| // SPDX-License-Identifier: GPL-2.0+ |
| // Copyright 2018 IBM Corp |
| /* |
| * A FSI master controller, using a simple GPIO bit-banging interface |
| */ |
| |
| #include <linux/crc4.h> |
| #include <linux/delay.h> |
| #include <linux/device.h> |
| #include <linux/fsi.h> |
| #include <linux/gpio/consumer.h> |
| #include <linux/io.h> |
| #include <linux/irqflags.h> |
| #include <linux/module.h> |
| #include <linux/of.h> |
| #include <linux/platform_device.h> |
| #include <linux/slab.h> |
| #include <linux/regmap.h> |
| #include <linux/firmware.h> |
| #include <linux/gpio/aspeed.h> |
| #include <linux/mfd/syscon.h> |
| #include <linux/of_address.h> |
| #include <linux/genalloc.h> |
| |
| #include "fsi-master.h" |
| #include "cf-fsi-fw.h" |
| |
| #define FW_FILE_NAME "cf-fsi-fw.bin" |
| |
| /* Common SCU based coprocessor control registers */ |
| #define SCU_COPRO_CTRL 0x100 |
| #define SCU_COPRO_RESET 0x00000002 |
| #define SCU_COPRO_CLK_EN 0x00000001 |
| |
| /* AST2500 specific ones */ |
| #define SCU_2500_COPRO_SEG0 0x104 |
| #define SCU_2500_COPRO_SEG1 0x108 |
| #define SCU_2500_COPRO_SEG2 0x10c |
| #define SCU_2500_COPRO_SEG3 0x110 |
| #define SCU_2500_COPRO_SEG4 0x114 |
| #define SCU_2500_COPRO_SEG5 0x118 |
| #define SCU_2500_COPRO_SEG6 0x11c |
| #define SCU_2500_COPRO_SEG7 0x120 |
| #define SCU_2500_COPRO_SEG8 0x124 |
| #define SCU_2500_COPRO_SEG_SWAP 0x00000001 |
| #define SCU_2500_COPRO_CACHE_CTL 0x128 |
| #define SCU_2500_COPRO_CACHE_EN 0x00000001 |
| #define SCU_2500_COPRO_SEG0_CACHE_EN 0x00000002 |
| #define SCU_2500_COPRO_SEG1_CACHE_EN 0x00000004 |
| #define SCU_2500_COPRO_SEG2_CACHE_EN 0x00000008 |
| #define SCU_2500_COPRO_SEG3_CACHE_EN 0x00000010 |
| #define SCU_2500_COPRO_SEG4_CACHE_EN 0x00000020 |
| #define SCU_2500_COPRO_SEG5_CACHE_EN 0x00000040 |
| #define SCU_2500_COPRO_SEG6_CACHE_EN 0x00000080 |
| #define SCU_2500_COPRO_SEG7_CACHE_EN 0x00000100 |
| #define SCU_2500_COPRO_SEG8_CACHE_EN 0x00000200 |
| |
| #define SCU_2400_COPRO_SEG0 0x104 |
| #define SCU_2400_COPRO_SEG2 0x108 |
| #define SCU_2400_COPRO_SEG4 0x10c |
| #define SCU_2400_COPRO_SEG6 0x110 |
| #define SCU_2400_COPRO_SEG8 0x114 |
| #define SCU_2400_COPRO_SEG_SWAP 0x80000000 |
| #define SCU_2400_COPRO_CACHE_CTL 0x118 |
| #define SCU_2400_COPRO_CACHE_EN 0x00000001 |
| #define SCU_2400_COPRO_SEG0_CACHE_EN 0x00000002 |
| #define SCU_2400_COPRO_SEG2_CACHE_EN 0x00000004 |
| #define SCU_2400_COPRO_SEG4_CACHE_EN 0x00000008 |
| #define SCU_2400_COPRO_SEG6_CACHE_EN 0x00000010 |
| #define SCU_2400_COPRO_SEG8_CACHE_EN 0x00000020 |
| |
| /* CVIC registers */ |
| #define CVIC_EN_REG 0x10 |
| #define CVIC_TRIG_REG 0x18 |
| |
| /* |
| * System register base address (needed for configuring the |
| * coldfire maps) |
| */ |
| #define SYSREG_BASE 0x1e600000 |
| |
| /* Amount of SRAM required */ |
| #define SRAM_SIZE 0x1000 |
| |
| #define LAST_ADDR_INVALID 0x1 |
| |
| struct fsi_master_acf { |
| struct fsi_master master; |
| struct device *dev; |
| struct regmap *scu; |
| struct mutex lock; /* mutex for command ordering */ |
| struct gpio_desc *gpio_clk; |
| struct gpio_desc *gpio_data; |
| struct gpio_desc *gpio_trans; /* Voltage translator */ |
| struct gpio_desc *gpio_enable; /* FSI enable */ |
| struct gpio_desc *gpio_mux; /* Mux control */ |
| uint16_t gpio_clk_vreg; |
| uint16_t gpio_clk_dreg; |
| uint16_t gpio_dat_vreg; |
| uint16_t gpio_dat_dreg; |
| uint16_t gpio_tra_vreg; |
| uint16_t gpio_tra_dreg; |
| uint8_t gpio_clk_bit; |
| uint8_t gpio_dat_bit; |
| uint8_t gpio_tra_bit; |
| uint32_t cf_mem_addr; |
| size_t cf_mem_size; |
| void __iomem *cf_mem; |
| void __iomem *cvic; |
| struct gen_pool *sram_pool; |
| void __iomem *sram; |
| bool is_ast2500; |
| bool external_mode; |
| bool trace_enabled; |
| uint32_t last_addr; |
| uint8_t t_send_delay; |
| uint8_t t_echo_delay; |
| uint32_t cvic_sw_irq; |
| }; |
| #define to_fsi_master_acf(m) container_of(m, struct fsi_master_acf, master) |
| |
| struct fsi_msg { |
| uint64_t msg; |
| uint8_t bits; |
| }; |
| |
| #define CREATE_TRACE_POINTS |
| #include <trace/events/fsi_master_ast_cf.h> |
| |
| static void msg_push_bits(struct fsi_msg *msg, uint64_t data, int bits) |
| { |
| msg->msg <<= bits; |
| msg->msg |= data & ((1ull << bits) - 1); |
| msg->bits += bits; |
| } |
| |
| static void msg_push_crc(struct fsi_msg *msg) |
| { |
| uint8_t crc; |
| int top; |
| |
| top = msg->bits & 0x3; |
| |
| /* start bit, and any non-aligned top bits */ |
| crc = crc4(0, 1 << top | msg->msg >> (msg->bits - top), top + 1); |
| |
| /* aligned bits */ |
| crc = crc4(crc, msg->msg, msg->bits - top); |
| |
| msg_push_bits(msg, crc, 4); |
| } |
| |
| static void msg_finish_cmd(struct fsi_msg *cmd) |
| { |
| /* Left align message */ |
| cmd->msg <<= (64 - cmd->bits); |
| } |
| |
| static bool check_same_address(struct fsi_master_acf *master, int id, |
| uint32_t addr) |
| { |
| /* this will also handle LAST_ADDR_INVALID */ |
| return master->last_addr == (((id & 0x3) << 21) | (addr & ~0x3)); |
| } |
| |
| static bool check_relative_address(struct fsi_master_acf *master, int id, |
| uint32_t addr, uint32_t *rel_addrp) |
| { |
| uint32_t last_addr = master->last_addr; |
| int32_t rel_addr; |
| |
| if (last_addr == LAST_ADDR_INVALID) |
| return false; |
| |
| /* We may be in 23-bit addressing mode, which uses the id as the |
| * top two address bits. So, if we're referencing a different ID, |
| * use absolute addresses. |
| */ |
| if (((last_addr >> 21) & 0x3) != id) |
| return false; |
| |
| /* remove the top two bits from any 23-bit addressing */ |
| last_addr &= (1 << 21) - 1; |
| |
| /* We know that the addresses are limited to 21 bits, so this won't |
| * overflow the signed rel_addr */ |
| rel_addr = addr - last_addr; |
| if (rel_addr > 255 || rel_addr < -256) |
| return false; |
| |
| *rel_addrp = (uint32_t)rel_addr; |
| |
| return true; |
| } |
| |
| static void last_address_update(struct fsi_master_acf *master, |
| int id, bool valid, uint32_t addr) |
| { |
| if (!valid) |
| master->last_addr = LAST_ADDR_INVALID; |
| else |
| master->last_addr = ((id & 0x3) << 21) | (addr & ~0x3); |
| } |
| |
| /* |
| * Encode an Absolute/Relative/Same Address command |
| */ |
| static void build_ar_command(struct fsi_master_acf *master, |
| struct fsi_msg *cmd, uint8_t id, |
| uint32_t addr, size_t size, |
| const void *data) |
| { |
| int i, addr_bits, opcode_bits; |
| bool write = !!data; |
| uint8_t ds, opcode; |
| uint32_t rel_addr; |
| |
| cmd->bits = 0; |
| cmd->msg = 0; |
| |
| /* we have 21 bits of address max */ |
| addr &= ((1 << 21) - 1); |
| |
| /* cmd opcodes are variable length - SAME_AR is only two bits */ |
| opcode_bits = 3; |
| |
| if (check_same_address(master, id, addr)) { |
| /* we still address the byte offset within the word */ |
| addr_bits = 2; |
| opcode_bits = 2; |
| opcode = FSI_CMD_SAME_AR; |
| trace_fsi_master_acf_cmd_same_addr(master); |
| |
| } else if (check_relative_address(master, id, addr, &rel_addr)) { |
| /* 8 bits plus sign */ |
| addr_bits = 9; |
| addr = rel_addr; |
| opcode = FSI_CMD_REL_AR; |
| trace_fsi_master_acf_cmd_rel_addr(master, rel_addr); |
| |
| } else { |
| addr_bits = 21; |
| opcode = FSI_CMD_ABS_AR; |
| trace_fsi_master_acf_cmd_abs_addr(master, addr); |
| } |
| |
| /* |
| * The read/write size is encoded in the lower bits of the address |
| * (as it must be naturally-aligned), and the following ds bit. |
| * |
| * size addr:1 addr:0 ds |
| * 1 x x 0 |
| * 2 x 0 1 |
| * 4 0 1 1 |
| * |
| */ |
| ds = size > 1 ? 1 : 0; |
| addr &= ~(size - 1); |
| if (size == 4) |
| addr |= 1; |
| |
| msg_push_bits(cmd, id, 2); |
| msg_push_bits(cmd, opcode, opcode_bits); |
| msg_push_bits(cmd, write ? 0 : 1, 1); |
| msg_push_bits(cmd, addr, addr_bits); |
| msg_push_bits(cmd, ds, 1); |
| for (i = 0; write && i < size; i++) |
| msg_push_bits(cmd, ((uint8_t *)data)[i], 8); |
| |
| msg_push_crc(cmd); |
| msg_finish_cmd(cmd); |
| } |
| |
| static void build_dpoll_command(struct fsi_msg *cmd, uint8_t slave_id) |
| { |
| cmd->bits = 0; |
| cmd->msg = 0; |
| |
| msg_push_bits(cmd, slave_id, 2); |
| msg_push_bits(cmd, FSI_CMD_DPOLL, 3); |
| msg_push_crc(cmd); |
| msg_finish_cmd(cmd); |
| } |
| |
| static void build_epoll_command(struct fsi_msg *cmd, uint8_t slave_id) |
| { |
| cmd->bits = 0; |
| cmd->msg = 0; |
| |
| msg_push_bits(cmd, slave_id, 2); |
| msg_push_bits(cmd, FSI_CMD_EPOLL, 3); |
| msg_push_crc(cmd); |
| msg_finish_cmd(cmd); |
| } |
| |
| static void build_term_command(struct fsi_msg *cmd, uint8_t slave_id) |
| { |
| cmd->bits = 0; |
| cmd->msg = 0; |
| |
| msg_push_bits(cmd, slave_id, 2); |
| msg_push_bits(cmd, FSI_CMD_TERM, 6); |
| msg_push_crc(cmd); |
| msg_finish_cmd(cmd); |
| } |
| |
| static int do_copro_command(struct fsi_master_acf *master, uint32_t op) |
| { |
| uint32_t timeout = 10000000; |
| uint8_t stat; |
| |
| trace_fsi_master_acf_copro_command(master, op); |
| |
| /* Send command */ |
| iowrite32be(op, master->sram + CMD_STAT_REG); |
| |
| /* Ring doorbell if any */ |
| if (master->cvic) |
| iowrite32(0x2, master->cvic + CVIC_TRIG_REG); |
| |
| /* Wait for status to indicate completion (or error) */ |
| do { |
| if (timeout-- == 0) { |
| dev_warn(master->dev, |
| "Timeout waiting for coprocessor completion\n"); |
| return -ETIMEDOUT; |
| } |
| stat = ioread8(master->sram + CMD_STAT_REG); |
| } while(stat < STAT_COMPLETE || stat == 0xff); |
| |
| if (stat == STAT_COMPLETE) |
| return 0; |
| switch(stat) { |
| case STAT_ERR_INVAL_CMD: |
| return -EINVAL; |
| case STAT_ERR_INVAL_IRQ: |
| return -EIO; |
| case STAT_ERR_MTOE: |
| return -ESHUTDOWN; |
| } |
| return -ENXIO; |
| } |
| |
| static int clock_zeros(struct fsi_master_acf *master, int count) |
| { |
| while (count) { |
| int rc, lcnt = min(count, 255); |
| |
| rc = do_copro_command(master, |
| CMD_IDLE_CLOCKS | (lcnt << CMD_REG_CLEN_SHIFT)); |
| if (rc) |
| return rc; |
| count -= lcnt; |
| } |
| return 0; |
| } |
| |
| static int send_request(struct fsi_master_acf *master, struct fsi_msg *cmd, |
| unsigned int resp_bits) |
| { |
| uint32_t op; |
| |
| trace_fsi_master_acf_send_request(master, cmd, resp_bits); |
| |
| /* Store message into SRAM */ |
| iowrite32be((cmd->msg >> 32), master->sram + CMD_DATA); |
| iowrite32be((cmd->msg & 0xffffffff), master->sram + CMD_DATA + 4); |
| |
| op = CMD_COMMAND; |
| op |= cmd->bits << CMD_REG_CLEN_SHIFT; |
| if (resp_bits) |
| op |= resp_bits << CMD_REG_RLEN_SHIFT; |
| |
| return do_copro_command(master, op); |
| } |
| |
| static int read_copro_response(struct fsi_master_acf *master, uint8_t size, |
| uint32_t *response, u8 *tag) |
| { |
| uint8_t rtag = ioread8(master->sram + STAT_RTAG) & 0xf; |
| uint8_t rcrc = ioread8(master->sram + STAT_RCRC) & 0xf; |
| uint32_t rdata = 0; |
| uint32_t crc; |
| uint8_t ack; |
| |
| *tag = ack = rtag & 3; |
| |
| /* we have a whole message now; check CRC */ |
| crc = crc4(0, 1, 1); |
| crc = crc4(crc, rtag, 4); |
| if (ack == FSI_RESP_ACK && size) { |
| rdata = ioread32be(master->sram + RSP_DATA); |
| crc = crc4(crc, rdata, size); |
| if (response) |
| *response = rdata; |
| } |
| crc = crc4(crc, rcrc, 4); |
| |
| trace_fsi_master_acf_copro_response(master, rtag, rcrc, rdata, crc == 0); |
| |
| if (crc) { |
| /* |
| * Check if it's all 1's or all 0's, that probably means |
| * the host is off |
| */ |
| if ((rtag == 0xf && rcrc == 0xf) || (rtag == 0 && rcrc == 0)) |
| return -ENODEV; |
| dev_dbg(master->dev, "Bad response CRC !\n"); |
| return -EAGAIN; |
| } |
| return 0; |
| } |
| |
| static int send_term(struct fsi_master_acf *master, uint8_t slave) |
| { |
| struct fsi_msg cmd; |
| uint8_t tag; |
| int rc; |
| |
| build_term_command(&cmd, slave); |
| |
| rc = send_request(master, &cmd, 0); |
| if (rc) { |
| dev_warn(master->dev, "Error %d sending term\n", rc); |
| return rc; |
| } |
| |
| rc = read_copro_response(master, 0, NULL, &tag); |
| if (rc < 0) { |
| dev_err(master->dev, |
| "TERM failed; lost communication with slave\n"); |
| return -EIO; |
| } else if (tag != FSI_RESP_ACK) { |
| dev_err(master->dev, "TERM failed; response %d\n", tag); |
| return -EIO; |
| } |
| return 0; |
| } |
| |
| static void dump_ucode_trace(struct fsi_master_acf *master) |
| { |
| char trbuf[52]; |
| char *p; |
| int i; |
| |
| dev_dbg(master->dev, |
| "CMDSTAT:%08x RTAG=%02x RCRC=%02x RDATA=%02x #INT=%08x\n", |
| ioread32be(master->sram + CMD_STAT_REG), |
| ioread8(master->sram + STAT_RTAG), |
| ioread8(master->sram + STAT_RCRC), |
| ioread32be(master->sram + RSP_DATA), |
| ioread32be(master->sram + INT_CNT)); |
| |
| for (i = 0; i < 512; i++) { |
| uint8_t v; |
| if ((i % 16) == 0) |
| p = trbuf; |
| v = ioread8(master->sram + TRACEBUF + i); |
| p += sprintf(p, "%02x ", v); |
| if (((i % 16) == 15) || v == TR_END) |
| dev_dbg(master->dev, "%s\n", trbuf); |
| if (v == TR_END) |
| break; |
| } |
| } |
| |
| static int handle_response(struct fsi_master_acf *master, |
| uint8_t slave, uint8_t size, void *data) |
| { |
| int busy_count = 0, rc; |
| int crc_err_retries = 0; |
| struct fsi_msg cmd; |
| uint32_t response; |
| uint8_t tag; |
| retry: |
| rc = read_copro_response(master, size, &response, &tag); |
| |
| /* Handle retries on CRC errors */ |
| if (rc == -EAGAIN) { |
| /* Too many retries ? */ |
| if (crc_err_retries++ > FSI_CRC_ERR_RETRIES) { |
| /* |
| * Pass it up as a -EIO otherwise upper level will retry |
| * the whole command which isn't what we want here. |
| */ |
| rc = -EIO; |
| goto bail; |
| } |
| trace_fsi_master_acf_crc_rsp_error(master, crc_err_retries); |
| if (master->trace_enabled) |
| dump_ucode_trace(master); |
| rc = clock_zeros(master, FSI_MASTER_EPOLL_CLOCKS); |
| if (rc) { |
| dev_warn(master->dev, |
| "Error %d clocking zeros for E_POLL\n", rc); |
| return rc; |
| } |
| build_epoll_command(&cmd, slave); |
| rc = send_request(master, &cmd, size); |
| if (rc) { |
| dev_warn(master->dev, "Error %d sending E_POLL\n", rc); |
| return -EIO; |
| } |
| goto retry; |
| } |
| if (rc) |
| return rc; |
| |
| switch (tag) { |
| case FSI_RESP_ACK: |
| if (size && data) { |
| if (size == 32) |
| *(__be32 *)data = cpu_to_be32(response); |
| else if (size == 16) |
| *(__be16 *)data = cpu_to_be16(response); |
| else |
| *(u8 *)data = response; |
| } |
| break; |
| case FSI_RESP_BUSY: |
| /* |
| * Its necessary to clock slave before issuing |
| * d-poll, not indicated in the hardware protocol |
| * spec. < 20 clocks causes slave to hang, 21 ok. |
| */ |
| dev_dbg(master->dev, "Busy, retrying...\n"); |
| if (master->trace_enabled) |
| dump_ucode_trace(master); |
| rc = clock_zeros(master, FSI_MASTER_DPOLL_CLOCKS); |
| if (rc) { |
| dev_warn(master->dev, |
| "Error %d clocking zeros for D_POLL\n", rc); |
| break; |
| } |
| if (busy_count++ < FSI_MASTER_MAX_BUSY) { |
| build_dpoll_command(&cmd, slave); |
| rc = send_request(master, &cmd, size); |
| if (rc) { |
| dev_warn(master->dev, "Error %d sending D_POLL\n", rc); |
| break; |
| } |
| goto retry; |
| } |
| dev_dbg(master->dev, |
| "ERR slave is stuck in busy state, issuing TERM\n"); |
| send_term(master, slave); |
| rc = -EIO; |
| break; |
| |
| case FSI_RESP_ERRA: |
| dev_dbg(master->dev, "ERRA received\n"); |
| if (master->trace_enabled) |
| dump_ucode_trace(master); |
| rc = -EIO; |
| break; |
| case FSI_RESP_ERRC: |
| dev_dbg(master->dev, "ERRC received\n"); |
| if (master->trace_enabled) |
| dump_ucode_trace(master); |
| rc = -EAGAIN; |
| break; |
| } |
| bail: |
| if (busy_count > 0) { |
| trace_fsi_master_acf_poll_response_busy(master, busy_count); |
| } |
| |
| return rc; |
| } |
| |
| static int fsi_master_acf_xfer(struct fsi_master_acf *master, uint8_t slave, |
| struct fsi_msg *cmd, size_t resp_len, void *resp) |
| { |
| int rc = -EAGAIN, retries = 0; |
| |
| resp_len <<= 3; |
| while ((retries++) < FSI_CRC_ERR_RETRIES) { |
| rc = send_request(master, cmd, resp_len); |
| if (rc) { |
| if (rc != -ESHUTDOWN) |
| dev_warn(master->dev, "Error %d sending command\n", rc); |
| break; |
| } |
| rc = handle_response(master, slave, resp_len, resp); |
| if (rc != -EAGAIN) |
| break; |
| rc = -EIO; |
| dev_dbg(master->dev, "ECRC retry %d\n", retries); |
| |
| /* Pace it a bit before retry */ |
| msleep(1); |
| } |
| |
| return rc; |
| } |
| |
| static int fsi_master_acf_read(struct fsi_master *_master, int link, |
| uint8_t id, uint32_t addr, void *val, |
| size_t size) |
| { |
| struct fsi_master_acf *master = to_fsi_master_acf(_master); |
| struct fsi_msg cmd; |
| int rc; |
| |
| if (link != 0) |
| return -ENODEV; |
| |
| mutex_lock(&master->lock); |
| dev_dbg(master->dev, "read id %d addr %x size %zd\n", id, addr, size); |
| build_ar_command(master, &cmd, id, addr, size, NULL); |
| rc = fsi_master_acf_xfer(master, id, &cmd, size, val); |
| last_address_update(master, id, rc == 0, addr); |
| if (rc) |
| dev_dbg(master->dev, "read id %d addr 0x%08x err: %d\n", |
| id, addr, rc); |
| mutex_unlock(&master->lock); |
| |
| return rc; |
| } |
| |
| static int fsi_master_acf_write(struct fsi_master *_master, int link, |
| uint8_t id, uint32_t addr, const void *val, |
| size_t size) |
| { |
| struct fsi_master_acf *master = to_fsi_master_acf(_master); |
| struct fsi_msg cmd; |
| int rc; |
| |
| if (link != 0) |
| return -ENODEV; |
| |
| mutex_lock(&master->lock); |
| build_ar_command(master, &cmd, id, addr, size, val); |
| dev_dbg(master->dev, "write id %d addr %x size %zd raw_data: %08x\n", |
| id, addr, size, *(uint32_t *)val); |
| rc = fsi_master_acf_xfer(master, id, &cmd, 0, NULL); |
| last_address_update(master, id, rc == 0, addr); |
| if (rc) |
| dev_dbg(master->dev, "write id %d addr 0x%08x err: %d\n", |
| id, addr, rc); |
| mutex_unlock(&master->lock); |
| |
| return rc; |
| } |
| |
| static int fsi_master_acf_term(struct fsi_master *_master, |
| int link, uint8_t id) |
| { |
| struct fsi_master_acf *master = to_fsi_master_acf(_master); |
| struct fsi_msg cmd; |
| int rc; |
| |
| if (link != 0) |
| return -ENODEV; |
| |
| mutex_lock(&master->lock); |
| build_term_command(&cmd, id); |
| dev_dbg(master->dev, "term id %d\n", id); |
| rc = fsi_master_acf_xfer(master, id, &cmd, 0, NULL); |
| last_address_update(master, id, false, 0); |
| mutex_unlock(&master->lock); |
| |
| return rc; |
| } |
| |
| static int fsi_master_acf_break(struct fsi_master *_master, int link) |
| { |
| struct fsi_master_acf *master = to_fsi_master_acf(_master); |
| int rc; |
| |
| if (link != 0) |
| return -ENODEV; |
| |
| mutex_lock(&master->lock); |
| if (master->external_mode) { |
| mutex_unlock(&master->lock); |
| return -EBUSY; |
| } |
| dev_dbg(master->dev, "sending BREAK\n"); |
| rc = do_copro_command(master, CMD_BREAK); |
| last_address_update(master, 0, false, 0); |
| mutex_unlock(&master->lock); |
| |
| /* Wait for logic reset to take effect */ |
| udelay(200); |
| |
| return rc; |
| } |
| |
| static void reset_cf(struct fsi_master_acf *master) |
| { |
| regmap_write(master->scu, SCU_COPRO_CTRL, SCU_COPRO_RESET); |
| usleep_range(20,20); |
| regmap_write(master->scu, SCU_COPRO_CTRL, 0); |
| usleep_range(20,20); |
| } |
| |
| static void start_cf(struct fsi_master_acf *master) |
| { |
| regmap_write(master->scu, SCU_COPRO_CTRL, SCU_COPRO_CLK_EN); |
| } |
| |
| static void setup_ast2500_cf_maps(struct fsi_master_acf *master) |
| { |
| /* |
| * Note about byteswap setting: the bus is wired backwards, |
| * so setting the byteswap bit actually makes the ColdFire |
| * work "normally" for a BE processor, ie, put the MSB in |
| * the lowest address byte. |
| * |
| * We thus need to set the bit for our main memory which |
| * contains our program code. We create two mappings for |
| * the register, one with each setting. |
| * |
| * Segments 2 and 3 has a "swapped" mapping (BE) |
| * and 6 and 7 have a non-swapped mapping (LE) which allows |
| * us to avoid byteswapping register accesses since the |
| * registers are all LE. |
| */ |
| |
| /* Setup segment 0 to our memory region */ |
| regmap_write(master->scu, SCU_2500_COPRO_SEG0, master->cf_mem_addr | |
| SCU_2500_COPRO_SEG_SWAP); |
| |
| /* Segments 2 and 3 to sysregs with byteswap (for SRAM) */ |
| regmap_write(master->scu, SCU_2500_COPRO_SEG2, SYSREG_BASE | |
| SCU_2500_COPRO_SEG_SWAP); |
| regmap_write(master->scu, SCU_2500_COPRO_SEG3, SYSREG_BASE | 0x100000 | |
| SCU_2500_COPRO_SEG_SWAP); |
| |
| /* And segment 6 and 7 to sysregs no byteswap */ |
| regmap_write(master->scu, SCU_2500_COPRO_SEG6, SYSREG_BASE); |
| regmap_write(master->scu, SCU_2500_COPRO_SEG7, SYSREG_BASE | 0x100000); |
| |
| /* Memory cachable, regs and SRAM not cachable */ |
| regmap_write(master->scu, SCU_2500_COPRO_CACHE_CTL, |
| SCU_2500_COPRO_SEG0_CACHE_EN | SCU_2500_COPRO_CACHE_EN); |
| } |
| |
| static void setup_ast2400_cf_maps(struct fsi_master_acf *master) |
| { |
| /* Setup segment 0 to our memory region */ |
| regmap_write(master->scu, SCU_2400_COPRO_SEG0, master->cf_mem_addr | |
| SCU_2400_COPRO_SEG_SWAP); |
| |
| /* Segments 2 to sysregs with byteswap (for SRAM) */ |
| regmap_write(master->scu, SCU_2400_COPRO_SEG2, SYSREG_BASE | |
| SCU_2400_COPRO_SEG_SWAP); |
| |
| /* And segment 6 to sysregs no byteswap */ |
| regmap_write(master->scu, SCU_2400_COPRO_SEG6, SYSREG_BASE); |
| |
| /* Memory cachable, regs and SRAM not cachable */ |
| regmap_write(master->scu, SCU_2400_COPRO_CACHE_CTL, |
| SCU_2400_COPRO_SEG0_CACHE_EN | SCU_2400_COPRO_CACHE_EN); |
| } |
| |
| static void setup_common_fw_config(struct fsi_master_acf *master, |
| void __iomem *base) |
| { |
| iowrite16be(master->gpio_clk_vreg, base + HDR_CLOCK_GPIO_VADDR); |
| iowrite16be(master->gpio_clk_dreg, base + HDR_CLOCK_GPIO_DADDR); |
| iowrite16be(master->gpio_dat_vreg, base + HDR_DATA_GPIO_VADDR); |
| iowrite16be(master->gpio_dat_dreg, base + HDR_DATA_GPIO_DADDR); |
| iowrite16be(master->gpio_tra_vreg, base + HDR_TRANS_GPIO_VADDR); |
| iowrite16be(master->gpio_tra_dreg, base + HDR_TRANS_GPIO_DADDR); |
| iowrite8(master->gpio_clk_bit, base + HDR_CLOCK_GPIO_BIT); |
| iowrite8(master->gpio_dat_bit, base + HDR_DATA_GPIO_BIT); |
| iowrite8(master->gpio_tra_bit, base + HDR_TRANS_GPIO_BIT); |
| } |
| |
| static void setup_ast2500_fw_config(struct fsi_master_acf *master) |
| { |
| void __iomem *base = master->cf_mem + HDR_OFFSET; |
| |
| setup_common_fw_config(master, base); |
| iowrite32be(FW_CONTROL_USE_STOP, base + HDR_FW_CONTROL); |
| } |
| |
| static void setup_ast2400_fw_config(struct fsi_master_acf *master) |
| { |
| void __iomem *base = master->cf_mem + HDR_OFFSET; |
| |
| setup_common_fw_config(master, base); |
| iowrite32be(FW_CONTROL_CONT_CLOCK|FW_CONTROL_DUMMY_RD, base + HDR_FW_CONTROL); |
| } |
| |
| static int setup_gpios_for_copro(struct fsi_master_acf *master) |
| { |
| |
| int rc; |
| |
| /* This aren't under ColdFire control, just set them up appropriately */ |
| gpiod_direction_output(master->gpio_mux, 1); |
| gpiod_direction_output(master->gpio_enable, 1); |
| |
| /* Those are under ColdFire control, let it configure them */ |
| rc = aspeed_gpio_copro_grab_gpio(master->gpio_clk, &master->gpio_clk_vreg, |
| &master->gpio_clk_dreg, &master->gpio_clk_bit); |
| if (rc) { |
| dev_err(master->dev, "failed to assign clock gpio to coprocessor\n"); |
| return rc; |
| } |
| rc = aspeed_gpio_copro_grab_gpio(master->gpio_data, &master->gpio_dat_vreg, |
| &master->gpio_dat_dreg, &master->gpio_dat_bit); |
| if (rc) { |
| dev_err(master->dev, "failed to assign data gpio to coprocessor\n"); |
| aspeed_gpio_copro_release_gpio(master->gpio_clk); |
| return rc; |
| } |
| rc = aspeed_gpio_copro_grab_gpio(master->gpio_trans, &master->gpio_tra_vreg, |
| &master->gpio_tra_dreg, &master->gpio_tra_bit); |
| if (rc) { |
| dev_err(master->dev, "failed to assign trans gpio to coprocessor\n"); |
| aspeed_gpio_copro_release_gpio(master->gpio_clk); |
| aspeed_gpio_copro_release_gpio(master->gpio_data); |
| return rc; |
| } |
| return 0; |
| } |
| |
| static void release_copro_gpios(struct fsi_master_acf *master) |
| { |
| aspeed_gpio_copro_release_gpio(master->gpio_clk); |
| aspeed_gpio_copro_release_gpio(master->gpio_data); |
| aspeed_gpio_copro_release_gpio(master->gpio_trans); |
| } |
| |
| static int load_copro_firmware(struct fsi_master_acf *master) |
| { |
| const struct firmware *fw; |
| uint16_t sig = 0, wanted_sig; |
| const u8 *data; |
| size_t size = 0; |
| int rc; |
| |
| /* Get the binary */ |
| rc = request_firmware(&fw, FW_FILE_NAME, master->dev); |
| if (rc) { |
| dev_err( |
| master->dev, "Error %d to load firmware '%s' !\n", |
| rc, FW_FILE_NAME); |
| return rc; |
| } |
| |
| /* Which image do we want ? (shared vs. split clock/data GPIOs) */ |
| if (master->gpio_clk_vreg == master->gpio_dat_vreg) |
| wanted_sig = SYS_SIG_SHARED; |
| else |
| wanted_sig = SYS_SIG_SPLIT; |
| dev_dbg(master->dev, "Looking for image sig %04x\n", wanted_sig); |
| |
| /* Try to find it */ |
| for (data = fw->data; data < (fw->data + fw->size);) { |
| sig = be16_to_cpup((__be16 *)(data + HDR_OFFSET + HDR_SYS_SIG)); |
| size = be32_to_cpup((__be32 *)(data + HDR_OFFSET + HDR_FW_SIZE)); |
| if (sig == wanted_sig) |
| break; |
| data += size; |
| } |
| if (sig != wanted_sig) { |
| dev_err(master->dev, "Failed to locate image sig %04x in FW blob\n", |
| wanted_sig); |
| rc = -ENODEV; |
| goto release_fw; |
| } |
| if (size > master->cf_mem_size) { |
| dev_err(master->dev, "FW size (%zd) bigger than memory reserve (%zd)\n", |
| fw->size, master->cf_mem_size); |
| rc = -ENOMEM; |
| } else { |
| memcpy_toio(master->cf_mem, data, size); |
| } |
| |
| release_fw: |
| release_firmware(fw); |
| return rc; |
| } |
| |
| static int check_firmware_image(struct fsi_master_acf *master) |
| { |
| uint32_t fw_vers, fw_api, fw_options; |
| |
| fw_vers = ioread16be(master->cf_mem + HDR_OFFSET + HDR_FW_VERS); |
| fw_api = ioread16be(master->cf_mem + HDR_OFFSET + HDR_API_VERS); |
| fw_options = ioread32be(master->cf_mem + HDR_OFFSET + HDR_FW_OPTIONS); |
| master->trace_enabled = !!(fw_options & FW_OPTION_TRACE_EN); |
| |
| /* Check version and signature */ |
| dev_info(master->dev, "ColdFire initialized, firmware v%d API v%d.%d (trace %s)\n", |
| fw_vers, fw_api >> 8, fw_api & 0xff, |
| master->trace_enabled ? "enabled" : "disabled"); |
| |
| if ((fw_api >> 8) != API_VERSION_MAJ) { |
| dev_err(master->dev, "Unsupported coprocessor API version !\n"); |
| return -ENODEV; |
| } |
| |
| return 0; |
| } |
| |
| static int copro_enable_sw_irq(struct fsi_master_acf *master) |
| { |
| int timeout; |
| uint32_t val; |
| |
| /* |
| * Enable coprocessor interrupt input. I've had problems getting the |
| * value to stick, so try in a loop |
| */ |
| for (timeout = 0; timeout < 10; timeout++) { |
| iowrite32(0x2, master->cvic + CVIC_EN_REG); |
| val = ioread32(master->cvic + CVIC_EN_REG); |
| if (val & 2) |
| break; |
| msleep(1); |
| } |
| if (!(val & 2)) { |
| dev_err(master->dev, "Failed to enable coprocessor interrupt !\n"); |
| return -ENODEV; |
| } |
| return 0; |
| } |
| |
| static int fsi_master_acf_setup(struct fsi_master_acf *master) |
| { |
| int timeout, rc; |
| uint32_t val; |
| |
| /* Make sure the ColdFire is stopped */ |
| reset_cf(master); |
| |
| /* |
| * Clear SRAM. This needs to happen before we setup the GPIOs |
| * as we might start trying to arbitrate as soon as that happens. |
| */ |
| memset_io(master->sram, 0, SRAM_SIZE); |
| |
| /* Configure GPIOs */ |
| rc = setup_gpios_for_copro(master); |
| if (rc) |
| return rc; |
| |
| /* Load the firmware into the reserved memory */ |
| rc = load_copro_firmware(master); |
| if (rc) |
| return rc; |
| |
| /* Read signature and check versions */ |
| rc = check_firmware_image(master); |
| if (rc) |
| return rc; |
| |
| /* Setup coldfire memory map */ |
| if (master->is_ast2500) { |
| setup_ast2500_cf_maps(master); |
| setup_ast2500_fw_config(master); |
| } else { |
| setup_ast2400_cf_maps(master); |
| setup_ast2400_fw_config(master); |
| } |
| |
| /* Start the ColdFire */ |
| start_cf(master); |
| |
| /* Wait for status register to indicate command completion |
| * which signals the initialization is complete |
| */ |
| for (timeout = 0; timeout < 10; timeout++) { |
| val = ioread8(master->sram + CF_STARTED); |
| if (val) |
| break; |
| msleep(1); |
| } |
| if (!val) { |
| dev_err(master->dev, "Coprocessor startup timeout !\n"); |
| rc = -ENODEV; |
| goto err; |
| } |
| |
| /* Configure echo & send delay */ |
| iowrite8(master->t_send_delay, master->sram + SEND_DLY_REG); |
| iowrite8(master->t_echo_delay, master->sram + ECHO_DLY_REG); |
| |
| /* Enable SW interrupt to copro if any */ |
| if (master->cvic) { |
| rc = copro_enable_sw_irq(master); |
| if (rc) |
| goto err; |
| } |
| return 0; |
| err: |
| /* An error occurred, don't leave the coprocessor running */ |
| reset_cf(master); |
| |
| /* Release the GPIOs */ |
| release_copro_gpios(master); |
| |
| return rc; |
| } |
| |
| |
| static void fsi_master_acf_terminate(struct fsi_master_acf *master) |
| { |
| unsigned long flags; |
| |
| /* |
| * A GPIO arbitration requestion could come in while this is |
| * happening. To avoid problems, we disable interrupts so it |
| * cannot preempt us on this CPU |
| */ |
| |
| local_irq_save(flags); |
| |
| /* Stop the coprocessor */ |
| reset_cf(master); |
| |
| /* We mark the copro not-started */ |
| iowrite32(0, master->sram + CF_STARTED); |
| |
| /* We mark the ARB register as having given up arbitration to |
| * deal with a potential race with the arbitration request |
| */ |
| iowrite8(ARB_ARM_ACK, master->sram + ARB_REG); |
| |
| local_irq_restore(flags); |
| |
| /* Return the GPIOs to the ARM */ |
| release_copro_gpios(master); |
| } |
| |
| static void fsi_master_acf_setup_external(struct fsi_master_acf *master) |
| { |
| /* Setup GPIOs for external FSI master (FSP box) */ |
| gpiod_direction_output(master->gpio_mux, 0); |
| gpiod_direction_output(master->gpio_trans, 0); |
| gpiod_direction_output(master->gpio_enable, 1); |
| gpiod_direction_input(master->gpio_clk); |
| gpiod_direction_input(master->gpio_data); |
| } |
| |
| static int fsi_master_acf_link_enable(struct fsi_master *_master, int link, |
| bool enable) |
| { |
| struct fsi_master_acf *master = to_fsi_master_acf(_master); |
| int rc = -EBUSY; |
| |
| if (link != 0) |
| return -ENODEV; |
| |
| mutex_lock(&master->lock); |
| if (!master->external_mode) { |
| gpiod_set_value(master->gpio_enable, enable ? 1 : 0); |
| rc = 0; |
| } |
| mutex_unlock(&master->lock); |
| |
| return rc; |
| } |
| |
| static int fsi_master_acf_link_config(struct fsi_master *_master, int link, |
| u8 t_send_delay, u8 t_echo_delay) |
| { |
| struct fsi_master_acf *master = to_fsi_master_acf(_master); |
| |
| if (link != 0) |
| return -ENODEV; |
| |
| mutex_lock(&master->lock); |
| master->t_send_delay = t_send_delay; |
| master->t_echo_delay = t_echo_delay; |
| dev_dbg(master->dev, "Changing delays: send=%d echo=%d\n", |
| t_send_delay, t_echo_delay); |
| iowrite8(master->t_send_delay, master->sram + SEND_DLY_REG); |
| iowrite8(master->t_echo_delay, master->sram + ECHO_DLY_REG); |
| mutex_unlock(&master->lock); |
| |
| return 0; |
| } |
| |
| static ssize_t external_mode_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct fsi_master_acf *master = dev_get_drvdata(dev); |
| |
| return snprintf(buf, PAGE_SIZE - 1, "%u\n", |
| master->external_mode ? 1 : 0); |
| } |
| |
| static ssize_t external_mode_store(struct device *dev, |
| struct device_attribute *attr, const char *buf, size_t count) |
| { |
| struct fsi_master_acf *master = dev_get_drvdata(dev); |
| unsigned long val; |
| bool external_mode; |
| int err; |
| |
| err = kstrtoul(buf, 0, &val); |
| if (err) |
| return err; |
| |
| external_mode = !!val; |
| |
| mutex_lock(&master->lock); |
| |
| if (external_mode == master->external_mode) { |
| mutex_unlock(&master->lock); |
| return count; |
| } |
| |
| master->external_mode = external_mode; |
| if (master->external_mode) { |
| fsi_master_acf_terminate(master); |
| fsi_master_acf_setup_external(master); |
| } else |
| fsi_master_acf_setup(master); |
| |
| mutex_unlock(&master->lock); |
| |
| fsi_master_rescan(&master->master); |
| |
| return count; |
| } |
| |
| static DEVICE_ATTR(external_mode, 0664, |
| external_mode_show, external_mode_store); |
| |
| static int fsi_master_acf_gpio_request(void *data) |
| { |
| struct fsi_master_acf *master = data; |
| int timeout; |
| u8 val; |
| |
| /* Note: This doesn't require holding out mutex */ |
| |
| /* Write reqest */ |
| iowrite8(ARB_ARM_REQ, master->sram + ARB_REG); |
| |
| /* |
| * There is a race (which does happen at boot time) when we get an |
| * arbitration request as we are either about to or just starting |
| * the coprocessor. |
| * |
| * To handle it, we first check if we are running. If not yet we |
| * check whether the copro is started in the SCU. |
| * |
| * If it's not started, we can basically just assume we have arbitration |
| * and return. Otherwise, we wait normally expecting for the arbitration |
| * to eventually complete. |
| */ |
| if (ioread32(master->sram + CF_STARTED) == 0) { |
| unsigned int reg = 0; |
| |
| regmap_read(master->scu, SCU_COPRO_CTRL, ®); |
| if (!(reg & SCU_COPRO_CLK_EN)) |
| return 0; |
| } |
| |
| /* Ring doorbell if any */ |
| if (master->cvic) |
| iowrite32(0x2, master->cvic + CVIC_TRIG_REG); |
| |
| for (timeout = 0; timeout < 10000; timeout++) { |
| val = ioread8(master->sram + ARB_REG); |
| if (val != ARB_ARM_REQ) |
| break; |
| udelay(1); |
| } |
| |
| /* If it failed, override anyway */ |
| if (val != ARB_ARM_ACK) |
| dev_warn(master->dev, "GPIO request arbitration timeout\n"); |
| |
| return 0; |
| } |
| |
| static int fsi_master_acf_gpio_release(void *data) |
| { |
| struct fsi_master_acf *master = data; |
| |
| /* Write release */ |
| iowrite8(0, master->sram + ARB_REG); |
| |
| /* Ring doorbell if any */ |
| if (master->cvic) |
| iowrite32(0x2, master->cvic + CVIC_TRIG_REG); |
| |
| return 0; |
| } |
| |
| static void fsi_master_acf_release(struct device *dev) |
| { |
| struct fsi_master_acf *master = to_fsi_master_acf(dev_to_fsi_master(dev)); |
| |
| /* Cleanup, stop coprocessor */ |
| mutex_lock(&master->lock); |
| fsi_master_acf_terminate(master); |
| aspeed_gpio_copro_set_ops(NULL, NULL); |
| mutex_unlock(&master->lock); |
| |
| /* Free resources */ |
| gen_pool_free(master->sram_pool, (unsigned long)master->sram, SRAM_SIZE); |
| of_node_put(dev_of_node(master->dev)); |
| |
| kfree(master); |
| } |
| |
| static const struct aspeed_gpio_copro_ops fsi_master_acf_gpio_ops = { |
| .request_access = fsi_master_acf_gpio_request, |
| .release_access = fsi_master_acf_gpio_release, |
| }; |
| |
| static int fsi_master_acf_probe(struct platform_device *pdev) |
| { |
| struct device_node *np, *mnode = dev_of_node(&pdev->dev); |
| struct genpool_data_fixed gpdf; |
| struct fsi_master_acf *master; |
| struct gpio_desc *gpio; |
| struct resource res; |
| uint32_t cf_mem_align; |
| int rc; |
| |
| master = kzalloc(sizeof(*master), GFP_KERNEL); |
| if (!master) |
| return -ENOMEM; |
| |
| master->dev = &pdev->dev; |
| master->master.dev.parent = master->dev; |
| master->last_addr = LAST_ADDR_INVALID; |
| |
| /* AST2400 vs. AST2500 */ |
| master->is_ast2500 = of_device_is_compatible(mnode, "aspeed,ast2500-cf-fsi-master"); |
| |
| /* Grab the SCU, we'll need to access it to configure the coprocessor */ |
| if (master->is_ast2500) |
| master->scu = syscon_regmap_lookup_by_compatible("aspeed,ast2500-scu"); |
| else |
| master->scu = syscon_regmap_lookup_by_compatible("aspeed,ast2400-scu"); |
| if (IS_ERR(master->scu)) { |
| dev_err(&pdev->dev, "failed to find SCU regmap\n"); |
| rc = PTR_ERR(master->scu); |
| goto err_free; |
| } |
| |
| /* Grab all the GPIOs we need */ |
| gpio = devm_gpiod_get(&pdev->dev, "clock", 0); |
| if (IS_ERR(gpio)) { |
| dev_err(&pdev->dev, "failed to get clock gpio\n"); |
| rc = PTR_ERR(gpio); |
| goto err_free; |
| } |
| master->gpio_clk = gpio; |
| |
| gpio = devm_gpiod_get(&pdev->dev, "data", 0); |
| if (IS_ERR(gpio)) { |
| dev_err(&pdev->dev, "failed to get data gpio\n"); |
| rc = PTR_ERR(gpio); |
| goto err_free; |
| } |
| master->gpio_data = gpio; |
| |
| /* Optional GPIOs */ |
| gpio = devm_gpiod_get_optional(&pdev->dev, "trans", 0); |
| if (IS_ERR(gpio)) { |
| dev_err(&pdev->dev, "failed to get trans gpio\n"); |
| rc = PTR_ERR(gpio); |
| goto err_free; |
| } |
| master->gpio_trans = gpio; |
| |
| gpio = devm_gpiod_get_optional(&pdev->dev, "enable", 0); |
| if (IS_ERR(gpio)) { |
| dev_err(&pdev->dev, "failed to get enable gpio\n"); |
| rc = PTR_ERR(gpio); |
| goto err_free; |
| } |
| master->gpio_enable = gpio; |
| |
| gpio = devm_gpiod_get_optional(&pdev->dev, "mux", 0); |
| if (IS_ERR(gpio)) { |
| dev_err(&pdev->dev, "failed to get mux gpio\n"); |
| rc = PTR_ERR(gpio); |
| goto err_free; |
| } |
| master->gpio_mux = gpio; |
| |
| /* Grab the reserved memory region (use DMA API instead ?) */ |
| np = of_parse_phandle(mnode, "memory-region", 0); |
| if (!np) { |
| dev_err(&pdev->dev, "Didn't find reserved memory\n"); |
| rc = -EINVAL; |
| goto err_free; |
| } |
| rc = of_address_to_resource(np, 0, &res); |
| of_node_put(np); |
| if (rc) { |
| dev_err(&pdev->dev, "Couldn't address to resource for reserved memory\n"); |
| rc = -ENOMEM; |
| goto err_free; |
| } |
| master->cf_mem_size = resource_size(&res); |
| master->cf_mem_addr = (uint32_t)res.start; |
| cf_mem_align = master->is_ast2500 ? 0x00100000 : 0x00200000; |
| if (master->cf_mem_addr & (cf_mem_align - 1)) { |
| dev_err(&pdev->dev, "Reserved memory has insufficient alignment\n"); |
| rc = -ENOMEM; |
| goto err_free; |
| } |
| master->cf_mem = devm_ioremap_resource(&pdev->dev, &res); |
| if (IS_ERR(master->cf_mem)) { |
| rc = PTR_ERR(master->cf_mem); |
| goto err_free; |
| } |
| dev_dbg(&pdev->dev, "DRAM allocation @%x\n", master->cf_mem_addr); |
| |
| /* AST2500 has a SW interrupt to the coprocessor */ |
| if (master->is_ast2500) { |
| /* Grab the CVIC (ColdFire interrupts controller) */ |
| np = of_parse_phandle(mnode, "aspeed,cvic", 0); |
| if (!np) { |
| dev_err(&pdev->dev, "Didn't find CVIC\n"); |
| rc = -EINVAL; |
| goto err_free; |
| } |
| master->cvic = devm_of_iomap(&pdev->dev, np, 0, NULL); |
| if (IS_ERR(master->cvic)) { |
| rc = PTR_ERR(master->cvic); |
| dev_err(&pdev->dev, "Error %d mapping CVIC\n", rc); |
| goto err_free; |
| } |
| rc = of_property_read_u32(np, "copro-sw-interrupts", |
| &master->cvic_sw_irq); |
| if (rc) { |
| dev_err(&pdev->dev, "Can't find coprocessor SW interrupt\n"); |
| goto err_free; |
| } |
| } |
| |
| /* Grab the SRAM */ |
| master->sram_pool = of_gen_pool_get(dev_of_node(&pdev->dev), "aspeed,sram", 0); |
| if (!master->sram_pool) { |
| rc = -ENODEV; |
| dev_err(&pdev->dev, "Can't find sram pool\n"); |
| goto err_free; |
| } |
| |
| /* Current microcode only deals with fixed location in SRAM */ |
| gpdf.offset = 0; |
| master->sram = (void __iomem *)gen_pool_alloc_algo(master->sram_pool, SRAM_SIZE, |
| gen_pool_fixed_alloc, &gpdf); |
| if (!master->sram) { |
| rc = -ENOMEM; |
| dev_err(&pdev->dev, "Failed to allocate sram from pool\n"); |
| goto err_free; |
| } |
| dev_dbg(&pdev->dev, "SRAM allocation @%lx\n", |
| (unsigned long)gen_pool_virt_to_phys(master->sram_pool, |
| (unsigned long)master->sram)); |
| |
| /* |
| * Hookup with the GPIO driver for arbitration of GPIO banks |
| * ownership. |
| */ |
| aspeed_gpio_copro_set_ops(&fsi_master_acf_gpio_ops, master); |
| |
| /* Default FSI command delays */ |
| master->t_send_delay = FSI_SEND_DELAY_CLOCKS; |
| master->t_echo_delay = FSI_ECHO_DELAY_CLOCKS; |
| master->master.n_links = 1; |
| if (master->is_ast2500) |
| master->master.flags = FSI_MASTER_FLAG_SWCLOCK; |
| master->master.read = fsi_master_acf_read; |
| master->master.write = fsi_master_acf_write; |
| master->master.term = fsi_master_acf_term; |
| master->master.send_break = fsi_master_acf_break; |
| master->master.link_enable = fsi_master_acf_link_enable; |
| master->master.link_config = fsi_master_acf_link_config; |
| master->master.dev.of_node = of_node_get(dev_of_node(master->dev)); |
| master->master.dev.release = fsi_master_acf_release; |
| platform_set_drvdata(pdev, master); |
| mutex_init(&master->lock); |
| |
| mutex_lock(&master->lock); |
| rc = fsi_master_acf_setup(master); |
| mutex_unlock(&master->lock); |
| if (rc) |
| goto release_of_dev; |
| |
| rc = device_create_file(&pdev->dev, &dev_attr_external_mode); |
| if (rc) |
| goto stop_copro; |
| |
| rc = fsi_master_register(&master->master); |
| if (!rc) |
| return 0; |
| |
| device_remove_file(master->dev, &dev_attr_external_mode); |
| put_device(&master->master.dev); |
| return rc; |
| |
| stop_copro: |
| fsi_master_acf_terminate(master); |
| release_of_dev: |
| aspeed_gpio_copro_set_ops(NULL, NULL); |
| gen_pool_free(master->sram_pool, (unsigned long)master->sram, SRAM_SIZE); |
| of_node_put(dev_of_node(master->dev)); |
| err_free: |
| kfree(master); |
| return rc; |
| } |
| |
| |
| static int fsi_master_acf_remove(struct platform_device *pdev) |
| { |
| struct fsi_master_acf *master = platform_get_drvdata(pdev); |
| |
| device_remove_file(master->dev, &dev_attr_external_mode); |
| |
| fsi_master_unregister(&master->master); |
| |
| return 0; |
| } |
| |
| static const struct of_device_id fsi_master_acf_match[] = { |
| { .compatible = "aspeed,ast2400-cf-fsi-master" }, |
| { .compatible = "aspeed,ast2500-cf-fsi-master" }, |
| { }, |
| }; |
| MODULE_DEVICE_TABLE(of, fsi_master_acf_match); |
| |
| static struct platform_driver fsi_master_acf = { |
| .driver = { |
| .name = "fsi-master-acf", |
| .of_match_table = fsi_master_acf_match, |
| }, |
| .probe = fsi_master_acf_probe, |
| .remove = fsi_master_acf_remove, |
| }; |
| |
| module_platform_driver(fsi_master_acf); |
| MODULE_LICENSE("GPL"); |