|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc. | 
|  | * Copyright (C) 2010 Red Hat, Inc. | 
|  | * All Rights Reserved. | 
|  | */ | 
|  | #include "xfs.h" | 
|  | #include "xfs_fs.h" | 
|  | #include "xfs_shared.h" | 
|  | #include "xfs_format.h" | 
|  | #include "xfs_log_format.h" | 
|  | #include "xfs_log_priv.h" | 
|  | #include "xfs_trans_resv.h" | 
|  | #include "xfs_mount.h" | 
|  | #include "xfs_extent_busy.h" | 
|  | #include "xfs_quota.h" | 
|  | #include "xfs_trans.h" | 
|  | #include "xfs_trans_priv.h" | 
|  | #include "xfs_log.h" | 
|  | #include "xfs_trace.h" | 
|  | #include "xfs_error.h" | 
|  | #include "xfs_defer.h" | 
|  | #include "xfs_inode.h" | 
|  | #include "xfs_dquot_item.h" | 
|  | #include "xfs_dquot.h" | 
|  |  | 
|  | kmem_zone_t	*xfs_trans_zone; | 
|  |  | 
|  | #if defined(CONFIG_TRACEPOINTS) | 
|  | static void | 
|  | xfs_trans_trace_reservations( | 
|  | struct xfs_mount	*mp) | 
|  | { | 
|  | struct xfs_trans_res	resv; | 
|  | struct xfs_trans_res	*res; | 
|  | struct xfs_trans_res	*end_res; | 
|  | int			i; | 
|  |  | 
|  | res = (struct xfs_trans_res *)M_RES(mp); | 
|  | end_res = (struct xfs_trans_res *)(M_RES(mp) + 1); | 
|  | for (i = 0; res < end_res; i++, res++) | 
|  | trace_xfs_trans_resv_calc(mp, i, res); | 
|  | xfs_log_get_max_trans_res(mp, &resv); | 
|  | trace_xfs_trans_resv_calc(mp, -1, &resv); | 
|  | } | 
|  | #else | 
|  | # define xfs_trans_trace_reservations(mp) | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Initialize the precomputed transaction reservation values | 
|  | * in the mount structure. | 
|  | */ | 
|  | void | 
|  | xfs_trans_init( | 
|  | struct xfs_mount	*mp) | 
|  | { | 
|  | xfs_trans_resv_calc(mp, M_RES(mp)); | 
|  | xfs_trans_trace_reservations(mp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free the transaction structure.  If there is more clean up | 
|  | * to do when the structure is freed, add it here. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_trans_free( | 
|  | struct xfs_trans	*tp) | 
|  | { | 
|  | xfs_extent_busy_sort(&tp->t_busy); | 
|  | xfs_extent_busy_clear(tp->t_mountp, &tp->t_busy, false); | 
|  |  | 
|  | trace_xfs_trans_free(tp, _RET_IP_); | 
|  | if (!(tp->t_flags & XFS_TRANS_NO_WRITECOUNT)) | 
|  | sb_end_intwrite(tp->t_mountp->m_super); | 
|  | xfs_trans_free_dqinfo(tp); | 
|  | kmem_cache_free(xfs_trans_zone, tp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is called to create a new transaction which will share the | 
|  | * permanent log reservation of the given transaction.  The remaining | 
|  | * unused block and rt extent reservations are also inherited.  This | 
|  | * implies that the original transaction is no longer allowed to allocate | 
|  | * blocks.  Locks and log items, however, are no inherited.  They must | 
|  | * be added to the new transaction explicitly. | 
|  | */ | 
|  | STATIC struct xfs_trans * | 
|  | xfs_trans_dup( | 
|  | struct xfs_trans	*tp) | 
|  | { | 
|  | struct xfs_trans	*ntp; | 
|  |  | 
|  | trace_xfs_trans_dup(tp, _RET_IP_); | 
|  |  | 
|  | ntp = kmem_cache_zalloc(xfs_trans_zone, GFP_KERNEL | __GFP_NOFAIL); | 
|  |  | 
|  | /* | 
|  | * Initialize the new transaction structure. | 
|  | */ | 
|  | ntp->t_magic = XFS_TRANS_HEADER_MAGIC; | 
|  | ntp->t_mountp = tp->t_mountp; | 
|  | INIT_LIST_HEAD(&ntp->t_items); | 
|  | INIT_LIST_HEAD(&ntp->t_busy); | 
|  | INIT_LIST_HEAD(&ntp->t_dfops); | 
|  | ntp->t_firstblock = NULLFSBLOCK; | 
|  |  | 
|  | ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); | 
|  | ASSERT(tp->t_ticket != NULL); | 
|  |  | 
|  | ntp->t_flags = XFS_TRANS_PERM_LOG_RES | | 
|  | (tp->t_flags & XFS_TRANS_RESERVE) | | 
|  | (tp->t_flags & XFS_TRANS_NO_WRITECOUNT) | | 
|  | (tp->t_flags & XFS_TRANS_RES_FDBLKS); | 
|  | /* We gave our writer reference to the new transaction */ | 
|  | tp->t_flags |= XFS_TRANS_NO_WRITECOUNT; | 
|  | ntp->t_ticket = xfs_log_ticket_get(tp->t_ticket); | 
|  |  | 
|  | ASSERT(tp->t_blk_res >= tp->t_blk_res_used); | 
|  | ntp->t_blk_res = tp->t_blk_res - tp->t_blk_res_used; | 
|  | tp->t_blk_res = tp->t_blk_res_used; | 
|  |  | 
|  | ntp->t_rtx_res = tp->t_rtx_res - tp->t_rtx_res_used; | 
|  | tp->t_rtx_res = tp->t_rtx_res_used; | 
|  | ntp->t_pflags = tp->t_pflags; | 
|  |  | 
|  | /* move deferred ops over to the new tp */ | 
|  | xfs_defer_move(ntp, tp); | 
|  |  | 
|  | xfs_trans_dup_dqinfo(tp, ntp); | 
|  | return ntp; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is called to reserve free disk blocks and log space for the | 
|  | * given transaction.  This must be done before allocating any resources | 
|  | * within the transaction. | 
|  | * | 
|  | * This will return ENOSPC if there are not enough blocks available. | 
|  | * It will sleep waiting for available log space. | 
|  | * The only valid value for the flags parameter is XFS_RES_LOG_PERM, which | 
|  | * is used by long running transactions.  If any one of the reservations | 
|  | * fails then they will all be backed out. | 
|  | * | 
|  | * This does not do quota reservations. That typically is done by the | 
|  | * caller afterwards. | 
|  | */ | 
|  | static int | 
|  | xfs_trans_reserve( | 
|  | struct xfs_trans	*tp, | 
|  | struct xfs_trans_res	*resp, | 
|  | uint			blocks, | 
|  | uint			rtextents) | 
|  | { | 
|  | struct xfs_mount	*mp = tp->t_mountp; | 
|  | int			error = 0; | 
|  | bool			rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0; | 
|  |  | 
|  | /* Mark this thread as being in a transaction */ | 
|  | current_set_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS); | 
|  |  | 
|  | /* | 
|  | * Attempt to reserve the needed disk blocks by decrementing | 
|  | * the number needed from the number available.  This will | 
|  | * fail if the count would go below zero. | 
|  | */ | 
|  | if (blocks > 0) { | 
|  | error = xfs_mod_fdblocks(mp, -((int64_t)blocks), rsvd); | 
|  | if (error != 0) { | 
|  | current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS); | 
|  | return -ENOSPC; | 
|  | } | 
|  | tp->t_blk_res += blocks; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Reserve the log space needed for this transaction. | 
|  | */ | 
|  | if (resp->tr_logres > 0) { | 
|  | bool	permanent = false; | 
|  |  | 
|  | ASSERT(tp->t_log_res == 0 || | 
|  | tp->t_log_res == resp->tr_logres); | 
|  | ASSERT(tp->t_log_count == 0 || | 
|  | tp->t_log_count == resp->tr_logcount); | 
|  |  | 
|  | if (resp->tr_logflags & XFS_TRANS_PERM_LOG_RES) { | 
|  | tp->t_flags |= XFS_TRANS_PERM_LOG_RES; | 
|  | permanent = true; | 
|  | } else { | 
|  | ASSERT(tp->t_ticket == NULL); | 
|  | ASSERT(!(tp->t_flags & XFS_TRANS_PERM_LOG_RES)); | 
|  | } | 
|  |  | 
|  | if (tp->t_ticket != NULL) { | 
|  | ASSERT(resp->tr_logflags & XFS_TRANS_PERM_LOG_RES); | 
|  | error = xfs_log_regrant(mp, tp->t_ticket); | 
|  | } else { | 
|  | error = xfs_log_reserve(mp, | 
|  | resp->tr_logres, | 
|  | resp->tr_logcount, | 
|  | &tp->t_ticket, XFS_TRANSACTION, | 
|  | permanent); | 
|  | } | 
|  |  | 
|  | if (error) | 
|  | goto undo_blocks; | 
|  |  | 
|  | tp->t_log_res = resp->tr_logres; | 
|  | tp->t_log_count = resp->tr_logcount; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Attempt to reserve the needed realtime extents by decrementing | 
|  | * the number needed from the number available.  This will | 
|  | * fail if the count would go below zero. | 
|  | */ | 
|  | if (rtextents > 0) { | 
|  | error = xfs_mod_frextents(mp, -((int64_t)rtextents)); | 
|  | if (error) { | 
|  | error = -ENOSPC; | 
|  | goto undo_log; | 
|  | } | 
|  | tp->t_rtx_res += rtextents; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Error cases jump to one of these labels to undo any | 
|  | * reservations which have already been performed. | 
|  | */ | 
|  | undo_log: | 
|  | if (resp->tr_logres > 0) { | 
|  | xfs_log_ticket_ungrant(mp->m_log, tp->t_ticket); | 
|  | tp->t_ticket = NULL; | 
|  | tp->t_log_res = 0; | 
|  | tp->t_flags &= ~XFS_TRANS_PERM_LOG_RES; | 
|  | } | 
|  |  | 
|  | undo_blocks: | 
|  | if (blocks > 0) { | 
|  | xfs_mod_fdblocks(mp, (int64_t)blocks, rsvd); | 
|  | tp->t_blk_res = 0; | 
|  | } | 
|  |  | 
|  | current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS); | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | int | 
|  | xfs_trans_alloc( | 
|  | struct xfs_mount	*mp, | 
|  | struct xfs_trans_res	*resp, | 
|  | uint			blocks, | 
|  | uint			rtextents, | 
|  | uint			flags, | 
|  | struct xfs_trans	**tpp) | 
|  | { | 
|  | struct xfs_trans	*tp; | 
|  | int			error; | 
|  |  | 
|  | /* | 
|  | * Allocate the handle before we do our freeze accounting and setting up | 
|  | * GFP_NOFS allocation context so that we avoid lockdep false positives | 
|  | * by doing GFP_KERNEL allocations inside sb_start_intwrite(). | 
|  | */ | 
|  | tp = kmem_cache_zalloc(xfs_trans_zone, GFP_KERNEL | __GFP_NOFAIL); | 
|  | if (!(flags & XFS_TRANS_NO_WRITECOUNT)) | 
|  | sb_start_intwrite(mp->m_super); | 
|  |  | 
|  | /* | 
|  | * Zero-reservation ("empty") transactions can't modify anything, so | 
|  | * they're allowed to run while we're frozen. | 
|  | */ | 
|  | WARN_ON(resp->tr_logres > 0 && | 
|  | mp->m_super->s_writers.frozen == SB_FREEZE_COMPLETE); | 
|  | ASSERT(!(flags & XFS_TRANS_RES_FDBLKS) || | 
|  | xfs_sb_version_haslazysbcount(&mp->m_sb)); | 
|  |  | 
|  | tp->t_magic = XFS_TRANS_HEADER_MAGIC; | 
|  | tp->t_flags = flags; | 
|  | tp->t_mountp = mp; | 
|  | INIT_LIST_HEAD(&tp->t_items); | 
|  | INIT_LIST_HEAD(&tp->t_busy); | 
|  | INIT_LIST_HEAD(&tp->t_dfops); | 
|  | tp->t_firstblock = NULLFSBLOCK; | 
|  |  | 
|  | error = xfs_trans_reserve(tp, resp, blocks, rtextents); | 
|  | if (error) { | 
|  | xfs_trans_cancel(tp); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | trace_xfs_trans_alloc(tp, _RET_IP_); | 
|  |  | 
|  | *tpp = tp; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Create an empty transaction with no reservation.  This is a defensive | 
|  | * mechanism for routines that query metadata without actually modifying them -- | 
|  | * if the metadata being queried is somehow cross-linked (think a btree block | 
|  | * pointer that points higher in the tree), we risk deadlock.  However, blocks | 
|  | * grabbed as part of a transaction can be re-grabbed.  The verifiers will | 
|  | * notice the corrupt block and the operation will fail back to userspace | 
|  | * without deadlocking. | 
|  | * | 
|  | * Note the zero-length reservation; this transaction MUST be cancelled without | 
|  | * any dirty data. | 
|  | * | 
|  | * Callers should obtain freeze protection to avoid a conflict with fs freezing | 
|  | * where we can be grabbing buffers at the same time that freeze is trying to | 
|  | * drain the buffer LRU list. | 
|  | */ | 
|  | int | 
|  | xfs_trans_alloc_empty( | 
|  | struct xfs_mount		*mp, | 
|  | struct xfs_trans		**tpp) | 
|  | { | 
|  | struct xfs_trans_res		resv = {0}; | 
|  |  | 
|  | return xfs_trans_alloc(mp, &resv, 0, 0, XFS_TRANS_NO_WRITECOUNT, tpp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Record the indicated change to the given field for application | 
|  | * to the file system's superblock when the transaction commits. | 
|  | * For now, just store the change in the transaction structure. | 
|  | * | 
|  | * Mark the transaction structure to indicate that the superblock | 
|  | * needs to be updated before committing. | 
|  | * | 
|  | * Because we may not be keeping track of allocated/free inodes and | 
|  | * used filesystem blocks in the superblock, we do not mark the | 
|  | * superblock dirty in this transaction if we modify these fields. | 
|  | * We still need to update the transaction deltas so that they get | 
|  | * applied to the incore superblock, but we don't want them to | 
|  | * cause the superblock to get locked and logged if these are the | 
|  | * only fields in the superblock that the transaction modifies. | 
|  | */ | 
|  | void | 
|  | xfs_trans_mod_sb( | 
|  | xfs_trans_t	*tp, | 
|  | uint		field, | 
|  | int64_t		delta) | 
|  | { | 
|  | uint32_t	flags = (XFS_TRANS_DIRTY|XFS_TRANS_SB_DIRTY); | 
|  | xfs_mount_t	*mp = tp->t_mountp; | 
|  |  | 
|  | switch (field) { | 
|  | case XFS_TRANS_SB_ICOUNT: | 
|  | tp->t_icount_delta += delta; | 
|  | if (xfs_sb_version_haslazysbcount(&mp->m_sb)) | 
|  | flags &= ~XFS_TRANS_SB_DIRTY; | 
|  | break; | 
|  | case XFS_TRANS_SB_IFREE: | 
|  | tp->t_ifree_delta += delta; | 
|  | if (xfs_sb_version_haslazysbcount(&mp->m_sb)) | 
|  | flags &= ~XFS_TRANS_SB_DIRTY; | 
|  | break; | 
|  | case XFS_TRANS_SB_FDBLOCKS: | 
|  | /* | 
|  | * Track the number of blocks allocated in the transaction. | 
|  | * Make sure it does not exceed the number reserved. If so, | 
|  | * shutdown as this can lead to accounting inconsistency. | 
|  | */ | 
|  | if (delta < 0) { | 
|  | tp->t_blk_res_used += (uint)-delta; | 
|  | if (tp->t_blk_res_used > tp->t_blk_res) | 
|  | xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); | 
|  | } else if (delta > 0 && (tp->t_flags & XFS_TRANS_RES_FDBLKS)) { | 
|  | int64_t	blkres_delta; | 
|  |  | 
|  | /* | 
|  | * Return freed blocks directly to the reservation | 
|  | * instead of the global pool, being careful not to | 
|  | * overflow the trans counter. This is used to preserve | 
|  | * reservation across chains of transaction rolls that | 
|  | * repeatedly free and allocate blocks. | 
|  | */ | 
|  | blkres_delta = min_t(int64_t, delta, | 
|  | UINT_MAX - tp->t_blk_res); | 
|  | tp->t_blk_res += blkres_delta; | 
|  | delta -= blkres_delta; | 
|  | } | 
|  | tp->t_fdblocks_delta += delta; | 
|  | if (xfs_sb_version_haslazysbcount(&mp->m_sb)) | 
|  | flags &= ~XFS_TRANS_SB_DIRTY; | 
|  | break; | 
|  | case XFS_TRANS_SB_RES_FDBLOCKS: | 
|  | /* | 
|  | * The allocation has already been applied to the | 
|  | * in-core superblock's counter.  This should only | 
|  | * be applied to the on-disk superblock. | 
|  | */ | 
|  | tp->t_res_fdblocks_delta += delta; | 
|  | if (xfs_sb_version_haslazysbcount(&mp->m_sb)) | 
|  | flags &= ~XFS_TRANS_SB_DIRTY; | 
|  | break; | 
|  | case XFS_TRANS_SB_FREXTENTS: | 
|  | /* | 
|  | * Track the number of blocks allocated in the | 
|  | * transaction.  Make sure it does not exceed the | 
|  | * number reserved. | 
|  | */ | 
|  | if (delta < 0) { | 
|  | tp->t_rtx_res_used += (uint)-delta; | 
|  | ASSERT(tp->t_rtx_res_used <= tp->t_rtx_res); | 
|  | } | 
|  | tp->t_frextents_delta += delta; | 
|  | break; | 
|  | case XFS_TRANS_SB_RES_FREXTENTS: | 
|  | /* | 
|  | * The allocation has already been applied to the | 
|  | * in-core superblock's counter.  This should only | 
|  | * be applied to the on-disk superblock. | 
|  | */ | 
|  | ASSERT(delta < 0); | 
|  | tp->t_res_frextents_delta += delta; | 
|  | break; | 
|  | case XFS_TRANS_SB_DBLOCKS: | 
|  | ASSERT(delta > 0); | 
|  | tp->t_dblocks_delta += delta; | 
|  | break; | 
|  | case XFS_TRANS_SB_AGCOUNT: | 
|  | ASSERT(delta > 0); | 
|  | tp->t_agcount_delta += delta; | 
|  | break; | 
|  | case XFS_TRANS_SB_IMAXPCT: | 
|  | tp->t_imaxpct_delta += delta; | 
|  | break; | 
|  | case XFS_TRANS_SB_REXTSIZE: | 
|  | tp->t_rextsize_delta += delta; | 
|  | break; | 
|  | case XFS_TRANS_SB_RBMBLOCKS: | 
|  | tp->t_rbmblocks_delta += delta; | 
|  | break; | 
|  | case XFS_TRANS_SB_RBLOCKS: | 
|  | tp->t_rblocks_delta += delta; | 
|  | break; | 
|  | case XFS_TRANS_SB_REXTENTS: | 
|  | tp->t_rextents_delta += delta; | 
|  | break; | 
|  | case XFS_TRANS_SB_REXTSLOG: | 
|  | tp->t_rextslog_delta += delta; | 
|  | break; | 
|  | default: | 
|  | ASSERT(0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | tp->t_flags |= flags; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * xfs_trans_apply_sb_deltas() is called from the commit code | 
|  | * to bring the superblock buffer into the current transaction | 
|  | * and modify it as requested by earlier calls to xfs_trans_mod_sb(). | 
|  | * | 
|  | * For now we just look at each field allowed to change and change | 
|  | * it if necessary. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_trans_apply_sb_deltas( | 
|  | xfs_trans_t	*tp) | 
|  | { | 
|  | xfs_dsb_t	*sbp; | 
|  | struct xfs_buf	*bp; | 
|  | int		whole = 0; | 
|  |  | 
|  | bp = xfs_trans_getsb(tp); | 
|  | sbp = bp->b_addr; | 
|  |  | 
|  | /* | 
|  | * Check that superblock mods match the mods made to AGF counters. | 
|  | */ | 
|  | ASSERT((tp->t_fdblocks_delta + tp->t_res_fdblocks_delta) == | 
|  | (tp->t_ag_freeblks_delta + tp->t_ag_flist_delta + | 
|  | tp->t_ag_btree_delta)); | 
|  |  | 
|  | /* | 
|  | * Only update the superblock counters if we are logging them | 
|  | */ | 
|  | if (!xfs_sb_version_haslazysbcount(&(tp->t_mountp->m_sb))) { | 
|  | if (tp->t_icount_delta) | 
|  | be64_add_cpu(&sbp->sb_icount, tp->t_icount_delta); | 
|  | if (tp->t_ifree_delta) | 
|  | be64_add_cpu(&sbp->sb_ifree, tp->t_ifree_delta); | 
|  | if (tp->t_fdblocks_delta) | 
|  | be64_add_cpu(&sbp->sb_fdblocks, tp->t_fdblocks_delta); | 
|  | if (tp->t_res_fdblocks_delta) | 
|  | be64_add_cpu(&sbp->sb_fdblocks, tp->t_res_fdblocks_delta); | 
|  | } | 
|  |  | 
|  | if (tp->t_frextents_delta) | 
|  | be64_add_cpu(&sbp->sb_frextents, tp->t_frextents_delta); | 
|  | if (tp->t_res_frextents_delta) | 
|  | be64_add_cpu(&sbp->sb_frextents, tp->t_res_frextents_delta); | 
|  |  | 
|  | if (tp->t_dblocks_delta) { | 
|  | be64_add_cpu(&sbp->sb_dblocks, tp->t_dblocks_delta); | 
|  | whole = 1; | 
|  | } | 
|  | if (tp->t_agcount_delta) { | 
|  | be32_add_cpu(&sbp->sb_agcount, tp->t_agcount_delta); | 
|  | whole = 1; | 
|  | } | 
|  | if (tp->t_imaxpct_delta) { | 
|  | sbp->sb_imax_pct += tp->t_imaxpct_delta; | 
|  | whole = 1; | 
|  | } | 
|  | if (tp->t_rextsize_delta) { | 
|  | be32_add_cpu(&sbp->sb_rextsize, tp->t_rextsize_delta); | 
|  | whole = 1; | 
|  | } | 
|  | if (tp->t_rbmblocks_delta) { | 
|  | be32_add_cpu(&sbp->sb_rbmblocks, tp->t_rbmblocks_delta); | 
|  | whole = 1; | 
|  | } | 
|  | if (tp->t_rblocks_delta) { | 
|  | be64_add_cpu(&sbp->sb_rblocks, tp->t_rblocks_delta); | 
|  | whole = 1; | 
|  | } | 
|  | if (tp->t_rextents_delta) { | 
|  | be64_add_cpu(&sbp->sb_rextents, tp->t_rextents_delta); | 
|  | whole = 1; | 
|  | } | 
|  | if (tp->t_rextslog_delta) { | 
|  | sbp->sb_rextslog += tp->t_rextslog_delta; | 
|  | whole = 1; | 
|  | } | 
|  |  | 
|  | xfs_trans_buf_set_type(tp, bp, XFS_BLFT_SB_BUF); | 
|  | if (whole) | 
|  | /* | 
|  | * Log the whole thing, the fields are noncontiguous. | 
|  | */ | 
|  | xfs_trans_log_buf(tp, bp, 0, sizeof(xfs_dsb_t) - 1); | 
|  | else | 
|  | /* | 
|  | * Since all the modifiable fields are contiguous, we | 
|  | * can get away with this. | 
|  | */ | 
|  | xfs_trans_log_buf(tp, bp, offsetof(xfs_dsb_t, sb_icount), | 
|  | offsetof(xfs_dsb_t, sb_frextents) + | 
|  | sizeof(sbp->sb_frextents) - 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * xfs_trans_unreserve_and_mod_sb() is called to release unused reservations and | 
|  | * apply superblock counter changes to the in-core superblock.  The | 
|  | * t_res_fdblocks_delta and t_res_frextents_delta fields are explicitly NOT | 
|  | * applied to the in-core superblock.  The idea is that that has already been | 
|  | * done. | 
|  | * | 
|  | * If we are not logging superblock counters, then the inode allocated/free and | 
|  | * used block counts are not updated in the on disk superblock. In this case, | 
|  | * XFS_TRANS_SB_DIRTY will not be set when the transaction is updated but we | 
|  | * still need to update the incore superblock with the changes. | 
|  | * | 
|  | * Deltas for the inode count are +/-64, hence we use a large batch size of 128 | 
|  | * so we don't need to take the counter lock on every update. | 
|  | */ | 
|  | #define XFS_ICOUNT_BATCH	128 | 
|  |  | 
|  | void | 
|  | xfs_trans_unreserve_and_mod_sb( | 
|  | struct xfs_trans	*tp) | 
|  | { | 
|  | struct xfs_mount	*mp = tp->t_mountp; | 
|  | bool			rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0; | 
|  | int64_t			blkdelta = 0; | 
|  | int64_t			rtxdelta = 0; | 
|  | int64_t			idelta = 0; | 
|  | int64_t			ifreedelta = 0; | 
|  | int			error; | 
|  |  | 
|  | /* calculate deltas */ | 
|  | if (tp->t_blk_res > 0) | 
|  | blkdelta = tp->t_blk_res; | 
|  | if ((tp->t_fdblocks_delta != 0) && | 
|  | (xfs_sb_version_haslazysbcount(&mp->m_sb) || | 
|  | (tp->t_flags & XFS_TRANS_SB_DIRTY))) | 
|  | blkdelta += tp->t_fdblocks_delta; | 
|  |  | 
|  | if (tp->t_rtx_res > 0) | 
|  | rtxdelta = tp->t_rtx_res; | 
|  | if ((tp->t_frextents_delta != 0) && | 
|  | (tp->t_flags & XFS_TRANS_SB_DIRTY)) | 
|  | rtxdelta += tp->t_frextents_delta; | 
|  |  | 
|  | if (xfs_sb_version_haslazysbcount(&mp->m_sb) || | 
|  | (tp->t_flags & XFS_TRANS_SB_DIRTY)) { | 
|  | idelta = tp->t_icount_delta; | 
|  | ifreedelta = tp->t_ifree_delta; | 
|  | } | 
|  |  | 
|  | /* apply the per-cpu counters */ | 
|  | if (blkdelta) { | 
|  | error = xfs_mod_fdblocks(mp, blkdelta, rsvd); | 
|  | ASSERT(!error); | 
|  | } | 
|  |  | 
|  | if (idelta) { | 
|  | percpu_counter_add_batch(&mp->m_icount, idelta, | 
|  | XFS_ICOUNT_BATCH); | 
|  | if (idelta < 0) | 
|  | ASSERT(__percpu_counter_compare(&mp->m_icount, 0, | 
|  | XFS_ICOUNT_BATCH) >= 0); | 
|  | } | 
|  |  | 
|  | if (ifreedelta) { | 
|  | percpu_counter_add(&mp->m_ifree, ifreedelta); | 
|  | if (ifreedelta < 0) | 
|  | ASSERT(percpu_counter_compare(&mp->m_ifree, 0) >= 0); | 
|  | } | 
|  |  | 
|  | if (rtxdelta == 0 && !(tp->t_flags & XFS_TRANS_SB_DIRTY)) | 
|  | return; | 
|  |  | 
|  | /* apply remaining deltas */ | 
|  | spin_lock(&mp->m_sb_lock); | 
|  | mp->m_sb.sb_frextents += rtxdelta; | 
|  | mp->m_sb.sb_dblocks += tp->t_dblocks_delta; | 
|  | mp->m_sb.sb_agcount += tp->t_agcount_delta; | 
|  | mp->m_sb.sb_imax_pct += tp->t_imaxpct_delta; | 
|  | mp->m_sb.sb_rextsize += tp->t_rextsize_delta; | 
|  | mp->m_sb.sb_rbmblocks += tp->t_rbmblocks_delta; | 
|  | mp->m_sb.sb_rblocks += tp->t_rblocks_delta; | 
|  | mp->m_sb.sb_rextents += tp->t_rextents_delta; | 
|  | mp->m_sb.sb_rextslog += tp->t_rextslog_delta; | 
|  | spin_unlock(&mp->m_sb_lock); | 
|  |  | 
|  | /* | 
|  | * Debug checks outside of the spinlock so they don't lock up the | 
|  | * machine if they fail. | 
|  | */ | 
|  | ASSERT(mp->m_sb.sb_imax_pct >= 0); | 
|  | ASSERT(mp->m_sb.sb_rextslog >= 0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Add the given log item to the transaction's list of log items. */ | 
|  | void | 
|  | xfs_trans_add_item( | 
|  | struct xfs_trans	*tp, | 
|  | struct xfs_log_item	*lip) | 
|  | { | 
|  | ASSERT(lip->li_mountp == tp->t_mountp); | 
|  | ASSERT(lip->li_ailp == tp->t_mountp->m_ail); | 
|  | ASSERT(list_empty(&lip->li_trans)); | 
|  | ASSERT(!test_bit(XFS_LI_DIRTY, &lip->li_flags)); | 
|  |  | 
|  | list_add_tail(&lip->li_trans, &tp->t_items); | 
|  | trace_xfs_trans_add_item(tp, _RET_IP_); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Unlink the log item from the transaction. the log item is no longer | 
|  | * considered dirty in this transaction, as the linked transaction has | 
|  | * finished, either by abort or commit completion. | 
|  | */ | 
|  | void | 
|  | xfs_trans_del_item( | 
|  | struct xfs_log_item	*lip) | 
|  | { | 
|  | clear_bit(XFS_LI_DIRTY, &lip->li_flags); | 
|  | list_del_init(&lip->li_trans); | 
|  | } | 
|  |  | 
|  | /* Detach and unlock all of the items in a transaction */ | 
|  | static void | 
|  | xfs_trans_free_items( | 
|  | struct xfs_trans	*tp, | 
|  | bool			abort) | 
|  | { | 
|  | struct xfs_log_item	*lip, *next; | 
|  |  | 
|  | trace_xfs_trans_free_items(tp, _RET_IP_); | 
|  |  | 
|  | list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) { | 
|  | xfs_trans_del_item(lip); | 
|  | if (abort) | 
|  | set_bit(XFS_LI_ABORTED, &lip->li_flags); | 
|  | if (lip->li_ops->iop_release) | 
|  | lip->li_ops->iop_release(lip); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | xfs_log_item_batch_insert( | 
|  | struct xfs_ail		*ailp, | 
|  | struct xfs_ail_cursor	*cur, | 
|  | struct xfs_log_item	**log_items, | 
|  | int			nr_items, | 
|  | xfs_lsn_t		commit_lsn) | 
|  | { | 
|  | int	i; | 
|  |  | 
|  | spin_lock(&ailp->ail_lock); | 
|  | /* xfs_trans_ail_update_bulk drops ailp->ail_lock */ | 
|  | xfs_trans_ail_update_bulk(ailp, cur, log_items, nr_items, commit_lsn); | 
|  |  | 
|  | for (i = 0; i < nr_items; i++) { | 
|  | struct xfs_log_item *lip = log_items[i]; | 
|  |  | 
|  | if (lip->li_ops->iop_unpin) | 
|  | lip->li_ops->iop_unpin(lip, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Bulk operation version of xfs_trans_committed that takes a log vector of | 
|  | * items to insert into the AIL. This uses bulk AIL insertion techniques to | 
|  | * minimise lock traffic. | 
|  | * | 
|  | * If we are called with the aborted flag set, it is because a log write during | 
|  | * a CIL checkpoint commit has failed. In this case, all the items in the | 
|  | * checkpoint have already gone through iop_committed and iop_committing, which | 
|  | * means that checkpoint commit abort handling is treated exactly the same | 
|  | * as an iclog write error even though we haven't started any IO yet. Hence in | 
|  | * this case all we need to do is iop_committed processing, followed by an | 
|  | * iop_unpin(aborted) call. | 
|  | * | 
|  | * The AIL cursor is used to optimise the insert process. If commit_lsn is not | 
|  | * at the end of the AIL, the insert cursor avoids the need to walk | 
|  | * the AIL to find the insertion point on every xfs_log_item_batch_insert() | 
|  | * call. This saves a lot of needless list walking and is a net win, even | 
|  | * though it slightly increases that amount of AIL lock traffic to set it up | 
|  | * and tear it down. | 
|  | */ | 
|  | void | 
|  | xfs_trans_committed_bulk( | 
|  | struct xfs_ail		*ailp, | 
|  | struct xfs_log_vec	*log_vector, | 
|  | xfs_lsn_t		commit_lsn, | 
|  | bool			aborted) | 
|  | { | 
|  | #define LOG_ITEM_BATCH_SIZE	32 | 
|  | struct xfs_log_item	*log_items[LOG_ITEM_BATCH_SIZE]; | 
|  | struct xfs_log_vec	*lv; | 
|  | struct xfs_ail_cursor	cur; | 
|  | int			i = 0; | 
|  |  | 
|  | spin_lock(&ailp->ail_lock); | 
|  | xfs_trans_ail_cursor_last(ailp, &cur, commit_lsn); | 
|  | spin_unlock(&ailp->ail_lock); | 
|  |  | 
|  | /* unpin all the log items */ | 
|  | for (lv = log_vector; lv; lv = lv->lv_next ) { | 
|  | struct xfs_log_item	*lip = lv->lv_item; | 
|  | xfs_lsn_t		item_lsn; | 
|  |  | 
|  | if (aborted) | 
|  | set_bit(XFS_LI_ABORTED, &lip->li_flags); | 
|  |  | 
|  | if (lip->li_ops->flags & XFS_ITEM_RELEASE_WHEN_COMMITTED) { | 
|  | lip->li_ops->iop_release(lip); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (lip->li_ops->iop_committed) | 
|  | item_lsn = lip->li_ops->iop_committed(lip, commit_lsn); | 
|  | else | 
|  | item_lsn = commit_lsn; | 
|  |  | 
|  | /* item_lsn of -1 means the item needs no further processing */ | 
|  | if (XFS_LSN_CMP(item_lsn, (xfs_lsn_t)-1) == 0) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * if we are aborting the operation, no point in inserting the | 
|  | * object into the AIL as we are in a shutdown situation. | 
|  | */ | 
|  | if (aborted) { | 
|  | ASSERT(XFS_FORCED_SHUTDOWN(ailp->ail_mount)); | 
|  | if (lip->li_ops->iop_unpin) | 
|  | lip->li_ops->iop_unpin(lip, 1); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (item_lsn != commit_lsn) { | 
|  |  | 
|  | /* | 
|  | * Not a bulk update option due to unusual item_lsn. | 
|  | * Push into AIL immediately, rechecking the lsn once | 
|  | * we have the ail lock. Then unpin the item. This does | 
|  | * not affect the AIL cursor the bulk insert path is | 
|  | * using. | 
|  | */ | 
|  | spin_lock(&ailp->ail_lock); | 
|  | if (XFS_LSN_CMP(item_lsn, lip->li_lsn) > 0) | 
|  | xfs_trans_ail_update(ailp, lip, item_lsn); | 
|  | else | 
|  | spin_unlock(&ailp->ail_lock); | 
|  | if (lip->li_ops->iop_unpin) | 
|  | lip->li_ops->iop_unpin(lip, 0); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Item is a candidate for bulk AIL insert.  */ | 
|  | log_items[i++] = lv->lv_item; | 
|  | if (i >= LOG_ITEM_BATCH_SIZE) { | 
|  | xfs_log_item_batch_insert(ailp, &cur, log_items, | 
|  | LOG_ITEM_BATCH_SIZE, commit_lsn); | 
|  | i = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* make sure we insert the remainder! */ | 
|  | if (i) | 
|  | xfs_log_item_batch_insert(ailp, &cur, log_items, i, commit_lsn); | 
|  |  | 
|  | spin_lock(&ailp->ail_lock); | 
|  | xfs_trans_ail_cursor_done(&cur); | 
|  | spin_unlock(&ailp->ail_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Commit the given transaction to the log. | 
|  | * | 
|  | * XFS disk error handling mechanism is not based on a typical | 
|  | * transaction abort mechanism. Logically after the filesystem | 
|  | * gets marked 'SHUTDOWN', we can't let any new transactions | 
|  | * be durable - ie. committed to disk - because some metadata might | 
|  | * be inconsistent. In such cases, this returns an error, and the | 
|  | * caller may assume that all locked objects joined to the transaction | 
|  | * have already been unlocked as if the commit had succeeded. | 
|  | * Do not reference the transaction structure after this call. | 
|  | */ | 
|  | static int | 
|  | __xfs_trans_commit( | 
|  | struct xfs_trans	*tp, | 
|  | bool			regrant) | 
|  | { | 
|  | struct xfs_mount	*mp = tp->t_mountp; | 
|  | xfs_lsn_t		commit_lsn = -1; | 
|  | int			error = 0; | 
|  | int			sync = tp->t_flags & XFS_TRANS_SYNC; | 
|  |  | 
|  | trace_xfs_trans_commit(tp, _RET_IP_); | 
|  |  | 
|  | /* | 
|  | * Finish deferred items on final commit. Only permanent transactions | 
|  | * should ever have deferred ops. | 
|  | */ | 
|  | WARN_ON_ONCE(!list_empty(&tp->t_dfops) && | 
|  | !(tp->t_flags & XFS_TRANS_PERM_LOG_RES)); | 
|  | if (!regrant && (tp->t_flags & XFS_TRANS_PERM_LOG_RES)) { | 
|  | error = xfs_defer_finish_noroll(&tp); | 
|  | if (error) | 
|  | goto out_unreserve; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If there is nothing to be logged by the transaction, | 
|  | * then unlock all of the items associated with the | 
|  | * transaction and free the transaction structure. | 
|  | * Also make sure to return any reserved blocks to | 
|  | * the free pool. | 
|  | */ | 
|  | if (!(tp->t_flags & XFS_TRANS_DIRTY)) | 
|  | goto out_unreserve; | 
|  |  | 
|  | if (XFS_FORCED_SHUTDOWN(mp)) { | 
|  | error = -EIO; | 
|  | goto out_unreserve; | 
|  | } | 
|  |  | 
|  | ASSERT(tp->t_ticket != NULL); | 
|  |  | 
|  | /* | 
|  | * If we need to update the superblock, then do it now. | 
|  | */ | 
|  | if (tp->t_flags & XFS_TRANS_SB_DIRTY) | 
|  | xfs_trans_apply_sb_deltas(tp); | 
|  | xfs_trans_apply_dquot_deltas(tp); | 
|  |  | 
|  | xfs_log_commit_cil(mp, tp, &commit_lsn, regrant); | 
|  |  | 
|  | current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS); | 
|  | xfs_trans_free(tp); | 
|  |  | 
|  | /* | 
|  | * If the transaction needs to be synchronous, then force the | 
|  | * log out now and wait for it. | 
|  | */ | 
|  | if (sync) { | 
|  | error = xfs_log_force_lsn(mp, commit_lsn, XFS_LOG_SYNC, NULL); | 
|  | XFS_STATS_INC(mp, xs_trans_sync); | 
|  | } else { | 
|  | XFS_STATS_INC(mp, xs_trans_async); | 
|  | } | 
|  |  | 
|  | return error; | 
|  |  | 
|  | out_unreserve: | 
|  | xfs_trans_unreserve_and_mod_sb(tp); | 
|  |  | 
|  | /* | 
|  | * It is indeed possible for the transaction to be not dirty but | 
|  | * the dqinfo portion to be.  All that means is that we have some | 
|  | * (non-persistent) quota reservations that need to be unreserved. | 
|  | */ | 
|  | xfs_trans_unreserve_and_mod_dquots(tp); | 
|  | if (tp->t_ticket) { | 
|  | if (regrant && !XLOG_FORCED_SHUTDOWN(mp->m_log)) | 
|  | xfs_log_ticket_regrant(mp->m_log, tp->t_ticket); | 
|  | else | 
|  | xfs_log_ticket_ungrant(mp->m_log, tp->t_ticket); | 
|  | tp->t_ticket = NULL; | 
|  | } | 
|  | current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS); | 
|  | xfs_trans_free_items(tp, !!error); | 
|  | xfs_trans_free(tp); | 
|  |  | 
|  | XFS_STATS_INC(mp, xs_trans_empty); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | int | 
|  | xfs_trans_commit( | 
|  | struct xfs_trans	*tp) | 
|  | { | 
|  | return __xfs_trans_commit(tp, false); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Unlock all of the transaction's items and free the transaction. | 
|  | * The transaction must not have modified any of its items, because | 
|  | * there is no way to restore them to their previous state. | 
|  | * | 
|  | * If the transaction has made a log reservation, make sure to release | 
|  | * it as well. | 
|  | */ | 
|  | void | 
|  | xfs_trans_cancel( | 
|  | struct xfs_trans	*tp) | 
|  | { | 
|  | struct xfs_mount	*mp = tp->t_mountp; | 
|  | bool			dirty = (tp->t_flags & XFS_TRANS_DIRTY); | 
|  |  | 
|  | trace_xfs_trans_cancel(tp, _RET_IP_); | 
|  |  | 
|  | if (tp->t_flags & XFS_TRANS_PERM_LOG_RES) | 
|  | xfs_defer_cancel(tp); | 
|  |  | 
|  | /* | 
|  | * See if the caller is relying on us to shut down the | 
|  | * filesystem.  This happens in paths where we detect | 
|  | * corruption and decide to give up. | 
|  | */ | 
|  | if (dirty && !XFS_FORCED_SHUTDOWN(mp)) { | 
|  | XFS_ERROR_REPORT("xfs_trans_cancel", XFS_ERRLEVEL_LOW, mp); | 
|  | xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); | 
|  | } | 
|  | #ifdef DEBUG | 
|  | if (!dirty && !XFS_FORCED_SHUTDOWN(mp)) { | 
|  | struct xfs_log_item *lip; | 
|  |  | 
|  | list_for_each_entry(lip, &tp->t_items, li_trans) | 
|  | ASSERT(!xlog_item_is_intent_done(lip)); | 
|  | } | 
|  | #endif | 
|  | xfs_trans_unreserve_and_mod_sb(tp); | 
|  | xfs_trans_unreserve_and_mod_dquots(tp); | 
|  |  | 
|  | if (tp->t_ticket) { | 
|  | xfs_log_ticket_ungrant(mp->m_log, tp->t_ticket); | 
|  | tp->t_ticket = NULL; | 
|  | } | 
|  |  | 
|  | /* mark this thread as no longer being in a transaction */ | 
|  | current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS); | 
|  |  | 
|  | xfs_trans_free_items(tp, dirty); | 
|  | xfs_trans_free(tp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Roll from one trans in the sequence of PERMANENT transactions to | 
|  | * the next: permanent transactions are only flushed out when | 
|  | * committed with xfs_trans_commit(), but we still want as soon | 
|  | * as possible to let chunks of it go to the log. So we commit the | 
|  | * chunk we've been working on and get a new transaction to continue. | 
|  | */ | 
|  | int | 
|  | xfs_trans_roll( | 
|  | struct xfs_trans	**tpp) | 
|  | { | 
|  | struct xfs_trans	*trans = *tpp; | 
|  | struct xfs_trans_res	tres; | 
|  | int			error; | 
|  |  | 
|  | trace_xfs_trans_roll(trans, _RET_IP_); | 
|  |  | 
|  | /* | 
|  | * Copy the critical parameters from one trans to the next. | 
|  | */ | 
|  | tres.tr_logres = trans->t_log_res; | 
|  | tres.tr_logcount = trans->t_log_count; | 
|  |  | 
|  | *tpp = xfs_trans_dup(trans); | 
|  |  | 
|  | /* | 
|  | * Commit the current transaction. | 
|  | * If this commit failed, then it'd just unlock those items that | 
|  | * are not marked ihold. That also means that a filesystem shutdown | 
|  | * is in progress. The caller takes the responsibility to cancel | 
|  | * the duplicate transaction that gets returned. | 
|  | */ | 
|  | error = __xfs_trans_commit(trans, true); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | /* | 
|  | * Reserve space in the log for the next transaction. | 
|  | * This also pushes items in the "AIL", the list of logged items, | 
|  | * out to disk if they are taking up space at the tail of the log | 
|  | * that we want to use.  This requires that either nothing be locked | 
|  | * across this call, or that anything that is locked be logged in | 
|  | * the prior and the next transactions. | 
|  | */ | 
|  | tres.tr_logflags = XFS_TRANS_PERM_LOG_RES; | 
|  | return xfs_trans_reserve(*tpp, &tres, 0, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate an transaction, lock and join the inode to it, and reserve quota. | 
|  | * | 
|  | * The caller must ensure that the on-disk dquots attached to this inode have | 
|  | * already been allocated and initialized.  The caller is responsible for | 
|  | * releasing ILOCK_EXCL if a new transaction is returned. | 
|  | */ | 
|  | int | 
|  | xfs_trans_alloc_inode( | 
|  | struct xfs_inode	*ip, | 
|  | struct xfs_trans_res	*resv, | 
|  | unsigned int		dblocks, | 
|  | unsigned int		rblocks, | 
|  | bool			force, | 
|  | struct xfs_trans	**tpp) | 
|  | { | 
|  | struct xfs_trans	*tp; | 
|  | struct xfs_mount	*mp = ip->i_mount; | 
|  | int			error; | 
|  |  | 
|  | error = xfs_trans_alloc(mp, resv, dblocks, | 
|  | rblocks / mp->m_sb.sb_rextsize, | 
|  | force ? XFS_TRANS_RESERVE : 0, &tp); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | xfs_ilock(ip, XFS_ILOCK_EXCL); | 
|  | xfs_trans_ijoin(tp, ip, 0); | 
|  |  | 
|  | error = xfs_qm_dqattach_locked(ip, false); | 
|  | if (error) { | 
|  | /* Caller should have allocated the dquots! */ | 
|  | ASSERT(error != -ENOENT); | 
|  | goto out_cancel; | 
|  | } | 
|  |  | 
|  | error = xfs_trans_reserve_quota_nblks(tp, ip, dblocks, rblocks, force); | 
|  | if (error) | 
|  | goto out_cancel; | 
|  |  | 
|  | *tpp = tp; | 
|  | return 0; | 
|  |  | 
|  | out_cancel: | 
|  | xfs_trans_cancel(tp); | 
|  | xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate an transaction in preparation for inode creation by reserving quota | 
|  | * against the given dquots.  Callers are not required to hold any inode locks. | 
|  | */ | 
|  | int | 
|  | xfs_trans_alloc_icreate( | 
|  | struct xfs_mount	*mp, | 
|  | struct xfs_trans_res	*resv, | 
|  | struct xfs_dquot	*udqp, | 
|  | struct xfs_dquot	*gdqp, | 
|  | struct xfs_dquot	*pdqp, | 
|  | unsigned int		dblocks, | 
|  | struct xfs_trans	**tpp) | 
|  | { | 
|  | struct xfs_trans	*tp; | 
|  | int			error; | 
|  |  | 
|  | error = xfs_trans_alloc(mp, resv, dblocks, 0, 0, &tp); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | error = xfs_trans_reserve_quota_icreate(tp, udqp, gdqp, pdqp, dblocks); | 
|  | if (error) { | 
|  | xfs_trans_cancel(tp); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | *tpp = tp; | 
|  | return 0; | 
|  | } |