| /* |
| * Copyright © 2016 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| * |
| */ |
| |
| #include <drm/drm_print.h> |
| |
| #include "intel_device_info.h" |
| #include "i915_drv.h" |
| |
| #define PLATFORM_NAME(x) [INTEL_##x] = #x |
| static const char * const platform_names[] = { |
| PLATFORM_NAME(I830), |
| PLATFORM_NAME(I845G), |
| PLATFORM_NAME(I85X), |
| PLATFORM_NAME(I865G), |
| PLATFORM_NAME(I915G), |
| PLATFORM_NAME(I915GM), |
| PLATFORM_NAME(I945G), |
| PLATFORM_NAME(I945GM), |
| PLATFORM_NAME(G33), |
| PLATFORM_NAME(PINEVIEW), |
| PLATFORM_NAME(I965G), |
| PLATFORM_NAME(I965GM), |
| PLATFORM_NAME(G45), |
| PLATFORM_NAME(GM45), |
| PLATFORM_NAME(IRONLAKE), |
| PLATFORM_NAME(SANDYBRIDGE), |
| PLATFORM_NAME(IVYBRIDGE), |
| PLATFORM_NAME(VALLEYVIEW), |
| PLATFORM_NAME(HASWELL), |
| PLATFORM_NAME(BROADWELL), |
| PLATFORM_NAME(CHERRYVIEW), |
| PLATFORM_NAME(SKYLAKE), |
| PLATFORM_NAME(BROXTON), |
| PLATFORM_NAME(KABYLAKE), |
| PLATFORM_NAME(GEMINILAKE), |
| PLATFORM_NAME(COFFEELAKE), |
| PLATFORM_NAME(CANNONLAKE), |
| PLATFORM_NAME(ICELAKE), |
| PLATFORM_NAME(ELKHARTLAKE), |
| }; |
| #undef PLATFORM_NAME |
| |
| const char *intel_platform_name(enum intel_platform platform) |
| { |
| BUILD_BUG_ON(ARRAY_SIZE(platform_names) != INTEL_MAX_PLATFORMS); |
| |
| if (WARN_ON_ONCE(platform >= ARRAY_SIZE(platform_names) || |
| platform_names[platform] == NULL)) |
| return "<unknown>"; |
| |
| return platform_names[platform]; |
| } |
| |
| void intel_device_info_dump_flags(const struct intel_device_info *info, |
| struct drm_printer *p) |
| { |
| #define PRINT_FLAG(name) drm_printf(p, "%s: %s\n", #name, yesno(info->name)); |
| DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG); |
| #undef PRINT_FLAG |
| |
| #define PRINT_FLAG(name) drm_printf(p, "%s: %s\n", #name, yesno(info->display.name)); |
| DEV_INFO_DISPLAY_FOR_EACH_FLAG(PRINT_FLAG); |
| #undef PRINT_FLAG |
| } |
| |
| static void sseu_dump(const struct sseu_dev_info *sseu, struct drm_printer *p) |
| { |
| int s; |
| |
| drm_printf(p, "slice total: %u, mask=%04x\n", |
| hweight8(sseu->slice_mask), sseu->slice_mask); |
| drm_printf(p, "subslice total: %u\n", intel_sseu_subslice_total(sseu)); |
| for (s = 0; s < sseu->max_slices; s++) { |
| drm_printf(p, "slice%d: %u subslices, mask=%04x\n", |
| s, intel_sseu_subslices_per_slice(sseu, s), |
| sseu->subslice_mask[s]); |
| } |
| drm_printf(p, "EU total: %u\n", sseu->eu_total); |
| drm_printf(p, "EU per subslice: %u\n", sseu->eu_per_subslice); |
| drm_printf(p, "has slice power gating: %s\n", |
| yesno(sseu->has_slice_pg)); |
| drm_printf(p, "has subslice power gating: %s\n", |
| yesno(sseu->has_subslice_pg)); |
| drm_printf(p, "has EU power gating: %s\n", yesno(sseu->has_eu_pg)); |
| } |
| |
| void intel_device_info_dump_runtime(const struct intel_runtime_info *info, |
| struct drm_printer *p) |
| { |
| sseu_dump(&info->sseu, p); |
| |
| drm_printf(p, "CS timestamp frequency: %u kHz\n", |
| info->cs_timestamp_frequency_khz); |
| } |
| |
| static int sseu_eu_idx(const struct sseu_dev_info *sseu, int slice, |
| int subslice) |
| { |
| int subslice_stride = GEN_SSEU_STRIDE(sseu->max_eus_per_subslice); |
| int slice_stride = sseu->max_subslices * subslice_stride; |
| |
| return slice * slice_stride + subslice * subslice_stride; |
| } |
| |
| static u16 sseu_get_eus(const struct sseu_dev_info *sseu, int slice, |
| int subslice) |
| { |
| int i, offset = sseu_eu_idx(sseu, slice, subslice); |
| u16 eu_mask = 0; |
| |
| for (i = 0; i < GEN_SSEU_STRIDE(sseu->max_eus_per_subslice); i++) { |
| eu_mask |= ((u16)sseu->eu_mask[offset + i]) << |
| (i * BITS_PER_BYTE); |
| } |
| |
| return eu_mask; |
| } |
| |
| static void sseu_set_eus(struct sseu_dev_info *sseu, int slice, int subslice, |
| u16 eu_mask) |
| { |
| int i, offset = sseu_eu_idx(sseu, slice, subslice); |
| |
| for (i = 0; i < GEN_SSEU_STRIDE(sseu->max_eus_per_subslice); i++) { |
| sseu->eu_mask[offset + i] = |
| (eu_mask >> (BITS_PER_BYTE * i)) & 0xff; |
| } |
| } |
| |
| void intel_device_info_dump_topology(const struct sseu_dev_info *sseu, |
| struct drm_printer *p) |
| { |
| int s, ss; |
| |
| if (sseu->max_slices == 0) { |
| drm_printf(p, "Unavailable\n"); |
| return; |
| } |
| |
| for (s = 0; s < sseu->max_slices; s++) { |
| drm_printf(p, "slice%d: %u subslice(s) (0x%hhx):\n", |
| s, intel_sseu_subslices_per_slice(sseu, s), |
| sseu->subslice_mask[s]); |
| |
| for (ss = 0; ss < sseu->max_subslices; ss++) { |
| u16 enabled_eus = sseu_get_eus(sseu, s, ss); |
| |
| drm_printf(p, "\tsubslice%d: %u EUs (0x%hx)\n", |
| ss, hweight16(enabled_eus), enabled_eus); |
| } |
| } |
| } |
| |
| static u16 compute_eu_total(const struct sseu_dev_info *sseu) |
| { |
| u16 i, total = 0; |
| |
| for (i = 0; i < ARRAY_SIZE(sseu->eu_mask); i++) |
| total += hweight8(sseu->eu_mask[i]); |
| |
| return total; |
| } |
| |
| static void gen11_sseu_info_init(struct drm_i915_private *dev_priv) |
| { |
| struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu; |
| u8 s_en; |
| u32 ss_en, ss_en_mask; |
| u8 eu_en; |
| int s; |
| |
| if (IS_ELKHARTLAKE(dev_priv)) { |
| sseu->max_slices = 1; |
| sseu->max_subslices = 4; |
| sseu->max_eus_per_subslice = 8; |
| } else { |
| sseu->max_slices = 1; |
| sseu->max_subslices = 8; |
| sseu->max_eus_per_subslice = 8; |
| } |
| |
| s_en = I915_READ(GEN11_GT_SLICE_ENABLE) & GEN11_GT_S_ENA_MASK; |
| ss_en = ~I915_READ(GEN11_GT_SUBSLICE_DISABLE); |
| ss_en_mask = BIT(sseu->max_subslices) - 1; |
| eu_en = ~(I915_READ(GEN11_EU_DISABLE) & GEN11_EU_DIS_MASK); |
| |
| for (s = 0; s < sseu->max_slices; s++) { |
| if (s_en & BIT(s)) { |
| int ss_idx = sseu->max_subslices * s; |
| int ss; |
| |
| sseu->slice_mask |= BIT(s); |
| sseu->subslice_mask[s] = (ss_en >> ss_idx) & ss_en_mask; |
| for (ss = 0; ss < sseu->max_subslices; ss++) { |
| if (sseu->subslice_mask[s] & BIT(ss)) |
| sseu_set_eus(sseu, s, ss, eu_en); |
| } |
| } |
| } |
| sseu->eu_per_subslice = hweight8(eu_en); |
| sseu->eu_total = compute_eu_total(sseu); |
| |
| /* ICL has no power gating restrictions. */ |
| sseu->has_slice_pg = 1; |
| sseu->has_subslice_pg = 1; |
| sseu->has_eu_pg = 1; |
| } |
| |
| static void gen10_sseu_info_init(struct drm_i915_private *dev_priv) |
| { |
| struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu; |
| const u32 fuse2 = I915_READ(GEN8_FUSE2); |
| int s, ss; |
| const int eu_mask = 0xff; |
| u32 subslice_mask, eu_en; |
| |
| sseu->slice_mask = (fuse2 & GEN10_F2_S_ENA_MASK) >> |
| GEN10_F2_S_ENA_SHIFT; |
| sseu->max_slices = 6; |
| sseu->max_subslices = 4; |
| sseu->max_eus_per_subslice = 8; |
| |
| subslice_mask = (1 << 4) - 1; |
| subslice_mask &= ~((fuse2 & GEN10_F2_SS_DIS_MASK) >> |
| GEN10_F2_SS_DIS_SHIFT); |
| |
| /* |
| * Slice0 can have up to 3 subslices, but there are only 2 in |
| * slice1/2. |
| */ |
| sseu->subslice_mask[0] = subslice_mask; |
| for (s = 1; s < sseu->max_slices; s++) |
| sseu->subslice_mask[s] = subslice_mask & 0x3; |
| |
| /* Slice0 */ |
| eu_en = ~I915_READ(GEN8_EU_DISABLE0); |
| for (ss = 0; ss < sseu->max_subslices; ss++) |
| sseu_set_eus(sseu, 0, ss, (eu_en >> (8 * ss)) & eu_mask); |
| /* Slice1 */ |
| sseu_set_eus(sseu, 1, 0, (eu_en >> 24) & eu_mask); |
| eu_en = ~I915_READ(GEN8_EU_DISABLE1); |
| sseu_set_eus(sseu, 1, 1, eu_en & eu_mask); |
| /* Slice2 */ |
| sseu_set_eus(sseu, 2, 0, (eu_en >> 8) & eu_mask); |
| sseu_set_eus(sseu, 2, 1, (eu_en >> 16) & eu_mask); |
| /* Slice3 */ |
| sseu_set_eus(sseu, 3, 0, (eu_en >> 24) & eu_mask); |
| eu_en = ~I915_READ(GEN8_EU_DISABLE2); |
| sseu_set_eus(sseu, 3, 1, eu_en & eu_mask); |
| /* Slice4 */ |
| sseu_set_eus(sseu, 4, 0, (eu_en >> 8) & eu_mask); |
| sseu_set_eus(sseu, 4, 1, (eu_en >> 16) & eu_mask); |
| /* Slice5 */ |
| sseu_set_eus(sseu, 5, 0, (eu_en >> 24) & eu_mask); |
| eu_en = ~I915_READ(GEN10_EU_DISABLE3); |
| sseu_set_eus(sseu, 5, 1, eu_en & eu_mask); |
| |
| /* Do a second pass where we mark the subslices disabled if all their |
| * eus are off. |
| */ |
| for (s = 0; s < sseu->max_slices; s++) { |
| for (ss = 0; ss < sseu->max_subslices; ss++) { |
| if (sseu_get_eus(sseu, s, ss) == 0) |
| sseu->subslice_mask[s] &= ~BIT(ss); |
| } |
| } |
| |
| sseu->eu_total = compute_eu_total(sseu); |
| |
| /* |
| * CNL is expected to always have a uniform distribution |
| * of EU across subslices with the exception that any one |
| * EU in any one subslice may be fused off for die |
| * recovery. |
| */ |
| sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ? |
| DIV_ROUND_UP(sseu->eu_total, |
| intel_sseu_subslice_total(sseu)) : |
| 0; |
| |
| /* No restrictions on Power Gating */ |
| sseu->has_slice_pg = 1; |
| sseu->has_subslice_pg = 1; |
| sseu->has_eu_pg = 1; |
| } |
| |
| static void cherryview_sseu_info_init(struct drm_i915_private *dev_priv) |
| { |
| struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu; |
| u32 fuse; |
| |
| fuse = I915_READ(CHV_FUSE_GT); |
| |
| sseu->slice_mask = BIT(0); |
| sseu->max_slices = 1; |
| sseu->max_subslices = 2; |
| sseu->max_eus_per_subslice = 8; |
| |
| if (!(fuse & CHV_FGT_DISABLE_SS0)) { |
| u8 disabled_mask = |
| ((fuse & CHV_FGT_EU_DIS_SS0_R0_MASK) >> |
| CHV_FGT_EU_DIS_SS0_R0_SHIFT) | |
| (((fuse & CHV_FGT_EU_DIS_SS0_R1_MASK) >> |
| CHV_FGT_EU_DIS_SS0_R1_SHIFT) << 4); |
| |
| sseu->subslice_mask[0] |= BIT(0); |
| sseu_set_eus(sseu, 0, 0, ~disabled_mask); |
| } |
| |
| if (!(fuse & CHV_FGT_DISABLE_SS1)) { |
| u8 disabled_mask = |
| ((fuse & CHV_FGT_EU_DIS_SS1_R0_MASK) >> |
| CHV_FGT_EU_DIS_SS1_R0_SHIFT) | |
| (((fuse & CHV_FGT_EU_DIS_SS1_R1_MASK) >> |
| CHV_FGT_EU_DIS_SS1_R1_SHIFT) << 4); |
| |
| sseu->subslice_mask[0] |= BIT(1); |
| sseu_set_eus(sseu, 0, 1, ~disabled_mask); |
| } |
| |
| sseu->eu_total = compute_eu_total(sseu); |
| |
| /* |
| * CHV expected to always have a uniform distribution of EU |
| * across subslices. |
| */ |
| sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ? |
| sseu->eu_total / |
| intel_sseu_subslice_total(sseu) : |
| 0; |
| /* |
| * CHV supports subslice power gating on devices with more than |
| * one subslice, and supports EU power gating on devices with |
| * more than one EU pair per subslice. |
| */ |
| sseu->has_slice_pg = 0; |
| sseu->has_subslice_pg = intel_sseu_subslice_total(sseu) > 1; |
| sseu->has_eu_pg = (sseu->eu_per_subslice > 2); |
| } |
| |
| static void gen9_sseu_info_init(struct drm_i915_private *dev_priv) |
| { |
| struct intel_device_info *info = mkwrite_device_info(dev_priv); |
| struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu; |
| int s, ss; |
| u32 fuse2, eu_disable, subslice_mask; |
| const u8 eu_mask = 0xff; |
| |
| fuse2 = I915_READ(GEN8_FUSE2); |
| sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT; |
| |
| /* BXT has a single slice and at most 3 subslices. */ |
| sseu->max_slices = IS_GEN9_LP(dev_priv) ? 1 : 3; |
| sseu->max_subslices = IS_GEN9_LP(dev_priv) ? 3 : 4; |
| sseu->max_eus_per_subslice = 8; |
| |
| /* |
| * The subslice disable field is global, i.e. it applies |
| * to each of the enabled slices. |
| */ |
| subslice_mask = (1 << sseu->max_subslices) - 1; |
| subslice_mask &= ~((fuse2 & GEN9_F2_SS_DIS_MASK) >> |
| GEN9_F2_SS_DIS_SHIFT); |
| |
| /* |
| * Iterate through enabled slices and subslices to |
| * count the total enabled EU. |
| */ |
| for (s = 0; s < sseu->max_slices; s++) { |
| if (!(sseu->slice_mask & BIT(s))) |
| /* skip disabled slice */ |
| continue; |
| |
| sseu->subslice_mask[s] = subslice_mask; |
| |
| eu_disable = I915_READ(GEN9_EU_DISABLE(s)); |
| for (ss = 0; ss < sseu->max_subslices; ss++) { |
| int eu_per_ss; |
| u8 eu_disabled_mask; |
| |
| if (!(sseu->subslice_mask[s] & BIT(ss))) |
| /* skip disabled subslice */ |
| continue; |
| |
| eu_disabled_mask = (eu_disable >> (ss * 8)) & eu_mask; |
| |
| sseu_set_eus(sseu, s, ss, ~eu_disabled_mask); |
| |
| eu_per_ss = sseu->max_eus_per_subslice - |
| hweight8(eu_disabled_mask); |
| |
| /* |
| * Record which subslice(s) has(have) 7 EUs. we |
| * can tune the hash used to spread work among |
| * subslices if they are unbalanced. |
| */ |
| if (eu_per_ss == 7) |
| sseu->subslice_7eu[s] |= BIT(ss); |
| } |
| } |
| |
| sseu->eu_total = compute_eu_total(sseu); |
| |
| /* |
| * SKL is expected to always have a uniform distribution |
| * of EU across subslices with the exception that any one |
| * EU in any one subslice may be fused off for die |
| * recovery. BXT is expected to be perfectly uniform in EU |
| * distribution. |
| */ |
| sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ? |
| DIV_ROUND_UP(sseu->eu_total, |
| intel_sseu_subslice_total(sseu)) : |
| 0; |
| /* |
| * SKL+ supports slice power gating on devices with more than |
| * one slice, and supports EU power gating on devices with |
| * more than one EU pair per subslice. BXT+ supports subslice |
| * power gating on devices with more than one subslice, and |
| * supports EU power gating on devices with more than one EU |
| * pair per subslice. |
| */ |
| sseu->has_slice_pg = |
| !IS_GEN9_LP(dev_priv) && hweight8(sseu->slice_mask) > 1; |
| sseu->has_subslice_pg = |
| IS_GEN9_LP(dev_priv) && intel_sseu_subslice_total(sseu) > 1; |
| sseu->has_eu_pg = sseu->eu_per_subslice > 2; |
| |
| if (IS_GEN9_LP(dev_priv)) { |
| #define IS_SS_DISABLED(ss) (!(sseu->subslice_mask[0] & BIT(ss))) |
| info->has_pooled_eu = hweight8(sseu->subslice_mask[0]) == 3; |
| |
| sseu->min_eu_in_pool = 0; |
| if (info->has_pooled_eu) { |
| if (IS_SS_DISABLED(2) || IS_SS_DISABLED(0)) |
| sseu->min_eu_in_pool = 3; |
| else if (IS_SS_DISABLED(1)) |
| sseu->min_eu_in_pool = 6; |
| else |
| sseu->min_eu_in_pool = 9; |
| } |
| #undef IS_SS_DISABLED |
| } |
| } |
| |
| static void broadwell_sseu_info_init(struct drm_i915_private *dev_priv) |
| { |
| struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu; |
| int s, ss; |
| u32 fuse2, subslice_mask, eu_disable[3]; /* s_max */ |
| |
| fuse2 = I915_READ(GEN8_FUSE2); |
| sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT; |
| sseu->max_slices = 3; |
| sseu->max_subslices = 3; |
| sseu->max_eus_per_subslice = 8; |
| |
| /* |
| * The subslice disable field is global, i.e. it applies |
| * to each of the enabled slices. |
| */ |
| subslice_mask = GENMASK(sseu->max_subslices - 1, 0); |
| subslice_mask &= ~((fuse2 & GEN8_F2_SS_DIS_MASK) >> |
| GEN8_F2_SS_DIS_SHIFT); |
| |
| eu_disable[0] = I915_READ(GEN8_EU_DISABLE0) & GEN8_EU_DIS0_S0_MASK; |
| eu_disable[1] = (I915_READ(GEN8_EU_DISABLE0) >> GEN8_EU_DIS0_S1_SHIFT) | |
| ((I915_READ(GEN8_EU_DISABLE1) & GEN8_EU_DIS1_S1_MASK) << |
| (32 - GEN8_EU_DIS0_S1_SHIFT)); |
| eu_disable[2] = (I915_READ(GEN8_EU_DISABLE1) >> GEN8_EU_DIS1_S2_SHIFT) | |
| ((I915_READ(GEN8_EU_DISABLE2) & GEN8_EU_DIS2_S2_MASK) << |
| (32 - GEN8_EU_DIS1_S2_SHIFT)); |
| |
| /* |
| * Iterate through enabled slices and subslices to |
| * count the total enabled EU. |
| */ |
| for (s = 0; s < sseu->max_slices; s++) { |
| if (!(sseu->slice_mask & BIT(s))) |
| /* skip disabled slice */ |
| continue; |
| |
| sseu->subslice_mask[s] = subslice_mask; |
| |
| for (ss = 0; ss < sseu->max_subslices; ss++) { |
| u8 eu_disabled_mask; |
| u32 n_disabled; |
| |
| if (!(sseu->subslice_mask[s] & BIT(ss))) |
| /* skip disabled subslice */ |
| continue; |
| |
| eu_disabled_mask = |
| eu_disable[s] >> (ss * sseu->max_eus_per_subslice); |
| |
| sseu_set_eus(sseu, s, ss, ~eu_disabled_mask); |
| |
| n_disabled = hweight8(eu_disabled_mask); |
| |
| /* |
| * Record which subslices have 7 EUs. |
| */ |
| if (sseu->max_eus_per_subslice - n_disabled == 7) |
| sseu->subslice_7eu[s] |= 1 << ss; |
| } |
| } |
| |
| sseu->eu_total = compute_eu_total(sseu); |
| |
| /* |
| * BDW is expected to always have a uniform distribution of EU across |
| * subslices with the exception that any one EU in any one subslice may |
| * be fused off for die recovery. |
| */ |
| sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ? |
| DIV_ROUND_UP(sseu->eu_total, |
| intel_sseu_subslice_total(sseu)) : |
| 0; |
| |
| /* |
| * BDW supports slice power gating on devices with more than |
| * one slice. |
| */ |
| sseu->has_slice_pg = hweight8(sseu->slice_mask) > 1; |
| sseu->has_subslice_pg = 0; |
| sseu->has_eu_pg = 0; |
| } |
| |
| static void haswell_sseu_info_init(struct drm_i915_private *dev_priv) |
| { |
| struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu; |
| u32 fuse1; |
| int s, ss; |
| |
| /* |
| * There isn't a register to tell us how many slices/subslices. We |
| * work off the PCI-ids here. |
| */ |
| switch (INTEL_INFO(dev_priv)->gt) { |
| default: |
| MISSING_CASE(INTEL_INFO(dev_priv)->gt); |
| /* fall through */ |
| case 1: |
| sseu->slice_mask = BIT(0); |
| sseu->subslice_mask[0] = BIT(0); |
| break; |
| case 2: |
| sseu->slice_mask = BIT(0); |
| sseu->subslice_mask[0] = BIT(0) | BIT(1); |
| break; |
| case 3: |
| sseu->slice_mask = BIT(0) | BIT(1); |
| sseu->subslice_mask[0] = BIT(0) | BIT(1); |
| sseu->subslice_mask[1] = BIT(0) | BIT(1); |
| break; |
| } |
| |
| sseu->max_slices = hweight8(sseu->slice_mask); |
| sseu->max_subslices = hweight8(sseu->subslice_mask[0]); |
| |
| fuse1 = I915_READ(HSW_PAVP_FUSE1); |
| switch ((fuse1 & HSW_F1_EU_DIS_MASK) >> HSW_F1_EU_DIS_SHIFT) { |
| default: |
| MISSING_CASE((fuse1 & HSW_F1_EU_DIS_MASK) >> |
| HSW_F1_EU_DIS_SHIFT); |
| /* fall through */ |
| case HSW_F1_EU_DIS_10EUS: |
| sseu->eu_per_subslice = 10; |
| break; |
| case HSW_F1_EU_DIS_8EUS: |
| sseu->eu_per_subslice = 8; |
| break; |
| case HSW_F1_EU_DIS_6EUS: |
| sseu->eu_per_subslice = 6; |
| break; |
| } |
| sseu->max_eus_per_subslice = sseu->eu_per_subslice; |
| |
| for (s = 0; s < sseu->max_slices; s++) { |
| for (ss = 0; ss < sseu->max_subslices; ss++) { |
| sseu_set_eus(sseu, s, ss, |
| (1UL << sseu->eu_per_subslice) - 1); |
| } |
| } |
| |
| sseu->eu_total = compute_eu_total(sseu); |
| |
| /* No powergating for you. */ |
| sseu->has_slice_pg = 0; |
| sseu->has_subslice_pg = 0; |
| sseu->has_eu_pg = 0; |
| } |
| |
| static u32 read_reference_ts_freq(struct drm_i915_private *dev_priv) |
| { |
| u32 ts_override = I915_READ(GEN9_TIMESTAMP_OVERRIDE); |
| u32 base_freq, frac_freq; |
| |
| base_freq = ((ts_override & GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_MASK) >> |
| GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_SHIFT) + 1; |
| base_freq *= 1000; |
| |
| frac_freq = ((ts_override & |
| GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_MASK) >> |
| GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_SHIFT); |
| frac_freq = 1000 / (frac_freq + 1); |
| |
| return base_freq + frac_freq; |
| } |
| |
| static u32 gen10_get_crystal_clock_freq(struct drm_i915_private *dev_priv, |
| u32 rpm_config_reg) |
| { |
| u32 f19_2_mhz = 19200; |
| u32 f24_mhz = 24000; |
| u32 crystal_clock = (rpm_config_reg & |
| GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >> |
| GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT; |
| |
| switch (crystal_clock) { |
| case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ: |
| return f19_2_mhz; |
| case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ: |
| return f24_mhz; |
| default: |
| MISSING_CASE(crystal_clock); |
| return 0; |
| } |
| } |
| |
| static u32 gen11_get_crystal_clock_freq(struct drm_i915_private *dev_priv, |
| u32 rpm_config_reg) |
| { |
| u32 f19_2_mhz = 19200; |
| u32 f24_mhz = 24000; |
| u32 f25_mhz = 25000; |
| u32 f38_4_mhz = 38400; |
| u32 crystal_clock = (rpm_config_reg & |
| GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >> |
| GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT; |
| |
| switch (crystal_clock) { |
| case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ: |
| return f24_mhz; |
| case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ: |
| return f19_2_mhz; |
| case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_38_4_MHZ: |
| return f38_4_mhz; |
| case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_25_MHZ: |
| return f25_mhz; |
| default: |
| MISSING_CASE(crystal_clock); |
| return 0; |
| } |
| } |
| |
| static u32 read_timestamp_frequency(struct drm_i915_private *dev_priv) |
| { |
| u32 f12_5_mhz = 12500; |
| u32 f19_2_mhz = 19200; |
| u32 f24_mhz = 24000; |
| |
| if (INTEL_GEN(dev_priv) <= 4) { |
| /* PRMs say: |
| * |
| * "The value in this register increments once every 16 |
| * hclks." (through the “Clocking Configuration” |
| * (“CLKCFG”) MCHBAR register) |
| */ |
| return dev_priv->rawclk_freq / 16; |
| } else if (INTEL_GEN(dev_priv) <= 8) { |
| /* PRMs say: |
| * |
| * "The PCU TSC counts 10ns increments; this timestamp |
| * reflects bits 38:3 of the TSC (i.e. 80ns granularity, |
| * rolling over every 1.5 hours). |
| */ |
| return f12_5_mhz; |
| } else if (INTEL_GEN(dev_priv) <= 9) { |
| u32 ctc_reg = I915_READ(CTC_MODE); |
| u32 freq = 0; |
| |
| if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) { |
| freq = read_reference_ts_freq(dev_priv); |
| } else { |
| freq = IS_GEN9_LP(dev_priv) ? f19_2_mhz : f24_mhz; |
| |
| /* Now figure out how the command stream's timestamp |
| * register increments from this frequency (it might |
| * increment only every few clock cycle). |
| */ |
| freq >>= 3 - ((ctc_reg & CTC_SHIFT_PARAMETER_MASK) >> |
| CTC_SHIFT_PARAMETER_SHIFT); |
| } |
| |
| return freq; |
| } else if (INTEL_GEN(dev_priv) <= 11) { |
| u32 ctc_reg = I915_READ(CTC_MODE); |
| u32 freq = 0; |
| |
| /* First figure out the reference frequency. There are 2 ways |
| * we can compute the frequency, either through the |
| * TIMESTAMP_OVERRIDE register or through RPM_CONFIG. CTC_MODE |
| * tells us which one we should use. |
| */ |
| if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) { |
| freq = read_reference_ts_freq(dev_priv); |
| } else { |
| u32 rpm_config_reg = I915_READ(RPM_CONFIG0); |
| |
| if (INTEL_GEN(dev_priv) <= 10) |
| freq = gen10_get_crystal_clock_freq(dev_priv, |
| rpm_config_reg); |
| else |
| freq = gen11_get_crystal_clock_freq(dev_priv, |
| rpm_config_reg); |
| |
| /* Now figure out how the command stream's timestamp |
| * register increments from this frequency (it might |
| * increment only every few clock cycle). |
| */ |
| freq >>= 3 - ((rpm_config_reg & |
| GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >> |
| GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT); |
| } |
| |
| return freq; |
| } |
| |
| MISSING_CASE("Unknown gen, unable to read command streamer timestamp frequency\n"); |
| return 0; |
| } |
| |
| #undef INTEL_VGA_DEVICE |
| #define INTEL_VGA_DEVICE(id, info) (id) |
| |
| static const u16 subplatform_ult_ids[] = { |
| INTEL_HSW_ULT_GT1_IDS(0), |
| INTEL_HSW_ULT_GT2_IDS(0), |
| INTEL_HSW_ULT_GT3_IDS(0), |
| INTEL_BDW_ULT_GT1_IDS(0), |
| INTEL_BDW_ULT_GT2_IDS(0), |
| INTEL_BDW_ULT_GT3_IDS(0), |
| INTEL_BDW_ULT_RSVD_IDS(0), |
| INTEL_SKL_ULT_GT1_IDS(0), |
| INTEL_SKL_ULT_GT2_IDS(0), |
| INTEL_SKL_ULT_GT3_IDS(0), |
| INTEL_KBL_ULT_GT1_IDS(0), |
| INTEL_KBL_ULT_GT2_IDS(0), |
| INTEL_KBL_ULT_GT3_IDS(0), |
| INTEL_CFL_U_GT2_IDS(0), |
| INTEL_CFL_U_GT3_IDS(0), |
| INTEL_WHL_U_GT1_IDS(0), |
| INTEL_WHL_U_GT2_IDS(0), |
| INTEL_WHL_U_GT3_IDS(0), |
| }; |
| |
| static const u16 subplatform_ulx_ids[] = { |
| INTEL_HSW_ULX_GT1_IDS(0), |
| INTEL_HSW_ULX_GT2_IDS(0), |
| INTEL_BDW_ULX_GT1_IDS(0), |
| INTEL_BDW_ULX_GT2_IDS(0), |
| INTEL_BDW_ULX_GT3_IDS(0), |
| INTEL_BDW_ULX_RSVD_IDS(0), |
| INTEL_SKL_ULX_GT1_IDS(0), |
| INTEL_SKL_ULX_GT2_IDS(0), |
| INTEL_KBL_ULX_GT1_IDS(0), |
| INTEL_KBL_ULX_GT2_IDS(0), |
| INTEL_AML_KBL_GT2_IDS(0), |
| INTEL_AML_CFL_GT2_IDS(0), |
| }; |
| |
| static const u16 subplatform_portf_ids[] = { |
| INTEL_CNL_PORT_F_IDS(0), |
| INTEL_ICL_PORT_F_IDS(0), |
| }; |
| |
| static bool find_devid(u16 id, const u16 *p, unsigned int num) |
| { |
| for (; num; num--, p++) { |
| if (*p == id) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| void intel_device_info_subplatform_init(struct drm_i915_private *i915) |
| { |
| const struct intel_device_info *info = INTEL_INFO(i915); |
| const struct intel_runtime_info *rinfo = RUNTIME_INFO(i915); |
| const unsigned int pi = __platform_mask_index(rinfo, info->platform); |
| const unsigned int pb = __platform_mask_bit(rinfo, info->platform); |
| u16 devid = INTEL_DEVID(i915); |
| u32 mask = 0; |
| |
| /* Make sure IS_<platform> checks are working. */ |
| RUNTIME_INFO(i915)->platform_mask[pi] = BIT(pb); |
| |
| /* Find and mark subplatform bits based on the PCI device id. */ |
| if (find_devid(devid, subplatform_ult_ids, |
| ARRAY_SIZE(subplatform_ult_ids))) { |
| mask = BIT(INTEL_SUBPLATFORM_ULT); |
| } else if (find_devid(devid, subplatform_ulx_ids, |
| ARRAY_SIZE(subplatform_ulx_ids))) { |
| mask = BIT(INTEL_SUBPLATFORM_ULX); |
| if (IS_HASWELL(i915) || IS_BROADWELL(i915)) { |
| /* ULX machines are also considered ULT. */ |
| mask |= BIT(INTEL_SUBPLATFORM_ULT); |
| } |
| } else if (find_devid(devid, subplatform_portf_ids, |
| ARRAY_SIZE(subplatform_portf_ids))) { |
| mask = BIT(INTEL_SUBPLATFORM_PORTF); |
| } |
| |
| GEM_BUG_ON(mask & ~INTEL_SUBPLATFORM_BITS); |
| |
| RUNTIME_INFO(i915)->platform_mask[pi] |= mask; |
| } |
| |
| /** |
| * intel_device_info_runtime_init - initialize runtime info |
| * @dev_priv: the i915 device |
| * |
| * Determine various intel_device_info fields at runtime. |
| * |
| * Use it when either: |
| * - it's judged too laborious to fill n static structures with the limit |
| * when a simple if statement does the job, |
| * - run-time checks (eg read fuse/strap registers) are needed. |
| * |
| * This function needs to be called: |
| * - after the MMIO has been setup as we are reading registers, |
| * - after the PCH has been detected, |
| * - before the first usage of the fields it can tweak. |
| */ |
| void intel_device_info_runtime_init(struct drm_i915_private *dev_priv) |
| { |
| struct intel_device_info *info = mkwrite_device_info(dev_priv); |
| struct intel_runtime_info *runtime = RUNTIME_INFO(dev_priv); |
| enum pipe pipe; |
| |
| if (INTEL_GEN(dev_priv) >= 10) { |
| for_each_pipe(dev_priv, pipe) |
| runtime->num_scalers[pipe] = 2; |
| } else if (IS_GEN(dev_priv, 9)) { |
| runtime->num_scalers[PIPE_A] = 2; |
| runtime->num_scalers[PIPE_B] = 2; |
| runtime->num_scalers[PIPE_C] = 1; |
| } |
| |
| BUILD_BUG_ON(BITS_PER_TYPE(intel_engine_mask_t) < I915_NUM_ENGINES); |
| |
| if (INTEL_GEN(dev_priv) >= 11) |
| for_each_pipe(dev_priv, pipe) |
| runtime->num_sprites[pipe] = 6; |
| else if (IS_GEN(dev_priv, 10) || IS_GEMINILAKE(dev_priv)) |
| for_each_pipe(dev_priv, pipe) |
| runtime->num_sprites[pipe] = 3; |
| else if (IS_BROXTON(dev_priv)) { |
| /* |
| * Skylake and Broxton currently don't expose the topmost plane as its |
| * use is exclusive with the legacy cursor and we only want to expose |
| * one of those, not both. Until we can safely expose the topmost plane |
| * as a DRM_PLANE_TYPE_CURSOR with all the features exposed/supported, |
| * we don't expose the topmost plane at all to prevent ABI breakage |
| * down the line. |
| */ |
| |
| runtime->num_sprites[PIPE_A] = 2; |
| runtime->num_sprites[PIPE_B] = 2; |
| runtime->num_sprites[PIPE_C] = 1; |
| } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { |
| for_each_pipe(dev_priv, pipe) |
| runtime->num_sprites[pipe] = 2; |
| } else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) { |
| for_each_pipe(dev_priv, pipe) |
| runtime->num_sprites[pipe] = 1; |
| } |
| |
| if (i915_modparams.disable_display) { |
| DRM_INFO("Display disabled (module parameter)\n"); |
| info->num_pipes = 0; |
| } else if (HAS_DISPLAY(dev_priv) && |
| (IS_GEN_RANGE(dev_priv, 7, 8)) && |
| HAS_PCH_SPLIT(dev_priv)) { |
| u32 fuse_strap = I915_READ(FUSE_STRAP); |
| u32 sfuse_strap = I915_READ(SFUSE_STRAP); |
| |
| /* |
| * SFUSE_STRAP is supposed to have a bit signalling the display |
| * is fused off. Unfortunately it seems that, at least in |
| * certain cases, fused off display means that PCH display |
| * reads don't land anywhere. In that case, we read 0s. |
| * |
| * On CPT/PPT, we can detect this case as SFUSE_STRAP_FUSE_LOCK |
| * should be set when taking over after the firmware. |
| */ |
| if (fuse_strap & ILK_INTERNAL_DISPLAY_DISABLE || |
| sfuse_strap & SFUSE_STRAP_DISPLAY_DISABLED || |
| (HAS_PCH_CPT(dev_priv) && |
| !(sfuse_strap & SFUSE_STRAP_FUSE_LOCK))) { |
| DRM_INFO("Display fused off, disabling\n"); |
| info->num_pipes = 0; |
| } else if (fuse_strap & IVB_PIPE_C_DISABLE) { |
| DRM_INFO("PipeC fused off\n"); |
| info->num_pipes -= 1; |
| } |
| } else if (HAS_DISPLAY(dev_priv) && INTEL_GEN(dev_priv) >= 9) { |
| u32 dfsm = I915_READ(SKL_DFSM); |
| u8 disabled_mask = 0; |
| bool invalid; |
| int num_bits; |
| |
| if (dfsm & SKL_DFSM_PIPE_A_DISABLE) |
| disabled_mask |= BIT(PIPE_A); |
| if (dfsm & SKL_DFSM_PIPE_B_DISABLE) |
| disabled_mask |= BIT(PIPE_B); |
| if (dfsm & SKL_DFSM_PIPE_C_DISABLE) |
| disabled_mask |= BIT(PIPE_C); |
| |
| num_bits = hweight8(disabled_mask); |
| |
| switch (disabled_mask) { |
| case BIT(PIPE_A): |
| case BIT(PIPE_B): |
| case BIT(PIPE_A) | BIT(PIPE_B): |
| case BIT(PIPE_A) | BIT(PIPE_C): |
| invalid = true; |
| break; |
| default: |
| invalid = false; |
| } |
| |
| if (num_bits > info->num_pipes || invalid) |
| DRM_ERROR("invalid pipe fuse configuration: 0x%x\n", |
| disabled_mask); |
| else |
| info->num_pipes -= num_bits; |
| } |
| |
| /* Initialize slice/subslice/EU info */ |
| if (IS_HASWELL(dev_priv)) |
| haswell_sseu_info_init(dev_priv); |
| else if (IS_CHERRYVIEW(dev_priv)) |
| cherryview_sseu_info_init(dev_priv); |
| else if (IS_BROADWELL(dev_priv)) |
| broadwell_sseu_info_init(dev_priv); |
| else if (IS_GEN(dev_priv, 9)) |
| gen9_sseu_info_init(dev_priv); |
| else if (IS_GEN(dev_priv, 10)) |
| gen10_sseu_info_init(dev_priv); |
| else if (INTEL_GEN(dev_priv) >= 11) |
| gen11_sseu_info_init(dev_priv); |
| |
| if (IS_GEN(dev_priv, 6) && intel_vtd_active()) { |
| DRM_INFO("Disabling ppGTT for VT-d support\n"); |
| info->ppgtt_type = INTEL_PPGTT_NONE; |
| } |
| |
| /* Initialize command stream timestamp frequency */ |
| runtime->cs_timestamp_frequency_khz = read_timestamp_frequency(dev_priv); |
| } |
| |
| void intel_driver_caps_print(const struct intel_driver_caps *caps, |
| struct drm_printer *p) |
| { |
| drm_printf(p, "Has logical contexts? %s\n", |
| yesno(caps->has_logical_contexts)); |
| drm_printf(p, "scheduler: %x\n", caps->scheduler); |
| } |
| |
| /* |
| * Determine which engines are fused off in our particular hardware. Since the |
| * fuse register is in the blitter powerwell, we need forcewake to be ready at |
| * this point (but later we need to prune the forcewake domains for engines that |
| * are indeed fused off). |
| */ |
| void intel_device_info_init_mmio(struct drm_i915_private *dev_priv) |
| { |
| struct intel_device_info *info = mkwrite_device_info(dev_priv); |
| unsigned int logical_vdbox = 0; |
| unsigned int i; |
| u32 media_fuse; |
| u16 vdbox_mask; |
| u16 vebox_mask; |
| |
| if (INTEL_GEN(dev_priv) < 11) |
| return; |
| |
| media_fuse = ~I915_READ(GEN11_GT_VEBOX_VDBOX_DISABLE); |
| |
| vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK; |
| vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >> |
| GEN11_GT_VEBOX_DISABLE_SHIFT; |
| |
| for (i = 0; i < I915_MAX_VCS; i++) { |
| if (!HAS_ENGINE(dev_priv, _VCS(i))) |
| continue; |
| |
| if (!(BIT(i) & vdbox_mask)) { |
| info->engine_mask &= ~BIT(_VCS(i)); |
| DRM_DEBUG_DRIVER("vcs%u fused off\n", i); |
| continue; |
| } |
| |
| /* |
| * In Gen11, only even numbered logical VDBOXes are |
| * hooked up to an SFC (Scaler & Format Converter) unit. |
| */ |
| if (logical_vdbox++ % 2 == 0) |
| RUNTIME_INFO(dev_priv)->vdbox_sfc_access |= BIT(i); |
| } |
| DRM_DEBUG_DRIVER("vdbox enable: %04x, instances: %04lx\n", |
| vdbox_mask, VDBOX_MASK(dev_priv)); |
| GEM_BUG_ON(vdbox_mask != VDBOX_MASK(dev_priv)); |
| |
| for (i = 0; i < I915_MAX_VECS; i++) { |
| if (!HAS_ENGINE(dev_priv, _VECS(i))) |
| continue; |
| |
| if (!(BIT(i) & vebox_mask)) { |
| info->engine_mask &= ~BIT(_VECS(i)); |
| DRM_DEBUG_DRIVER("vecs%u fused off\n", i); |
| } |
| } |
| DRM_DEBUG_DRIVER("vebox enable: %04x, instances: %04lx\n", |
| vebox_mask, VEBOX_MASK(dev_priv)); |
| GEM_BUG_ON(vebox_mask != VEBOX_MASK(dev_priv)); |
| } |