| /* |
| * Copyright (C) 2004-2006 Atmel Corporation |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| #ifndef __ASM_AVR32_BITOPS_H |
| #define __ASM_AVR32_BITOPS_H |
| |
| #ifndef _LINUX_BITOPS_H |
| #error only <linux/bitops.h> can be included directly |
| #endif |
| |
| #include <asm/byteorder.h> |
| #include <asm/system.h> |
| |
| /* |
| * clear_bit() doesn't provide any barrier for the compiler |
| */ |
| #define smp_mb__before_clear_bit() barrier() |
| #define smp_mb__after_clear_bit() barrier() |
| |
| /* |
| * set_bit - Atomically set a bit in memory |
| * @nr: the bit to set |
| * @addr: the address to start counting from |
| * |
| * This function is atomic and may not be reordered. See __set_bit() |
| * if you do not require the atomic guarantees. |
| * |
| * Note that @nr may be almost arbitrarily large; this function is not |
| * restricted to acting on a single-word quantity. |
| */ |
| static inline void set_bit(int nr, volatile void * addr) |
| { |
| unsigned long *p = ((unsigned long *)addr) + nr / BITS_PER_LONG; |
| unsigned long tmp; |
| |
| if (__builtin_constant_p(nr)) { |
| asm volatile( |
| "1: ssrf 5\n" |
| " ld.w %0, %2\n" |
| " sbr %0, %3\n" |
| " stcond %1, %0\n" |
| " brne 1b" |
| : "=&r"(tmp), "=o"(*p) |
| : "m"(*p), "i"(nr) |
| : "cc"); |
| } else { |
| unsigned long mask = 1UL << (nr % BITS_PER_LONG); |
| asm volatile( |
| "1: ssrf 5\n" |
| " ld.w %0, %2\n" |
| " or %0, %3\n" |
| " stcond %1, %0\n" |
| " brne 1b" |
| : "=&r"(tmp), "=o"(*p) |
| : "m"(*p), "r"(mask) |
| : "cc"); |
| } |
| } |
| |
| /* |
| * clear_bit - Clears a bit in memory |
| * @nr: Bit to clear |
| * @addr: Address to start counting from |
| * |
| * clear_bit() is atomic and may not be reordered. However, it does |
| * not contain a memory barrier, so if it is used for locking purposes, |
| * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit() |
| * in order to ensure changes are visible on other processors. |
| */ |
| static inline void clear_bit(int nr, volatile void * addr) |
| { |
| unsigned long *p = ((unsigned long *)addr) + nr / BITS_PER_LONG; |
| unsigned long tmp; |
| |
| if (__builtin_constant_p(nr)) { |
| asm volatile( |
| "1: ssrf 5\n" |
| " ld.w %0, %2\n" |
| " cbr %0, %3\n" |
| " stcond %1, %0\n" |
| " brne 1b" |
| : "=&r"(tmp), "=o"(*p) |
| : "m"(*p), "i"(nr) |
| : "cc"); |
| } else { |
| unsigned long mask = 1UL << (nr % BITS_PER_LONG); |
| asm volatile( |
| "1: ssrf 5\n" |
| " ld.w %0, %2\n" |
| " andn %0, %3\n" |
| " stcond %1, %0\n" |
| " brne 1b" |
| : "=&r"(tmp), "=o"(*p) |
| : "m"(*p), "r"(mask) |
| : "cc"); |
| } |
| } |
| |
| /* |
| * change_bit - Toggle a bit in memory |
| * @nr: Bit to change |
| * @addr: Address to start counting from |
| * |
| * change_bit() is atomic and may not be reordered. |
| * Note that @nr may be almost arbitrarily large; this function is not |
| * restricted to acting on a single-word quantity. |
| */ |
| static inline void change_bit(int nr, volatile void * addr) |
| { |
| unsigned long *p = ((unsigned long *)addr) + nr / BITS_PER_LONG; |
| unsigned long mask = 1UL << (nr % BITS_PER_LONG); |
| unsigned long tmp; |
| |
| asm volatile( |
| "1: ssrf 5\n" |
| " ld.w %0, %2\n" |
| " eor %0, %3\n" |
| " stcond %1, %0\n" |
| " brne 1b" |
| : "=&r"(tmp), "=o"(*p) |
| : "m"(*p), "r"(mask) |
| : "cc"); |
| } |
| |
| /* |
| * test_and_set_bit - Set a bit and return its old value |
| * @nr: Bit to set |
| * @addr: Address to count from |
| * |
| * This operation is atomic and cannot be reordered. |
| * It also implies a memory barrier. |
| */ |
| static inline int test_and_set_bit(int nr, volatile void * addr) |
| { |
| unsigned long *p = ((unsigned long *)addr) + nr / BITS_PER_LONG; |
| unsigned long mask = 1UL << (nr % BITS_PER_LONG); |
| unsigned long tmp, old; |
| |
| if (__builtin_constant_p(nr)) { |
| asm volatile( |
| "1: ssrf 5\n" |
| " ld.w %0, %3\n" |
| " mov %2, %0\n" |
| " sbr %0, %4\n" |
| " stcond %1, %0\n" |
| " brne 1b" |
| : "=&r"(tmp), "=o"(*p), "=&r"(old) |
| : "m"(*p), "i"(nr) |
| : "memory", "cc"); |
| } else { |
| asm volatile( |
| "1: ssrf 5\n" |
| " ld.w %2, %3\n" |
| " or %0, %2, %4\n" |
| " stcond %1, %0\n" |
| " brne 1b" |
| : "=&r"(tmp), "=o"(*p), "=&r"(old) |
| : "m"(*p), "r"(mask) |
| : "memory", "cc"); |
| } |
| |
| return (old & mask) != 0; |
| } |
| |
| /* |
| * test_and_clear_bit - Clear a bit and return its old value |
| * @nr: Bit to clear |
| * @addr: Address to count from |
| * |
| * This operation is atomic and cannot be reordered. |
| * It also implies a memory barrier. |
| */ |
| static inline int test_and_clear_bit(int nr, volatile void * addr) |
| { |
| unsigned long *p = ((unsigned long *)addr) + nr / BITS_PER_LONG; |
| unsigned long mask = 1UL << (nr % BITS_PER_LONG); |
| unsigned long tmp, old; |
| |
| if (__builtin_constant_p(nr)) { |
| asm volatile( |
| "1: ssrf 5\n" |
| " ld.w %0, %3\n" |
| " mov %2, %0\n" |
| " cbr %0, %4\n" |
| " stcond %1, %0\n" |
| " brne 1b" |
| : "=&r"(tmp), "=o"(*p), "=&r"(old) |
| : "m"(*p), "i"(nr) |
| : "memory", "cc"); |
| } else { |
| asm volatile( |
| "1: ssrf 5\n" |
| " ld.w %0, %3\n" |
| " mov %2, %0\n" |
| " andn %0, %4\n" |
| " stcond %1, %0\n" |
| " brne 1b" |
| : "=&r"(tmp), "=o"(*p), "=&r"(old) |
| : "m"(*p), "r"(mask) |
| : "memory", "cc"); |
| } |
| |
| return (old & mask) != 0; |
| } |
| |
| /* |
| * test_and_change_bit - Change a bit and return its old value |
| * @nr: Bit to change |
| * @addr: Address to count from |
| * |
| * This operation is atomic and cannot be reordered. |
| * It also implies a memory barrier. |
| */ |
| static inline int test_and_change_bit(int nr, volatile void * addr) |
| { |
| unsigned long *p = ((unsigned long *)addr) + nr / BITS_PER_LONG; |
| unsigned long mask = 1UL << (nr % BITS_PER_LONG); |
| unsigned long tmp, old; |
| |
| asm volatile( |
| "1: ssrf 5\n" |
| " ld.w %2, %3\n" |
| " eor %0, %2, %4\n" |
| " stcond %1, %0\n" |
| " brne 1b" |
| : "=&r"(tmp), "=o"(*p), "=&r"(old) |
| : "m"(*p), "r"(mask) |
| : "memory", "cc"); |
| |
| return (old & mask) != 0; |
| } |
| |
| #include <asm-generic/bitops/non-atomic.h> |
| |
| /* Find First bit Set */ |
| static inline unsigned long __ffs(unsigned long word) |
| { |
| unsigned long result; |
| |
| asm("brev %1\n\t" |
| "clz %0,%1" |
| : "=r"(result), "=&r"(word) |
| : "1"(word)); |
| return result; |
| } |
| |
| /* Find First Zero */ |
| static inline unsigned long ffz(unsigned long word) |
| { |
| return __ffs(~word); |
| } |
| |
| /* Find Last bit Set */ |
| static inline int fls(unsigned long word) |
| { |
| unsigned long result; |
| |
| asm("clz %0,%1" : "=r"(result) : "r"(word)); |
| return 32 - result; |
| } |
| |
| static inline int __fls(unsigned long word) |
| { |
| return fls(word) - 1; |
| } |
| |
| unsigned long find_first_zero_bit(const unsigned long *addr, |
| unsigned long size); |
| unsigned long find_next_zero_bit(const unsigned long *addr, |
| unsigned long size, |
| unsigned long offset); |
| unsigned long find_first_bit(const unsigned long *addr, |
| unsigned long size); |
| unsigned long find_next_bit(const unsigned long *addr, |
| unsigned long size, |
| unsigned long offset); |
| |
| /* |
| * ffs: find first bit set. This is defined the same way as |
| * the libc and compiler builtin ffs routines, therefore |
| * differs in spirit from the above ffz (man ffs). |
| * |
| * The difference is that bit numbering starts at 1, and if no bit is set, |
| * the function returns 0. |
| */ |
| static inline int ffs(unsigned long word) |
| { |
| if(word == 0) |
| return 0; |
| return __ffs(word) + 1; |
| } |
| |
| #include <asm-generic/bitops/fls64.h> |
| #include <asm-generic/bitops/sched.h> |
| #include <asm-generic/bitops/hweight.h> |
| #include <asm-generic/bitops/lock.h> |
| |
| #include <asm-generic/bitops/le.h> |
| #include <asm-generic/bitops/ext2-atomic.h> |
| #include <asm-generic/bitops/minix-le.h> |
| |
| #endif /* __ASM_AVR32_BITOPS_H */ |