blob: 35fe49080ee99636f045d3f8c785319947eadf4f [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* DAMON Primitives for Virtual Address Spaces
*
* Author: SeongJae Park <sjpark@amazon.de>
*/
#define pr_fmt(fmt) "damon-va: " fmt
#include <asm-generic/mman-common.h>
#include <linux/highmem.h>
#include <linux/hugetlb.h>
#include <linux/mmu_notifier.h>
#include <linux/page_idle.h>
#include <linux/pagewalk.h>
#include "prmtv-common.h"
#ifdef CONFIG_DAMON_VADDR_KUNIT_TEST
#undef DAMON_MIN_REGION
#define DAMON_MIN_REGION 1
#endif
/*
* 't->id' should be the pointer to the relevant 'struct pid' having reference
* count. Caller must put the returned task, unless it is NULL.
*/
#define damon_get_task_struct(t) \
(get_pid_task((struct pid *)t->id, PIDTYPE_PID))
/*
* Get the mm_struct of the given target
*
* Caller _must_ put the mm_struct after use, unless it is NULL.
*
* Returns the mm_struct of the target on success, NULL on failure
*/
static struct mm_struct *damon_get_mm(struct damon_target *t)
{
struct task_struct *task;
struct mm_struct *mm;
task = damon_get_task_struct(t);
if (!task)
return NULL;
mm = get_task_mm(task);
put_task_struct(task);
return mm;
}
/*
* Functions for the initial monitoring target regions construction
*/
/*
* Size-evenly split a region into 'nr_pieces' small regions
*
* Returns 0 on success, or negative error code otherwise.
*/
static int damon_va_evenly_split_region(struct damon_target *t,
struct damon_region *r, unsigned int nr_pieces)
{
unsigned long sz_orig, sz_piece, orig_end;
struct damon_region *n = NULL, *next;
unsigned long start;
if (!r || !nr_pieces)
return -EINVAL;
orig_end = r->ar.end;
sz_orig = r->ar.end - r->ar.start;
sz_piece = ALIGN_DOWN(sz_orig / nr_pieces, DAMON_MIN_REGION);
if (!sz_piece)
return -EINVAL;
r->ar.end = r->ar.start + sz_piece;
next = damon_next_region(r);
for (start = r->ar.end; start + sz_piece <= orig_end;
start += sz_piece) {
n = damon_new_region(start, start + sz_piece);
if (!n)
return -ENOMEM;
damon_insert_region(n, r, next, t);
r = n;
}
/* complement last region for possible rounding error */
if (n)
n->ar.end = orig_end;
return 0;
}
static unsigned long sz_range(struct damon_addr_range *r)
{
return r->end - r->start;
}
static void swap_ranges(struct damon_addr_range *r1,
struct damon_addr_range *r2)
{
struct damon_addr_range tmp;
tmp = *r1;
*r1 = *r2;
*r2 = tmp;
}
/*
* Find three regions separated by two biggest unmapped regions
*
* vma the head vma of the target address space
* regions an array of three address ranges that results will be saved
*
* This function receives an address space and finds three regions in it which
* separated by the two biggest unmapped regions in the space. Please refer to
* below comments of '__damon_va_init_regions()' function to know why this is
* necessary.
*
* Returns 0 if success, or negative error code otherwise.
*/
static int __damon_va_three_regions(struct vm_area_struct *vma,
struct damon_addr_range regions[3])
{
struct damon_addr_range gap = {0}, first_gap = {0}, second_gap = {0};
struct vm_area_struct *last_vma = NULL;
unsigned long start = 0;
struct rb_root rbroot;
/* Find two biggest gaps so that first_gap > second_gap > others */
for (; vma; vma = vma->vm_next) {
if (!last_vma) {
start = vma->vm_start;
goto next;
}
if (vma->rb_subtree_gap <= sz_range(&second_gap)) {
rbroot.rb_node = &vma->vm_rb;
vma = rb_entry(rb_last(&rbroot),
struct vm_area_struct, vm_rb);
goto next;
}
gap.start = last_vma->vm_end;
gap.end = vma->vm_start;
if (sz_range(&gap) > sz_range(&second_gap)) {
swap_ranges(&gap, &second_gap);
if (sz_range(&second_gap) > sz_range(&first_gap))
swap_ranges(&second_gap, &first_gap);
}
next:
last_vma = vma;
}
if (!sz_range(&second_gap) || !sz_range(&first_gap))
return -EINVAL;
/* Sort the two biggest gaps by address */
if (first_gap.start > second_gap.start)
swap_ranges(&first_gap, &second_gap);
/* Store the result */
regions[0].start = ALIGN(start, DAMON_MIN_REGION);
regions[0].end = ALIGN(first_gap.start, DAMON_MIN_REGION);
regions[1].start = ALIGN(first_gap.end, DAMON_MIN_REGION);
regions[1].end = ALIGN(second_gap.start, DAMON_MIN_REGION);
regions[2].start = ALIGN(second_gap.end, DAMON_MIN_REGION);
regions[2].end = ALIGN(last_vma->vm_end, DAMON_MIN_REGION);
return 0;
}
/*
* Get the three regions in the given target (task)
*
* Returns 0 on success, negative error code otherwise.
*/
static int damon_va_three_regions(struct damon_target *t,
struct damon_addr_range regions[3])
{
struct mm_struct *mm;
int rc;
mm = damon_get_mm(t);
if (!mm)
return -EINVAL;
mmap_read_lock(mm);
rc = __damon_va_three_regions(mm->mmap, regions);
mmap_read_unlock(mm);
mmput(mm);
return rc;
}
/*
* Initialize the monitoring target regions for the given target (task)
*
* t the given target
*
* Because only a number of small portions of the entire address space
* is actually mapped to the memory and accessed, monitoring the unmapped
* regions is wasteful. That said, because we can deal with small noises,
* tracking every mapping is not strictly required but could even incur a high
* overhead if the mapping frequently changes or the number of mappings is
* high. The adaptive regions adjustment mechanism will further help to deal
* with the noise by simply identifying the unmapped areas as a region that
* has no access. Moreover, applying the real mappings that would have many
* unmapped areas inside will make the adaptive mechanism quite complex. That
* said, too huge unmapped areas inside the monitoring target should be removed
* to not take the time for the adaptive mechanism.
*
* For the reason, we convert the complex mappings to three distinct regions
* that cover every mapped area of the address space. Also the two gaps
* between the three regions are the two biggest unmapped areas in the given
* address space. In detail, this function first identifies the start and the
* end of the mappings and the two biggest unmapped areas of the address space.
* Then, it constructs the three regions as below:
*
* [mappings[0]->start, big_two_unmapped_areas[0]->start)
* [big_two_unmapped_areas[0]->end, big_two_unmapped_areas[1]->start)
* [big_two_unmapped_areas[1]->end, mappings[nr_mappings - 1]->end)
*
* As usual memory map of processes is as below, the gap between the heap and
* the uppermost mmap()-ed region, and the gap between the lowermost mmap()-ed
* region and the stack will be two biggest unmapped regions. Because these
* gaps are exceptionally huge areas in usual address space, excluding these
* two biggest unmapped regions will be sufficient to make a trade-off.
*
* <heap>
* <BIG UNMAPPED REGION 1>
* <uppermost mmap()-ed region>
* (other mmap()-ed regions and small unmapped regions)
* <lowermost mmap()-ed region>
* <BIG UNMAPPED REGION 2>
* <stack>
*/
static void __damon_va_init_regions(struct damon_ctx *ctx,
struct damon_target *t)
{
struct damon_region *r;
struct damon_addr_range regions[3];
unsigned long sz = 0, nr_pieces;
int i;
if (damon_va_three_regions(t, regions)) {
pr_err("Failed to get three regions of target %lu\n", t->id);
return;
}
for (i = 0; i < 3; i++)
sz += regions[i].end - regions[i].start;
if (ctx->min_nr_regions)
sz /= ctx->min_nr_regions;
if (sz < DAMON_MIN_REGION)
sz = DAMON_MIN_REGION;
/* Set the initial three regions of the target */
for (i = 0; i < 3; i++) {
r = damon_new_region(regions[i].start, regions[i].end);
if (!r) {
pr_err("%d'th init region creation failed\n", i);
return;
}
damon_add_region(r, t);
nr_pieces = (regions[i].end - regions[i].start) / sz;
damon_va_evenly_split_region(t, r, nr_pieces);
}
}
/* Initialize '->regions_list' of every target (task) */
void damon_va_init(struct damon_ctx *ctx)
{
struct damon_target *t;
damon_for_each_target(t, ctx) {
/* the user may set the target regions as they want */
if (!damon_nr_regions(t))
__damon_va_init_regions(ctx, t);
}
}
/*
* Functions for the dynamic monitoring target regions update
*/
/*
* Check whether a region is intersecting an address range
*
* Returns true if it is.
*/
static bool damon_intersect(struct damon_region *r, struct damon_addr_range *re)
{
return !(r->ar.end <= re->start || re->end <= r->ar.start);
}
/*
* Update damon regions for the three big regions of the given target
*
* t the given target
* bregions the three big regions of the target
*/
static void damon_va_apply_three_regions(struct damon_target *t,
struct damon_addr_range bregions[3])
{
struct damon_region *r, *next;
unsigned int i;
/* Remove regions which are not in the three big regions now */
damon_for_each_region_safe(r, next, t) {
for (i = 0; i < 3; i++) {
if (damon_intersect(r, &bregions[i]))
break;
}
if (i == 3)
damon_destroy_region(r, t);
}
/* Adjust intersecting regions to fit with the three big regions */
for (i = 0; i < 3; i++) {
struct damon_region *first = NULL, *last;
struct damon_region *newr;
struct damon_addr_range *br;
br = &bregions[i];
/* Get the first and last regions which intersects with br */
damon_for_each_region(r, t) {
if (damon_intersect(r, br)) {
if (!first)
first = r;
last = r;
}
if (r->ar.start >= br->end)
break;
}
if (!first) {
/* no damon_region intersects with this big region */
newr = damon_new_region(
ALIGN_DOWN(br->start,
DAMON_MIN_REGION),
ALIGN(br->end, DAMON_MIN_REGION));
if (!newr)
continue;
damon_insert_region(newr, damon_prev_region(r), r, t);
} else {
first->ar.start = ALIGN_DOWN(br->start,
DAMON_MIN_REGION);
last->ar.end = ALIGN(br->end, DAMON_MIN_REGION);
}
}
}
/*
* Update regions for current memory mappings
*/
void damon_va_update(struct damon_ctx *ctx)
{
struct damon_addr_range three_regions[3];
struct damon_target *t;
damon_for_each_target(t, ctx) {
if (damon_va_three_regions(t, three_regions))
continue;
damon_va_apply_three_regions(t, three_regions);
}
}
static int damon_mkold_pmd_entry(pmd_t *pmd, unsigned long addr,
unsigned long next, struct mm_walk *walk)
{
pte_t *pte;
spinlock_t *ptl;
if (pmd_huge(*pmd)) {
ptl = pmd_lock(walk->mm, pmd);
if (pmd_huge(*pmd)) {
damon_pmdp_mkold(pmd, walk->mm, addr);
spin_unlock(ptl);
return 0;
}
spin_unlock(ptl);
}
if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
return 0;
pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
if (!pte_present(*pte))
goto out;
damon_ptep_mkold(pte, walk->mm, addr);
out:
pte_unmap_unlock(pte, ptl);
return 0;
}
static const struct mm_walk_ops damon_mkold_ops = {
.pmd_entry = damon_mkold_pmd_entry,
};
static void damon_va_mkold(struct mm_struct *mm, unsigned long addr)
{
mmap_read_lock(mm);
walk_page_range(mm, addr, addr + 1, &damon_mkold_ops, NULL);
mmap_read_unlock(mm);
}
/*
* Functions for the access checking of the regions
*/
static void damon_va_prepare_access_check(struct damon_ctx *ctx,
struct mm_struct *mm, struct damon_region *r)
{
r->sampling_addr = damon_rand(r->ar.start, r->ar.end);
damon_va_mkold(mm, r->sampling_addr);
}
void damon_va_prepare_access_checks(struct damon_ctx *ctx)
{
struct damon_target *t;
struct mm_struct *mm;
struct damon_region *r;
damon_for_each_target(t, ctx) {
mm = damon_get_mm(t);
if (!mm)
continue;
damon_for_each_region(r, t)
damon_va_prepare_access_check(ctx, mm, r);
mmput(mm);
}
}
struct damon_young_walk_private {
unsigned long *page_sz;
bool young;
};
static int damon_young_pmd_entry(pmd_t *pmd, unsigned long addr,
unsigned long next, struct mm_walk *walk)
{
pte_t *pte;
spinlock_t *ptl;
struct page *page;
struct damon_young_walk_private *priv = walk->private;
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
if (pmd_huge(*pmd)) {
ptl = pmd_lock(walk->mm, pmd);
if (!pmd_huge(*pmd)) {
spin_unlock(ptl);
goto regular_page;
}
page = damon_get_page(pmd_pfn(*pmd));
if (!page)
goto huge_out;
if (pmd_young(*pmd) || !page_is_idle(page) ||
mmu_notifier_test_young(walk->mm,
addr)) {
*priv->page_sz = ((1UL) << HPAGE_PMD_SHIFT);
priv->young = true;
}
put_page(page);
huge_out:
spin_unlock(ptl);
return 0;
}
regular_page:
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
return -EINVAL;
pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
if (!pte_present(*pte))
goto out;
page = damon_get_page(pte_pfn(*pte));
if (!page)
goto out;
if (pte_young(*pte) || !page_is_idle(page) ||
mmu_notifier_test_young(walk->mm, addr)) {
*priv->page_sz = PAGE_SIZE;
priv->young = true;
}
put_page(page);
out:
pte_unmap_unlock(pte, ptl);
return 0;
}
static const struct mm_walk_ops damon_young_ops = {
.pmd_entry = damon_young_pmd_entry,
};
static bool damon_va_young(struct mm_struct *mm, unsigned long addr,
unsigned long *page_sz)
{
struct damon_young_walk_private arg = {
.page_sz = page_sz,
.young = false,
};
mmap_read_lock(mm);
walk_page_range(mm, addr, addr + 1, &damon_young_ops, &arg);
mmap_read_unlock(mm);
return arg.young;
}
/*
* Check whether the region was accessed after the last preparation
*
* mm 'mm_struct' for the given virtual address space
* r the region to be checked
*/
static void damon_va_check_access(struct damon_ctx *ctx,
struct mm_struct *mm, struct damon_region *r)
{
static struct mm_struct *last_mm;
static unsigned long last_addr;
static unsigned long last_page_sz = PAGE_SIZE;
static bool last_accessed;
/* If the region is in the last checked page, reuse the result */
if (mm == last_mm && (ALIGN_DOWN(last_addr, last_page_sz) ==
ALIGN_DOWN(r->sampling_addr, last_page_sz))) {
if (last_accessed)
r->nr_accesses++;
return;
}
last_accessed = damon_va_young(mm, r->sampling_addr, &last_page_sz);
if (last_accessed)
r->nr_accesses++;
last_mm = mm;
last_addr = r->sampling_addr;
}
unsigned int damon_va_check_accesses(struct damon_ctx *ctx)
{
struct damon_target *t;
struct mm_struct *mm;
struct damon_region *r;
unsigned int max_nr_accesses = 0;
damon_for_each_target(t, ctx) {
mm = damon_get_mm(t);
if (!mm)
continue;
damon_for_each_region(r, t) {
damon_va_check_access(ctx, mm, r);
max_nr_accesses = max(r->nr_accesses, max_nr_accesses);
}
mmput(mm);
}
return max_nr_accesses;
}
/*
* Functions for the target validity check and cleanup
*/
bool damon_va_target_valid(void *target)
{
struct damon_target *t = target;
struct task_struct *task;
task = damon_get_task_struct(t);
if (task) {
put_task_struct(task);
return true;
}
return false;
}
#ifndef CONFIG_ADVISE_SYSCALLS
static int damos_madvise(struct damon_target *target, struct damon_region *r,
int behavior)
{
return -EINVAL;
}
#else
static int damos_madvise(struct damon_target *target, struct damon_region *r,
int behavior)
{
struct mm_struct *mm;
int ret = -ENOMEM;
mm = damon_get_mm(target);
if (!mm)
goto out;
ret = do_madvise(mm, PAGE_ALIGN(r->ar.start),
PAGE_ALIGN(r->ar.end - r->ar.start), behavior);
mmput(mm);
out:
return ret;
}
#endif /* CONFIG_ADVISE_SYSCALLS */
int damon_va_apply_scheme(struct damon_ctx *ctx, struct damon_target *t,
struct damon_region *r, struct damos *scheme)
{
int madv_action;
switch (scheme->action) {
case DAMOS_WILLNEED:
madv_action = MADV_WILLNEED;
break;
case DAMOS_COLD:
madv_action = MADV_COLD;
break;
case DAMOS_PAGEOUT:
madv_action = MADV_PAGEOUT;
break;
case DAMOS_HUGEPAGE:
madv_action = MADV_HUGEPAGE;
break;
case DAMOS_NOHUGEPAGE:
madv_action = MADV_NOHUGEPAGE;
break;
case DAMOS_STAT:
return 0;
default:
pr_warn("Wrong action %d\n", scheme->action);
return -EINVAL;
}
return damos_madvise(t, r, madv_action);
}
int damon_va_scheme_score(struct damon_ctx *context, struct damon_target *t,
struct damon_region *r, struct damos *scheme)
{
switch (scheme->action) {
case DAMOS_PAGEOUT:
return damon_pageout_score(context, r, scheme);
default:
break;
}
return DAMOS_MAX_SCORE;
}
void damon_va_set_primitives(struct damon_ctx *ctx)
{
ctx->primitive.init = damon_va_init;
ctx->primitive.update = damon_va_update;
ctx->primitive.prepare_access_checks = damon_va_prepare_access_checks;
ctx->primitive.check_accesses = damon_va_check_accesses;
ctx->primitive.reset_aggregated = NULL;
ctx->primitive.target_valid = damon_va_target_valid;
ctx->primitive.cleanup = NULL;
ctx->primitive.apply_scheme = damon_va_apply_scheme;
ctx->primitive.get_scheme_score = damon_va_scheme_score;
}
#include "vaddr-test.h"