blob: 43640d797455c94004bd2e48f97475007813aad7 [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Based on arch/arm/include/asm/memory.h
*
* Copyright (C) 2000-2002 Russell King
* Copyright (C) 2012 ARM Ltd.
*
* Note: this file should not be included by non-asm/.h files
*/
#ifndef __ASM_MEMORY_H
#define __ASM_MEMORY_H
#include <linux/const.h>
#include <linux/sizes.h>
#include <asm/page-def.h>
/*
* Size of the PCI I/O space. This must remain a power of two so that
* IO_SPACE_LIMIT acts as a mask for the low bits of I/O addresses.
*/
#define PCI_IO_SIZE SZ_16M
/*
* VMEMMAP_SIZE - allows the whole linear region to be covered by
* a struct page array
*
* If we are configured with a 52-bit kernel VA then our VMEMMAP_SIZE
* needs to cover the memory region from the beginning of the 52-bit
* PAGE_OFFSET all the way to PAGE_END for 48-bit. This allows us to
* keep a constant PAGE_OFFSET and "fallback" to using the higher end
* of the VMEMMAP where 52-bit support is not available in hardware.
*/
#define VMEMMAP_SIZE ((_PAGE_END(VA_BITS_MIN) - PAGE_OFFSET) \
>> (PAGE_SHIFT - STRUCT_PAGE_MAX_SHIFT))
/*
* PAGE_OFFSET - the virtual address of the start of the linear map, at the
* start of the TTBR1 address space.
* PAGE_END - the end of the linear map, where all other kernel mappings begin.
* KIMAGE_VADDR - the virtual address of the start of the kernel image.
* VA_BITS - the maximum number of bits for virtual addresses.
*/
#define VA_BITS (CONFIG_ARM64_VA_BITS)
#define _PAGE_OFFSET(va) (-(UL(1) << (va)))
#define PAGE_OFFSET (_PAGE_OFFSET(VA_BITS))
#define KIMAGE_VADDR (MODULES_END)
#define BPF_JIT_REGION_START (KASAN_SHADOW_END)
#define BPF_JIT_REGION_SIZE (SZ_128M)
#define BPF_JIT_REGION_END (BPF_JIT_REGION_START + BPF_JIT_REGION_SIZE)
#define MODULES_END (MODULES_VADDR + MODULES_VSIZE)
#define MODULES_VADDR (BPF_JIT_REGION_END)
#define MODULES_VSIZE (SZ_128M)
#define VMEMMAP_START (-VMEMMAP_SIZE - SZ_2M)
#define VMEMMAP_END (VMEMMAP_START + VMEMMAP_SIZE)
#define PCI_IO_END (VMEMMAP_START - SZ_2M)
#define PCI_IO_START (PCI_IO_END - PCI_IO_SIZE)
#define FIXADDR_TOP (PCI_IO_START - SZ_2M)
#if VA_BITS > 48
#define VA_BITS_MIN (48)
#else
#define VA_BITS_MIN (VA_BITS)
#endif
#define _PAGE_END(va) (-(UL(1) << ((va) - 1)))
#define KERNEL_START _text
#define KERNEL_END _end
/*
* Generic and tag-based KASAN require 1/8th and 1/16th of the kernel virtual
* address space for the shadow region respectively. They can bloat the stack
* significantly, so double the (minimum) stack size when they are in use.
*/
#ifdef CONFIG_KASAN
#define KASAN_SHADOW_OFFSET _AC(CONFIG_KASAN_SHADOW_OFFSET, UL)
#define KASAN_SHADOW_END ((UL(1) << (64 - KASAN_SHADOW_SCALE_SHIFT)) \
+ KASAN_SHADOW_OFFSET)
#define KASAN_THREAD_SHIFT 1
#else
#define KASAN_THREAD_SHIFT 0
#define KASAN_SHADOW_END (_PAGE_END(VA_BITS_MIN))
#endif /* CONFIG_KASAN */
#define MIN_THREAD_SHIFT (14 + KASAN_THREAD_SHIFT)
/*
* VMAP'd stacks are allocated at page granularity, so we must ensure that such
* stacks are a multiple of page size.
*/
#if defined(CONFIG_VMAP_STACK) && (MIN_THREAD_SHIFT < PAGE_SHIFT)
#define THREAD_SHIFT PAGE_SHIFT
#else
#define THREAD_SHIFT MIN_THREAD_SHIFT
#endif
#if THREAD_SHIFT >= PAGE_SHIFT
#define THREAD_SIZE_ORDER (THREAD_SHIFT - PAGE_SHIFT)
#endif
#define THREAD_SIZE (UL(1) << THREAD_SHIFT)
/*
* By aligning VMAP'd stacks to 2 * THREAD_SIZE, we can detect overflow by
* checking sp & (1 << THREAD_SHIFT), which we can do cheaply in the entry
* assembly.
*/
#ifdef CONFIG_VMAP_STACK
#define THREAD_ALIGN (2 * THREAD_SIZE)
#else
#define THREAD_ALIGN THREAD_SIZE
#endif
#define IRQ_STACK_SIZE THREAD_SIZE
#define OVERFLOW_STACK_SIZE SZ_4K
/*
* Alignment of kernel segments (e.g. .text, .data).
*
* 4 KB granule: 16 level 3 entries, with contiguous bit
* 16 KB granule: 4 level 3 entries, without contiguous bit
* 64 KB granule: 1 level 3 entry
*/
#define SEGMENT_ALIGN SZ_64K
/*
* Memory types available.
*
* IMPORTANT: MT_NORMAL must be index 0 since vm_get_page_prot() may 'or' in
* the MT_NORMAL_TAGGED memory type for PROT_MTE mappings. Note
* that protection_map[] only contains MT_NORMAL attributes.
*/
#define MT_NORMAL 0
#define MT_NORMAL_TAGGED 1
#define MT_NORMAL_NC 2
#define MT_NORMAL_WT 3
#define MT_DEVICE_nGnRnE 4
#define MT_DEVICE_nGnRE 5
#define MT_DEVICE_GRE 6
/*
* Memory types for Stage-2 translation
*/
#define MT_S2_NORMAL 0xf
#define MT_S2_DEVICE_nGnRE 0x1
/*
* Memory types for Stage-2 translation when ID_AA64MMFR2_EL1.FWB is 0001
* Stage-2 enforces Normal-WB and Device-nGnRE
*/
#define MT_S2_FWB_NORMAL 6
#define MT_S2_FWB_DEVICE_nGnRE 1
#ifdef CONFIG_ARM64_4K_PAGES
#define IOREMAP_MAX_ORDER (PUD_SHIFT)
#else
#define IOREMAP_MAX_ORDER (PMD_SHIFT)
#endif
#ifndef __ASSEMBLY__
#include <linux/bitops.h>
#include <linux/compiler.h>
#include <linux/mmdebug.h>
#include <linux/types.h>
#include <asm/bug.h>
extern u64 vabits_actual;
#define PAGE_END (_PAGE_END(vabits_actual))
extern s64 physvirt_offset;
extern s64 memstart_addr;
/* PHYS_OFFSET - the physical address of the start of memory. */
#define PHYS_OFFSET ({ VM_BUG_ON(memstart_addr & 1); memstart_addr; })
/* the virtual base of the kernel image */
extern u64 kimage_vaddr;
/* the offset between the kernel virtual and physical mappings */
extern u64 kimage_voffset;
static inline unsigned long kaslr_offset(void)
{
return kimage_vaddr - KIMAGE_VADDR;
}
/*
* Allow all memory at the discovery stage. We will clip it later.
*/
#define MIN_MEMBLOCK_ADDR 0
#define MAX_MEMBLOCK_ADDR U64_MAX
/*
* PFNs are used to describe any physical page; this means
* PFN 0 == physical address 0.
*
* This is the PFN of the first RAM page in the kernel
* direct-mapped view. We assume this is the first page
* of RAM in the mem_map as well.
*/
#define PHYS_PFN_OFFSET (PHYS_OFFSET >> PAGE_SHIFT)
/*
* When dealing with data aborts, watchpoints, or instruction traps we may end
* up with a tagged userland pointer. Clear the tag to get a sane pointer to
* pass on to access_ok(), for instance.
*/
#define __untagged_addr(addr) \
((__force __typeof__(addr))sign_extend64((__force u64)(addr), 55))
#define untagged_addr(addr) ({ \
u64 __addr = (__force u64)(addr); \
__addr &= __untagged_addr(__addr); \
(__force __typeof__(addr))__addr; \
})
#ifdef CONFIG_KASAN_SW_TAGS
#define __tag_shifted(tag) ((u64)(tag) << 56)
#define __tag_reset(addr) __untagged_addr(addr)
#define __tag_get(addr) (__u8)((u64)(addr) >> 56)
#else
#define __tag_shifted(tag) 0UL
#define __tag_reset(addr) (addr)
#define __tag_get(addr) 0
#endif /* CONFIG_KASAN_SW_TAGS */
static inline const void *__tag_set(const void *addr, u8 tag)
{
u64 __addr = (u64)addr & ~__tag_shifted(0xff);
return (const void *)(__addr | __tag_shifted(tag));
}
/*
* Physical vs virtual RAM address space conversion. These are
* private definitions which should NOT be used outside memory.h
* files. Use virt_to_phys/phys_to_virt/__pa/__va instead.
*/
/*
* The linear kernel range starts at the bottom of the virtual address
* space. Testing the top bit for the start of the region is a
* sufficient check and avoids having to worry about the tag.
*/
#define __is_lm_address(addr) (!(((u64)addr) & BIT(vabits_actual - 1)))
#define __lm_to_phys(addr) (((addr) + physvirt_offset))
#define __kimg_to_phys(addr) ((addr) - kimage_voffset)
#define __virt_to_phys_nodebug(x) ({ \
phys_addr_t __x = (phys_addr_t)(__tag_reset(x)); \
__is_lm_address(__x) ? __lm_to_phys(__x) : __kimg_to_phys(__x); \
})
#define __pa_symbol_nodebug(x) __kimg_to_phys((phys_addr_t)(x))
#ifdef CONFIG_DEBUG_VIRTUAL
extern phys_addr_t __virt_to_phys(unsigned long x);
extern phys_addr_t __phys_addr_symbol(unsigned long x);
#else
#define __virt_to_phys(x) __virt_to_phys_nodebug(x)
#define __phys_addr_symbol(x) __pa_symbol_nodebug(x)
#endif /* CONFIG_DEBUG_VIRTUAL */
#define __phys_to_virt(x) ((unsigned long)((x) - physvirt_offset))
#define __phys_to_kimg(x) ((unsigned long)((x) + kimage_voffset))
/*
* Convert a page to/from a physical address
*/
#define page_to_phys(page) (__pfn_to_phys(page_to_pfn(page)))
#define phys_to_page(phys) (pfn_to_page(__phys_to_pfn(phys)))
/*
* Note: Drivers should NOT use these. They are the wrong
* translation for translating DMA addresses. Use the driver
* DMA support - see dma-mapping.h.
*/
#define virt_to_phys virt_to_phys
static inline phys_addr_t virt_to_phys(const volatile void *x)
{
return __virt_to_phys((unsigned long)(x));
}
#define phys_to_virt phys_to_virt
static inline void *phys_to_virt(phys_addr_t x)
{
return (void *)(__phys_to_virt(x));
}
/*
* Drivers should NOT use these either.
*/
#define __pa(x) __virt_to_phys((unsigned long)(x))
#define __pa_symbol(x) __phys_addr_symbol(RELOC_HIDE((unsigned long)(x), 0))
#define __pa_nodebug(x) __virt_to_phys_nodebug((unsigned long)(x))
#define __va(x) ((void *)__phys_to_virt((phys_addr_t)(x)))
#define pfn_to_kaddr(pfn) __va((pfn) << PAGE_SHIFT)
#define virt_to_pfn(x) __phys_to_pfn(__virt_to_phys((unsigned long)(x)))
#define sym_to_pfn(x) __phys_to_pfn(__pa_symbol(x))
/*
* virt_to_page(x) convert a _valid_ virtual address to struct page *
* virt_addr_valid(x) indicates whether a virtual address is valid
*/
#define ARCH_PFN_OFFSET ((unsigned long)PHYS_PFN_OFFSET)
#if !defined(CONFIG_SPARSEMEM_VMEMMAP) || defined(CONFIG_DEBUG_VIRTUAL)
#define virt_to_page(x) pfn_to_page(virt_to_pfn(x))
#else
#define page_to_virt(x) ({ \
__typeof__(x) __page = x; \
u64 __idx = ((u64)__page - VMEMMAP_START) / sizeof(struct page);\
u64 __addr = PAGE_OFFSET + (__idx * PAGE_SIZE); \
(void *)__tag_set((const void *)__addr, page_kasan_tag(__page));\
})
#define virt_to_page(x) ({ \
u64 __idx = (__tag_reset((u64)x) - PAGE_OFFSET) / PAGE_SIZE; \
u64 __addr = VMEMMAP_START + (__idx * sizeof(struct page)); \
(struct page *)__addr; \
})
#endif /* !CONFIG_SPARSEMEM_VMEMMAP || CONFIG_DEBUG_VIRTUAL */
#define virt_addr_valid(addr) ({ \
__typeof__(addr) __addr = addr; \
__is_lm_address(__addr) && pfn_valid(virt_to_pfn(__addr)); \
})
void dump_mem_limit(void);
#endif /* !ASSEMBLY */
/*
* Given that the GIC architecture permits ITS implementations that can only be
* configured with a LPI table address once, GICv3 systems with many CPUs may
* end up reserving a lot of different regions after a kexec for their LPI
* tables (one per CPU), as we are forced to reuse the same memory after kexec
* (and thus reserve it persistently with EFI beforehand)
*/
#if defined(CONFIG_EFI) && defined(CONFIG_ARM_GIC_V3_ITS)
# define INIT_MEMBLOCK_RESERVED_REGIONS (INIT_MEMBLOCK_REGIONS + NR_CPUS + 1)
#endif
#include <asm-generic/memory_model.h>
#endif /* __ASM_MEMORY_H */