| /* |
| * Copyright © 2014 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER |
| * DEALINGS IN THE SOFTWARE. |
| */ |
| |
| #include <drm/drm_atomic_helper.h> |
| |
| #include "display/intel_dp.h" |
| |
| #include "i915_drv.h" |
| #include "intel_drv.h" |
| #include "intel_psr.h" |
| #include "intel_sprite.h" |
| |
| /** |
| * DOC: Panel Self Refresh (PSR/SRD) |
| * |
| * Since Haswell Display controller supports Panel Self-Refresh on display |
| * panels witch have a remote frame buffer (RFB) implemented according to PSR |
| * spec in eDP1.3. PSR feature allows the display to go to lower standby states |
| * when system is idle but display is on as it eliminates display refresh |
| * request to DDR memory completely as long as the frame buffer for that |
| * display is unchanged. |
| * |
| * Panel Self Refresh must be supported by both Hardware (source) and |
| * Panel (sink). |
| * |
| * PSR saves power by caching the framebuffer in the panel RFB, which allows us |
| * to power down the link and memory controller. For DSI panels the same idea |
| * is called "manual mode". |
| * |
| * The implementation uses the hardware-based PSR support which automatically |
| * enters/exits self-refresh mode. The hardware takes care of sending the |
| * required DP aux message and could even retrain the link (that part isn't |
| * enabled yet though). The hardware also keeps track of any frontbuffer |
| * changes to know when to exit self-refresh mode again. Unfortunately that |
| * part doesn't work too well, hence why the i915 PSR support uses the |
| * software frontbuffer tracking to make sure it doesn't miss a screen |
| * update. For this integration intel_psr_invalidate() and intel_psr_flush() |
| * get called by the frontbuffer tracking code. Note that because of locking |
| * issues the self-refresh re-enable code is done from a work queue, which |
| * must be correctly synchronized/cancelled when shutting down the pipe." |
| */ |
| |
| static bool psr_global_enabled(u32 debug) |
| { |
| switch (debug & I915_PSR_DEBUG_MODE_MASK) { |
| case I915_PSR_DEBUG_DEFAULT: |
| return i915_modparams.enable_psr; |
| case I915_PSR_DEBUG_DISABLE: |
| return false; |
| default: |
| return true; |
| } |
| } |
| |
| static bool intel_psr2_enabled(struct drm_i915_private *dev_priv, |
| const struct intel_crtc_state *crtc_state) |
| { |
| /* Cannot enable DSC and PSR2 simultaneously */ |
| WARN_ON(crtc_state->dsc_params.compression_enable && |
| crtc_state->has_psr2); |
| |
| switch (dev_priv->psr.debug & I915_PSR_DEBUG_MODE_MASK) { |
| case I915_PSR_DEBUG_DISABLE: |
| case I915_PSR_DEBUG_FORCE_PSR1: |
| return false; |
| default: |
| return crtc_state->has_psr2; |
| } |
| } |
| |
| static int edp_psr_shift(enum transcoder cpu_transcoder) |
| { |
| switch (cpu_transcoder) { |
| case TRANSCODER_A: |
| return EDP_PSR_TRANSCODER_A_SHIFT; |
| case TRANSCODER_B: |
| return EDP_PSR_TRANSCODER_B_SHIFT; |
| case TRANSCODER_C: |
| return EDP_PSR_TRANSCODER_C_SHIFT; |
| default: |
| MISSING_CASE(cpu_transcoder); |
| /* fallthrough */ |
| case TRANSCODER_EDP: |
| return EDP_PSR_TRANSCODER_EDP_SHIFT; |
| } |
| } |
| |
| void intel_psr_irq_control(struct drm_i915_private *dev_priv, u32 debug) |
| { |
| u32 debug_mask, mask; |
| enum transcoder cpu_transcoder; |
| u32 transcoders = BIT(TRANSCODER_EDP); |
| |
| if (INTEL_GEN(dev_priv) >= 8) |
| transcoders |= BIT(TRANSCODER_A) | |
| BIT(TRANSCODER_B) | |
| BIT(TRANSCODER_C); |
| |
| debug_mask = 0; |
| mask = 0; |
| for_each_cpu_transcoder_masked(dev_priv, cpu_transcoder, transcoders) { |
| int shift = edp_psr_shift(cpu_transcoder); |
| |
| mask |= EDP_PSR_ERROR(shift); |
| debug_mask |= EDP_PSR_POST_EXIT(shift) | |
| EDP_PSR_PRE_ENTRY(shift); |
| } |
| |
| if (debug & I915_PSR_DEBUG_IRQ) |
| mask |= debug_mask; |
| |
| I915_WRITE(EDP_PSR_IMR, ~mask); |
| } |
| |
| static void psr_event_print(u32 val, bool psr2_enabled) |
| { |
| DRM_DEBUG_KMS("PSR exit events: 0x%x\n", val); |
| if (val & PSR_EVENT_PSR2_WD_TIMER_EXPIRE) |
| DRM_DEBUG_KMS("\tPSR2 watchdog timer expired\n"); |
| if ((val & PSR_EVENT_PSR2_DISABLED) && psr2_enabled) |
| DRM_DEBUG_KMS("\tPSR2 disabled\n"); |
| if (val & PSR_EVENT_SU_DIRTY_FIFO_UNDERRUN) |
| DRM_DEBUG_KMS("\tSU dirty FIFO underrun\n"); |
| if (val & PSR_EVENT_SU_CRC_FIFO_UNDERRUN) |
| DRM_DEBUG_KMS("\tSU CRC FIFO underrun\n"); |
| if (val & PSR_EVENT_GRAPHICS_RESET) |
| DRM_DEBUG_KMS("\tGraphics reset\n"); |
| if (val & PSR_EVENT_PCH_INTERRUPT) |
| DRM_DEBUG_KMS("\tPCH interrupt\n"); |
| if (val & PSR_EVENT_MEMORY_UP) |
| DRM_DEBUG_KMS("\tMemory up\n"); |
| if (val & PSR_EVENT_FRONT_BUFFER_MODIFY) |
| DRM_DEBUG_KMS("\tFront buffer modification\n"); |
| if (val & PSR_EVENT_WD_TIMER_EXPIRE) |
| DRM_DEBUG_KMS("\tPSR watchdog timer expired\n"); |
| if (val & PSR_EVENT_PIPE_REGISTERS_UPDATE) |
| DRM_DEBUG_KMS("\tPIPE registers updated\n"); |
| if (val & PSR_EVENT_REGISTER_UPDATE) |
| DRM_DEBUG_KMS("\tRegister updated\n"); |
| if (val & PSR_EVENT_HDCP_ENABLE) |
| DRM_DEBUG_KMS("\tHDCP enabled\n"); |
| if (val & PSR_EVENT_KVMR_SESSION_ENABLE) |
| DRM_DEBUG_KMS("\tKVMR session enabled\n"); |
| if (val & PSR_EVENT_VBI_ENABLE) |
| DRM_DEBUG_KMS("\tVBI enabled\n"); |
| if (val & PSR_EVENT_LPSP_MODE_EXIT) |
| DRM_DEBUG_KMS("\tLPSP mode exited\n"); |
| if ((val & PSR_EVENT_PSR_DISABLE) && !psr2_enabled) |
| DRM_DEBUG_KMS("\tPSR disabled\n"); |
| } |
| |
| void intel_psr_irq_handler(struct drm_i915_private *dev_priv, u32 psr_iir) |
| { |
| u32 transcoders = BIT(TRANSCODER_EDP); |
| enum transcoder cpu_transcoder; |
| ktime_t time_ns = ktime_get(); |
| u32 mask = 0; |
| |
| if (INTEL_GEN(dev_priv) >= 8) |
| transcoders |= BIT(TRANSCODER_A) | |
| BIT(TRANSCODER_B) | |
| BIT(TRANSCODER_C); |
| |
| for_each_cpu_transcoder_masked(dev_priv, cpu_transcoder, transcoders) { |
| int shift = edp_psr_shift(cpu_transcoder); |
| |
| if (psr_iir & EDP_PSR_ERROR(shift)) { |
| DRM_WARN("[transcoder %s] PSR aux error\n", |
| transcoder_name(cpu_transcoder)); |
| |
| dev_priv->psr.irq_aux_error = true; |
| |
| /* |
| * If this interruption is not masked it will keep |
| * interrupting so fast that it prevents the scheduled |
| * work to run. |
| * Also after a PSR error, we don't want to arm PSR |
| * again so we don't care about unmask the interruption |
| * or unset irq_aux_error. |
| */ |
| mask |= EDP_PSR_ERROR(shift); |
| } |
| |
| if (psr_iir & EDP_PSR_PRE_ENTRY(shift)) { |
| dev_priv->psr.last_entry_attempt = time_ns; |
| DRM_DEBUG_KMS("[transcoder %s] PSR entry attempt in 2 vblanks\n", |
| transcoder_name(cpu_transcoder)); |
| } |
| |
| if (psr_iir & EDP_PSR_POST_EXIT(shift)) { |
| dev_priv->psr.last_exit = time_ns; |
| DRM_DEBUG_KMS("[transcoder %s] PSR exit completed\n", |
| transcoder_name(cpu_transcoder)); |
| |
| if (INTEL_GEN(dev_priv) >= 9) { |
| u32 val = I915_READ(PSR_EVENT(cpu_transcoder)); |
| bool psr2_enabled = dev_priv->psr.psr2_enabled; |
| |
| I915_WRITE(PSR_EVENT(cpu_transcoder), val); |
| psr_event_print(val, psr2_enabled); |
| } |
| } |
| } |
| |
| if (mask) { |
| mask |= I915_READ(EDP_PSR_IMR); |
| I915_WRITE(EDP_PSR_IMR, mask); |
| |
| schedule_work(&dev_priv->psr.work); |
| } |
| } |
| |
| static bool intel_dp_get_alpm_status(struct intel_dp *intel_dp) |
| { |
| u8 alpm_caps = 0; |
| |
| if (drm_dp_dpcd_readb(&intel_dp->aux, DP_RECEIVER_ALPM_CAP, |
| &alpm_caps) != 1) |
| return false; |
| return alpm_caps & DP_ALPM_CAP; |
| } |
| |
| static u8 intel_dp_get_sink_sync_latency(struct intel_dp *intel_dp) |
| { |
| u8 val = 8; /* assume the worst if we can't read the value */ |
| |
| if (drm_dp_dpcd_readb(&intel_dp->aux, |
| DP_SYNCHRONIZATION_LATENCY_IN_SINK, &val) == 1) |
| val &= DP_MAX_RESYNC_FRAME_COUNT_MASK; |
| else |
| DRM_DEBUG_KMS("Unable to get sink synchronization latency, assuming 8 frames\n"); |
| return val; |
| } |
| |
| static u16 intel_dp_get_su_x_granulartiy(struct intel_dp *intel_dp) |
| { |
| u16 val; |
| ssize_t r; |
| |
| /* |
| * Returning the default X granularity if granularity not required or |
| * if DPCD read fails |
| */ |
| if (!(intel_dp->psr_dpcd[1] & DP_PSR2_SU_GRANULARITY_REQUIRED)) |
| return 4; |
| |
| r = drm_dp_dpcd_read(&intel_dp->aux, DP_PSR2_SU_X_GRANULARITY, &val, 2); |
| if (r != 2) |
| DRM_DEBUG_KMS("Unable to read DP_PSR2_SU_X_GRANULARITY\n"); |
| |
| /* |
| * Spec says that if the value read is 0 the default granularity should |
| * be used instead. |
| */ |
| if (r != 2 || val == 0) |
| val = 4; |
| |
| return val; |
| } |
| |
| void intel_psr_init_dpcd(struct intel_dp *intel_dp) |
| { |
| struct drm_i915_private *dev_priv = |
| to_i915(dp_to_dig_port(intel_dp)->base.base.dev); |
| |
| drm_dp_dpcd_read(&intel_dp->aux, DP_PSR_SUPPORT, intel_dp->psr_dpcd, |
| sizeof(intel_dp->psr_dpcd)); |
| |
| if (!intel_dp->psr_dpcd[0]) |
| return; |
| DRM_DEBUG_KMS("eDP panel supports PSR version %x\n", |
| intel_dp->psr_dpcd[0]); |
| |
| if (drm_dp_has_quirk(&intel_dp->desc, DP_DPCD_QUIRK_NO_PSR)) { |
| DRM_DEBUG_KMS("PSR support not currently available for this panel\n"); |
| return; |
| } |
| |
| if (!(intel_dp->edp_dpcd[1] & DP_EDP_SET_POWER_CAP)) { |
| DRM_DEBUG_KMS("Panel lacks power state control, PSR cannot be enabled\n"); |
| return; |
| } |
| |
| dev_priv->psr.sink_support = true; |
| dev_priv->psr.sink_sync_latency = |
| intel_dp_get_sink_sync_latency(intel_dp); |
| |
| WARN_ON(dev_priv->psr.dp); |
| dev_priv->psr.dp = intel_dp; |
| |
| if (INTEL_GEN(dev_priv) >= 9 && |
| (intel_dp->psr_dpcd[0] == DP_PSR2_WITH_Y_COORD_IS_SUPPORTED)) { |
| bool y_req = intel_dp->psr_dpcd[1] & |
| DP_PSR2_SU_Y_COORDINATE_REQUIRED; |
| bool alpm = intel_dp_get_alpm_status(intel_dp); |
| |
| /* |
| * All panels that supports PSR version 03h (PSR2 + |
| * Y-coordinate) can handle Y-coordinates in VSC but we are |
| * only sure that it is going to be used when required by the |
| * panel. This way panel is capable to do selective update |
| * without a aux frame sync. |
| * |
| * To support PSR version 02h and PSR version 03h without |
| * Y-coordinate requirement panels we would need to enable |
| * GTC first. |
| */ |
| dev_priv->psr.sink_psr2_support = y_req && alpm; |
| DRM_DEBUG_KMS("PSR2 %ssupported\n", |
| dev_priv->psr.sink_psr2_support ? "" : "not "); |
| |
| if (dev_priv->psr.sink_psr2_support) { |
| dev_priv->psr.colorimetry_support = |
| intel_dp_get_colorimetry_status(intel_dp); |
| dev_priv->psr.su_x_granularity = |
| intel_dp_get_su_x_granulartiy(intel_dp); |
| } |
| } |
| } |
| |
| static void intel_psr_setup_vsc(struct intel_dp *intel_dp, |
| const struct intel_crtc_state *crtc_state) |
| { |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); |
| struct dp_sdp psr_vsc; |
| |
| if (dev_priv->psr.psr2_enabled) { |
| /* Prepare VSC Header for SU as per EDP 1.4 spec, Table 6.11 */ |
| memset(&psr_vsc, 0, sizeof(psr_vsc)); |
| psr_vsc.sdp_header.HB0 = 0; |
| psr_vsc.sdp_header.HB1 = 0x7; |
| if (dev_priv->psr.colorimetry_support) { |
| psr_vsc.sdp_header.HB2 = 0x5; |
| psr_vsc.sdp_header.HB3 = 0x13; |
| } else { |
| psr_vsc.sdp_header.HB2 = 0x4; |
| psr_vsc.sdp_header.HB3 = 0xe; |
| } |
| } else { |
| /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */ |
| memset(&psr_vsc, 0, sizeof(psr_vsc)); |
| psr_vsc.sdp_header.HB0 = 0; |
| psr_vsc.sdp_header.HB1 = 0x7; |
| psr_vsc.sdp_header.HB2 = 0x2; |
| psr_vsc.sdp_header.HB3 = 0x8; |
| } |
| |
| intel_dig_port->write_infoframe(&intel_dig_port->base, |
| crtc_state, |
| DP_SDP_VSC, &psr_vsc, sizeof(psr_vsc)); |
| } |
| |
| static void hsw_psr_setup_aux(struct intel_dp *intel_dp) |
| { |
| struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); |
| u32 aux_clock_divider, aux_ctl; |
| int i; |
| static const u8 aux_msg[] = { |
| [0] = DP_AUX_NATIVE_WRITE << 4, |
| [1] = DP_SET_POWER >> 8, |
| [2] = DP_SET_POWER & 0xff, |
| [3] = 1 - 1, |
| [4] = DP_SET_POWER_D0, |
| }; |
| u32 psr_aux_mask = EDP_PSR_AUX_CTL_TIME_OUT_MASK | |
| EDP_PSR_AUX_CTL_MESSAGE_SIZE_MASK | |
| EDP_PSR_AUX_CTL_PRECHARGE_2US_MASK | |
| EDP_PSR_AUX_CTL_BIT_CLOCK_2X_MASK; |
| |
| BUILD_BUG_ON(sizeof(aux_msg) > 20); |
| for (i = 0; i < sizeof(aux_msg); i += 4) |
| I915_WRITE(EDP_PSR_AUX_DATA(i >> 2), |
| intel_dp_pack_aux(&aux_msg[i], sizeof(aux_msg) - i)); |
| |
| aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0); |
| |
| /* Start with bits set for DDI_AUX_CTL register */ |
| aux_ctl = intel_dp->get_aux_send_ctl(intel_dp, sizeof(aux_msg), |
| aux_clock_divider); |
| |
| /* Select only valid bits for SRD_AUX_CTL */ |
| aux_ctl &= psr_aux_mask; |
| I915_WRITE(EDP_PSR_AUX_CTL, aux_ctl); |
| } |
| |
| static void intel_psr_enable_sink(struct intel_dp *intel_dp) |
| { |
| struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); |
| u8 dpcd_val = DP_PSR_ENABLE; |
| |
| /* Enable ALPM at sink for psr2 */ |
| if (dev_priv->psr.psr2_enabled) { |
| drm_dp_dpcd_writeb(&intel_dp->aux, DP_RECEIVER_ALPM_CONFIG, |
| DP_ALPM_ENABLE); |
| dpcd_val |= DP_PSR_ENABLE_PSR2 | DP_PSR_IRQ_HPD_WITH_CRC_ERRORS; |
| } else { |
| if (dev_priv->psr.link_standby) |
| dpcd_val |= DP_PSR_MAIN_LINK_ACTIVE; |
| |
| if (INTEL_GEN(dev_priv) >= 8) |
| dpcd_val |= DP_PSR_CRC_VERIFICATION; |
| } |
| |
| drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, dpcd_val); |
| |
| drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, DP_SET_POWER_D0); |
| } |
| |
| static u32 intel_psr1_get_tp_time(struct intel_dp *intel_dp) |
| { |
| struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); |
| u32 val = 0; |
| |
| if (INTEL_GEN(dev_priv) >= 11) |
| val |= EDP_PSR_TP4_TIME_0US; |
| |
| if (dev_priv->vbt.psr.tp1_wakeup_time_us == 0) |
| val |= EDP_PSR_TP1_TIME_0us; |
| else if (dev_priv->vbt.psr.tp1_wakeup_time_us <= 100) |
| val |= EDP_PSR_TP1_TIME_100us; |
| else if (dev_priv->vbt.psr.tp1_wakeup_time_us <= 500) |
| val |= EDP_PSR_TP1_TIME_500us; |
| else |
| val |= EDP_PSR_TP1_TIME_2500us; |
| |
| if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us == 0) |
| val |= EDP_PSR_TP2_TP3_TIME_0us; |
| else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 100) |
| val |= EDP_PSR_TP2_TP3_TIME_100us; |
| else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 500) |
| val |= EDP_PSR_TP2_TP3_TIME_500us; |
| else |
| val |= EDP_PSR_TP2_TP3_TIME_2500us; |
| |
| if (intel_dp_source_supports_hbr2(intel_dp) && |
| drm_dp_tps3_supported(intel_dp->dpcd)) |
| val |= EDP_PSR_TP1_TP3_SEL; |
| else |
| val |= EDP_PSR_TP1_TP2_SEL; |
| |
| return val; |
| } |
| |
| static void hsw_activate_psr1(struct intel_dp *intel_dp) |
| { |
| struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); |
| u32 max_sleep_time = 0x1f; |
| u32 val = EDP_PSR_ENABLE; |
| |
| /* Let's use 6 as the minimum to cover all known cases including the |
| * off-by-one issue that HW has in some cases. |
| */ |
| int idle_frames = max(6, dev_priv->vbt.psr.idle_frames); |
| |
| /* sink_sync_latency of 8 means source has to wait for more than 8 |
| * frames, we'll go with 9 frames for now |
| */ |
| idle_frames = max(idle_frames, dev_priv->psr.sink_sync_latency + 1); |
| val |= idle_frames << EDP_PSR_IDLE_FRAME_SHIFT; |
| |
| val |= max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT; |
| if (IS_HASWELL(dev_priv)) |
| val |= EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES; |
| |
| if (dev_priv->psr.link_standby) |
| val |= EDP_PSR_LINK_STANDBY; |
| |
| val |= intel_psr1_get_tp_time(intel_dp); |
| |
| if (INTEL_GEN(dev_priv) >= 8) |
| val |= EDP_PSR_CRC_ENABLE; |
| |
| val |= I915_READ(EDP_PSR_CTL) & EDP_PSR_RESTORE_PSR_ACTIVE_CTX_MASK; |
| I915_WRITE(EDP_PSR_CTL, val); |
| } |
| |
| static void hsw_activate_psr2(struct intel_dp *intel_dp) |
| { |
| struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); |
| u32 val; |
| |
| /* Let's use 6 as the minimum to cover all known cases including the |
| * off-by-one issue that HW has in some cases. |
| */ |
| int idle_frames = max(6, dev_priv->vbt.psr.idle_frames); |
| |
| idle_frames = max(idle_frames, dev_priv->psr.sink_sync_latency + 1); |
| val = idle_frames << EDP_PSR2_IDLE_FRAME_SHIFT; |
| |
| val |= EDP_PSR2_ENABLE | EDP_SU_TRACK_ENABLE; |
| if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) |
| val |= EDP_Y_COORDINATE_ENABLE; |
| |
| val |= EDP_PSR2_FRAME_BEFORE_SU(dev_priv->psr.sink_sync_latency + 1); |
| |
| if (dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us >= 0 && |
| dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 50) |
| val |= EDP_PSR2_TP2_TIME_50us; |
| else if (dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 100) |
| val |= EDP_PSR2_TP2_TIME_100us; |
| else if (dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 500) |
| val |= EDP_PSR2_TP2_TIME_500us; |
| else |
| val |= EDP_PSR2_TP2_TIME_2500us; |
| |
| /* |
| * PSR2 HW is incorrectly using EDP_PSR_TP1_TP3_SEL and BSpec is |
| * recommending keep this bit unset while PSR2 is enabled. |
| */ |
| I915_WRITE(EDP_PSR_CTL, 0); |
| |
| I915_WRITE(EDP_PSR2_CTL, val); |
| } |
| |
| static bool intel_psr2_config_valid(struct intel_dp *intel_dp, |
| struct intel_crtc_state *crtc_state) |
| { |
| struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); |
| int crtc_hdisplay = crtc_state->base.adjusted_mode.crtc_hdisplay; |
| int crtc_vdisplay = crtc_state->base.adjusted_mode.crtc_vdisplay; |
| int psr_max_h = 0, psr_max_v = 0; |
| |
| if (!dev_priv->psr.sink_psr2_support) |
| return false; |
| |
| /* |
| * DSC and PSR2 cannot be enabled simultaneously. If a requested |
| * resolution requires DSC to be enabled, priority is given to DSC |
| * over PSR2. |
| */ |
| if (crtc_state->dsc_params.compression_enable) { |
| DRM_DEBUG_KMS("PSR2 cannot be enabled since DSC is enabled\n"); |
| return false; |
| } |
| |
| if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) { |
| psr_max_h = 4096; |
| psr_max_v = 2304; |
| } else if (IS_GEN(dev_priv, 9)) { |
| psr_max_h = 3640; |
| psr_max_v = 2304; |
| } |
| |
| if (crtc_hdisplay > psr_max_h || crtc_vdisplay > psr_max_v) { |
| DRM_DEBUG_KMS("PSR2 not enabled, resolution %dx%d > max supported %dx%d\n", |
| crtc_hdisplay, crtc_vdisplay, |
| psr_max_h, psr_max_v); |
| return false; |
| } |
| |
| /* |
| * HW sends SU blocks of size four scan lines, which means the starting |
| * X coordinate and Y granularity requirements will always be met. We |
| * only need to validate the SU block width is a multiple of |
| * x granularity. |
| */ |
| if (crtc_hdisplay % dev_priv->psr.su_x_granularity) { |
| DRM_DEBUG_KMS("PSR2 not enabled, hdisplay(%d) not multiple of %d\n", |
| crtc_hdisplay, dev_priv->psr.su_x_granularity); |
| return false; |
| } |
| |
| if (crtc_state->crc_enabled) { |
| DRM_DEBUG_KMS("PSR2 not enabled because it would inhibit pipe CRC calculation\n"); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| void intel_psr_compute_config(struct intel_dp *intel_dp, |
| struct intel_crtc_state *crtc_state) |
| { |
| struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); |
| struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); |
| const struct drm_display_mode *adjusted_mode = |
| &crtc_state->base.adjusted_mode; |
| int psr_setup_time; |
| |
| if (!CAN_PSR(dev_priv)) |
| return; |
| |
| if (intel_dp != dev_priv->psr.dp) |
| return; |
| |
| /* |
| * HSW spec explicitly says PSR is tied to port A. |
| * BDW+ platforms with DDI implementation of PSR have different |
| * PSR registers per transcoder and we only implement transcoder EDP |
| * ones. Since by Display design transcoder EDP is tied to port A |
| * we can safely escape based on the port A. |
| */ |
| if (dig_port->base.port != PORT_A) { |
| DRM_DEBUG_KMS("PSR condition failed: Port not supported\n"); |
| return; |
| } |
| |
| if (dev_priv->psr.sink_not_reliable) { |
| DRM_DEBUG_KMS("PSR sink implementation is not reliable\n"); |
| return; |
| } |
| |
| if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) { |
| DRM_DEBUG_KMS("PSR condition failed: Interlaced mode enabled\n"); |
| return; |
| } |
| |
| psr_setup_time = drm_dp_psr_setup_time(intel_dp->psr_dpcd); |
| if (psr_setup_time < 0) { |
| DRM_DEBUG_KMS("PSR condition failed: Invalid PSR setup time (0x%02x)\n", |
| intel_dp->psr_dpcd[1]); |
| return; |
| } |
| |
| if (intel_usecs_to_scanlines(adjusted_mode, psr_setup_time) > |
| adjusted_mode->crtc_vtotal - adjusted_mode->crtc_vdisplay - 1) { |
| DRM_DEBUG_KMS("PSR condition failed: PSR setup time (%d us) too long\n", |
| psr_setup_time); |
| return; |
| } |
| |
| crtc_state->has_psr = true; |
| crtc_state->has_psr2 = intel_psr2_config_valid(intel_dp, crtc_state); |
| } |
| |
| static void intel_psr_activate(struct intel_dp *intel_dp) |
| { |
| struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); |
| |
| if (INTEL_GEN(dev_priv) >= 9) |
| WARN_ON(I915_READ(EDP_PSR2_CTL) & EDP_PSR2_ENABLE); |
| WARN_ON(I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE); |
| WARN_ON(dev_priv->psr.active); |
| lockdep_assert_held(&dev_priv->psr.lock); |
| |
| /* psr1 and psr2 are mutually exclusive.*/ |
| if (dev_priv->psr.psr2_enabled) |
| hsw_activate_psr2(intel_dp); |
| else |
| hsw_activate_psr1(intel_dp); |
| |
| dev_priv->psr.active = true; |
| } |
| |
| static i915_reg_t gen9_chicken_trans_reg(struct drm_i915_private *dev_priv, |
| enum transcoder cpu_transcoder) |
| { |
| static const i915_reg_t regs[] = { |
| [TRANSCODER_A] = CHICKEN_TRANS_A, |
| [TRANSCODER_B] = CHICKEN_TRANS_B, |
| [TRANSCODER_C] = CHICKEN_TRANS_C, |
| [TRANSCODER_EDP] = CHICKEN_TRANS_EDP, |
| }; |
| |
| WARN_ON(INTEL_GEN(dev_priv) < 9); |
| |
| if (WARN_ON(cpu_transcoder >= ARRAY_SIZE(regs) || |
| !regs[cpu_transcoder].reg)) |
| cpu_transcoder = TRANSCODER_A; |
| |
| return regs[cpu_transcoder]; |
| } |
| |
| static void intel_psr_enable_source(struct intel_dp *intel_dp, |
| const struct intel_crtc_state *crtc_state) |
| { |
| struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); |
| enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; |
| u32 mask; |
| |
| /* Only HSW and BDW have PSR AUX registers that need to be setup. SKL+ |
| * use hardcoded values PSR AUX transactions |
| */ |
| if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) |
| hsw_psr_setup_aux(intel_dp); |
| |
| if (dev_priv->psr.psr2_enabled && (IS_GEN(dev_priv, 9) && |
| !IS_GEMINILAKE(dev_priv))) { |
| i915_reg_t reg = gen9_chicken_trans_reg(dev_priv, |
| cpu_transcoder); |
| u32 chicken = I915_READ(reg); |
| |
| chicken |= PSR2_VSC_ENABLE_PROG_HEADER | |
| PSR2_ADD_VERTICAL_LINE_COUNT; |
| I915_WRITE(reg, chicken); |
| } |
| |
| /* |
| * Per Spec: Avoid continuous PSR exit by masking MEMUP and HPD also |
| * mask LPSP to avoid dependency on other drivers that might block |
| * runtime_pm besides preventing other hw tracking issues now we |
| * can rely on frontbuffer tracking. |
| */ |
| mask = EDP_PSR_DEBUG_MASK_MEMUP | |
| EDP_PSR_DEBUG_MASK_HPD | |
| EDP_PSR_DEBUG_MASK_LPSP | |
| EDP_PSR_DEBUG_MASK_MAX_SLEEP; |
| |
| if (INTEL_GEN(dev_priv) < 11) |
| mask |= EDP_PSR_DEBUG_MASK_DISP_REG_WRITE; |
| |
| I915_WRITE(EDP_PSR_DEBUG, mask); |
| } |
| |
| static void intel_psr_enable_locked(struct drm_i915_private *dev_priv, |
| const struct intel_crtc_state *crtc_state) |
| { |
| struct intel_dp *intel_dp = dev_priv->psr.dp; |
| |
| WARN_ON(dev_priv->psr.enabled); |
| |
| dev_priv->psr.psr2_enabled = intel_psr2_enabled(dev_priv, crtc_state); |
| dev_priv->psr.busy_frontbuffer_bits = 0; |
| dev_priv->psr.pipe = to_intel_crtc(crtc_state->base.crtc)->pipe; |
| |
| DRM_DEBUG_KMS("Enabling PSR%s\n", |
| dev_priv->psr.psr2_enabled ? "2" : "1"); |
| intel_psr_setup_vsc(intel_dp, crtc_state); |
| intel_psr_enable_sink(intel_dp); |
| intel_psr_enable_source(intel_dp, crtc_state); |
| dev_priv->psr.enabled = true; |
| |
| intel_psr_activate(intel_dp); |
| } |
| |
| /** |
| * intel_psr_enable - Enable PSR |
| * @intel_dp: Intel DP |
| * @crtc_state: new CRTC state |
| * |
| * This function can only be called after the pipe is fully trained and enabled. |
| */ |
| void intel_psr_enable(struct intel_dp *intel_dp, |
| const struct intel_crtc_state *crtc_state) |
| { |
| struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); |
| |
| if (!crtc_state->has_psr) |
| return; |
| |
| if (WARN_ON(!CAN_PSR(dev_priv))) |
| return; |
| |
| WARN_ON(dev_priv->drrs.dp); |
| |
| mutex_lock(&dev_priv->psr.lock); |
| |
| if (!psr_global_enabled(dev_priv->psr.debug)) { |
| DRM_DEBUG_KMS("PSR disabled by flag\n"); |
| goto unlock; |
| } |
| |
| intel_psr_enable_locked(dev_priv, crtc_state); |
| |
| unlock: |
| mutex_unlock(&dev_priv->psr.lock); |
| } |
| |
| static void intel_psr_exit(struct drm_i915_private *dev_priv) |
| { |
| u32 val; |
| |
| if (!dev_priv->psr.active) { |
| if (INTEL_GEN(dev_priv) >= 9) |
| WARN_ON(I915_READ(EDP_PSR2_CTL) & EDP_PSR2_ENABLE); |
| WARN_ON(I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE); |
| return; |
| } |
| |
| if (dev_priv->psr.psr2_enabled) { |
| val = I915_READ(EDP_PSR2_CTL); |
| WARN_ON(!(val & EDP_PSR2_ENABLE)); |
| I915_WRITE(EDP_PSR2_CTL, val & ~EDP_PSR2_ENABLE); |
| } else { |
| val = I915_READ(EDP_PSR_CTL); |
| WARN_ON(!(val & EDP_PSR_ENABLE)); |
| I915_WRITE(EDP_PSR_CTL, val & ~EDP_PSR_ENABLE); |
| } |
| dev_priv->psr.active = false; |
| } |
| |
| static void intel_psr_disable_locked(struct intel_dp *intel_dp) |
| { |
| struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); |
| i915_reg_t psr_status; |
| u32 psr_status_mask; |
| |
| lockdep_assert_held(&dev_priv->psr.lock); |
| |
| if (!dev_priv->psr.enabled) |
| return; |
| |
| DRM_DEBUG_KMS("Disabling PSR%s\n", |
| dev_priv->psr.psr2_enabled ? "2" : "1"); |
| |
| intel_psr_exit(dev_priv); |
| |
| if (dev_priv->psr.psr2_enabled) { |
| psr_status = EDP_PSR2_STATUS; |
| psr_status_mask = EDP_PSR2_STATUS_STATE_MASK; |
| } else { |
| psr_status = EDP_PSR_STATUS; |
| psr_status_mask = EDP_PSR_STATUS_STATE_MASK; |
| } |
| |
| /* Wait till PSR is idle */ |
| if (intel_wait_for_register(&dev_priv->uncore, |
| psr_status, psr_status_mask, 0, 2000)) |
| DRM_ERROR("Timed out waiting PSR idle state\n"); |
| |
| /* Disable PSR on Sink */ |
| drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, 0); |
| |
| dev_priv->psr.enabled = false; |
| } |
| |
| /** |
| * intel_psr_disable - Disable PSR |
| * @intel_dp: Intel DP |
| * @old_crtc_state: old CRTC state |
| * |
| * This function needs to be called before disabling pipe. |
| */ |
| void intel_psr_disable(struct intel_dp *intel_dp, |
| const struct intel_crtc_state *old_crtc_state) |
| { |
| struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); |
| |
| if (!old_crtc_state->has_psr) |
| return; |
| |
| if (WARN_ON(!CAN_PSR(dev_priv))) |
| return; |
| |
| mutex_lock(&dev_priv->psr.lock); |
| |
| intel_psr_disable_locked(intel_dp); |
| |
| mutex_unlock(&dev_priv->psr.lock); |
| cancel_work_sync(&dev_priv->psr.work); |
| } |
| |
| static void psr_force_hw_tracking_exit(struct drm_i915_private *dev_priv) |
| { |
| if (INTEL_GEN(dev_priv) >= 9) |
| /* |
| * Display WA #0884: skl+ |
| * This documented WA for bxt can be safely applied |
| * broadly so we can force HW tracking to exit PSR |
| * instead of disabling and re-enabling. |
| * Workaround tells us to write 0 to CUR_SURFLIVE_A, |
| * but it makes more sense write to the current active |
| * pipe. |
| */ |
| I915_WRITE(CURSURFLIVE(dev_priv->psr.pipe), 0); |
| else |
| /* |
| * A write to CURSURFLIVE do not cause HW tracking to exit PSR |
| * on older gens so doing the manual exit instead. |
| */ |
| intel_psr_exit(dev_priv); |
| } |
| |
| /** |
| * intel_psr_update - Update PSR state |
| * @intel_dp: Intel DP |
| * @crtc_state: new CRTC state |
| * |
| * This functions will update PSR states, disabling, enabling or switching PSR |
| * version when executing fastsets. For full modeset, intel_psr_disable() and |
| * intel_psr_enable() should be called instead. |
| */ |
| void intel_psr_update(struct intel_dp *intel_dp, |
| const struct intel_crtc_state *crtc_state) |
| { |
| struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); |
| struct i915_psr *psr = &dev_priv->psr; |
| bool enable, psr2_enable; |
| |
| if (!CAN_PSR(dev_priv) || READ_ONCE(psr->dp) != intel_dp) |
| return; |
| |
| mutex_lock(&dev_priv->psr.lock); |
| |
| enable = crtc_state->has_psr && psr_global_enabled(psr->debug); |
| psr2_enable = intel_psr2_enabled(dev_priv, crtc_state); |
| |
| if (enable == psr->enabled && psr2_enable == psr->psr2_enabled) { |
| /* Force a PSR exit when enabling CRC to avoid CRC timeouts */ |
| if (crtc_state->crc_enabled && psr->enabled) |
| psr_force_hw_tracking_exit(dev_priv); |
| else if (INTEL_GEN(dev_priv) < 9 && psr->enabled) { |
| /* |
| * Activate PSR again after a force exit when enabling |
| * CRC in older gens |
| */ |
| if (!dev_priv->psr.active && |
| !dev_priv->psr.busy_frontbuffer_bits) |
| schedule_work(&dev_priv->psr.work); |
| } |
| |
| goto unlock; |
| } |
| |
| if (psr->enabled) |
| intel_psr_disable_locked(intel_dp); |
| |
| if (enable) |
| intel_psr_enable_locked(dev_priv, crtc_state); |
| |
| unlock: |
| mutex_unlock(&dev_priv->psr.lock); |
| } |
| |
| /** |
| * intel_psr_wait_for_idle - wait for PSR1 to idle |
| * @new_crtc_state: new CRTC state |
| * @out_value: PSR status in case of failure |
| * |
| * This function is expected to be called from pipe_update_start() where it is |
| * not expected to race with PSR enable or disable. |
| * |
| * Returns: 0 on success or -ETIMEOUT if PSR status does not idle. |
| */ |
| int intel_psr_wait_for_idle(const struct intel_crtc_state *new_crtc_state, |
| u32 *out_value) |
| { |
| struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc); |
| struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); |
| |
| if (!dev_priv->psr.enabled || !new_crtc_state->has_psr) |
| return 0; |
| |
| /* FIXME: Update this for PSR2 if we need to wait for idle */ |
| if (READ_ONCE(dev_priv->psr.psr2_enabled)) |
| return 0; |
| |
| /* |
| * From bspec: Panel Self Refresh (BDW+) |
| * Max. time for PSR to idle = Inverse of the refresh rate + 6 ms of |
| * exit training time + 1.5 ms of aux channel handshake. 50 ms is |
| * defensive enough to cover everything. |
| */ |
| |
| return __intel_wait_for_register(&dev_priv->uncore, EDP_PSR_STATUS, |
| EDP_PSR_STATUS_STATE_MASK, |
| EDP_PSR_STATUS_STATE_IDLE, 2, 50, |
| out_value); |
| } |
| |
| static bool __psr_wait_for_idle_locked(struct drm_i915_private *dev_priv) |
| { |
| i915_reg_t reg; |
| u32 mask; |
| int err; |
| |
| if (!dev_priv->psr.enabled) |
| return false; |
| |
| if (dev_priv->psr.psr2_enabled) { |
| reg = EDP_PSR2_STATUS; |
| mask = EDP_PSR2_STATUS_STATE_MASK; |
| } else { |
| reg = EDP_PSR_STATUS; |
| mask = EDP_PSR_STATUS_STATE_MASK; |
| } |
| |
| mutex_unlock(&dev_priv->psr.lock); |
| |
| err = intel_wait_for_register(&dev_priv->uncore, reg, mask, 0, 50); |
| if (err) |
| DRM_ERROR("Timed out waiting for PSR Idle for re-enable\n"); |
| |
| /* After the unlocked wait, verify that PSR is still wanted! */ |
| mutex_lock(&dev_priv->psr.lock); |
| return err == 0 && dev_priv->psr.enabled; |
| } |
| |
| static int intel_psr_fastset_force(struct drm_i915_private *dev_priv) |
| { |
| struct drm_device *dev = &dev_priv->drm; |
| struct drm_modeset_acquire_ctx ctx; |
| struct drm_atomic_state *state; |
| struct drm_crtc *crtc; |
| int err; |
| |
| state = drm_atomic_state_alloc(dev); |
| if (!state) |
| return -ENOMEM; |
| |
| drm_modeset_acquire_init(&ctx, DRM_MODESET_ACQUIRE_INTERRUPTIBLE); |
| state->acquire_ctx = &ctx; |
| |
| retry: |
| drm_for_each_crtc(crtc, dev) { |
| struct drm_crtc_state *crtc_state; |
| struct intel_crtc_state *intel_crtc_state; |
| |
| crtc_state = drm_atomic_get_crtc_state(state, crtc); |
| if (IS_ERR(crtc_state)) { |
| err = PTR_ERR(crtc_state); |
| goto error; |
| } |
| |
| intel_crtc_state = to_intel_crtc_state(crtc_state); |
| |
| if (crtc_state->active && intel_crtc_state->has_psr) { |
| /* Mark mode as changed to trigger a pipe->update() */ |
| crtc_state->mode_changed = true; |
| break; |
| } |
| } |
| |
| err = drm_atomic_commit(state); |
| |
| error: |
| if (err == -EDEADLK) { |
| drm_atomic_state_clear(state); |
| err = drm_modeset_backoff(&ctx); |
| if (!err) |
| goto retry; |
| } |
| |
| drm_modeset_drop_locks(&ctx); |
| drm_modeset_acquire_fini(&ctx); |
| drm_atomic_state_put(state); |
| |
| return err; |
| } |
| |
| int intel_psr_debug_set(struct drm_i915_private *dev_priv, u64 val) |
| { |
| const u32 mode = val & I915_PSR_DEBUG_MODE_MASK; |
| u32 old_mode; |
| int ret; |
| |
| if (val & ~(I915_PSR_DEBUG_IRQ | I915_PSR_DEBUG_MODE_MASK) || |
| mode > I915_PSR_DEBUG_FORCE_PSR1) { |
| DRM_DEBUG_KMS("Invalid debug mask %llx\n", val); |
| return -EINVAL; |
| } |
| |
| ret = mutex_lock_interruptible(&dev_priv->psr.lock); |
| if (ret) |
| return ret; |
| |
| old_mode = dev_priv->psr.debug & I915_PSR_DEBUG_MODE_MASK; |
| dev_priv->psr.debug = val; |
| intel_psr_irq_control(dev_priv, dev_priv->psr.debug); |
| |
| mutex_unlock(&dev_priv->psr.lock); |
| |
| if (old_mode != mode) |
| ret = intel_psr_fastset_force(dev_priv); |
| |
| return ret; |
| } |
| |
| static void intel_psr_handle_irq(struct drm_i915_private *dev_priv) |
| { |
| struct i915_psr *psr = &dev_priv->psr; |
| |
| intel_psr_disable_locked(psr->dp); |
| psr->sink_not_reliable = true; |
| /* let's make sure that sink is awaken */ |
| drm_dp_dpcd_writeb(&psr->dp->aux, DP_SET_POWER, DP_SET_POWER_D0); |
| } |
| |
| static void intel_psr_work(struct work_struct *work) |
| { |
| struct drm_i915_private *dev_priv = |
| container_of(work, typeof(*dev_priv), psr.work); |
| |
| mutex_lock(&dev_priv->psr.lock); |
| |
| if (!dev_priv->psr.enabled) |
| goto unlock; |
| |
| if (READ_ONCE(dev_priv->psr.irq_aux_error)) |
| intel_psr_handle_irq(dev_priv); |
| |
| /* |
| * We have to make sure PSR is ready for re-enable |
| * otherwise it keeps disabled until next full enable/disable cycle. |
| * PSR might take some time to get fully disabled |
| * and be ready for re-enable. |
| */ |
| if (!__psr_wait_for_idle_locked(dev_priv)) |
| goto unlock; |
| |
| /* |
| * The delayed work can race with an invalidate hence we need to |
| * recheck. Since psr_flush first clears this and then reschedules we |
| * won't ever miss a flush when bailing out here. |
| */ |
| if (dev_priv->psr.busy_frontbuffer_bits || dev_priv->psr.active) |
| goto unlock; |
| |
| intel_psr_activate(dev_priv->psr.dp); |
| unlock: |
| mutex_unlock(&dev_priv->psr.lock); |
| } |
| |
| /** |
| * intel_psr_invalidate - Invalidade PSR |
| * @dev_priv: i915 device |
| * @frontbuffer_bits: frontbuffer plane tracking bits |
| * @origin: which operation caused the invalidate |
| * |
| * Since the hardware frontbuffer tracking has gaps we need to integrate |
| * with the software frontbuffer tracking. This function gets called every |
| * time frontbuffer rendering starts and a buffer gets dirtied. PSR must be |
| * disabled if the frontbuffer mask contains a buffer relevant to PSR. |
| * |
| * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits." |
| */ |
| void intel_psr_invalidate(struct drm_i915_private *dev_priv, |
| unsigned frontbuffer_bits, enum fb_op_origin origin) |
| { |
| if (!CAN_PSR(dev_priv)) |
| return; |
| |
| if (origin == ORIGIN_FLIP) |
| return; |
| |
| mutex_lock(&dev_priv->psr.lock); |
| if (!dev_priv->psr.enabled) { |
| mutex_unlock(&dev_priv->psr.lock); |
| return; |
| } |
| |
| frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(dev_priv->psr.pipe); |
| dev_priv->psr.busy_frontbuffer_bits |= frontbuffer_bits; |
| |
| if (frontbuffer_bits) |
| intel_psr_exit(dev_priv); |
| |
| mutex_unlock(&dev_priv->psr.lock); |
| } |
| |
| /** |
| * intel_psr_flush - Flush PSR |
| * @dev_priv: i915 device |
| * @frontbuffer_bits: frontbuffer plane tracking bits |
| * @origin: which operation caused the flush |
| * |
| * Since the hardware frontbuffer tracking has gaps we need to integrate |
| * with the software frontbuffer tracking. This function gets called every |
| * time frontbuffer rendering has completed and flushed out to memory. PSR |
| * can be enabled again if no other frontbuffer relevant to PSR is dirty. |
| * |
| * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits. |
| */ |
| void intel_psr_flush(struct drm_i915_private *dev_priv, |
| unsigned frontbuffer_bits, enum fb_op_origin origin) |
| { |
| if (!CAN_PSR(dev_priv)) |
| return; |
| |
| if (origin == ORIGIN_FLIP) |
| return; |
| |
| mutex_lock(&dev_priv->psr.lock); |
| if (!dev_priv->psr.enabled) { |
| mutex_unlock(&dev_priv->psr.lock); |
| return; |
| } |
| |
| frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(dev_priv->psr.pipe); |
| dev_priv->psr.busy_frontbuffer_bits &= ~frontbuffer_bits; |
| |
| /* By definition flush = invalidate + flush */ |
| if (frontbuffer_bits) |
| psr_force_hw_tracking_exit(dev_priv); |
| |
| if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits) |
| schedule_work(&dev_priv->psr.work); |
| mutex_unlock(&dev_priv->psr.lock); |
| } |
| |
| /** |
| * intel_psr_init - Init basic PSR work and mutex. |
| * @dev_priv: i915 device private |
| * |
| * This function is called only once at driver load to initialize basic |
| * PSR stuff. |
| */ |
| void intel_psr_init(struct drm_i915_private *dev_priv) |
| { |
| u32 val; |
| |
| if (!HAS_PSR(dev_priv)) |
| return; |
| |
| dev_priv->psr_mmio_base = IS_HASWELL(dev_priv) ? |
| HSW_EDP_PSR_BASE : BDW_EDP_PSR_BASE; |
| |
| if (!dev_priv->psr.sink_support) |
| return; |
| |
| if (i915_modparams.enable_psr == -1) |
| if (INTEL_GEN(dev_priv) < 9 || !dev_priv->vbt.psr.enable) |
| i915_modparams.enable_psr = 0; |
| |
| /* |
| * If a PSR error happened and the driver is reloaded, the EDP_PSR_IIR |
| * will still keep the error set even after the reset done in the |
| * irq_preinstall and irq_uninstall hooks. |
| * And enabling in this situation cause the screen to freeze in the |
| * first time that PSR HW tries to activate so lets keep PSR disabled |
| * to avoid any rendering problems. |
| */ |
| val = I915_READ(EDP_PSR_IIR); |
| val &= EDP_PSR_ERROR(edp_psr_shift(TRANSCODER_EDP)); |
| if (val) { |
| DRM_DEBUG_KMS("PSR interruption error set\n"); |
| dev_priv->psr.sink_not_reliable = true; |
| } |
| |
| /* Set link_standby x link_off defaults */ |
| if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) |
| /* HSW and BDW require workarounds that we don't implement. */ |
| dev_priv->psr.link_standby = false; |
| else |
| /* For new platforms let's respect VBT back again */ |
| dev_priv->psr.link_standby = dev_priv->vbt.psr.full_link; |
| |
| INIT_WORK(&dev_priv->psr.work, intel_psr_work); |
| mutex_init(&dev_priv->psr.lock); |
| } |
| |
| void intel_psr_short_pulse(struct intel_dp *intel_dp) |
| { |
| struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); |
| struct i915_psr *psr = &dev_priv->psr; |
| u8 val; |
| const u8 errors = DP_PSR_RFB_STORAGE_ERROR | |
| DP_PSR_VSC_SDP_UNCORRECTABLE_ERROR | |
| DP_PSR_LINK_CRC_ERROR; |
| |
| if (!CAN_PSR(dev_priv) || !intel_dp_is_edp(intel_dp)) |
| return; |
| |
| mutex_lock(&psr->lock); |
| |
| if (!psr->enabled || psr->dp != intel_dp) |
| goto exit; |
| |
| if (drm_dp_dpcd_readb(&intel_dp->aux, DP_PSR_STATUS, &val) != 1) { |
| DRM_ERROR("PSR_STATUS dpcd read failed\n"); |
| goto exit; |
| } |
| |
| if ((val & DP_PSR_SINK_STATE_MASK) == DP_PSR_SINK_INTERNAL_ERROR) { |
| DRM_DEBUG_KMS("PSR sink internal error, disabling PSR\n"); |
| intel_psr_disable_locked(intel_dp); |
| psr->sink_not_reliable = true; |
| } |
| |
| if (drm_dp_dpcd_readb(&intel_dp->aux, DP_PSR_ERROR_STATUS, &val) != 1) { |
| DRM_ERROR("PSR_ERROR_STATUS dpcd read failed\n"); |
| goto exit; |
| } |
| |
| if (val & DP_PSR_RFB_STORAGE_ERROR) |
| DRM_DEBUG_KMS("PSR RFB storage error, disabling PSR\n"); |
| if (val & DP_PSR_VSC_SDP_UNCORRECTABLE_ERROR) |
| DRM_DEBUG_KMS("PSR VSC SDP uncorrectable error, disabling PSR\n"); |
| if (val & DP_PSR_LINK_CRC_ERROR) |
| DRM_ERROR("PSR Link CRC error, disabling PSR\n"); |
| |
| if (val & ~errors) |
| DRM_ERROR("PSR_ERROR_STATUS unhandled errors %x\n", |
| val & ~errors); |
| if (val & errors) { |
| intel_psr_disable_locked(intel_dp); |
| psr->sink_not_reliable = true; |
| } |
| /* clear status register */ |
| drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_ERROR_STATUS, val); |
| exit: |
| mutex_unlock(&psr->lock); |
| } |
| |
| bool intel_psr_enabled(struct intel_dp *intel_dp) |
| { |
| struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); |
| bool ret; |
| |
| if (!CAN_PSR(dev_priv) || !intel_dp_is_edp(intel_dp)) |
| return false; |
| |
| mutex_lock(&dev_priv->psr.lock); |
| ret = (dev_priv->psr.dp == intel_dp && dev_priv->psr.enabled); |
| mutex_unlock(&dev_priv->psr.lock); |
| |
| return ret; |
| } |