * |
| * Copyright (C) 2006-2008 Intel Corporation |
| * Author: Ashok Raj <ashok.raj@intel.com> |
| * Author: Shaohua Li <shaohua.li@intel.com> |
| * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> |
| * |
| * This file implements early detection/parsing of Remapping Devices |
| * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI |
| * tables. |
| * |
| * These routines are used by both DMA-remapping and Interrupt-remapping |
| */ |
| |
| #include <linux/pci.h> |
| #include <linux/dmar.h> |
| #include <linux/iova.h> |
| #include <linux/intel-iommu.h> |
| #include <linux/timer.h> |
| #include <linux/irq.h> |
| #include <linux/interrupt.h> |
| |
| #undef PREFIX |
| #define PREFIX "DMAR:" |
| |
| /* No locks are needed as DMA remapping hardware unit |
| * list is constructed at boot time and hotplug of |
| * these units are not supported by the architecture. |
| */ |
| LIST_HEAD(dmar_drhd_units); |
| |
| static struct acpi_table_header * __initdata dmar_tbl; |
| static acpi_size dmar_tbl_size; |
| |
| static void __init dmar_register_drhd_unit(struct dmar_drhd_unit *drhd) |
| { |
| /* |
| * add INCLUDE_ALL at the tail, so scan the list will find it at |
| * the very end. |
| */ |
| if (drhd->include_all) |
| list_add_tail(&drhd->list, &dmar_drhd_units); |
| else |
| list_add(&drhd->list, &dmar_drhd_units); |
| } |
| |
| static int __init dmar_parse_one_dev_scope(struct acpi_dmar_device_scope *scope, |
| struct pci_dev **dev, u16 segment) |
| { |
| struct pci_bus *bus; |
| struct pci_dev *pdev = NULL; |
| struct acpi_dmar_pci_path *path; |
| int count; |
| |
| bus = pci_find_bus(segment, scope->bus); |
| path = (struct acpi_dmar_pci_path *)(scope + 1); |
| count = (scope->length - sizeof(struct acpi_dmar_device_scope)) |
| / sizeof(struct acpi_dmar_pci_path); |
| |
| while (count) { |
| if (pdev) |
| pci_dev_put(pdev); |
| /* |
| * Some BIOSes list non-exist devices in DMAR table, just |
| * ignore it |
| */ |
| if (!bus) { |
| printk(KERN_WARNING |
| PREFIX "Device scope bus [%d] not found\n", |
| scope->bus); |
| break; |
| } |
| pdev = pci_get_slot(bus, PCI_DEVFN(path->dev, path->fn)); |
| if (!pdev) { |
| printk(KERN_WARNING PREFIX |
| "Device scope device [%04x:%02x:%02x.%02x] not found\n", |
| segment, bus->number, path->dev, path->fn); |
| break; |
| } |
| path ++; |
| count --; |
| bus = pdev->subordinate; |
| } |
| if (!pdev) { |
| printk(KERN_WARNING PREFIX |
| "Device scope device [%04x:%02x:%02x.%02x] not found\n", |
| segment, scope->bus, path->dev, path->fn); |
| *dev = NULL; |
| return 0; |
| } |
| if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT && \ |
| pdev->subordinate) || (scope->entry_type == \ |
| ACPI_DMAR_SCOPE_TYPE_BRIDGE && !pdev->subordinate)) { |
| pci_dev_put(pdev); |
| printk(KERN_WARNING PREFIX |
| "Device scope type does not match for %s\n", |
| pci_name(pdev)); |
| return -EINVAL; |
| } |
| *dev = pdev; |
| return 0; |
| } |
| |
| static int __init dmar_parse_dev_scope(void *start, void *end, int *cnt, |
| struct pci_dev ***devices, u16 segment) |
| { |
| struct acpi_dmar_device_scope *scope; |
| void * tmp = start; |
| int index; |
| int ret; |
| |
| *cnt = 0; |
| while (start < end) { |
| scope = start; |
| if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT || |
| scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE) |
| (*cnt)++; |
| else |
| printk(KERN_WARNING PREFIX |
| "Unsupported device scope\n"); |
| start += scope->length; |
| } |
| if (*cnt == 0) |
| return 0; |
| |
| *devices = kcalloc(*cnt, sizeof(struct pci_dev *), GFP_KERNEL); |
| if (!*devices) |
| return -ENOMEM; |
| |
| start = tmp; |
| index = 0; |
| while (start < end) { |
| scope = start; |
| if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT || |
| scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE) { |
| ret = dmar_parse_one_dev_scope(scope, |
| &(*devices)[index], segment); |
| if (ret) { |
| kfree(*devices); |
| return ret; |
| } |
| index ++; |
| } |
| start += scope->length; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition |
| * structure which uniquely represent one DMA remapping hardware unit |
| * present in the platform |
| */ |
| static int __init |
| dmar_parse_one_drhd(struct acpi_dmar_header *header) |
| { |
| struct acpi_dmar_hardware_unit *drhd; |
| struct dmar_drhd_unit *dmaru; |
| int ret = 0; |
| |
| dmaru = kzalloc(sizeof(*dmaru), GFP_KERNEL); |
| if (!dmaru) |
| return -ENOMEM; |
| |
| dmaru->hdr = header; |
| drhd = (struct acpi_dmar_hardware_unit *)header; |
| dmaru->reg_base_addr = drhd->address; |
| dmaru->segment = drhd->segment; |
| dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */ |
| |
| ret = alloc_iommu(dmaru); |
| if (ret) { |
| kfree(dmaru); |
| return ret; |
| } |
| dmar_register_drhd_unit(dmaru); |
| return 0; |
| } |
| |
| static int __init dmar_parse_dev(struct dmar_drhd_unit *dmaru) |
| { |
| struct acpi_dmar_hardware_unit *drhd; |
| int ret = 0; |
| |
| drhd = (struct acpi_dmar_hardware_unit *) dmaru->hdr; |
| |
| if (dmaru->include_all) |
| return 0; |
| |
| ret = dmar_parse_dev_scope((void *)(drhd + 1), |
| ((void *)drhd) + drhd->header.length, |
| &dmaru->devices_cnt, &dmaru->devices, |
| drhd->segment); |
| if (ret) { |
| list_del(&dmaru->list); |
| kfree(dmaru); |
| } |
| return ret; |
| } |
| |
| #ifdef CONFIG_DMAR |
| LIST_HEAD(dmar_rmrr_units); |
| |
| static void __init dmar_register_rmrr_unit(struct dmar_rmrr_unit *rmrr) |
| { |
| list_add(&rmrr->list, &dmar_rmrr_units); |
| } |
| |
| |
| static int __init |
| dmar_parse_one_rmrr(struct acpi_dmar_header *header) |
| { |
| struct acpi_dmar_reserved_memory *rmrr; |
| struct dmar_rmrr_unit *rmrru; |
| |
| rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL); |
| if (!rmrru) |
| return -ENOMEM; |
| |
| rmrru->hdr = header; |
| rmrr = (struct acpi_dmar_reserved_memory *)header; |
| rmrru->base_address = rmrr->base_address; |
| rmrru->end_address = rmrr->end_address; |
| |
| dmar_register_rmrr_unit(rmrru); |
| return 0; |
| } |
| |
| static int __init |
| rmrr_parse_dev(struct dmar_rmrr_unit *rmrru) |
| { |
| struct acpi_dmar_reserved_memory *rmrr; |
| int ret; |
| |
| rmrr = (struct acpi_dmar_reserved_memory *) rmrru->hdr; |
| ret = dmar_parse_dev_scope((void *)(rmrr + 1), |
| ((void *)rmrr) + rmrr->header.length, |
| &rmrru->devices_cnt, &rmrru->devices, rmrr->segment); |
| |
| if (ret || (rmrru->devices_cnt == 0)) { |
| list_del(&rmrru->list); |
| kfree(rmrru); |
| } |
| return ret; |
| } |
| #endif |
| |
| static void __init |
| dmar_table_print_dmar_entry(struct acpi_dmar_header *header) |
| { |
| struct acpi_dmar_hardware_unit *drhd; |
| struct acpi_dmar_reserved_memory *rmrr; |
| |
| switch (header->type) { |
| case ACPI_DMAR_TYPE_HARDWARE_UNIT: |
| drhd = (struct acpi_dmar_hardware_unit *)header; |
| printk (KERN_INFO PREFIX |
| "DRHD (flags: 0x%08x)base: 0x%016Lx\n", |
| drhd->flags, (unsigned long long)drhd->address); |
| break; |
| case ACPI_DMAR_TYPE_RESERVED_MEMORY: |
| rmrr = (struct acpi_dmar_reserved_memory *)header; |
| |
| printk (KERN_INFO PREFIX |
| "RMRR base: 0x%016Lx end: 0x%016Lx\n", |
| (unsigned long long)rmrr->base_address, |
| (unsigned long long)rmrr->end_address); |
| break; |
| } |
| } |
| |
| /** |
| * dmar_table_detect - checks to see if the platform supports DMAR devices |
| */ |
| static int __init dmar_table_detect(void) |
| { |
| acpi_status status = AE_OK; |
| |
| /* if we could find DMAR table, then there are DMAR devices */ |
| status = acpi_get_table_with_size(ACPI_SIG_DMAR, 0, |
| (struct acpi_table_header **)&dmar_tbl, |
| &dmar_tbl_size); |
| |
| if (ACPI_SUCCESS(status) && !dmar_tbl) { |
| printk (KERN_WARNING PREFIX "Unable to map DMAR\n"); |
| status = AE_NOT_FOUND; |
| } |
| |
| return (ACPI_SUCCESS(status) ? 1 : 0); |
| } |
| |
| /** |
| * parse_dmar_table - parses the DMA reporting table |
| */ |
| static int __init |
| parse_dmar_table(void) |
| { |
| struct acpi_table_dmar *dmar; |
| struct acpi_dmar_header *entry_header; |
| int ret = 0; |
| |
| /* |
| * Do it again, earlier dmar_tbl mapping could be mapped with |
| * fixed map. |
| */ |
| dmar_table_detect(); |
| |
| dmar = (struct acpi_table_dmar *)dmar_tbl; |
| if (!dmar) |
| return -ENODEV; |
| |
| if (dmar->width < PAGE_SHIFT - 1) { |
| printk(KERN_WARNING PREFIX "Invalid DMAR haw\n"); |
| return -EINVAL; |
| } |
| |
| printk (KERN_INFO PREFIX "Host address width %d\n", |
| dmar->width + 1); |
| |
| entry_header = (struct acpi_dmar_header *)(dmar + 1); |
| while (((unsigned long)entry_header) < |
| (((unsigned long)dmar) + dmar_tbl->length)) { |
| /* Avoid looping forever on bad ACPI tables */ |
| if (entry_header->length == 0) { |
| printk(KERN_WARNING PREFIX |
| "Invalid 0-length structure\n"); |
| ret = -EINVAL; |
| break; |
| } |
| |
| dmar_table_print_dmar_entry(entry_header); |
| |
| switch (entry_header->type) { |
| case ACPI_DMAR_TYPE_HARDWARE_UNIT: |
| ret = dmar_parse_one_drhd(entry_header); |
| break; |
| case ACPI_DMAR_TYPE_RESERVED_MEMORY: |
| #ifdef CONFIG_DMAR |
| ret = dmar_parse_one_rmrr(entry_header); |
| #endif |
| break; |
| default: |
| printk(KERN_WARNING PREFIX |
| "Unknown DMAR structure type\n"); |
| ret = 0; /* for forward compatibility */ |
| break; |
| } |
| if (ret) |
| break; |
| |
| entry_header = ((void *)entry_header + entry_header->length); |
| } |
| return ret; |
| } |
| |
| int dmar_pci_device_match(struct pci_dev *devices[], int cnt, |
| struct pci_dev *dev) |
| { |
| int index; |
| |
| while (dev) { |
| for (index = 0; index < cnt; index++) |
| if (dev == devices[index]) |
| return 1; |
| |
| /* Check our parent */ |
| dev = dev->bus->self; |
| } |
| |
| return 0; |
| } |
| |
| struct dmar_drhd_unit * |
| dmar_find_matched_drhd_unit(struct pci_dev *dev) |
| { |
| struct dmar_drhd_unit *dmaru = NULL; |
| struct acpi_dmar_hardware_unit *drhd; |
| |
| list_for_each_entry(dmaru, &dmar_drhd_units, list) { |
| drhd = container_of(dmaru->hdr, |
| struct acpi_dmar_hardware_unit, |
| header); |
| |
| if (dmaru->include_all && |
| drhd->segment == pci_domain_nr(dev->bus)) |
| return dmaru; |
| |
| if (dmar_pci_device_match(dmaru->devices, |
| dmaru->devices_cnt, dev)) |
| return dmaru; |
| } |
| |
| return NULL; |
| } |
| |
| int __init dmar_dev_scope_init(void) |
| { |
| struct dmar_drhd_unit *drhd, *drhd_n; |
| int ret = -ENODEV; |
| |
| list_for_each_entry_safe(drhd, drhd_n, &dmar_drhd_units, list) { |
| ret = dmar_parse_dev(drhd); |
| if (ret) |
| return ret; |
| } |
| |
| #ifdef CONFIG_DMAR |
| { |
| struct dmar_rmrr_unit *rmrr, *rmrr_n; |
| list_for_each_entry_safe(rmrr, rmrr_n, &dmar_rmrr_units, list) { |
| ret = rmrr_parse_dev(rmrr); |
| if (ret) |
| return ret; |
| } |
| } |
| #endif |
| |
| return ret; |
| } |
| |
| |
| int __init dmar_table_init(void) |
| { |
| static int dmar_table_initialized; |
| int ret; |
| |
| if (dmar_table_initialized) |
| return 0; |
| |
| dmar_table_initialized = 1; |
| |
| ret = parse_dmar_table(); |
| if (ret) { |
| if (ret != -ENODEV) |
| printk(KERN_INFO PREFIX "parse DMAR table failure.\n"); |
| return ret; |
| } |
| |
| if (list_empty(&dmar_drhd_units)) { |
| printk(KERN_INFO PREFIX "No DMAR devices found\n"); |
| return -ENODEV; |
| } |
| |
| #ifdef CONFIG_DMAR |
| if (list_empty(&dmar_rmrr_units)) |
| printk(KERN_INFO PREFIX "No RMRR found\n"); |
| #endif |
| |
| #ifdef CONFIG_INTR_REMAP |
| parse_ioapics_under_ir(); |
| #endif |
| return 0; |
| } |
| |
| void __init detect_intel_iommu(void) |
| { |
| int ret; |
| |
| ret = dmar_table_detect(); |
| |
| { |
| #ifdef CONFIG_INTR_REMAP |
| struct acpi_table_dmar *dmar; |
| /* |
| * for now we will disable dma-remapping when interrupt |
| * remapping is enabled. |
| * When support for queued invalidation for IOTLB invalidation |
| * is added, we will not need this any more. |
| */ |
| dmar = (struct acpi_table_dmar *) dmar_tbl; |
| if (ret && cpu_has_x2apic && dmar->flags & 0x1) |
| printk(KERN_INFO |
| "Queued invalidation will be enabled to support " |
| "x2apic and Intr-remapping.\n"); |
| #endif |
| #ifdef CONFIG_DMAR |
| if (ret && !no_iommu && !iommu_detected && !swiotlb && |
| !dmar_disabled) |
| iommu_detected = 1; |
| #endif |
| } |
| early_acpi_os_unmap_memory(dmar_tbl, dmar_tbl_size); |
| dmar_tbl = NULL; |
| } |
| |
| |
| int alloc_iommu(struct dmar_drhd_unit *drhd) |
| { |
| struct intel_iommu *iommu; |
| int map_size; |
| u32 ver; |
| static int iommu_allocated = 0; |
| int agaw = 0; |
| |
| iommu = kzalloc(sizeof(*iommu), GFP_KERNEL); |
| if (!iommu) |
| return -ENOMEM; |
| |
| iommu->seq_id = iommu_allocated++; |
| sprintf (iommu->name, "dmar%d", iommu->seq_id); |
| |
| iommu->reg = ioremap(drhd->reg_base_addr, VTD_PAGE_SIZE); |
| if (!iommu->reg) { |
| printk(KERN_ERR "IOMMU: can't map the region\n"); |
| goto error; |
| } |
| iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG); |
| iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG); |
| |
| #ifdef CONFIG_DMAR |
| agaw = iommu_calculate_agaw(iommu); |
| if (agaw < 0) { |
| printk(KERN_ERR |
| "Cannot get a valid agaw for iommu (seq_id = %d)\n", |
| iommu->seq_id); |
| goto error; |
| } |
| #endif |
| iommu->agaw = agaw; |
| |
| /* the registers might be more than one page */ |
| map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap), |
| cap_max_fault_reg_offset(iommu->cap)); |
| map_size = VTD_PAGE_ALIGN(map_size); |
| if (map_size > VTD_PAGE_SIZE) { |
| iounmap(iommu->reg); |
| iommu->reg = ioremap(drhd->reg_base_addr, map_size); |
| if (!iommu->reg) { |
| printk(KERN_ERR "IOMMU: can't map the region\n"); |
| goto error; |
| } |
| } |
| |
| ver = readl(iommu->reg + DMAR_VER_REG); |
| pr_debug("IOMMU %llx: ver %d:%d cap %llx ecap %llx\n", |
| (unsigned long long)drhd->reg_base_addr, |
| DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver), |
| (unsigned long long)iommu->cap, |
| (unsigned long long)iommu->ecap); |
| |
| spin_lock_init(&iommu->register_lock); |
| |
| drhd->iommu = iommu; |
| return 0; |
| error: |
| kfree(iommu); |
| return -1; |
| } |
| |
| void free_iommu(struct intel_iommu *iommu) |
| { |
| if (!iommu) |
| return; |
| |
| #ifdef CONFIG_DMAR |
| free_dmar_iommu(iommu); |
| #endif |
| |
| if (iommu->reg) |
| iounmap(iommu->reg); |
| kfree(iommu); |
| } |
| |
| /* |
| * Reclaim all the submitted descriptors which have completed its work. |
| */ |
| static inline void reclaim_free_desc(struct q_inval *qi) |
| { |
| while (qi->desc_status[qi->free_tail] == QI_DONE) { |
| qi->desc_status[qi->free_tail] = QI_FREE; |
| qi->free_tail = (qi->free_tail + 1) % QI_LENGTH; |
| qi->free_cnt++; |
| } |
| } |
| |
| static int qi_check_fault(struct intel_iommu *iommu, int index) |
| { |
| u32 fault; |
| int head; |
| struct q_inval *qi = iommu->qi; |
| int wait_index = (index + 1) % QI_LENGTH; |
| |
| fault = readl(iommu->reg + DMAR_FSTS_REG); |
| |
| /* |
| * If IQE happens, the head points to the descriptor associated |
| * with the error. No new descriptors are fetched until the IQE |
| * is cleared. |
| */ |
| if (fault & DMA_FSTS_IQE) { |
| head = readl(iommu->reg + DMAR_IQH_REG); |
| if ((head >> 4) == index) { |
| memcpy(&qi->desc[index], &qi->desc[wait_index], |
| sizeof(struct qi_desc)); |
| __iommu_flush_cache(iommu, &qi->desc[index], |
| sizeof(struct qi_desc)); |
| writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG); |
| return -EINVAL; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Submit the queued invalidation descriptor to the remapping |
| * hardware unit and wait for its completion. |
| */ |
| int qi_submit_sync(struct qi_desc *desc, struct intel_iommu *iommu) |
| { |
| int rc = 0; |
| struct q_inval *qi = iommu->qi; |
| struct qi_desc *hw, wait_desc; |
| int wait_index, index; |
| unsigned long flags; |
| |
| if (!qi) |
| return 0; |
| |
| hw = qi->desc; |
| |
| spin_lock_irqsave(&qi->q_lock, flags); |
| while (qi->free_cnt < 3) { |
| spin_unlock_irqrestore(&qi->q_lock, flags); |
| cpu_relax(); |
| spin_lock_irqsave(&qi->q_lock, flags); |
| } |
| |
| index = qi->free_head; |
| wait_index = (index + 1) % QI_LENGTH; |
| |
| qi->desc_status[index] = qi->desc_status[wait_index] = QI_IN_USE; |
| |
| hw[index] = *desc; |
| |
| wait_desc.low = QI_IWD_STATUS_DATA(QI_DONE) | |
| QI_IWD_STATUS_WRITE | QI_IWD_TYPE; |
| wait_desc.high = virt_to_phys(&qi->desc_status[wait_index]); |
| |
| hw[wait_index] = wait_desc; |
| |
| __iommu_flush_cache(iommu, &hw[index], sizeof(struct qi_desc)); |
| __iommu_flush_cache(iommu, &hw[wait_index], sizeof(struct qi_desc)); |
| |
| qi->free_head = (qi->free_head + 2) % QI_LENGTH; |
| qi->free_cnt -= 2; |
| |
| /* |
| * update the HW tail register indicating the presence of |
| * new descriptors. |
| */ |
| writel(qi->free_head << 4, iommu->reg + DMAR_IQT_REG); |
| |
| while (qi->desc_status[wait_index] != QI_DONE) { |
| /* |
| * We will leave the interrupts disabled, to prevent interrupt |
| * context to queue another cmd while a cmd is already submitted |
| * and waiting for completion on this cpu. This is to avoid |
| * a deadlock where the interrupt context can wait indefinitely |
| * for free slots in the queue. |
| */ |
| rc = qi_check_fault(iommu, index); |
| if (rc) |
| goto out; |
| |
| spin_unlock(&qi->q_lock); |
| cpu_relax(); |
| spin_lock(&qi->q_lock); |
| } |
| out: |
| qi->desc_status[index] = qi->desc_status[wait_index] = QI_DONE; |
| |
| reclaim_free_desc(qi); |
| spin_unlock_irqrestore(&qi->q_lock, flags); |
| |
| return rc; |
| } |
| |
| /* |
| * Flush the global interrupt entry cache. |
| */ |
| void qi_global_iec(struct intel_iommu *iommu) |
| { |
| struct qi_desc desc; |
| |
| desc.low = QI_IEC_TYPE; |
| desc.high = 0; |
| |
| /* should never fail */ |
| qi_submit_sync(&desc, iommu); |
| } |
| |
| int qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm, |
| u64 type, int non_present_entry_flush) |
| { |
| struct qi_desc desc; |
| |
| if (non_present_entry_flush) { |
| if (!cap_caching_mode(iommu->cap)) |
| return 1; |
| else |
| did = 0; |
| } |
| |
| desc.low = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did) |
| | QI_CC_GRAN(type) | QI_CC_TYPE; |
| desc.high = 0; |
| |
| return qi_submit_sync(&desc, iommu); |
| } |
| |
| int qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr, |
| unsigned int size_order, u64 type, |
| int non_present_entry_flush) |
| { |
| u8 dw = 0, dr = 0; |
| |
| struct qi_desc desc; |
| int ih = 0; |
| |
| if (non_present_entry_flush) { |
| if (!cap_caching_mode(iommu->cap)) |
| return 1; |
| else |
| did = 0; |
| } |
| |
| if (cap_write_drain(iommu->cap)) |
| dw = 1; |
| |
| if (cap_read_drain(iommu->cap)) |
| dr = 1; |
| |
| desc.low = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw) |
| | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE; |
| desc.high = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih) |
| | QI_IOTLB_AM(size_order); |
| |
| return qi_submit_sync(&desc, iommu); |
| } |
| |
| /* |
| * Disable Queued Invalidation interface. |
| */ |
| void dmar_disable_qi(struct intel_iommu *iommu) |
| { |
| unsigned long flags; |
| u32 sts; |
| cycles_t start_time = get_cycles(); |
| |
| if (!ecap_qis(iommu->ecap)) |
| return; |
| |
| spin_lock_irqsave(&iommu->register_lock, flags); |
| |
| sts = dmar_readq(iommu->reg + DMAR_GSTS_REG); |
| if (!(sts & DMA_GSTS_QIES)) |
| goto end; |
| |
| /* |
| * Give a chance to HW to complete the pending invalidation requests. |
| */ |
| while ((readl(iommu->reg + DMAR_IQT_REG) != |
| readl(iommu->reg + DMAR_IQH_REG)) && |
| (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time))) |
| cpu_relax(); |
| |
| iommu->gcmd &= ~DMA_GCMD_QIE; |
| |
| writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); |
| |
| IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, |
| !(sts & DMA_GSTS_QIES), sts); |
| end: |
| spin_unlock_irqrestore(&iommu->register_lock, flags); |
| } |
| |
| /* |
| * Enable queued invalidation. |
| */ |
| static void __dmar_enable_qi(struct intel_iommu *iommu) |
| { |
| u32 cmd, sts; |
| unsigned long flags; |
| struct q_inval *qi = iommu->qi; |
| |
| qi->free_head = qi->free_tail = 0; |
| qi->free_cnt = QI_LENGTH; |
| |
| spin_lock_irqsave(&iommu->register_lock, flags); |
| |
| /* write zero to the tail reg */ |
| writel(0, iommu->reg + DMAR_IQT_REG); |
| |
| dmar_writeq(iommu->reg + DMAR_IQA_REG, virt_to_phys(qi->desc)); |
| |
| cmd = iommu->gcmd | DMA_GCMD_QIE; |
| iommu->gcmd |= DMA_GCMD_QIE; |
| writel(cmd, iommu->reg + DMAR_GCMD_REG); |
| |
| /* Make sure hardware complete it */ |
| IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts); |
| |
| spin_unlock_irqrestore(&iommu->register_lock, flags); |
| } |
| |
| /* |
| * Enable Queued Invalidation interface. This is a must to support |
| * interrupt-remapping. Also used by DMA-remapping, which replaces |
| * register based IOTLB invalidation. |
| */ |
| int dmar_enable_qi(struct intel_iommu *iommu) |
| { |
| struct q_inval *qi; |
| |
| if (!ecap_qis(iommu->ecap)) |
| return -ENOENT; |
| |
| /* |
| * queued invalidation is already setup and enabled. |
| */ |
| if (iommu->qi) |
| return 0; |
| |
| iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC); |
| if (!iommu->qi) |
| return -ENOMEM; |
| |
| qi = iommu->qi; |
| |
| qi->desc = (void *)(get_zeroed_page(GFP_ATOMIC)); |
| if (!qi->desc) { |
| kfree(qi); |
| iommu->qi = 0; |
| return -ENOMEM; |
| } |
| |
| qi->desc_status = kmalloc(QI_LENGTH * sizeof(int), GFP_ATOMIC); |
| if (!qi->desc_status) { |
| free_page((unsigned long) qi->desc); |
| kfree(qi); |
| iommu->qi = 0; |
| return -ENOMEM; |
| } |
| |
| qi->free_head = qi->free_tail = 0; |
| qi->free_cnt = QI_LENGTH; |
| |
| spin_lock_init(&qi->q_lock); |
| |
| __dmar_enable_qi(iommu); |
| |
| return 0; |
| } |
| |
| /* iommu interrupt handling. Most stuff are MSI-like. */ |
| |
| enum faulttype { |
| DMA_REMAP, |
| INTR_REMAP, |
| UNKNOWN, |
| }; |
| |
| static const char *dma_remap_fault_reasons[] = |
| { |
| "Software", |
| "Present bit in root entry is clear", |
| "Present bit in context entry is clear", |
| "Invalid context entry", |
| "Access beyond MGAW", |
| "PTE Write access is not set", |
| "PTE Read access is not set", |
| "Next page table ptr is invalid", |
| "Root table address invalid", |
| "Context table ptr is invalid", |
| "non-zero reserved fields in RTP", |
| "non-zero reserved fields in CTP", |
| "non-zero reserved fields in PTE", |
| }; |
| |
| static const char *intr_remap_fault_reasons[] = |
| { |
| "Detected reserved fields in the decoded interrupt-remapped request", |
| "Interrupt index exceeded the interrupt-remapping table size", |
| "Present field in the IRTE entry is clear", |
| "Error accessing interrupt-remapping table pointed by IRTA_REG", |
| "Detected reserved fields in the IRTE entry", |
| "Blocked a compatibility format interrupt request", |
| "Blocked an interrupt request due to source-id verification failure", |
| }; |
| |
| #define MAX_FAULT_REASON_IDX (ARRAY_SIZE(fault_reason_strings) - 1) |
| |
| const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type) |
| { |
| if (fault_reason >= 0x20 && (fault_reason <= 0x20 + |
| ARRAY_SIZE(intr_remap_fault_reasons))) { |
| *fault_type = INTR_REMAP; |
| return intr_remap_fault_reasons[fault_reason - 0x20]; |
| } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) { |
| *fault_type = DMA_REMAP; |
| return dma_remap_fault_reasons[fault_reason]; |
| } else { |
| *fault_type = UNKNOWN; |
| return "Unknown"; |
| } |
| } |
| |
| void dmar_msi_unmask(unsigned int irq) |
| { |
| struct intel_iommu *iommu = get_irq_data(irq); |
| unsigned long flag; |
| |
| /* unmask it */ |
| spin_lock_irqsave(&iommu->register_lock, flag); |
| writel(0, iommu->reg + DMAR_FECTL_REG); |
| /* Read a reg to force flush the post write */ |
| readl(iommu->reg + DMAR_FECTL_REG); |
| spin_unlock_irqrestore(&iommu->register_lock, flag); |
| } |
| |
| void dmar_msi_mask(unsigned int irq) |
| { |
| unsigned long flag; |
| struct intel_iommu *iommu = get_irq_data(irq); |
| |
| /* mask it */ |
| spin_lock_irqsave(&iommu->register_lock, flag); |
| writel(DMA_FECTL_IM, iommu->reg + DMAR_FECTL_REG); |
| /* Read a reg to force flush the post write */ |
| readl(iommu->reg + DMAR_FECTL_REG); |
| spin_unlock_irqrestore(&iommu->register_lock, flag); |
| } |
| |
| void dmar_msi_write(int irq, struct msi_msg *msg) |
| { |
| struct intel_iommu *iommu = get_irq_data(irq); |
| unsigned long flag; |
| |
| spin_lock_irqsave(&iommu->register_lock, flag); |
| writel(msg->data, iommu->reg + DMAR_FEDATA_REG); |
| writel(msg->address_lo, iommu->reg + DMAR_FEADDR_REG); |
| writel(msg->address_hi, iommu->reg + DMAR_FEUADDR_REG); |
| spin_unlock_irqrestore(&iommu->register_lock, flag); |
| } |
| |
| void dmar_msi_read(int irq, struct msi_msg *msg) |
| { |
| struct intel_iommu *iommu = get_irq_data(irq); |
| unsigned long flag; |
| |
| spin_lock_irqsave(&iommu->register_lock, flag); |
| msg->data = readl(iommu->reg + DMAR_FEDATA_REG); |
| msg->address_lo = readl(iommu->reg + DMAR_FEADDR_REG); |
| msg->address_hi = readl(iommu->reg + DMAR_FEUADDR_REG); |
| spin_unlock_irqrestore(&iommu->register_lock, flag); |
| } |
| |
| static int dmar_fault_do_one(struct intel_iommu *iommu, int type, |
| u8 fault_reason, u16 source_id, unsigned long long addr) |
| { |
| const char *reason; |
| int fault_type; |
| |
| reason = dmar_get_fault_reason(fault_reason, &fault_type); |
| |
| if (fault_type == INTR_REMAP) |
| printk(KERN_ERR "INTR-REMAP: Request device [[%02x:%02x.%d] " |
| "fault index %llx\n" |
| "INTR-REMAP:[fault reason %02d] %s\n", |
| (source_id >> 8), PCI_SLOT(source_id & 0xFF), |
| PCI_FUNC(source_id & 0xFF), addr >> 48, |
| fault_reason, reason); |
| else |
| printk(KERN_ERR |
| "DMAR:[%s] Request device [%02x:%02x.%d] " |
| "fault addr %llx \n" |
| "DMAR:[fault reason %02d] %s\n", |
| (type ? "DMA Read" : "DMA Write"), |
| (source_id >> 8), PCI_SLOT(source_id & 0xFF), |
| PCI_FUNC(source_id & 0xFF), addr, fault_reason, reason); |
| return 0; |
| } |
| |
| #define PRIMARY_FAULT_REG_LEN (16) |
| irqreturn_t dmar_fault(int irq, void *dev_id) |
| { |
| struct intel_iommu *iommu = dev_id; |
| int reg, fault_index; |
| u32 fault_status; |
| unsigned long flag; |
| |
| spin_lock_irqsave(&iommu->register_lock, flag); |
| fault_status = readl(iommu->reg + DMAR_FSTS_REG); |
| if (fault_status) |
| printk(KERN_ERR "DRHD: handling fault status reg %x\n", |
| fault_status); |
| |
| /* TBD: ignore advanced fault log currently */ |
| if (!(fault_status & DMA_FSTS_PPF)) |
| goto clear_rest; |
| |
| fault_index = dma_fsts_fault_record_index(fault_status); |
| reg = cap_fault_reg_offset(iommu->cap); |
| while (1) { |
| u8 fault_reason; |
| u16 source_id; |
| u64 guest_addr; |
| int type; |
| u32 data; |
| |
| /* highest 32 bits */ |
| data = readl(iommu->reg + reg + |
| fault_index * PRIMARY_FAULT_REG_LEN + 12); |
| if (!(data & DMA_FRCD_F)) |
| break; |
| |
| fault_reason = dma_frcd_fault_reason(data); |
| type = dma_frcd_type(data); |
| |
| data = readl(iommu->reg + reg + |
| fault_index * PRIMARY_FAULT_REG_LEN + 8); |
| source_id = dma_frcd_source_id(data); |
| |
| guest_addr = dmar_readq(iommu->reg + reg + |
| fault_index * PRIMARY_FAULT_REG_LEN); |
| guest_addr = dma_frcd_page_addr(guest_addr); |
| /* clear the fault */ |
| writel(DMA_FRCD_F, iommu->reg + reg + |
| fault_index * PRIMARY_FAULT_REG_LEN + 12); |
| |
| spin_unlock_irqrestore(&iommu->register_lock, flag); |
| |
| dmar_fault_do_one(iommu, type, fault_reason, |
| source_id, guest_addr); |
| |
| fault_index++; |
| if (fault_index > cap_num_fault_regs(iommu->cap)) |
| fault_index = 0; |
| spin_lock_irqsave(&iommu->register_lock, flag); |
| } |
| clear_rest: |
| /* clear all the other faults */ |
| fault_status = readl(iommu->reg + DMAR_FSTS_REG); |
| writel(fault_status, iommu->reg + DMAR_FSTS_REG); |
| |
| spin_unlock_irqrestore(&iommu->register_lock, flag); |
| return IRQ_HANDLED; |
| } |
| |
| int dmar_set_interrupt(struct intel_iommu *iommu) |
| { |
| int irq, ret; |
| |
| /* |
| * Check if the fault interrupt is already initialized. |
| */ |
| if (iommu->irq) |
| return 0; |
| |
| irq = create_irq(); |
| if (!irq) { |
| printk(KERN_ERR "IOMMU: no free vectors\n"); |
| return -EINVAL; |
| } |
| |
| set_irq_data(irq, iommu); |
| iommu->irq = irq; |
| |
| ret = arch_setup_dmar_msi(irq); |
| if (ret) { |
| set_irq_data(irq, NULL); |
| iommu->irq = 0; |
| destroy_irq(irq); |
| return 0; |
| } |
| |
| ret = request_irq(irq, dmar_fault, 0, iommu->name, iommu); |
| if (ret) |
| printk(KERN_ERR "IOMMU: can't request irq\n"); |
| return ret; |
| } |
| |
| int __init enable_drhd_fault_handling(void) |
| { |
| struct dmar_drhd_unit *drhd; |
| |
| /* |
| * Enable fault control interrupt. |
| */ |
| for_each_drhd_unit(drhd) { |
| int ret; |
| struct intel_iommu *iommu = drhd->iommu; |
| ret = dmar_set_interrupt(iommu); |
| |
| if (ret) { |
| printk(KERN_ERR "DRHD %Lx: failed to enable fault, " |
| " interrupt, ret %d\n", |
| (unsigned long long)drhd->reg_base_addr, ret); |
| return -1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Re-enable Queued Invalidation interface. |
| */ |
| int dmar_reenable_qi(struct intel_iommu *iommu) |
| { |
| if (!ecap_qis(iommu->ecap)) |
| return -ENOENT; |
| |
| if (!iommu->qi) |
| return -ENOENT; |
| |
| /* |
| * First disable queued invalidation. |
| */ |
| dmar_disable_qi(iommu); |
| /* |
| * Then enable queued invalidation again. Since there is no pending |
| * invalidation requests now, it's safe to re-enable queued |
| * invalidation. |
| */ |
| __dmar_enable_qi(iommu); |
| |
| return 0; |
| } |