blob: fff0c740c8f336a95b91a613ece4da4d508a706d [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Internal Thunderbolt Connection Manager. This is a firmware running on
* the Thunderbolt host controller performing most of the low-level
* handling.
*
* Copyright (C) 2017, Intel Corporation
* Authors: Michael Jamet <michael.jamet@intel.com>
* Mika Westerberg <mika.westerberg@linux.intel.com>
*/
#include <linux/delay.h>
#include <linux/mutex.h>
#include <linux/moduleparam.h>
#include <linux/pci.h>
#include <linux/pm_runtime.h>
#include <linux/platform_data/x86/apple.h>
#include <linux/sizes.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include "ctl.h"
#include "nhi_regs.h"
#include "tb.h"
#define PCIE2CIO_CMD 0x30
#define PCIE2CIO_CMD_TIMEOUT BIT(31)
#define PCIE2CIO_CMD_START BIT(30)
#define PCIE2CIO_CMD_WRITE BIT(21)
#define PCIE2CIO_CMD_CS_MASK GENMASK(20, 19)
#define PCIE2CIO_CMD_CS_SHIFT 19
#define PCIE2CIO_CMD_PORT_MASK GENMASK(18, 13)
#define PCIE2CIO_CMD_PORT_SHIFT 13
#define PCIE2CIO_WRDATA 0x34
#define PCIE2CIO_RDDATA 0x38
#define PHY_PORT_CS1 0x37
#define PHY_PORT_CS1_LINK_DISABLE BIT(14)
#define PHY_PORT_CS1_LINK_STATE_MASK GENMASK(29, 26)
#define PHY_PORT_CS1_LINK_STATE_SHIFT 26
#define ICM_TIMEOUT 5000 /* ms */
#define ICM_APPROVE_TIMEOUT 10000 /* ms */
#define ICM_MAX_LINK 4
static bool start_icm;
module_param(start_icm, bool, 0444);
MODULE_PARM_DESC(start_icm, "start ICM firmware if it is not running (default: false)");
/**
* struct usb4_switch_nvm_auth - Holds USB4 NVM_AUTH status
* @reply: Reply from ICM firmware is placed here
* @request: Request that is sent to ICM firmware
* @icm: Pointer to ICM private data
*/
struct usb4_switch_nvm_auth {
struct icm_usb4_switch_op_response reply;
struct icm_usb4_switch_op request;
struct icm *icm;
};
/**
* struct icm - Internal connection manager private data
* @request_lock: Makes sure only one message is send to ICM at time
* @rescan_work: Work used to rescan the surviving switches after resume
* @upstream_port: Pointer to the PCIe upstream port this host
* controller is connected. This is only set for systems
* where ICM needs to be started manually
* @vnd_cap: Vendor defined capability where PCIe2CIO mailbox resides
* (only set when @upstream_port is not %NULL)
* @safe_mode: ICM is in safe mode
* @max_boot_acl: Maximum number of preboot ACL entries (%0 if not supported)
* @rpm: Does the controller support runtime PM (RTD3)
* @can_upgrade_nvm: Can the NVM firmware be upgrade on this controller
* @proto_version: Firmware protocol version
* @last_nvm_auth: Last USB4 router NVM_AUTH result (or %NULL if not set)
* @veto: Is RTD3 veto in effect
* @is_supported: Checks if we can support ICM on this controller
* @cio_reset: Trigger CIO reset
* @get_mode: Read and return the ICM firmware mode (optional)
* @get_route: Find a route string for given switch
* @save_devices: Ask ICM to save devices to ACL when suspending (optional)
* @driver_ready: Send driver ready message to ICM
* @set_uuid: Set UUID for the root switch (optional)
* @device_connected: Handle device connected ICM message
* @device_disconnected: Handle device disconnected ICM message
* @xdomain_connected: Handle XDomain connected ICM message
* @xdomain_disconnected: Handle XDomain disconnected ICM message
* @rtd3_veto: Handle RTD3 veto notification ICM message
*/
struct icm {
struct mutex request_lock;
struct delayed_work rescan_work;
struct pci_dev *upstream_port;
int vnd_cap;
bool safe_mode;
size_t max_boot_acl;
bool rpm;
bool can_upgrade_nvm;
u8 proto_version;
struct usb4_switch_nvm_auth *last_nvm_auth;
bool veto;
bool (*is_supported)(struct tb *tb);
int (*cio_reset)(struct tb *tb);
int (*get_mode)(struct tb *tb);
int (*get_route)(struct tb *tb, u8 link, u8 depth, u64 *route);
void (*save_devices)(struct tb *tb);
int (*driver_ready)(struct tb *tb,
enum tb_security_level *security_level,
u8 *proto_version, size_t *nboot_acl, bool *rpm);
void (*set_uuid)(struct tb *tb);
void (*device_connected)(struct tb *tb,
const struct icm_pkg_header *hdr);
void (*device_disconnected)(struct tb *tb,
const struct icm_pkg_header *hdr);
void (*xdomain_connected)(struct tb *tb,
const struct icm_pkg_header *hdr);
void (*xdomain_disconnected)(struct tb *tb,
const struct icm_pkg_header *hdr);
void (*rtd3_veto)(struct tb *tb, const struct icm_pkg_header *hdr);
};
struct icm_notification {
struct work_struct work;
struct icm_pkg_header *pkg;
struct tb *tb;
};
struct ep_name_entry {
u8 len;
u8 type;
u8 data[];
};
#define EP_NAME_INTEL_VSS 0x10
/* Intel Vendor specific structure */
struct intel_vss {
u16 vendor;
u16 model;
u8 mc;
u8 flags;
u16 pci_devid;
u32 nvm_version;
};
#define INTEL_VSS_FLAGS_RTD3 BIT(0)
static const struct intel_vss *parse_intel_vss(const void *ep_name, size_t size)
{
const void *end = ep_name + size;
while (ep_name < end) {
const struct ep_name_entry *ep = ep_name;
if (!ep->len)
break;
if (ep_name + ep->len > end)
break;
if (ep->type == EP_NAME_INTEL_VSS)
return (const struct intel_vss *)ep->data;
ep_name += ep->len;
}
return NULL;
}
static bool intel_vss_is_rtd3(const void *ep_name, size_t size)
{
const struct intel_vss *vss;
vss = parse_intel_vss(ep_name, size);
if (vss)
return !!(vss->flags & INTEL_VSS_FLAGS_RTD3);
return false;
}
static inline struct tb *icm_to_tb(struct icm *icm)
{
return ((void *)icm - sizeof(struct tb));
}
static inline u8 phy_port_from_route(u64 route, u8 depth)
{
u8 link;
link = depth ? route >> ((depth - 1) * 8) : route;
return tb_phy_port_from_link(link);
}
static inline u8 dual_link_from_link(u8 link)
{
return link ? ((link - 1) ^ 0x01) + 1 : 0;
}
static inline u64 get_route(u32 route_hi, u32 route_lo)
{
return (u64)route_hi << 32 | route_lo;
}
static inline u64 get_parent_route(u64 route)
{
int depth = tb_route_length(route);
return depth ? route & ~(0xffULL << (depth - 1) * TB_ROUTE_SHIFT) : 0;
}
static int pci2cio_wait_completion(struct icm *icm, unsigned long timeout_msec)
{
unsigned long end = jiffies + msecs_to_jiffies(timeout_msec);
u32 cmd;
do {
pci_read_config_dword(icm->upstream_port,
icm->vnd_cap + PCIE2CIO_CMD, &cmd);
if (!(cmd & PCIE2CIO_CMD_START)) {
if (cmd & PCIE2CIO_CMD_TIMEOUT)
break;
return 0;
}
msleep(50);
} while (time_before(jiffies, end));
return -ETIMEDOUT;
}
static int pcie2cio_read(struct icm *icm, enum tb_cfg_space cs,
unsigned int port, unsigned int index, u32 *data)
{
struct pci_dev *pdev = icm->upstream_port;
int ret, vnd_cap = icm->vnd_cap;
u32 cmd;
cmd = index;
cmd |= (port << PCIE2CIO_CMD_PORT_SHIFT) & PCIE2CIO_CMD_PORT_MASK;
cmd |= (cs << PCIE2CIO_CMD_CS_SHIFT) & PCIE2CIO_CMD_CS_MASK;
cmd |= PCIE2CIO_CMD_START;
pci_write_config_dword(pdev, vnd_cap + PCIE2CIO_CMD, cmd);
ret = pci2cio_wait_completion(icm, 5000);
if (ret)
return ret;
pci_read_config_dword(pdev, vnd_cap + PCIE2CIO_RDDATA, data);
return 0;
}
static int pcie2cio_write(struct icm *icm, enum tb_cfg_space cs,
unsigned int port, unsigned int index, u32 data)
{
struct pci_dev *pdev = icm->upstream_port;
int vnd_cap = icm->vnd_cap;
u32 cmd;
pci_write_config_dword(pdev, vnd_cap + PCIE2CIO_WRDATA, data);
cmd = index;
cmd |= (port << PCIE2CIO_CMD_PORT_SHIFT) & PCIE2CIO_CMD_PORT_MASK;
cmd |= (cs << PCIE2CIO_CMD_CS_SHIFT) & PCIE2CIO_CMD_CS_MASK;
cmd |= PCIE2CIO_CMD_WRITE | PCIE2CIO_CMD_START;
pci_write_config_dword(pdev, vnd_cap + PCIE2CIO_CMD, cmd);
return pci2cio_wait_completion(icm, 5000);
}
static bool icm_match(const struct tb_cfg_request *req,
const struct ctl_pkg *pkg)
{
const struct icm_pkg_header *res_hdr = pkg->buffer;
const struct icm_pkg_header *req_hdr = req->request;
if (pkg->frame.eof != req->response_type)
return false;
if (res_hdr->code != req_hdr->code)
return false;
return true;
}
static bool icm_copy(struct tb_cfg_request *req, const struct ctl_pkg *pkg)
{
const struct icm_pkg_header *hdr = pkg->buffer;
if (hdr->packet_id < req->npackets) {
size_t offset = hdr->packet_id * req->response_size;
memcpy(req->response + offset, pkg->buffer, req->response_size);
}
return hdr->packet_id == hdr->total_packets - 1;
}
static int icm_request(struct tb *tb, const void *request, size_t request_size,
void *response, size_t response_size, size_t npackets,
unsigned int timeout_msec)
{
struct icm *icm = tb_priv(tb);
int retries = 3;
do {
struct tb_cfg_request *req;
struct tb_cfg_result res;
req = tb_cfg_request_alloc();
if (!req)
return -ENOMEM;
req->match = icm_match;
req->copy = icm_copy;
req->request = request;
req->request_size = request_size;
req->request_type = TB_CFG_PKG_ICM_CMD;
req->response = response;
req->npackets = npackets;
req->response_size = response_size;
req->response_type = TB_CFG_PKG_ICM_RESP;
mutex_lock(&icm->request_lock);
res = tb_cfg_request_sync(tb->ctl, req, timeout_msec);
mutex_unlock(&icm->request_lock);
tb_cfg_request_put(req);
if (res.err != -ETIMEDOUT)
return res.err == 1 ? -EIO : res.err;
usleep_range(20, 50);
} while (retries--);
return -ETIMEDOUT;
}
/*
* If rescan is queued to run (we are resuming), postpone it to give the
* firmware some more time to send device connected notifications for next
* devices in the chain.
*/
static void icm_postpone_rescan(struct tb *tb)
{
struct icm *icm = tb_priv(tb);
if (delayed_work_pending(&icm->rescan_work))
mod_delayed_work(tb->wq, &icm->rescan_work,
msecs_to_jiffies(500));
}
static void icm_veto_begin(struct tb *tb)
{
struct icm *icm = tb_priv(tb);
if (!icm->veto) {
icm->veto = true;
/* Keep the domain powered while veto is in effect */
pm_runtime_get(&tb->dev);
}
}
static void icm_veto_end(struct tb *tb)
{
struct icm *icm = tb_priv(tb);
if (icm->veto) {
icm->veto = false;
/* Allow the domain suspend now */
pm_runtime_mark_last_busy(&tb->dev);
pm_runtime_put_autosuspend(&tb->dev);
}
}
static bool icm_firmware_running(const struct tb_nhi *nhi)
{
u32 val;
val = ioread32(nhi->iobase + REG_FW_STS);
return !!(val & REG_FW_STS_ICM_EN);
}
static bool icm_fr_is_supported(struct tb *tb)
{
return !x86_apple_machine;
}
static inline int icm_fr_get_switch_index(u32 port)
{
int index;
if ((port & ICM_PORT_TYPE_MASK) != TB_TYPE_PORT)
return 0;
index = port >> ICM_PORT_INDEX_SHIFT;
return index != 0xff ? index : 0;
}
static int icm_fr_get_route(struct tb *tb, u8 link, u8 depth, u64 *route)
{
struct icm_fr_pkg_get_topology_response *switches, *sw;
struct icm_fr_pkg_get_topology request = {
.hdr = { .code = ICM_GET_TOPOLOGY },
};
size_t npackets = ICM_GET_TOPOLOGY_PACKETS;
int ret, index;
u8 i;
switches = kcalloc(npackets, sizeof(*switches), GFP_KERNEL);
if (!switches)
return -ENOMEM;
ret = icm_request(tb, &request, sizeof(request), switches,
sizeof(*switches), npackets, ICM_TIMEOUT);
if (ret)
goto err_free;
sw = &switches[0];
index = icm_fr_get_switch_index(sw->ports[link]);
if (!index) {
ret = -ENODEV;
goto err_free;
}
sw = &switches[index];
for (i = 1; i < depth; i++) {
unsigned int j;
if (!(sw->first_data & ICM_SWITCH_USED)) {
ret = -ENODEV;
goto err_free;
}
for (j = 0; j < ARRAY_SIZE(sw->ports); j++) {
index = icm_fr_get_switch_index(sw->ports[j]);
if (index > sw->switch_index) {
sw = &switches[index];
break;
}
}
}
*route = get_route(sw->route_hi, sw->route_lo);
err_free:
kfree(switches);
return ret;
}
static void icm_fr_save_devices(struct tb *tb)
{
nhi_mailbox_cmd(tb->nhi, NHI_MAILBOX_SAVE_DEVS, 0);
}
static int
icm_fr_driver_ready(struct tb *tb, enum tb_security_level *security_level,
u8 *proto_version, size_t *nboot_acl, bool *rpm)
{
struct icm_fr_pkg_driver_ready_response reply;
struct icm_pkg_driver_ready request = {
.hdr.code = ICM_DRIVER_READY,
};
int ret;
memset(&reply, 0, sizeof(reply));
ret = icm_request(tb, &request, sizeof(request), &reply, sizeof(reply),
1, ICM_TIMEOUT);
if (ret)
return ret;
if (security_level)
*security_level = reply.security_level & ICM_FR_SLEVEL_MASK;
return 0;
}
static int icm_fr_approve_switch(struct tb *tb, struct tb_switch *sw)
{
struct icm_fr_pkg_approve_device request;
struct icm_fr_pkg_approve_device reply;
int ret;
memset(&request, 0, sizeof(request));
memcpy(&request.ep_uuid, sw->uuid, sizeof(request.ep_uuid));
request.hdr.code = ICM_APPROVE_DEVICE;
request.connection_id = sw->connection_id;
request.connection_key = sw->connection_key;
memset(&reply, 0, sizeof(reply));
/* Use larger timeout as establishing tunnels can take some time */
ret = icm_request(tb, &request, sizeof(request), &reply, sizeof(reply),
1, ICM_APPROVE_TIMEOUT);
if (ret)
return ret;
if (reply.hdr.flags & ICM_FLAGS_ERROR) {
tb_warn(tb, "PCIe tunnel creation failed\n");
return -EIO;
}
return 0;
}
static int icm_fr_add_switch_key(struct tb *tb, struct tb_switch *sw)
{
struct icm_fr_pkg_add_device_key request;
struct icm_fr_pkg_add_device_key_response reply;
int ret;
memset(&request, 0, sizeof(request));
memcpy(&request.ep_uuid, sw->uuid, sizeof(request.ep_uuid));
request.hdr.code = ICM_ADD_DEVICE_KEY;
request.connection_id = sw->connection_id;
request.connection_key = sw->connection_key;
memcpy(request.key, sw->key, TB_SWITCH_KEY_SIZE);
memset(&reply, 0, sizeof(reply));
ret = icm_request(tb, &request, sizeof(request), &reply, sizeof(reply),
1, ICM_TIMEOUT);
if (ret)
return ret;
if (reply.hdr.flags & ICM_FLAGS_ERROR) {
tb_warn(tb, "Adding key to switch failed\n");
return -EIO;
}
return 0;
}
static int icm_fr_challenge_switch_key(struct tb *tb, struct tb_switch *sw,
const u8 *challenge, u8 *response)
{
struct icm_fr_pkg_challenge_device request;
struct icm_fr_pkg_challenge_device_response reply;
int ret;
memset(&request, 0, sizeof(request));
memcpy(&request.ep_uuid, sw->uuid, sizeof(request.ep_uuid));
request.hdr.code = ICM_CHALLENGE_DEVICE;
request.connection_id = sw->connection_id;
request.connection_key = sw->connection_key;
memcpy(request.challenge, challenge, TB_SWITCH_KEY_SIZE);
memset(&reply, 0, sizeof(reply));
ret = icm_request(tb, &request, sizeof(request), &reply, sizeof(reply),
1, ICM_TIMEOUT);
if (ret)
return ret;
if (reply.hdr.flags & ICM_FLAGS_ERROR)
return -EKEYREJECTED;
if (reply.hdr.flags & ICM_FLAGS_NO_KEY)
return -ENOKEY;
memcpy(response, reply.response, TB_SWITCH_KEY_SIZE);
return 0;
}
static int icm_fr_approve_xdomain_paths(struct tb *tb, struct tb_xdomain *xd,
int transmit_path, int transmit_ring,
int receive_path, int receive_ring)
{
struct icm_fr_pkg_approve_xdomain_response reply;
struct icm_fr_pkg_approve_xdomain request;
int ret;
memset(&request, 0, sizeof(request));
request.hdr.code = ICM_APPROVE_XDOMAIN;
request.link_info = xd->depth << ICM_LINK_INFO_DEPTH_SHIFT | xd->link;
memcpy(&request.remote_uuid, xd->remote_uuid, sizeof(*xd->remote_uuid));
request.transmit_path = transmit_path;
request.transmit_ring = transmit_ring;
request.receive_path = receive_path;
request.receive_ring = receive_ring;
memset(&reply, 0, sizeof(reply));
ret = icm_request(tb, &request, sizeof(request), &reply, sizeof(reply),
1, ICM_TIMEOUT);
if (ret)
return ret;
if (reply.hdr.flags & ICM_FLAGS_ERROR)
return -EIO;
return 0;
}
static int icm_fr_disconnect_xdomain_paths(struct tb *tb, struct tb_xdomain *xd,
int transmit_path, int transmit_ring,
int receive_path, int receive_ring)
{
u8 phy_port;
u8 cmd;
phy_port = tb_phy_port_from_link(xd->link);
if (phy_port == 0)
cmd = NHI_MAILBOX_DISCONNECT_PA;
else
cmd = NHI_MAILBOX_DISCONNECT_PB;
nhi_mailbox_cmd(tb->nhi, cmd, 1);
usleep_range(10, 50);
nhi_mailbox_cmd(tb->nhi, cmd, 2);
return 0;
}
static struct tb_switch *alloc_switch(struct tb_switch *parent_sw, u64 route,
const uuid_t *uuid)
{
struct tb *tb = parent_sw->tb;
struct tb_switch *sw;
sw = tb_switch_alloc(tb, &parent_sw->dev, route);
if (IS_ERR(sw)) {
tb_warn(tb, "failed to allocate switch at %llx\n", route);
return sw;
}
sw->uuid = kmemdup(uuid, sizeof(*uuid), GFP_KERNEL);
if (!sw->uuid) {
tb_switch_put(sw);
return ERR_PTR(-ENOMEM);
}
init_completion(&sw->rpm_complete);
return sw;
}
static int add_switch(struct tb_switch *parent_sw, struct tb_switch *sw)
{
u64 route = tb_route(sw);
int ret;
/* Link the two switches now */
tb_port_at(route, parent_sw)->remote = tb_upstream_port(sw);
tb_upstream_port(sw)->remote = tb_port_at(route, parent_sw);
ret = tb_switch_add(sw);
if (ret)
tb_port_at(tb_route(sw), parent_sw)->remote = NULL;
return ret;
}
static void update_switch(struct tb_switch *parent_sw, struct tb_switch *sw,
u64 route, u8 connection_id, u8 connection_key,
u8 link, u8 depth, bool boot)
{
/* Disconnect from parent */
tb_port_at(tb_route(sw), parent_sw)->remote = NULL;
/* Re-connect via updated port*/
tb_port_at(route, parent_sw)->remote = tb_upstream_port(sw);
/* Update with the new addressing information */
sw->config.route_hi = upper_32_bits(route);
sw->config.route_lo = lower_32_bits(route);
sw->connection_id = connection_id;
sw->connection_key = connection_key;
sw->link = link;
sw->depth = depth;
sw->boot = boot;
/* This switch still exists */
sw->is_unplugged = false;
/* Runtime resume is now complete */
complete(&sw->rpm_complete);
}
static void remove_switch(struct tb_switch *sw)
{
struct tb_switch *parent_sw;
parent_sw = tb_to_switch(sw->dev.parent);
tb_port_at(tb_route(sw), parent_sw)->remote = NULL;
tb_switch_remove(sw);
}
static void add_xdomain(struct tb_switch *sw, u64 route,
const uuid_t *local_uuid, const uuid_t *remote_uuid,
u8 link, u8 depth)
{
struct tb_xdomain *xd;
pm_runtime_get_sync(&sw->dev);
xd = tb_xdomain_alloc(sw->tb, &sw->dev, route, local_uuid, remote_uuid);
if (!xd)
goto out;
xd->link = link;
xd->depth = depth;
tb_port_at(route, sw)->xdomain = xd;
tb_xdomain_add(xd);
out:
pm_runtime_mark_last_busy(&sw->dev);
pm_runtime_put_autosuspend(&sw->dev);
}
static void update_xdomain(struct tb_xdomain *xd, u64 route, u8 link)
{
xd->link = link;
xd->route = route;
xd->is_unplugged = false;
}
static void remove_xdomain(struct tb_xdomain *xd)
{
struct tb_switch *sw;
sw = tb_to_switch(xd->dev.parent);
tb_port_at(xd->route, sw)->xdomain = NULL;
tb_xdomain_remove(xd);
}
static void
icm_fr_device_connected(struct tb *tb, const struct icm_pkg_header *hdr)
{
const struct icm_fr_event_device_connected *pkg =
(const struct icm_fr_event_device_connected *)hdr;
enum tb_security_level security_level;
struct tb_switch *sw, *parent_sw;
bool boot, dual_lane, speed_gen3;
struct icm *icm = tb_priv(tb);
bool authorized = false;
struct tb_xdomain *xd;
u8 link, depth;
u64 route;
int ret;
icm_postpone_rescan(tb);
link = pkg->link_info & ICM_LINK_INFO_LINK_MASK;
depth = (pkg->link_info & ICM_LINK_INFO_DEPTH_MASK) >>
ICM_LINK_INFO_DEPTH_SHIFT;
authorized = pkg->link_info & ICM_LINK_INFO_APPROVED;
security_level = (pkg->hdr.flags & ICM_FLAGS_SLEVEL_MASK) >>
ICM_FLAGS_SLEVEL_SHIFT;
boot = pkg->link_info & ICM_LINK_INFO_BOOT;
dual_lane = pkg->hdr.flags & ICM_FLAGS_DUAL_LANE;
speed_gen3 = pkg->hdr.flags & ICM_FLAGS_SPEED_GEN3;
if (pkg->link_info & ICM_LINK_INFO_REJECTED) {
tb_info(tb, "switch at %u.%u was rejected by ICM firmware because topology limit exceeded\n",
link, depth);
return;
}
sw = tb_switch_find_by_uuid(tb, &pkg->ep_uuid);
if (sw) {
u8 phy_port, sw_phy_port;
parent_sw = tb_to_switch(sw->dev.parent);
sw_phy_port = tb_phy_port_from_link(sw->link);
phy_port = tb_phy_port_from_link(link);
/*
* On resume ICM will send us connected events for the
* devices that still are present. However, that
* information might have changed for example by the
* fact that a switch on a dual-link connection might
* have been enumerated using the other link now. Make
* sure our book keeping matches that.
*/
if (sw->depth == depth && sw_phy_port == phy_port &&
!!sw->authorized == authorized) {
/*
* It was enumerated through another link so update
* route string accordingly.
*/
if (sw->link != link) {
ret = icm->get_route(tb, link, depth, &route);
if (ret) {
tb_err(tb, "failed to update route string for switch at %u.%u\n",
link, depth);
tb_switch_put(sw);
return;
}
} else {
route = tb_route(sw);
}
update_switch(parent_sw, sw, route, pkg->connection_id,
pkg->connection_key, link, depth, boot);
tb_switch_put(sw);
return;
}
/*
* User connected the same switch to another physical
* port or to another part of the topology. Remove the
* existing switch now before adding the new one.
*/
remove_switch(sw);
tb_switch_put(sw);
}
/*
* If the switch was not found by UUID, look for a switch on
* same physical port (taking possible link aggregation into
* account) and depth. If we found one it is definitely a stale
* one so remove it first.
*/
sw = tb_switch_find_by_link_depth(tb, link, depth);
if (!sw) {
u8 dual_link;
dual_link = dual_link_from_link(link);
if (dual_link)
sw = tb_switch_find_by_link_depth(tb, dual_link, depth);
}
if (sw) {
remove_switch(sw);
tb_switch_put(sw);
}
/* Remove existing XDomain connection if found */
xd = tb_xdomain_find_by_link_depth(tb, link, depth);
if (xd) {
remove_xdomain(xd);
tb_xdomain_put(xd);
}
parent_sw = tb_switch_find_by_link_depth(tb, link, depth - 1);
if (!parent_sw) {
tb_err(tb, "failed to find parent switch for %u.%u\n",
link, depth);
return;
}
ret = icm->get_route(tb, link, depth, &route);
if (ret) {
tb_err(tb, "failed to find route string for switch at %u.%u\n",
link, depth);
tb_switch_put(parent_sw);
return;
}
pm_runtime_get_sync(&parent_sw->dev);
sw = alloc_switch(parent_sw, route, &pkg->ep_uuid);
if (!IS_ERR(sw)) {
sw->connection_id = pkg->connection_id;
sw->connection_key = pkg->connection_key;
sw->link = link;
sw->depth = depth;
sw->authorized = authorized;
sw->security_level = security_level;
sw->boot = boot;
sw->link_speed = speed_gen3 ? 20 : 10;
sw->link_width = dual_lane ? 2 : 1;
sw->rpm = intel_vss_is_rtd3(pkg->ep_name, sizeof(pkg->ep_name));
if (add_switch(parent_sw, sw))
tb_switch_put(sw);
}
pm_runtime_mark_last_busy(&parent_sw->dev);
pm_runtime_put_autosuspend(&parent_sw->dev);
tb_switch_put(parent_sw);
}
static void
icm_fr_device_disconnected(struct tb *tb, const struct icm_pkg_header *hdr)
{
const struct icm_fr_event_device_disconnected *pkg =
(const struct icm_fr_event_device_disconnected *)hdr;
struct tb_switch *sw;
u8 link, depth;
link = pkg->link_info & ICM_LINK_INFO_LINK_MASK;
depth = (pkg->link_info & ICM_LINK_INFO_DEPTH_MASK) >>
ICM_LINK_INFO_DEPTH_SHIFT;
if (link > ICM_MAX_LINK || depth > TB_SWITCH_MAX_DEPTH) {
tb_warn(tb, "invalid topology %u.%u, ignoring\n", link, depth);
return;
}
sw = tb_switch_find_by_link_depth(tb, link, depth);
if (!sw) {
tb_warn(tb, "no switch exists at %u.%u, ignoring\n", link,
depth);
return;
}
pm_runtime_get_sync(sw->dev.parent);
remove_switch(sw);
pm_runtime_mark_last_busy(sw->dev.parent);
pm_runtime_put_autosuspend(sw->dev.parent);
tb_switch_put(sw);
}
static void
icm_fr_xdomain_connected(struct tb *tb, const struct icm_pkg_header *hdr)
{
const struct icm_fr_event_xdomain_connected *pkg =
(const struct icm_fr_event_xdomain_connected *)hdr;
struct tb_xdomain *xd;
struct tb_switch *sw;
u8 link, depth;
u64 route;
link = pkg->link_info & ICM_LINK_INFO_LINK_MASK;
depth = (pkg->link_info & ICM_LINK_INFO_DEPTH_MASK) >>
ICM_LINK_INFO_DEPTH_SHIFT;
if (link > ICM_MAX_LINK || depth > TB_SWITCH_MAX_DEPTH) {
tb_warn(tb, "invalid topology %u.%u, ignoring\n", link, depth);
return;
}
route = get_route(pkg->local_route_hi, pkg->local_route_lo);
xd = tb_xdomain_find_by_uuid(tb, &pkg->remote_uuid);
if (xd) {
u8 xd_phy_port, phy_port;
xd_phy_port = phy_port_from_route(xd->route, xd->depth);
phy_port = phy_port_from_route(route, depth);
if (xd->depth == depth && xd_phy_port == phy_port) {
update_xdomain(xd, route, link);
tb_xdomain_put(xd);
return;
}
/*
* If we find an existing XDomain connection remove it
* now. We need to go through login handshake and
* everything anyway to be able to re-establish the
* connection.
*/
remove_xdomain(xd);
tb_xdomain_put(xd);
}
/*
* Look if there already exists an XDomain in the same place
* than the new one and in that case remove it because it is
* most likely another host that got disconnected.
*/
xd = tb_xdomain_find_by_link_depth(tb, link, depth);
if (!xd) {
u8 dual_link;
dual_link = dual_link_from_link(link);
if (dual_link)
xd = tb_xdomain_find_by_link_depth(tb, dual_link,
depth);
}
if (xd) {
remove_xdomain(xd);
tb_xdomain_put(xd);
}
/*
* If the user disconnected a switch during suspend and
* connected another host to the same port, remove the switch
* first.
*/
sw = tb_switch_find_by_route(tb, route);
if (sw) {
remove_switch(sw);
tb_switch_put(sw);
}
sw = tb_switch_find_by_link_depth(tb, link, depth);
if (!sw) {
tb_warn(tb, "no switch exists at %u.%u, ignoring\n", link,
depth);
return;
}
add_xdomain(sw, route, &pkg->local_uuid, &pkg->remote_uuid, link,
depth);
tb_switch_put(sw);
}
static void
icm_fr_xdomain_disconnected(struct tb *tb, const struct icm_pkg_header *hdr)
{
const struct icm_fr_event_xdomain_disconnected *pkg =
(const struct icm_fr_event_xdomain_disconnected *)hdr;
struct tb_xdomain *xd;
/*
* If the connection is through one or multiple devices, the
* XDomain device is removed along with them so it is fine if we
* cannot find it here.
*/
xd = tb_xdomain_find_by_uuid(tb, &pkg->remote_uuid);
if (xd) {
remove_xdomain(xd);
tb_xdomain_put(xd);
}
}
static int icm_tr_cio_reset(struct tb *tb)
{
return pcie2cio_write(tb_priv(tb), TB_CFG_SWITCH, 0, 0x777, BIT(1));
}
static int
icm_tr_driver_ready(struct tb *tb, enum tb_security_level *security_level,
u8 *proto_version, size_t *nboot_acl, bool *rpm)
{
struct icm_tr_pkg_driver_ready_response reply;
struct icm_pkg_driver_ready request = {
.hdr.code = ICM_DRIVER_READY,
};
int ret;
memset(&reply, 0, sizeof(reply));
ret = icm_request(tb, &request, sizeof(request), &reply, sizeof(reply),
1, 20000);
if (ret)
return ret;
if (security_level)
*security_level = reply.info & ICM_TR_INFO_SLEVEL_MASK;
if (proto_version)
*proto_version = (reply.info & ICM_TR_INFO_PROTO_VERSION_MASK) >>
ICM_TR_INFO_PROTO_VERSION_SHIFT;
if (nboot_acl)
*nboot_acl = (reply.info & ICM_TR_INFO_BOOT_ACL_MASK) >>
ICM_TR_INFO_BOOT_ACL_SHIFT;
if (rpm)
*rpm = !!(reply.hdr.flags & ICM_TR_FLAGS_RTD3);
return 0;
}
static int icm_tr_approve_switch(struct tb *tb, struct tb_switch *sw)
{
struct icm_tr_pkg_approve_device request;
struct icm_tr_pkg_approve_device reply;
int ret;
memset(&request, 0, sizeof(request));
memcpy(&request.ep_uuid, sw->uuid, sizeof(request.ep_uuid));
request.hdr.code = ICM_APPROVE_DEVICE;
request.route_lo = sw->config.route_lo;
request.route_hi = sw->config.route_hi;
request.connection_id = sw->connection_id;
memset(&reply, 0, sizeof(reply));
ret = icm_request(tb, &request, sizeof(request), &reply, sizeof(reply),
1, ICM_APPROVE_TIMEOUT);
if (ret)
return ret;
if (reply.hdr.flags & ICM_FLAGS_ERROR) {
tb_warn(tb, "PCIe tunnel creation failed\n");
return -EIO;
}
return 0;
}
static int icm_tr_add_switch_key(struct tb *tb, struct tb_switch *sw)
{
struct icm_tr_pkg_add_device_key_response reply;
struct icm_tr_pkg_add_device_key request;
int ret;
memset(&request, 0, sizeof(request));
memcpy(&request.ep_uuid, sw->uuid, sizeof(request.ep_uuid));
request.hdr.code = ICM_ADD_DEVICE_KEY;
request.route_lo = sw->config.route_lo;
request.route_hi = sw->config.route_hi;
request.connection_id = sw->connection_id;
memcpy(request.key, sw->key, TB_SWITCH_KEY_SIZE);
memset(&reply, 0, sizeof(reply));
ret = icm_request(tb, &request, sizeof(request), &reply, sizeof(reply),
1, ICM_TIMEOUT);
if (ret)
return ret;
if (reply.hdr.flags & ICM_FLAGS_ERROR) {
tb_warn(tb, "Adding key to switch failed\n");
return -EIO;
}
return 0;
}
static int icm_tr_challenge_switch_key(struct tb *tb, struct tb_switch *sw,
const u8 *challenge, u8 *response)
{
struct icm_tr_pkg_challenge_device_response reply;
struct icm_tr_pkg_challenge_device request;
int ret;
memset(&request, 0, sizeof(request));
memcpy(&request.ep_uuid, sw->uuid, sizeof(request.ep_uuid));
request.hdr.code = ICM_CHALLENGE_DEVICE;
request.route_lo = sw->config.route_lo;
request.route_hi = sw->config.route_hi;
request.connection_id = sw->connection_id;
memcpy(request.challenge, challenge, TB_SWITCH_KEY_SIZE);
memset(&reply, 0, sizeof(reply));
ret = icm_request(tb, &request, sizeof(request), &reply, sizeof(reply),
1, ICM_TIMEOUT);
if (ret)
return ret;
if (reply.hdr.flags & ICM_FLAGS_ERROR)
return -EKEYREJECTED;
if (reply.hdr.flags & ICM_FLAGS_NO_KEY)
return -ENOKEY;
memcpy(response, reply.response, TB_SWITCH_KEY_SIZE);
return 0;
}
static int icm_tr_approve_xdomain_paths(struct tb *tb, struct tb_xdomain *xd,
int transmit_path, int transmit_ring,
int receive_path, int receive_ring)
{
struct icm_tr_pkg_approve_xdomain_response reply;
struct icm_tr_pkg_approve_xdomain request;
int ret;
memset(&request, 0, sizeof(request));
request.hdr.code = ICM_APPROVE_XDOMAIN;
request.route_hi = upper_32_bits(xd->route);
request.route_lo = lower_32_bits(xd->route);
request.transmit_path = transmit_path;
request.transmit_ring = transmit_ring;
request.receive_path = receive_path;
request.receive_ring = receive_ring;
memcpy(&request.remote_uuid, xd->remote_uuid, sizeof(*xd->remote_uuid));
memset(&reply, 0, sizeof(reply));
ret = icm_request(tb, &request, sizeof(request), &reply, sizeof(reply),
1, ICM_TIMEOUT);
if (ret)
return ret;
if (reply.hdr.flags & ICM_FLAGS_ERROR)
return -EIO;
return 0;
}
static int icm_tr_xdomain_tear_down(struct tb *tb, struct tb_xdomain *xd,
int stage)
{
struct icm_tr_pkg_disconnect_xdomain_response reply;
struct icm_tr_pkg_disconnect_xdomain request;
int ret;
memset(&request, 0, sizeof(request));
request.hdr.code = ICM_DISCONNECT_XDOMAIN;
request.stage = stage;
request.route_hi = upper_32_bits(xd->route);
request.route_lo = lower_32_bits(xd->route);
memcpy(&request.remote_uuid, xd->remote_uuid, sizeof(*xd->remote_uuid));
memset(&reply, 0, sizeof(reply));
ret = icm_request(tb, &request, sizeof(request), &reply, sizeof(reply),
1, ICM_TIMEOUT);
if (ret)
return ret;
if (reply.hdr.flags & ICM_FLAGS_ERROR)
return -EIO;
return 0;
}
static int icm_tr_disconnect_xdomain_paths(struct tb *tb, struct tb_xdomain *xd,
int transmit_path, int transmit_ring,
int receive_path, int receive_ring)
{
int ret;
ret = icm_tr_xdomain_tear_down(tb, xd, 1);
if (ret)
return ret;
usleep_range(10, 50);
return icm_tr_xdomain_tear_down(tb, xd, 2);
}
static void
__icm_tr_device_connected(struct tb *tb, const struct icm_pkg_header *hdr,
bool force_rtd3)
{
const struct icm_tr_event_device_connected *pkg =
(const struct icm_tr_event_device_connected *)hdr;
bool authorized, boot, dual_lane, speed_gen3;
enum tb_security_level security_level;
struct tb_switch *sw, *parent_sw;
struct tb_xdomain *xd;
u64 route;
icm_postpone_rescan(tb);
/*
* Currently we don't use the QoS information coming with the
* device connected message so simply just ignore that extra
* packet for now.
*/
if (pkg->hdr.packet_id)
return;
route = get_route(pkg->route_hi, pkg->route_lo);
authorized = pkg->link_info & ICM_LINK_INFO_APPROVED;
security_level = (pkg->hdr.flags & ICM_FLAGS_SLEVEL_MASK) >>
ICM_FLAGS_SLEVEL_SHIFT;
boot = pkg->link_info & ICM_LINK_INFO_BOOT;
dual_lane = pkg->hdr.flags & ICM_FLAGS_DUAL_LANE;
speed_gen3 = pkg->hdr.flags & ICM_FLAGS_SPEED_GEN3;
if (pkg->link_info & ICM_LINK_INFO_REJECTED) {
tb_info(tb, "switch at %llx was rejected by ICM firmware because topology limit exceeded\n",
route);
return;
}
sw = tb_switch_find_by_uuid(tb, &pkg->ep_uuid);
if (sw) {
/* Update the switch if it is still in the same place */
if (tb_route(sw) == route && !!sw->authorized == authorized) {
parent_sw = tb_to_switch(sw->dev.parent);
update_switch(parent_sw, sw, route, pkg->connection_id,
0, 0, 0, boot);
tb_switch_put(sw);
return;
}
remove_switch(sw);
tb_switch_put(sw);
}
/* Another switch with the same address */
sw = tb_switch_find_by_route(tb, route);
if (sw) {
remove_switch(sw);
tb_switch_put(sw);
}
/* XDomain connection with the same address */
xd = tb_xdomain_find_by_route(tb, route);
if (xd) {
remove_xdomain(xd);
tb_xdomain_put(xd);
}
parent_sw = tb_switch_find_by_route(tb, get_parent_route(route));
if (!parent_sw) {
tb_err(tb, "failed to find parent switch for %llx\n", route);
return;
}
pm_runtime_get_sync(&parent_sw->dev);
sw = alloc_switch(parent_sw, route, &pkg->ep_uuid);
if (!IS_ERR(sw)) {
sw->connection_id = pkg->connection_id;
sw->authorized = authorized;
sw->security_level = security_level;
sw->boot = boot;
sw->link_speed = speed_gen3 ? 20 : 10;
sw->link_width = dual_lane ? 2 : 1;
sw->rpm = force_rtd3;
if (!sw->rpm)
sw->rpm = intel_vss_is_rtd3(pkg->ep_name,
sizeof(pkg->ep_name));
if (add_switch(parent_sw, sw))
tb_switch_put(sw);
}
pm_runtime_mark_last_busy(&parent_sw->dev);
pm_runtime_put_autosuspend(&parent_sw->dev);
tb_switch_put(parent_sw);
}
static void
icm_tr_device_connected(struct tb *tb, const struct icm_pkg_header *hdr)
{
__icm_tr_device_connected(tb, hdr, false);
}
static void
icm_tr_device_disconnected(struct tb *tb, const struct icm_pkg_header *hdr)
{
const struct icm_tr_event_device_disconnected *pkg =
(const struct icm_tr_event_device_disconnected *)hdr;
struct tb_switch *sw;
u64 route;
route = get_route(pkg->route_hi, pkg->route_lo);
sw = tb_switch_find_by_route(tb, route);
if (!sw) {
tb_warn(tb, "no switch exists at %llx, ignoring\n", route);
return;
}
pm_runtime_get_sync(sw->dev.parent);
remove_switch(sw);
pm_runtime_mark_last_busy(sw->dev.parent);
pm_runtime_put_autosuspend(sw->dev.parent);
tb_switch_put(sw);
}
static void
icm_tr_xdomain_connected(struct tb *tb, const struct icm_pkg_header *hdr)
{
const struct icm_tr_event_xdomain_connected *pkg =
(const struct icm_tr_event_xdomain_connected *)hdr;
struct tb_xdomain *xd;
struct tb_switch *sw;
u64 route;
if (!tb->root_switch)
return;
route = get_route(pkg->local_route_hi, pkg->local_route_lo);
xd = tb_xdomain_find_by_uuid(tb, &pkg->remote_uuid);
if (xd) {
if (xd->route == route) {
update_xdomain(xd, route, 0);
tb_xdomain_put(xd);
return;
}
remove_xdomain(xd);
tb_xdomain_put(xd);
}
/* An existing xdomain with the same address */
xd = tb_xdomain_find_by_route(tb, route);
if (xd) {
remove_xdomain(xd);
tb_xdomain_put(xd);
}
/*
* If the user disconnected a switch during suspend and
* connected another host to the same port, remove the switch
* first.
*/
sw = tb_switch_find_by_route(tb, route);
if (sw) {
remove_switch(sw);
tb_switch_put(sw);
}
sw = tb_switch_find_by_route(tb, get_parent_route(route));
if (!sw) {
tb_warn(tb, "no switch exists at %llx, ignoring\n", route);
return;
}
add_xdomain(sw, route, &pkg->local_uuid, &pkg->remote_uuid, 0, 0);
tb_switch_put(sw);
}
static void
icm_tr_xdomain_disconnected(struct tb *tb, const struct icm_pkg_header *hdr)
{
const struct icm_tr_event_xdomain_disconnected *pkg =
(const struct icm_tr_event_xdomain_disconnected *)hdr;
struct tb_xdomain *xd;
u64 route;
route = get_route(pkg->route_hi, pkg->route_lo);
xd = tb_xdomain_find_by_route(tb, route);
if (xd) {
remove_xdomain(xd);
tb_xdomain_put(xd);
}
}
static struct pci_dev *get_upstream_port(struct pci_dev *pdev)
{
struct pci_dev *parent;
parent = pci_upstream_bridge(pdev);
while (parent) {
if (!pci_is_pcie(parent))
return NULL;
if (pci_pcie_type(parent) == PCI_EXP_TYPE_UPSTREAM)
break;
parent = pci_upstream_bridge(parent);
}
if (!parent)
return NULL;
switch (parent->device) {
case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE:
case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE:
return parent;
}
return NULL;
}
static bool icm_ar_is_supported(struct tb *tb)
{
struct pci_dev *upstream_port;
struct icm *icm = tb_priv(tb);
/*
* Starting from Alpine Ridge we can use ICM on Apple machines
* as well. We just need to reset and re-enable it first.
* However, only start it if explicitly asked by the user.
*/
if (icm_firmware_running(tb->nhi))
return true;
if (!start_icm)
return false;
/*
* Find the upstream PCIe port in case we need to do reset
* through its vendor specific registers.
*/
upstream_port = get_upstream_port(tb->nhi->pdev);
if (upstream_port) {
int cap;
cap = pci_find_ext_capability(upstream_port,
PCI_EXT_CAP_ID_VNDR);
if (cap > 0) {
icm->upstream_port = upstream_port;
icm->vnd_cap = cap;
return true;
}
}
return false;
}
static int icm_ar_cio_reset(struct tb *tb)
{
return pcie2cio_write(tb_priv(tb), TB_CFG_SWITCH, 0, 0x50, BIT(9));
}
static int icm_ar_get_mode(struct tb *tb)
{
struct tb_nhi *nhi = tb->nhi;
int retries = 60;
u32 val;
do {
val = ioread32(nhi->iobase + REG_FW_STS);
if (val & REG_FW_STS_NVM_AUTH_DONE)
break;
msleep(50);
} while (--retries);
if (!retries) {
dev_err(&nhi->pdev->dev, "ICM firmware not authenticated\n");
return -ENODEV;
}
return nhi_mailbox_mode(nhi);
}
static int
icm_ar_driver_ready(struct tb *tb, enum tb_security_level *security_level,
u8 *proto_version, size_t *nboot_acl, bool *rpm)
{
struct icm_ar_pkg_driver_ready_response reply;
struct icm_pkg_driver_ready request = {
.hdr.code = ICM_DRIVER_READY,
};
int ret;
memset(&reply, 0, sizeof(reply));
ret = icm_request(tb, &request, sizeof(request), &reply, sizeof(reply),
1, ICM_TIMEOUT);
if (ret)
return ret;
if (security_level)
*security_level = reply.info & ICM_AR_INFO_SLEVEL_MASK;
if (nboot_acl && (reply.info & ICM_AR_INFO_BOOT_ACL_SUPPORTED))
*nboot_acl = (reply.info & ICM_AR_INFO_BOOT_ACL_MASK) >>
ICM_AR_INFO_BOOT_ACL_SHIFT;
if (rpm)
*rpm = !!(reply.hdr.flags & ICM_AR_FLAGS_RTD3);
return 0;
}
static int icm_ar_get_route(struct tb *tb, u8 link, u8 depth, u64 *route)
{
struct icm_ar_pkg_get_route_response reply;
struct icm_ar_pkg_get_route request = {
.hdr = { .code = ICM_GET_ROUTE },
.link_info = depth << ICM_LINK_INFO_DEPTH_SHIFT | link,
};
int ret;
memset(&reply, 0, sizeof(reply));
ret = icm_request(tb, &request, sizeof(request), &reply, sizeof(reply),
1, ICM_TIMEOUT);
if (ret)
return ret;
if (reply.hdr.flags & ICM_FLAGS_ERROR)
return -EIO;
*route = get_route(reply.route_hi, reply.route_lo);
return 0;
}
static int icm_ar_get_boot_acl(struct tb *tb, uuid_t *uuids, size_t nuuids)
{
struct icm_ar_pkg_preboot_acl_response reply;
struct icm_ar_pkg_preboot_acl request = {
.hdr = { .code = ICM_PREBOOT_ACL },
};
int ret, i;
memset(&reply, 0, sizeof(reply));
ret = icm_request(tb, &request, sizeof(request), &reply, sizeof(reply),
1, ICM_TIMEOUT);
if (ret)
return ret;
if (reply.hdr.flags & ICM_FLAGS_ERROR)
return -EIO;
for (i = 0; i < nuuids; i++) {
u32 *uuid = (u32 *)&uuids[i];
uuid[0] = reply.acl[i].uuid_lo;
uuid[1] = reply.acl[i].uuid_hi;
if (uuid[0] == 0xffffffff && uuid[1] == 0xffffffff) {
/* Map empty entries to null UUID */
uuid[0] = 0;
uuid[1] = 0;
} else if (uuid[0] != 0 || uuid[1] != 0) {
/* Upper two DWs are always one's */
uuid[2] = 0xffffffff;
uuid[3] = 0xffffffff;
}
}
return ret;
}
static int icm_ar_set_boot_acl(struct tb *tb, const uuid_t *uuids,
size_t nuuids)
{
struct icm_ar_pkg_preboot_acl_response reply;
struct icm_ar_pkg_preboot_acl request = {
.hdr = {
.code = ICM_PREBOOT_ACL,
.flags = ICM_FLAGS_WRITE,
},
};
int ret, i;
for (i = 0; i < nuuids; i++) {
const u32 *uuid = (const u32 *)&uuids[i];
if (uuid_is_null(&uuids[i])) {
/*
* Map null UUID to the empty (all one) entries
* for ICM.
*/
request.acl[i].uuid_lo = 0xffffffff;
request.acl[i].uuid_hi = 0xffffffff;
} else {
/* Two high DWs need to be set to all one */
if (uuid[2] != 0xffffffff || uuid[3] != 0xffffffff)
return -EINVAL;
request.acl[i].uuid_lo = uuid[0];
request.acl[i].uuid_hi = uuid[1];
}
}
memset(&reply, 0, sizeof(reply));
ret = icm_request(tb, &request, sizeof(request), &reply, sizeof(reply),
1, ICM_TIMEOUT);
if (ret)
return ret;
if (reply.hdr.flags & ICM_FLAGS_ERROR)
return -EIO;
return 0;
}
static int
icm_icl_driver_ready(struct tb *tb, enum tb_security_level *security_level,
u8 *proto_version, size_t *nboot_acl, bool *rpm)
{
struct icm_tr_pkg_driver_ready_response reply;
struct icm_pkg_driver_ready request = {
.hdr.code = ICM_DRIVER_READY,
};
int ret;
memset(&reply, 0, sizeof(reply));
ret = icm_request(tb, &request, sizeof(request), &reply, sizeof(reply),
1, 20000);
if (ret)
return ret;
if (proto_version)
*proto_version = (reply.info & ICM_TR_INFO_PROTO_VERSION_MASK) >>
ICM_TR_INFO_PROTO_VERSION_SHIFT;
/* Ice Lake always supports RTD3 */
if (rpm)
*rpm = true;
return 0;
}
static void icm_icl_set_uuid(struct tb *tb)
{
struct tb_nhi *nhi = tb->nhi;
u32 uuid[4];
pci_read_config_dword(nhi->pdev, VS_CAP_10, &uuid[0]);
pci_read_config_dword(nhi->pdev, VS_CAP_11, &uuid[1]);
uuid[2] = 0xffffffff;
uuid[3] = 0xffffffff;
tb->root_switch->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
}
static void
icm_icl_device_connected(struct tb *tb, const struct icm_pkg_header *hdr)
{
__icm_tr_device_connected(tb, hdr, true);
}
static void icm_icl_rtd3_veto(struct tb *tb, const struct icm_pkg_header *hdr)
{
const struct icm_icl_event_rtd3_veto *pkg =
(const struct icm_icl_event_rtd3_veto *)hdr;
tb_dbg(tb, "ICM rtd3 veto=0x%08x\n", pkg->veto_reason);
if (pkg->veto_reason)
icm_veto_begin(tb);
else
icm_veto_end(tb);
}
static bool icm_tgl_is_supported(struct tb *tb)
{
unsigned long end = jiffies + msecs_to_jiffies(10);
do {
u32 val;
val = ioread32(tb->nhi->iobase + REG_FW_STS);
if (val & REG_FW_STS_NVM_AUTH_DONE)
return true;
usleep_range(100, 500);
} while (time_before(jiffies, end));
return false;
}
static void icm_handle_notification(struct work_struct *work)
{
struct icm_notification *n = container_of(work, typeof(*n), work);
struct tb *tb = n->tb;
struct icm *icm = tb_priv(tb);
mutex_lock(&tb->lock);
/*
* When the domain is stopped we flush its workqueue but before
* that the root switch is removed. In that case we should treat
* the queued events as being canceled.
*/
if (tb->root_switch) {
switch (n->pkg->code) {
case ICM_EVENT_DEVICE_CONNECTED:
icm->device_connected(tb, n->pkg);
break;
case ICM_EVENT_DEVICE_DISCONNECTED:
icm->device_disconnected(tb, n->pkg);
break;
case ICM_EVENT_XDOMAIN_CONNECTED:
if (tb_is_xdomain_enabled())
icm->xdomain_connected(tb, n->pkg);
break;
case ICM_EVENT_XDOMAIN_DISCONNECTED:
if (tb_is_xdomain_enabled())
icm->xdomain_disconnected(tb, n->pkg);
break;
case ICM_EVENT_RTD3_VETO:
icm->rtd3_veto(tb, n->pkg);
break;
}
}
mutex_unlock(&tb->lock);
kfree(n->pkg);
kfree(n);
}
static void icm_handle_event(struct tb *tb, enum tb_cfg_pkg_type type,
const void *buf, size_t size)
{
struct icm_notification *n;
n = kmalloc(sizeof(*n), GFP_KERNEL);
if (!n)
return;
n->pkg = kmemdup(buf, size, GFP_KERNEL);
if (!n->pkg) {
kfree(n);
return;
}
INIT_WORK(&n->work, icm_handle_notification);
n->tb = tb;
queue_work(tb->wq, &n->work);
}
static int
__icm_driver_ready(struct tb *tb, enum tb_security_level *security_level,
u8 *proto_version, size_t *nboot_acl, bool *rpm)
{
struct icm *icm = tb_priv(tb);
unsigned int retries = 50;
int ret;
ret = icm->driver_ready(tb, security_level, proto_version, nboot_acl,
rpm);
if (ret) {
tb_err(tb, "failed to send driver ready to ICM\n");
return ret;
}
/*
* Hold on here until the switch config space is accessible so
* that we can read root switch config successfully.
*/
do {
struct tb_cfg_result res;
u32 tmp;
res = tb_cfg_read_raw(tb->ctl, &tmp, 0, 0, TB_CFG_SWITCH,
0, 1, 100);
if (!res.err)
return 0;
msleep(50);
} while (--retries);
tb_err(tb, "failed to read root switch config space, giving up\n");
return -ETIMEDOUT;
}
static int icm_firmware_reset(struct tb *tb, struct tb_nhi *nhi)
{
struct icm *icm = tb_priv(tb);
u32 val;
if (!icm->upstream_port)
return -ENODEV;
/* Put ARC to wait for CIO reset event to happen */
val = ioread32(nhi->iobase + REG_FW_STS);
val |= REG_FW_STS_CIO_RESET_REQ;
iowrite32(val, nhi->iobase + REG_FW_STS);
/* Re-start ARC */
val = ioread32(nhi->iobase + REG_FW_STS);
val |= REG_FW_STS_ICM_EN_INVERT;
val |= REG_FW_STS_ICM_EN_CPU;
iowrite32(val, nhi->iobase + REG_FW_STS);
/* Trigger CIO reset now */
return icm->cio_reset(tb);
}
static int icm_firmware_start(struct tb *tb, struct tb_nhi *nhi)
{
unsigned int retries = 10;
int ret;
u32 val;
/* Check if the ICM firmware is already running */
if (icm_firmware_running(nhi))
return 0;
dev_dbg(&nhi->pdev->dev, "starting ICM firmware\n");
ret = icm_firmware_reset(tb, nhi);
if (ret)
return ret;
/* Wait until the ICM firmware tells us it is up and running */
do {
/* Check that the ICM firmware is running */
val = ioread32(nhi->iobase + REG_FW_STS);
if (val & REG_FW_STS_NVM_AUTH_DONE)
return 0;
msleep(300);
} while (--retries);
return -ETIMEDOUT;
}
static int icm_reset_phy_port(struct tb *tb, int phy_port)
{
struct icm *icm = tb_priv(tb);
u32 state0, state1;
int port0, port1;
u32 val0, val1;
int ret;
if (!icm->upstream_port)
return 0;
if (phy_port) {
port0 = 3;
port1 = 4;
} else {
port0 = 1;
port1 = 2;
}
/*
* Read link status of both null ports belonging to a single
* physical port.
*/
ret = pcie2cio_read(icm, TB_CFG_PORT, port0, PHY_PORT_CS1, &val0);
if (ret)
return ret;
ret = pcie2cio_read(icm, TB_CFG_PORT, port1, PHY_PORT_CS1, &val1);
if (ret)
return ret;
state0 = val0 & PHY_PORT_CS1_LINK_STATE_MASK;
state0 >>= PHY_PORT_CS1_LINK_STATE_SHIFT;
state1 = val1 & PHY_PORT_CS1_LINK_STATE_MASK;
state1 >>= PHY_PORT_CS1_LINK_STATE_SHIFT;
/* If they are both up we need to reset them now */
if (state0 != TB_PORT_UP || state1 != TB_PORT_UP)
return 0;
val0 |= PHY_PORT_CS1_LINK_DISABLE;
ret = pcie2cio_write(icm, TB_CFG_PORT, port0, PHY_PORT_CS1, val0);
if (ret)
return ret;
val1 |= PHY_PORT_CS1_LINK_DISABLE;
ret = pcie2cio_write(icm, TB_CFG_PORT, port1, PHY_PORT_CS1, val1);
if (ret)
return ret;
/* Wait a bit and then re-enable both ports */
usleep_range(10, 100);
ret = pcie2cio_read(icm, TB_CFG_PORT, port0, PHY_PORT_CS1, &val0);
if (ret)
return ret;
ret = pcie2cio_read(icm, TB_CFG_PORT, port1, PHY_PORT_CS1, &val1);
if (ret)
return ret;
val0 &= ~PHY_PORT_CS1_LINK_DISABLE;
ret = pcie2cio_write(icm, TB_CFG_PORT, port0, PHY_PORT_CS1, val0);
if (ret)
return ret;
val1 &= ~PHY_PORT_CS1_LINK_DISABLE;
return pcie2cio_write(icm, TB_CFG_PORT, port1, PHY_PORT_CS1, val1);
}
static int icm_firmware_init(struct tb *tb)
{
struct icm *icm = tb_priv(tb);
struct tb_nhi *nhi = tb->nhi;
int ret;
ret = icm_firmware_start(tb, nhi);
if (ret) {
dev_err(&nhi->pdev->dev, "could not start ICM firmware\n");
return ret;
}
if (icm->get_mode) {
ret = icm->get_mode(tb);
switch (ret) {
case NHI_FW_SAFE_MODE:
icm->safe_mode = true;
break;
case NHI_FW_CM_MODE:
/* Ask ICM to accept all Thunderbolt devices */
nhi_mailbox_cmd(nhi, NHI_MAILBOX_ALLOW_ALL_DEVS, 0);
break;
default:
if (ret < 0)
return ret;
tb_err(tb, "ICM firmware is in wrong mode: %u\n", ret);
return -ENODEV;
}
}
/*
* Reset both physical ports if there is anything connected to
* them already.
*/
ret = icm_reset_phy_port(tb, 0);
if (ret)
dev_warn(&nhi->pdev->dev, "failed to reset links on port0\n");
ret = icm_reset_phy_port(tb, 1);
if (ret)
dev_warn(&nhi->pdev->dev, "failed to reset links on port1\n");
return 0;
}
static int icm_driver_ready(struct tb *tb)
{
struct icm *icm = tb_priv(tb);
int ret;
ret = icm_firmware_init(tb);
if (ret)
return ret;
if (icm->safe_mode) {
tb_info(tb, "Thunderbolt host controller is in safe mode.\n");
tb_info(tb, "You need to update NVM firmware of the controller before it can be used.\n");
tb_info(tb, "For latest updates check https://thunderbolttechnology.net/updates.\n");
return 0;
}
ret = __icm_driver_ready(tb, &tb->security_level, &icm->proto_version,
&tb->nboot_acl, &icm->rpm);
if (ret)
return ret;
/*
* Make sure the number of supported preboot ACL matches what we
* expect or disable the whole feature.
*/
if (tb->nboot_acl > icm->max_boot_acl)
tb->nboot_acl = 0;
if (icm->proto_version >= 3)
tb_dbg(tb, "USB4 proxy operations supported\n");
return 0;
}
static int icm_suspend(struct tb *tb)
{
struct icm *icm = tb_priv(tb);
if (icm->save_devices)
icm->save_devices(tb);
nhi_mailbox_cmd(tb->nhi, NHI_MAILBOX_DRV_UNLOADS, 0);
return 0;
}
/*
* Mark all switches (except root switch) below this one unplugged. ICM
* firmware will send us an updated list of switches after we have send
* it driver ready command. If a switch is not in that list it will be
* removed when we perform rescan.
*/
static void icm_unplug_children(struct tb_switch *sw)
{
struct tb_port *port;
if (tb_route(sw))
sw->is_unplugged = true;
tb_switch_for_each_port(sw, port) {
if (port->xdomain)
port->xdomain->is_unplugged = true;
else if (tb_port_has_remote(port))
icm_unplug_children(port->remote->sw);
}
}
static int complete_rpm(struct device *dev, void *data)
{
struct tb_switch *sw = tb_to_switch(dev);
if (sw)
complete(&sw->rpm_complete);
return 0;
}
static void remove_unplugged_switch(struct tb_switch *sw)
{
struct device *parent = get_device(sw->dev.parent);
pm_runtime_get_sync(parent);
/*
* Signal this and switches below for rpm_complete because
* tb_switch_remove() calls pm_runtime_get_sync() that then waits
* for it.
*/
complete_rpm(&sw->dev, NULL);
bus_for_each_dev(&tb_bus_type, &sw->dev, NULL, complete_rpm);
tb_switch_remove(sw);
pm_runtime_mark_last_busy(parent);
pm_runtime_put_autosuspend(parent);
put_device(parent);
}
static void icm_free_unplugged_children(struct tb_switch *sw)
{
struct tb_port *port;
tb_switch_for_each_port(sw, port) {
if (port->xdomain && port->xdomain->is_unplugged) {
tb_xdomain_remove(port->xdomain);
port->xdomain = NULL;
} else if (tb_port_has_remote(port)) {
if (port->remote->sw->is_unplugged) {
remove_unplugged_switch(port->remote->sw);
port->remote = NULL;
} else {
icm_free_unplugged_children(port->remote->sw);
}
}
}
}
static void icm_rescan_work(struct work_struct *work)
{
struct icm *icm = container_of(work, struct icm, rescan_work.work);
struct tb *tb = icm_to_tb(icm);
mutex_lock(&tb->lock);
if (tb->root_switch)
icm_free_unplugged_children(tb->root_switch);
mutex_unlock(&tb->lock);
}
static void icm_complete(struct tb *tb)
{
struct icm *icm = tb_priv(tb);
if (tb->nhi->going_away)
return;
/*
* If RTD3 was vetoed before we entered system suspend allow it
* again now before driver ready is sent. Firmware sends a new RTD3
* veto if it is still the case after we have sent it driver ready
* command.
*/
icm_veto_end(tb);
icm_unplug_children(tb->root_switch);
/*
* Now all existing children should be resumed, start events
* from ICM to get updated status.
*/
__icm_driver_ready(tb, NULL, NULL, NULL, NULL);
/*
* We do not get notifications of devices that have been
* unplugged during suspend so schedule rescan to clean them up
* if any.
*/
queue_delayed_work(tb->wq, &icm->rescan_work, msecs_to_jiffies(500));
}
static int icm_runtime_suspend(struct tb *tb)
{
nhi_mailbox_cmd(tb->nhi, NHI_MAILBOX_DRV_UNLOADS, 0);
return 0;
}
static int icm_runtime_suspend_switch(struct tb_switch *sw)
{
if (tb_route(sw))
reinit_completion(&sw->rpm_complete);
return 0;
}
static int icm_runtime_resume_switch(struct tb_switch *sw)
{
if (tb_route(sw)) {
if (!wait_for_completion_timeout(&sw->rpm_complete,
msecs_to_jiffies(500))) {
dev_dbg(&sw->dev, "runtime resuming timed out\n");
}
}
return 0;
}
static int icm_runtime_resume(struct tb *tb)
{
/*
* We can reuse the same resume functionality than with system
* suspend.
*/
icm_complete(tb);
return 0;
}
static int icm_start(struct tb *tb)
{
struct icm *icm = tb_priv(tb);
int ret;
if (icm->safe_mode)
tb->root_switch = tb_switch_alloc_safe_mode(tb, &tb->dev, 0);
else
tb->root_switch = tb_switch_alloc(tb, &tb->dev, 0);
if (IS_ERR(tb->root_switch))
return PTR_ERR(tb->root_switch);
tb->root_switch->no_nvm_upgrade = !icm->can_upgrade_nvm;
tb->root_switch->rpm = icm->rpm;
if (icm->set_uuid)
icm->set_uuid(tb);
ret = tb_switch_add(tb->root_switch);
if (ret) {
tb_switch_put(tb->root_switch);
tb->root_switch = NULL;
}
return ret;
}
static void icm_stop(struct tb *tb)
{
struct icm *icm = tb_priv(tb);
cancel_delayed_work(&icm->rescan_work);
tb_switch_remove(tb->root_switch);
tb->root_switch = NULL;
nhi_mailbox_cmd(tb->nhi, NHI_MAILBOX_DRV_UNLOADS, 0);
kfree(icm->last_nvm_auth);
icm->last_nvm_auth = NULL;
}
static int icm_disconnect_pcie_paths(struct tb *tb)
{
return nhi_mailbox_cmd(tb->nhi, NHI_MAILBOX_DISCONNECT_PCIE_PATHS, 0);
}
static void icm_usb4_switch_nvm_auth_complete(void *data)
{
struct usb4_switch_nvm_auth *auth = data;
struct icm *icm = auth->icm;
struct tb *tb = icm_to_tb(icm);
tb_dbg(tb, "NVM_AUTH response for %llx flags %#x status %#x\n",
get_route(auth->reply.route_hi, auth->reply.route_lo),
auth->reply.hdr.flags, auth->reply.status);
mutex_lock(&tb->lock);
if (WARN_ON(icm->last_nvm_auth))
kfree(icm->last_nvm_auth);
icm->last_nvm_auth = auth;
mutex_unlock(&tb->lock);
}
static int icm_usb4_switch_nvm_authenticate(struct tb *tb, u64 route)
{
struct usb4_switch_nvm_auth *auth;
struct icm *icm = tb_priv(tb);
struct tb_cfg_request *req;
int ret;
auth = kzalloc(sizeof(*auth), GFP_KERNEL);
if (!auth)
return -ENOMEM;
auth->icm = icm;
auth->request.hdr.code = ICM_USB4_SWITCH_OP;
auth->request.route_hi = upper_32_bits(route);
auth->request.route_lo = lower_32_bits(route);
auth->request.opcode = USB4_SWITCH_OP_NVM_AUTH;
req = tb_cfg_request_alloc();
if (!req) {
ret = -ENOMEM;
goto err_free_auth;
}
req->match = icm_match;
req->copy = icm_copy;
req->request = &auth->request;
req->request_size = sizeof(auth->request);
req->request_type = TB_CFG_PKG_ICM_CMD;
req->response = &auth->reply;
req->npackets = 1;
req->response_size = sizeof(auth->reply);
req->response_type = TB_CFG_PKG_ICM_RESP;
tb_dbg(tb, "NVM_AUTH request for %llx\n", route);
mutex_lock(&icm->request_lock);
ret = tb_cfg_request(tb->ctl, req, icm_usb4_switch_nvm_auth_complete,
auth);
mutex_unlock(&icm->request_lock);
tb_cfg_request_put(req);
if (ret)
goto err_free_auth;
return 0;
err_free_auth:
kfree(auth);
return ret;
}
static int icm_usb4_switch_op(struct tb_switch *sw, u16 opcode, u32 *metadata,
u8 *status, const void *tx_data, size_t tx_data_len,
void *rx_data, size_t rx_data_len)
{
struct icm_usb4_switch_op_response reply;
struct icm_usb4_switch_op request;
struct tb *tb = sw->tb;
struct icm *icm = tb_priv(tb);
u64 route = tb_route(sw);
int ret;
/*
* USB4 router operation proxy is supported in firmware if the
* protocol version is 3 or higher.
*/
if (icm->proto_version < 3)
return -EOPNOTSUPP;
/*
* NVM_AUTH is a special USB4 proxy operation that does not
* return immediately so handle it separately.
*/
if (opcode == USB4_SWITCH_OP_NVM_AUTH)
return icm_usb4_switch_nvm_authenticate(tb, route);
memset(&request, 0, sizeof(request));
request.hdr.code = ICM_USB4_SWITCH_OP;
request.route_hi = upper_32_bits(route);
request.route_lo = lower_32_bits(route);
request.opcode = opcode;
if (metadata)
request.metadata = *metadata;
if (tx_data_len) {
request.data_len_valid |= ICM_USB4_SWITCH_DATA_VALID;
if (tx_data_len < ARRAY_SIZE(request.data))
request.data_len_valid =
tx_data_len & ICM_USB4_SWITCH_DATA_LEN_MASK;
memcpy(request.data, tx_data, tx_data_len * sizeof(u32));
}
memset(&reply, 0, sizeof(reply));
ret = icm_request(tb, &request, sizeof(request), &reply, sizeof(reply),
1, ICM_TIMEOUT);
if (ret)
return ret;
if (reply.hdr.flags & ICM_FLAGS_ERROR)
return -EIO;
if (status)
*status = reply.status;
if (metadata)
*metadata = reply.metadata;
if (rx_data_len)
memcpy(rx_data, reply.data, rx_data_len * sizeof(u32));
return 0;
}
static int icm_usb4_switch_nvm_authenticate_status(struct tb_switch *sw,
u32 *status)
{
struct usb4_switch_nvm_auth *auth;
struct tb *tb = sw->tb;
struct icm *icm = tb_priv(tb);
int ret = 0;
if (icm->proto_version < 3)
return -EOPNOTSUPP;
auth = icm->last_nvm_auth;
icm->last_nvm_auth = NULL;
if (auth && auth->reply.route_hi == sw->config.route_hi &&
auth->reply.route_lo == sw->config.route_lo) {
tb_dbg(tb, "NVM_AUTH found for %llx flags %#x status %#x\n",
tb_route(sw), auth->reply.hdr.flags, auth->reply.status);
if (auth->reply.hdr.flags & ICM_FLAGS_ERROR)
ret = -EIO;
else
*status = auth->reply.status;
} else {
*status = 0;
}
kfree(auth);
return ret;
}
/* Falcon Ridge */
static const struct tb_cm_ops icm_fr_ops = {
.driver_ready = icm_driver_ready,
.start = icm_start,
.stop = icm_stop,
.suspend = icm_suspend,
.complete = icm_complete,
.handle_event = icm_handle_event,
.approve_switch = icm_fr_approve_switch,
.add_switch_key = icm_fr_add_switch_key,
.challenge_switch_key = icm_fr_challenge_switch_key,
.disconnect_pcie_paths = icm_disconnect_pcie_paths,
.approve_xdomain_paths = icm_fr_approve_xdomain_paths,
.disconnect_xdomain_paths = icm_fr_disconnect_xdomain_paths,
};
/* Alpine Ridge */
static const struct tb_cm_ops icm_ar_ops = {
.driver_ready = icm_driver_ready,
.start = icm_start,
.stop = icm_stop,
.suspend = icm_suspend,
.complete = icm_complete,
.runtime_suspend = icm_runtime_suspend,
.runtime_resume = icm_runtime_resume,
.runtime_suspend_switch = icm_runtime_suspend_switch,
.runtime_resume_switch = icm_runtime_resume_switch,
.handle_event = icm_handle_event,
.get_boot_acl = icm_ar_get_boot_acl,
.set_boot_acl = icm_ar_set_boot_acl,
.approve_switch = icm_fr_approve_switch,
.add_switch_key = icm_fr_add_switch_key,
.challenge_switch_key = icm_fr_challenge_switch_key,
.disconnect_pcie_paths = icm_disconnect_pcie_paths,
.approve_xdomain_paths = icm_fr_approve_xdomain_paths,
.disconnect_xdomain_paths = icm_fr_disconnect_xdomain_paths,
};
/* Titan Ridge */
static const struct tb_cm_ops icm_tr_ops = {
.driver_ready = icm_driver_ready,
.start = icm_start,
.stop = icm_stop,
.suspend = icm_suspend,
.complete = icm_complete,
.runtime_suspend = icm_runtime_suspend,
.runtime_resume = icm_runtime_resume,
.runtime_suspend_switch = icm_runtime_suspend_switch,
.runtime_resume_switch = icm_runtime_resume_switch,
.handle_event = icm_handle_event,
.get_boot_acl = icm_ar_get_boot_acl,
.set_boot_acl = icm_ar_set_boot_acl,
.approve_switch = icm_tr_approve_switch,
.add_switch_key = icm_tr_add_switch_key,
.challenge_switch_key = icm_tr_challenge_switch_key,
.disconnect_pcie_paths = icm_disconnect_pcie_paths,
.approve_xdomain_paths = icm_tr_approve_xdomain_paths,
.disconnect_xdomain_paths = icm_tr_disconnect_xdomain_paths,
.usb4_switch_op = icm_usb4_switch_op,
.usb4_switch_nvm_authenticate_status =
icm_usb4_switch_nvm_authenticate_status,
};
/* Ice Lake */
static const struct tb_cm_ops icm_icl_ops = {
.driver_ready = icm_driver_ready,
.start = icm_start,
.stop = icm_stop,
.complete = icm_complete,
.runtime_suspend = icm_runtime_suspend,
.runtime_resume = icm_runtime_resume,
.handle_event = icm_handle_event,
.approve_xdomain_paths = icm_tr_approve_xdomain_paths,
.disconnect_xdomain_paths = icm_tr_disconnect_xdomain_paths,
.usb4_switch_op = icm_usb4_switch_op,
.usb4_switch_nvm_authenticate_status =
icm_usb4_switch_nvm_authenticate_status,
};
struct tb *icm_probe(struct tb_nhi *nhi)
{
struct icm *icm;
struct tb *tb;
tb = tb_domain_alloc(nhi, ICM_TIMEOUT, sizeof(struct icm));
if (!tb)
return NULL;
icm = tb_priv(tb);
INIT_DELAYED_WORK(&icm->rescan_work, icm_rescan_work);
mutex_init(&icm->request_lock);
switch (nhi->pdev->device) {
case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI:
case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI:
icm->can_upgrade_nvm = true;
icm->is_supported = icm_fr_is_supported;
icm->get_route = icm_fr_get_route;
icm->save_devices = icm_fr_save_devices;
icm->driver_ready = icm_fr_driver_ready;
icm->device_connected = icm_fr_device_connected;
icm->device_disconnected = icm_fr_device_disconnected;
icm->xdomain_connected = icm_fr_xdomain_connected;
icm->xdomain_disconnected = icm_fr_xdomain_disconnected;
tb->cm_ops = &icm_fr_ops;
break;
case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_NHI:
case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_NHI:
case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_NHI:
case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_NHI:
case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_NHI:
icm->max_boot_acl = ICM_AR_PREBOOT_ACL_ENTRIES;
/*
* NVM upgrade has not been tested on Apple systems and
* they don't provide images publicly either. To be on
* the safe side prevent root switch NVM upgrade on Macs
* for now.
*/
icm->can_upgrade_nvm = !x86_apple_machine;
icm->is_supported = icm_ar_is_supported;
icm->cio_reset = icm_ar_cio_reset;
icm->get_mode = icm_ar_get_mode;
icm->get_route = icm_ar_get_route;
icm->save_devices = icm_fr_save_devices;
icm->driver_ready = icm_ar_driver_ready;
icm->device_connected = icm_fr_device_connected;
icm->device_disconnected = icm_fr_device_disconnected;
icm->xdomain_connected = icm_fr_xdomain_connected;
icm->xdomain_disconnected = icm_fr_xdomain_disconnected;
tb->cm_ops = &icm_ar_ops;
break;
case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_NHI:
case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_NHI:
icm->max_boot_acl = ICM_AR_PREBOOT_ACL_ENTRIES;
icm->can_upgrade_nvm = !x86_apple_machine;
icm->is_supported = icm_ar_is_supported;
icm->cio_reset = icm_tr_cio_reset;
icm->get_mode = icm_ar_get_mode;
icm->driver_ready = icm_tr_driver_ready;
icm->device_connected = icm_tr_device_connected;
icm->device_disconnected = icm_tr_device_disconnected;
icm->xdomain_connected = icm_tr_xdomain_connected;
icm->xdomain_disconnected = icm_tr_xdomain_disconnected;
tb->cm_ops = &icm_tr_ops;
break;
case PCI_DEVICE_ID_INTEL_ICL_NHI0:
case PCI_DEVICE_ID_INTEL_ICL_NHI1:
icm->is_supported = icm_fr_is_supported;
icm->driver_ready = icm_icl_driver_ready;
icm->set_uuid = icm_icl_set_uuid;
icm->device_connected = icm_icl_device_connected;
icm->device_disconnected = icm_tr_device_disconnected;
icm->xdomain_connected = icm_tr_xdomain_connected;
icm->xdomain_disconnected = icm_tr_xdomain_disconnected;
icm->rtd3_veto = icm_icl_rtd3_veto;
tb->cm_ops = &icm_icl_ops;
break;
case PCI_DEVICE_ID_INTEL_TGL_NHI0:
case PCI_DEVICE_ID_INTEL_TGL_NHI1:
case PCI_DEVICE_ID_INTEL_TGL_H_NHI0:
case PCI_DEVICE_ID_INTEL_TGL_H_NHI1:
case PCI_DEVICE_ID_INTEL_ADL_NHI0:
case PCI_DEVICE_ID_INTEL_ADL_NHI1:
icm->is_supported = icm_tgl_is_supported;
icm->driver_ready = icm_icl_driver_ready;
icm->set_uuid = icm_icl_set_uuid;
icm->device_connected = icm_icl_device_connected;
icm->device_disconnected = icm_tr_device_disconnected;
icm->xdomain_connected = icm_tr_xdomain_connected;
icm->xdomain_disconnected = icm_tr_xdomain_disconnected;
icm->rtd3_veto = icm_icl_rtd3_veto;
tb->cm_ops = &icm_icl_ops;
break;
case PCI_DEVICE_ID_INTEL_MAPLE_RIDGE_4C_NHI:
icm->is_supported = icm_tgl_is_supported;
icm->get_mode = icm_ar_get_mode;
icm->driver_ready = icm_tr_driver_ready;
icm->device_connected = icm_tr_device_connected;
icm->device_disconnected = icm_tr_device_disconnected;
icm->xdomain_connected = icm_tr_xdomain_connected;
icm->xdomain_disconnected = icm_tr_xdomain_disconnected;
tb->cm_ops = &icm_tr_ops;
break;
}
if (!icm->is_supported || !icm->is_supported(tb)) {
dev_dbg(&nhi->pdev->dev, "ICM not supported on this controller\n");
tb_domain_put(tb);
return NULL;
}
tb_dbg(tb, "using firmware connection manager\n");
return tb;
}