blob: bc623515ad843cf57e047cde5b1ee888a3ba9952 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* RZ/G2L Clock Pulse Generator
*
* Copyright (C) 2021 Renesas Electronics Corp.
*
* Based on renesas-cpg-mssr.c
*
* Copyright (C) 2015 Glider bvba
* Copyright (C) 2013 Ideas On Board SPRL
* Copyright (C) 2015 Renesas Electronics Corp.
*/
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/clk/renesas.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/init.h>
#include <linux/iopoll.h>
#include <linux/mod_devicetable.h>
#include <linux/module.h>
#include <linux/of_address.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pm_clock.h>
#include <linux/pm_domain.h>
#include <linux/reset-controller.h>
#include <linux/slab.h>
#include <linux/units.h>
#include <dt-bindings/clock/renesas-cpg-mssr.h>
#include "rzg2l-cpg.h"
#ifdef DEBUG
#define WARN_DEBUG(x) WARN_ON(x)
#else
#define WARN_DEBUG(x) do { } while (0)
#endif
#define DIV_RSMASK(v, s, m) ((v >> s) & m)
#define GET_SHIFT(val) ((val >> 12) & 0xff)
#define GET_WIDTH(val) ((val >> 8) & 0xf)
#define KDIV(val) DIV_RSMASK(val, 16, 0xffff)
#define MDIV(val) DIV_RSMASK(val, 6, 0x3ff)
#define PDIV(val) DIV_RSMASK(val, 0, 0x3f)
#define SDIV(val) DIV_RSMASK(val, 0, 0x7)
#define CLK_ON_R(reg) (reg)
#define CLK_MON_R(reg) (0x180 + (reg))
#define CLK_RST_R(reg) (reg)
#define CLK_MRST_R(reg) (0x180 + (reg))
#define GET_REG_OFFSET(val) ((val >> 20) & 0xfff)
#define GET_REG_SAMPLL_CLK1(val) ((val >> 22) & 0xfff)
#define GET_REG_SAMPLL_CLK2(val) ((val >> 12) & 0xfff)
#define MAX_VCLK_FREQ (148500000)
struct sd_hw_data {
struct clk_hw hw;
u32 conf;
struct rzg2l_cpg_priv *priv;
};
#define to_sd_hw_data(_hw) container_of(_hw, struct sd_hw_data, hw)
struct rzg2l_pll5_param {
u32 pl5_fracin;
u8 pl5_refdiv;
u8 pl5_intin;
u8 pl5_postdiv1;
u8 pl5_postdiv2;
u8 pl5_spread;
};
struct rzg2l_pll5_mux_dsi_div_param {
u8 clksrc;
u8 dsi_div_a;
u8 dsi_div_b;
};
/**
* struct rzg2l_cpg_priv - Clock Pulse Generator Private Data
*
* @rcdev: Reset controller entity
* @dev: CPG device
* @base: CPG register block base address
* @rmw_lock: protects register accesses
* @clks: Array containing all Core and Module Clocks
* @num_core_clks: Number of Core Clocks in clks[]
* @num_mod_clks: Number of Module Clocks in clks[]
* @num_resets: Number of Module Resets in info->resets[]
* @last_dt_core_clk: ID of the last Core Clock exported to DT
* @info: Pointer to platform data
* @genpd: PM domain
* @mux_dsi_div_params: pll5 mux and dsi div parameters
*/
struct rzg2l_cpg_priv {
struct reset_controller_dev rcdev;
struct device *dev;
void __iomem *base;
spinlock_t rmw_lock;
struct clk **clks;
unsigned int num_core_clks;
unsigned int num_mod_clks;
unsigned int num_resets;
unsigned int last_dt_core_clk;
const struct rzg2l_cpg_info *info;
struct generic_pm_domain genpd;
struct rzg2l_pll5_mux_dsi_div_param mux_dsi_div_params;
};
static void rzg2l_cpg_del_clk_provider(void *data)
{
of_clk_del_provider(data);
}
static struct clk * __init
rzg2l_cpg_div_clk_register(const struct cpg_core_clk *core,
struct clk **clks,
void __iomem *base,
struct rzg2l_cpg_priv *priv)
{
struct device *dev = priv->dev;
const struct clk *parent;
const char *parent_name;
struct clk_hw *clk_hw;
parent = clks[core->parent & 0xffff];
if (IS_ERR(parent))
return ERR_CAST(parent);
parent_name = __clk_get_name(parent);
if (core->dtable)
clk_hw = clk_hw_register_divider_table(dev, core->name,
parent_name, 0,
base + GET_REG_OFFSET(core->conf),
GET_SHIFT(core->conf),
GET_WIDTH(core->conf),
core->flag,
core->dtable,
&priv->rmw_lock);
else
clk_hw = clk_hw_register_divider(dev, core->name,
parent_name, 0,
base + GET_REG_OFFSET(core->conf),
GET_SHIFT(core->conf),
GET_WIDTH(core->conf),
core->flag, &priv->rmw_lock);
if (IS_ERR(clk_hw))
return ERR_CAST(clk_hw);
return clk_hw->clk;
}
static struct clk * __init
rzg2l_cpg_mux_clk_register(const struct cpg_core_clk *core,
void __iomem *base,
struct rzg2l_cpg_priv *priv)
{
const struct clk_hw *clk_hw;
clk_hw = devm_clk_hw_register_mux(priv->dev, core->name,
core->parent_names, core->num_parents,
core->flag,
base + GET_REG_OFFSET(core->conf),
GET_SHIFT(core->conf),
GET_WIDTH(core->conf),
core->mux_flags, &priv->rmw_lock);
if (IS_ERR(clk_hw))
return ERR_CAST(clk_hw);
return clk_hw->clk;
}
static int rzg2l_cpg_sd_clk_mux_determine_rate(struct clk_hw *hw,
struct clk_rate_request *req)
{
return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
}
static int rzg2l_cpg_sd_clk_mux_set_parent(struct clk_hw *hw, u8 index)
{
struct sd_hw_data *hwdata = to_sd_hw_data(hw);
struct rzg2l_cpg_priv *priv = hwdata->priv;
u32 off = GET_REG_OFFSET(hwdata->conf);
u32 shift = GET_SHIFT(hwdata->conf);
const u32 clk_src_266 = 2;
u32 bitmask;
/*
* As per the HW manual, we should not directly switch from 533 MHz to
* 400 MHz and vice versa. To change the setting from 2’b01 (533 MHz)
* to 2’b10 (400 MHz) or vice versa, Switch to 2’b11 (266 MHz) first,
* and then switch to the target setting (2’b01 (533 MHz) or 2’b10
* (400 MHz)).
* Setting a value of '0' to the SEL_SDHI0_SET or SEL_SDHI1_SET clock
* switching register is prohibited.
* The clock mux has 3 input clocks(533 MHz, 400 MHz, and 266 MHz), and
* the index to value mapping is done by adding 1 to the index.
*/
bitmask = (GENMASK(GET_WIDTH(hwdata->conf) - 1, 0) << shift) << 16;
if (index != clk_src_266) {
u32 msk, val;
int ret;
writel(bitmask | ((clk_src_266 + 1) << shift), priv->base + off);
msk = off ? CPG_CLKSTATUS_SELSDHI1_STS : CPG_CLKSTATUS_SELSDHI0_STS;
ret = readl_poll_timeout(priv->base + CPG_CLKSTATUS, val,
!(val & msk), 100,
CPG_SDHI_CLK_SWITCH_STATUS_TIMEOUT_US);
if (ret) {
dev_err(priv->dev, "failed to switch clk source\n");
return ret;
}
}
writel(bitmask | ((index + 1) << shift), priv->base + off);
return 0;
}
static u8 rzg2l_cpg_sd_clk_mux_get_parent(struct clk_hw *hw)
{
struct sd_hw_data *hwdata = to_sd_hw_data(hw);
struct rzg2l_cpg_priv *priv = hwdata->priv;
u32 val = readl(priv->base + GET_REG_OFFSET(hwdata->conf));
val >>= GET_SHIFT(hwdata->conf);
val &= GENMASK(GET_WIDTH(hwdata->conf) - 1, 0);
if (val) {
val--;
} else {
/* Prohibited clk source, change it to 533 MHz(reset value) */
rzg2l_cpg_sd_clk_mux_set_parent(hw, 0);
}
return val;
}
static const struct clk_ops rzg2l_cpg_sd_clk_mux_ops = {
.determine_rate = rzg2l_cpg_sd_clk_mux_determine_rate,
.set_parent = rzg2l_cpg_sd_clk_mux_set_parent,
.get_parent = rzg2l_cpg_sd_clk_mux_get_parent,
};
static struct clk * __init
rzg2l_cpg_sd_mux_clk_register(const struct cpg_core_clk *core,
void __iomem *base,
struct rzg2l_cpg_priv *priv)
{
struct sd_hw_data *clk_hw_data;
struct clk_init_data init;
struct clk_hw *clk_hw;
int ret;
clk_hw_data = devm_kzalloc(priv->dev, sizeof(*clk_hw_data), GFP_KERNEL);
if (!clk_hw_data)
return ERR_PTR(-ENOMEM);
clk_hw_data->priv = priv;
clk_hw_data->conf = core->conf;
init.name = GET_SHIFT(core->conf) ? "sd1" : "sd0";
init.ops = &rzg2l_cpg_sd_clk_mux_ops;
init.flags = 0;
init.num_parents = core->num_parents;
init.parent_names = core->parent_names;
clk_hw = &clk_hw_data->hw;
clk_hw->init = &init;
ret = devm_clk_hw_register(priv->dev, clk_hw);
if (ret)
return ERR_PTR(ret);
return clk_hw->clk;
}
static unsigned long
rzg2l_cpg_get_foutpostdiv_rate(struct rzg2l_pll5_param *params,
unsigned long rate)
{
unsigned long foutpostdiv_rate;
params->pl5_intin = rate / MEGA;
params->pl5_fracin = div_u64(((u64)rate % MEGA) << 24, MEGA);
params->pl5_refdiv = 2;
params->pl5_postdiv1 = 1;
params->pl5_postdiv2 = 1;
params->pl5_spread = 0x16;
foutpostdiv_rate =
EXTAL_FREQ_IN_MEGA_HZ * MEGA / params->pl5_refdiv *
((((params->pl5_intin << 24) + params->pl5_fracin)) >> 24) /
(params->pl5_postdiv1 * params->pl5_postdiv2);
return foutpostdiv_rate;
}
struct dsi_div_hw_data {
struct clk_hw hw;
u32 conf;
unsigned long rate;
struct rzg2l_cpg_priv *priv;
};
#define to_dsi_div_hw_data(_hw) container_of(_hw, struct dsi_div_hw_data, hw)
static unsigned long rzg2l_cpg_dsi_div_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct dsi_div_hw_data *dsi_div = to_dsi_div_hw_data(hw);
unsigned long rate = dsi_div->rate;
if (!rate)
rate = parent_rate;
return rate;
}
static unsigned long rzg2l_cpg_get_vclk_parent_rate(struct clk_hw *hw,
unsigned long rate)
{
struct dsi_div_hw_data *dsi_div = to_dsi_div_hw_data(hw);
struct rzg2l_cpg_priv *priv = dsi_div->priv;
struct rzg2l_pll5_param params;
unsigned long parent_rate;
parent_rate = rzg2l_cpg_get_foutpostdiv_rate(&params, rate);
if (priv->mux_dsi_div_params.clksrc)
parent_rate /= 2;
return parent_rate;
}
static int rzg2l_cpg_dsi_div_determine_rate(struct clk_hw *hw,
struct clk_rate_request *req)
{
if (req->rate > MAX_VCLK_FREQ)
req->rate = MAX_VCLK_FREQ;
req->best_parent_rate = rzg2l_cpg_get_vclk_parent_rate(hw, req->rate);
return 0;
}
static int rzg2l_cpg_dsi_div_set_rate(struct clk_hw *hw,
unsigned long rate,
unsigned long parent_rate)
{
struct dsi_div_hw_data *dsi_div = to_dsi_div_hw_data(hw);
struct rzg2l_cpg_priv *priv = dsi_div->priv;
/*
* MUX -->DIV_DSI_{A,B} -->M3 -->VCLK
*
* Based on the dot clock, the DSI divider clock sets the divider value,
* calculates the pll parameters for generating FOUTPOSTDIV and the clk
* source for the MUX and propagates that info to the parents.
*/
if (!rate || rate > MAX_VCLK_FREQ)
return -EINVAL;
dsi_div->rate = rate;
writel(CPG_PL5_SDIV_DIV_DSI_A_WEN | CPG_PL5_SDIV_DIV_DSI_B_WEN |
(priv->mux_dsi_div_params.dsi_div_a << 0) |
(priv->mux_dsi_div_params.dsi_div_b << 8),
priv->base + CPG_PL5_SDIV);
return 0;
}
static const struct clk_ops rzg2l_cpg_dsi_div_ops = {
.recalc_rate = rzg2l_cpg_dsi_div_recalc_rate,
.determine_rate = rzg2l_cpg_dsi_div_determine_rate,
.set_rate = rzg2l_cpg_dsi_div_set_rate,
};
static struct clk * __init
rzg2l_cpg_dsi_div_clk_register(const struct cpg_core_clk *core,
struct clk **clks,
struct rzg2l_cpg_priv *priv)
{
struct dsi_div_hw_data *clk_hw_data;
const struct clk *parent;
const char *parent_name;
struct clk_init_data init;
struct clk_hw *clk_hw;
int ret;
parent = clks[core->parent & 0xffff];
if (IS_ERR(parent))
return ERR_CAST(parent);
clk_hw_data = devm_kzalloc(priv->dev, sizeof(*clk_hw_data), GFP_KERNEL);
if (!clk_hw_data)
return ERR_PTR(-ENOMEM);
clk_hw_data->priv = priv;
parent_name = __clk_get_name(parent);
init.name = core->name;
init.ops = &rzg2l_cpg_dsi_div_ops;
init.flags = CLK_SET_RATE_PARENT;
init.parent_names = &parent_name;
init.num_parents = 1;
clk_hw = &clk_hw_data->hw;
clk_hw->init = &init;
ret = devm_clk_hw_register(priv->dev, clk_hw);
if (ret)
return ERR_PTR(ret);
return clk_hw->clk;
}
struct pll5_mux_hw_data {
struct clk_hw hw;
u32 conf;
unsigned long rate;
struct rzg2l_cpg_priv *priv;
};
#define to_pll5_mux_hw_data(_hw) container_of(_hw, struct pll5_mux_hw_data, hw)
static int rzg2l_cpg_pll5_4_clk_mux_determine_rate(struct clk_hw *hw,
struct clk_rate_request *req)
{
struct clk_hw *parent;
struct pll5_mux_hw_data *hwdata = to_pll5_mux_hw_data(hw);
struct rzg2l_cpg_priv *priv = hwdata->priv;
parent = clk_hw_get_parent_by_index(hw, priv->mux_dsi_div_params.clksrc);
req->best_parent_hw = parent;
req->best_parent_rate = req->rate;
return 0;
}
static int rzg2l_cpg_pll5_4_clk_mux_set_parent(struct clk_hw *hw, u8 index)
{
struct pll5_mux_hw_data *hwdata = to_pll5_mux_hw_data(hw);
struct rzg2l_cpg_priv *priv = hwdata->priv;
/*
* FOUTPOSTDIV--->|
* | | -->MUX -->DIV_DSIA_B -->M3 -->VCLK
* |--FOUT1PH0-->|
*
* Based on the dot clock, the DSI divider clock calculates the parent
* rate and clk source for the MUX. It propagates that info to
* pll5_4_clk_mux which sets the clock source for DSI divider clock.
*/
writel(CPG_OTHERFUNC1_REG_RES0_ON_WEN | index,
priv->base + CPG_OTHERFUNC1_REG);
return 0;
}
static u8 rzg2l_cpg_pll5_4_clk_mux_get_parent(struct clk_hw *hw)
{
struct pll5_mux_hw_data *hwdata = to_pll5_mux_hw_data(hw);
struct rzg2l_cpg_priv *priv = hwdata->priv;
return readl(priv->base + GET_REG_OFFSET(hwdata->conf));
}
static const struct clk_ops rzg2l_cpg_pll5_4_clk_mux_ops = {
.determine_rate = rzg2l_cpg_pll5_4_clk_mux_determine_rate,
.set_parent = rzg2l_cpg_pll5_4_clk_mux_set_parent,
.get_parent = rzg2l_cpg_pll5_4_clk_mux_get_parent,
};
static struct clk * __init
rzg2l_cpg_pll5_4_mux_clk_register(const struct cpg_core_clk *core,
struct rzg2l_cpg_priv *priv)
{
struct pll5_mux_hw_data *clk_hw_data;
struct clk_init_data init;
struct clk_hw *clk_hw;
int ret;
clk_hw_data = devm_kzalloc(priv->dev, sizeof(*clk_hw_data), GFP_KERNEL);
if (!clk_hw_data)
return ERR_PTR(-ENOMEM);
clk_hw_data->priv = priv;
clk_hw_data->conf = core->conf;
init.name = core->name;
init.ops = &rzg2l_cpg_pll5_4_clk_mux_ops;
init.flags = CLK_SET_RATE_PARENT;
init.num_parents = core->num_parents;
init.parent_names = core->parent_names;
clk_hw = &clk_hw_data->hw;
clk_hw->init = &init;
ret = devm_clk_hw_register(priv->dev, clk_hw);
if (ret)
return ERR_PTR(ret);
return clk_hw->clk;
}
struct sipll5 {
struct clk_hw hw;
u32 conf;
unsigned long foutpostdiv_rate;
struct rzg2l_cpg_priv *priv;
};
#define to_sipll5(_hw) container_of(_hw, struct sipll5, hw)
static unsigned long rzg2l_cpg_get_vclk_rate(struct clk_hw *hw,
unsigned long rate)
{
struct sipll5 *sipll5 = to_sipll5(hw);
struct rzg2l_cpg_priv *priv = sipll5->priv;
unsigned long vclk;
vclk = rate / ((1 << priv->mux_dsi_div_params.dsi_div_a) *
(priv->mux_dsi_div_params.dsi_div_b + 1));
if (priv->mux_dsi_div_params.clksrc)
vclk /= 2;
return vclk;
}
static unsigned long rzg2l_cpg_sipll5_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct sipll5 *sipll5 = to_sipll5(hw);
unsigned long pll5_rate = sipll5->foutpostdiv_rate;
if (!pll5_rate)
pll5_rate = parent_rate;
return pll5_rate;
}
static long rzg2l_cpg_sipll5_round_rate(struct clk_hw *hw,
unsigned long rate,
unsigned long *parent_rate)
{
return rate;
}
static int rzg2l_cpg_sipll5_set_rate(struct clk_hw *hw,
unsigned long rate,
unsigned long parent_rate)
{
struct sipll5 *sipll5 = to_sipll5(hw);
struct rzg2l_cpg_priv *priv = sipll5->priv;
struct rzg2l_pll5_param params;
unsigned long vclk_rate;
int ret;
u32 val;
/*
* OSC --> PLL5 --> FOUTPOSTDIV-->|
* | | -->MUX -->DIV_DSIA_B -->M3 -->VCLK
* |--FOUT1PH0-->|
*
* Based on the dot clock, the DSI divider clock calculates the parent
* rate and the pll5 parameters for generating FOUTPOSTDIV. It propagates
* that info to sipll5 which sets parameters for generating FOUTPOSTDIV.
*
* OSC --> PLL5 --> FOUTPOSTDIV
*/
if (!rate)
return -EINVAL;
vclk_rate = rzg2l_cpg_get_vclk_rate(hw, rate);
sipll5->foutpostdiv_rate =
rzg2l_cpg_get_foutpostdiv_rate(&params, vclk_rate);
/* Put PLL5 into standby mode */
writel(CPG_SIPLL5_STBY_RESETB_WEN, priv->base + CPG_SIPLL5_STBY);
ret = readl_poll_timeout(priv->base + CPG_SIPLL5_MON, val,
!(val & CPG_SIPLL5_MON_PLL5_LOCK), 100, 250000);
if (ret) {
dev_err(priv->dev, "failed to release pll5 lock");
return ret;
}
/* Output clock setting 1 */
writel((params.pl5_postdiv1 << 0) | (params.pl5_postdiv2 << 4) |
(params.pl5_refdiv << 8), priv->base + CPG_SIPLL5_CLK1);
/* Output clock setting, SSCG modulation value setting 3 */
writel((params.pl5_fracin << 8), priv->base + CPG_SIPLL5_CLK3);
/* Output clock setting 4 */
writel(CPG_SIPLL5_CLK4_RESV_LSB | (params.pl5_intin << 16),
priv->base + CPG_SIPLL5_CLK4);
/* Output clock setting 5 */
writel(params.pl5_spread, priv->base + CPG_SIPLL5_CLK5);
/* PLL normal mode setting */
writel(CPG_SIPLL5_STBY_DOWNSPREAD_WEN | CPG_SIPLL5_STBY_SSCG_EN_WEN |
CPG_SIPLL5_STBY_RESETB_WEN | CPG_SIPLL5_STBY_RESETB,
priv->base + CPG_SIPLL5_STBY);
/* PLL normal mode transition, output clock stability check */
ret = readl_poll_timeout(priv->base + CPG_SIPLL5_MON, val,
(val & CPG_SIPLL5_MON_PLL5_LOCK), 100, 250000);
if (ret) {
dev_err(priv->dev, "failed to lock pll5");
return ret;
}
return 0;
}
static const struct clk_ops rzg2l_cpg_sipll5_ops = {
.recalc_rate = rzg2l_cpg_sipll5_recalc_rate,
.round_rate = rzg2l_cpg_sipll5_round_rate,
.set_rate = rzg2l_cpg_sipll5_set_rate,
};
static struct clk * __init
rzg2l_cpg_sipll5_register(const struct cpg_core_clk *core,
struct clk **clks,
struct rzg2l_cpg_priv *priv)
{
const struct clk *parent;
struct clk_init_data init;
const char *parent_name;
struct sipll5 *sipll5;
struct clk_hw *clk_hw;
int ret;
parent = clks[core->parent & 0xffff];
if (IS_ERR(parent))
return ERR_CAST(parent);
sipll5 = devm_kzalloc(priv->dev, sizeof(*sipll5), GFP_KERNEL);
if (!sipll5)
return ERR_PTR(-ENOMEM);
init.name = core->name;
parent_name = __clk_get_name(parent);
init.ops = &rzg2l_cpg_sipll5_ops;
init.flags = 0;
init.parent_names = &parent_name;
init.num_parents = 1;
sipll5->hw.init = &init;
sipll5->conf = core->conf;
sipll5->priv = priv;
writel(CPG_SIPLL5_STBY_SSCG_EN_WEN | CPG_SIPLL5_STBY_RESETB_WEN |
CPG_SIPLL5_STBY_RESETB, priv->base + CPG_SIPLL5_STBY);
clk_hw = &sipll5->hw;
clk_hw->init = &init;
ret = devm_clk_hw_register(priv->dev, clk_hw);
if (ret)
return ERR_PTR(ret);
priv->mux_dsi_div_params.clksrc = 1; /* Use clk src 1 for DSI */
priv->mux_dsi_div_params.dsi_div_a = 1; /* Divided by 2 */
priv->mux_dsi_div_params.dsi_div_b = 2; /* Divided by 3 */
return clk_hw->clk;
}
struct pll_clk {
struct clk_hw hw;
unsigned int conf;
unsigned int type;
void __iomem *base;
struct rzg2l_cpg_priv *priv;
};
#define to_pll(_hw) container_of(_hw, struct pll_clk, hw)
static unsigned long rzg2l_cpg_pll_clk_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct pll_clk *pll_clk = to_pll(hw);
struct rzg2l_cpg_priv *priv = pll_clk->priv;
unsigned int val1, val2;
unsigned int mult = 1;
unsigned int div = 1;
if (pll_clk->type != CLK_TYPE_SAM_PLL)
return parent_rate;
val1 = readl(priv->base + GET_REG_SAMPLL_CLK1(pll_clk->conf));
val2 = readl(priv->base + GET_REG_SAMPLL_CLK2(pll_clk->conf));
mult = MDIV(val1) + KDIV(val1) / 65536;
div = PDIV(val1) << SDIV(val2);
return DIV_ROUND_CLOSEST_ULL((u64)parent_rate * mult, div);
}
static const struct clk_ops rzg2l_cpg_pll_ops = {
.recalc_rate = rzg2l_cpg_pll_clk_recalc_rate,
};
static struct clk * __init
rzg2l_cpg_pll_clk_register(const struct cpg_core_clk *core,
struct clk **clks,
void __iomem *base,
struct rzg2l_cpg_priv *priv)
{
struct device *dev = priv->dev;
const struct clk *parent;
struct clk_init_data init;
const char *parent_name;
struct pll_clk *pll_clk;
parent = clks[core->parent & 0xffff];
if (IS_ERR(parent))
return ERR_CAST(parent);
pll_clk = devm_kzalloc(dev, sizeof(*pll_clk), GFP_KERNEL);
if (!pll_clk)
return ERR_PTR(-ENOMEM);
parent_name = __clk_get_name(parent);
init.name = core->name;
init.ops = &rzg2l_cpg_pll_ops;
init.flags = 0;
init.parent_names = &parent_name;
init.num_parents = 1;
pll_clk->hw.init = &init;
pll_clk->conf = core->conf;
pll_clk->base = base;
pll_clk->priv = priv;
pll_clk->type = core->type;
return clk_register(NULL, &pll_clk->hw);
}
static struct clk
*rzg2l_cpg_clk_src_twocell_get(struct of_phandle_args *clkspec,
void *data)
{
unsigned int clkidx = clkspec->args[1];
struct rzg2l_cpg_priv *priv = data;
struct device *dev = priv->dev;
const char *type;
struct clk *clk;
switch (clkspec->args[0]) {
case CPG_CORE:
type = "core";
if (clkidx > priv->last_dt_core_clk) {
dev_err(dev, "Invalid %s clock index %u\n", type, clkidx);
return ERR_PTR(-EINVAL);
}
clk = priv->clks[clkidx];
break;
case CPG_MOD:
type = "module";
if (clkidx >= priv->num_mod_clks) {
dev_err(dev, "Invalid %s clock index %u\n", type,
clkidx);
return ERR_PTR(-EINVAL);
}
clk = priv->clks[priv->num_core_clks + clkidx];
break;
default:
dev_err(dev, "Invalid CPG clock type %u\n", clkspec->args[0]);
return ERR_PTR(-EINVAL);
}
if (IS_ERR(clk))
dev_err(dev, "Cannot get %s clock %u: %ld", type, clkidx,
PTR_ERR(clk));
else
dev_dbg(dev, "clock (%u, %u) is %pC at %lu Hz\n",
clkspec->args[0], clkspec->args[1], clk,
clk_get_rate(clk));
return clk;
}
static void __init
rzg2l_cpg_register_core_clk(const struct cpg_core_clk *core,
const struct rzg2l_cpg_info *info,
struct rzg2l_cpg_priv *priv)
{
struct clk *clk = ERR_PTR(-EOPNOTSUPP), *parent;
struct device *dev = priv->dev;
unsigned int id = core->id, div = core->div;
const char *parent_name;
WARN_DEBUG(id >= priv->num_core_clks);
WARN_DEBUG(PTR_ERR(priv->clks[id]) != -ENOENT);
if (!core->name) {
/* Skip NULLified clock */
return;
}
switch (core->type) {
case CLK_TYPE_IN:
clk = of_clk_get_by_name(priv->dev->of_node, core->name);
break;
case CLK_TYPE_FF:
WARN_DEBUG(core->parent >= priv->num_core_clks);
parent = priv->clks[core->parent];
if (IS_ERR(parent)) {
clk = parent;
goto fail;
}
parent_name = __clk_get_name(parent);
clk = clk_register_fixed_factor(NULL, core->name,
parent_name, CLK_SET_RATE_PARENT,
core->mult, div);
break;
case CLK_TYPE_SAM_PLL:
clk = rzg2l_cpg_pll_clk_register(core, priv->clks,
priv->base, priv);
break;
case CLK_TYPE_SIPLL5:
clk = rzg2l_cpg_sipll5_register(core, priv->clks, priv);
break;
case CLK_TYPE_DIV:
clk = rzg2l_cpg_div_clk_register(core, priv->clks,
priv->base, priv);
break;
case CLK_TYPE_MUX:
clk = rzg2l_cpg_mux_clk_register(core, priv->base, priv);
break;
case CLK_TYPE_SD_MUX:
clk = rzg2l_cpg_sd_mux_clk_register(core, priv->base, priv);
break;
case CLK_TYPE_PLL5_4_MUX:
clk = rzg2l_cpg_pll5_4_mux_clk_register(core, priv);
break;
case CLK_TYPE_DSI_DIV:
clk = rzg2l_cpg_dsi_div_clk_register(core, priv->clks, priv);
break;
default:
goto fail;
}
if (IS_ERR_OR_NULL(clk))
goto fail;
dev_dbg(dev, "Core clock %pC at %lu Hz\n", clk, clk_get_rate(clk));
priv->clks[id] = clk;
return;
fail:
dev_err(dev, "Failed to register %s clock %s: %ld\n", "core",
core->name, PTR_ERR(clk));
}
/**
* struct mstp_clock - MSTP gating clock
*
* @hw: handle between common and hardware-specific interfaces
* @off: register offset
* @bit: ON/MON bit
* @enabled: soft state of the clock, if it is coupled with another clock
* @priv: CPG/MSTP private data
* @sibling: pointer to the other coupled clock
*/
struct mstp_clock {
struct clk_hw hw;
u16 off;
u8 bit;
bool enabled;
struct rzg2l_cpg_priv *priv;
struct mstp_clock *sibling;
};
#define to_mod_clock(_hw) container_of(_hw, struct mstp_clock, hw)
static int rzg2l_mod_clock_endisable(struct clk_hw *hw, bool enable)
{
struct mstp_clock *clock = to_mod_clock(hw);
struct rzg2l_cpg_priv *priv = clock->priv;
unsigned int reg = clock->off;
struct device *dev = priv->dev;
unsigned long flags;
u32 bitmask = BIT(clock->bit);
u32 value;
int error;
if (!clock->off) {
dev_dbg(dev, "%pC does not support ON/OFF\n", hw->clk);
return 0;
}
dev_dbg(dev, "CLK_ON %u/%pC %s\n", CLK_ON_R(reg), hw->clk,
enable ? "ON" : "OFF");
spin_lock_irqsave(&priv->rmw_lock, flags);
if (enable)
value = (bitmask << 16) | bitmask;
else
value = bitmask << 16;
writel(value, priv->base + CLK_ON_R(reg));
spin_unlock_irqrestore(&priv->rmw_lock, flags);
if (!enable)
return 0;
if (!priv->info->has_clk_mon_regs)
return 0;
error = readl_poll_timeout_atomic(priv->base + CLK_MON_R(reg), value,
value & bitmask, 0, 10);
if (error)
dev_err(dev, "Failed to enable CLK_ON %p\n",
priv->base + CLK_ON_R(reg));
return error;
}
static int rzg2l_mod_clock_enable(struct clk_hw *hw)
{
struct mstp_clock *clock = to_mod_clock(hw);
if (clock->sibling) {
struct rzg2l_cpg_priv *priv = clock->priv;
unsigned long flags;
bool enabled;
spin_lock_irqsave(&priv->rmw_lock, flags);
enabled = clock->sibling->enabled;
clock->enabled = true;
spin_unlock_irqrestore(&priv->rmw_lock, flags);
if (enabled)
return 0;
}
return rzg2l_mod_clock_endisable(hw, true);
}
static void rzg2l_mod_clock_disable(struct clk_hw *hw)
{
struct mstp_clock *clock = to_mod_clock(hw);
if (clock->sibling) {
struct rzg2l_cpg_priv *priv = clock->priv;
unsigned long flags;
bool enabled;
spin_lock_irqsave(&priv->rmw_lock, flags);
enabled = clock->sibling->enabled;
clock->enabled = false;
spin_unlock_irqrestore(&priv->rmw_lock, flags);
if (enabled)
return;
}
rzg2l_mod_clock_endisable(hw, false);
}
static int rzg2l_mod_clock_is_enabled(struct clk_hw *hw)
{
struct mstp_clock *clock = to_mod_clock(hw);
struct rzg2l_cpg_priv *priv = clock->priv;
u32 bitmask = BIT(clock->bit);
u32 value;
if (!clock->off) {
dev_dbg(priv->dev, "%pC does not support ON/OFF\n", hw->clk);
return 1;
}
if (clock->sibling)
return clock->enabled;
if (priv->info->has_clk_mon_regs)
value = readl(priv->base + CLK_MON_R(clock->off));
else
value = readl(priv->base + clock->off);
return value & bitmask;
}
static const struct clk_ops rzg2l_mod_clock_ops = {
.enable = rzg2l_mod_clock_enable,
.disable = rzg2l_mod_clock_disable,
.is_enabled = rzg2l_mod_clock_is_enabled,
};
static struct mstp_clock
*rzg2l_mod_clock_get_sibling(struct mstp_clock *clock,
struct rzg2l_cpg_priv *priv)
{
struct clk_hw *hw;
unsigned int i;
for (i = 0; i < priv->num_mod_clks; i++) {
struct mstp_clock *clk;
if (priv->clks[priv->num_core_clks + i] == ERR_PTR(-ENOENT))
continue;
hw = __clk_get_hw(priv->clks[priv->num_core_clks + i]);
clk = to_mod_clock(hw);
if (clock->off == clk->off && clock->bit == clk->bit)
return clk;
}
return NULL;
}
static void __init
rzg2l_cpg_register_mod_clk(const struct rzg2l_mod_clk *mod,
const struct rzg2l_cpg_info *info,
struct rzg2l_cpg_priv *priv)
{
struct mstp_clock *clock = NULL;
struct device *dev = priv->dev;
unsigned int id = mod->id;
struct clk_init_data init;
struct clk *parent, *clk;
const char *parent_name;
unsigned int i;
WARN_DEBUG(id < priv->num_core_clks);
WARN_DEBUG(id >= priv->num_core_clks + priv->num_mod_clks);
WARN_DEBUG(mod->parent >= priv->num_core_clks + priv->num_mod_clks);
WARN_DEBUG(PTR_ERR(priv->clks[id]) != -ENOENT);
if (!mod->name) {
/* Skip NULLified clock */
return;
}
parent = priv->clks[mod->parent];
if (IS_ERR(parent)) {
clk = parent;
goto fail;
}
clock = devm_kzalloc(dev, sizeof(*clock), GFP_KERNEL);
if (!clock) {
clk = ERR_PTR(-ENOMEM);
goto fail;
}
init.name = mod->name;
init.ops = &rzg2l_mod_clock_ops;
init.flags = CLK_SET_RATE_PARENT;
for (i = 0; i < info->num_crit_mod_clks; i++)
if (id == info->crit_mod_clks[i]) {
dev_dbg(dev, "CPG %s setting CLK_IS_CRITICAL\n",
mod->name);
init.flags |= CLK_IS_CRITICAL;
break;
}
parent_name = __clk_get_name(parent);
init.parent_names = &parent_name;
init.num_parents = 1;
clock->off = mod->off;
clock->bit = mod->bit;
clock->priv = priv;
clock->hw.init = &init;
clk = clk_register(NULL, &clock->hw);
if (IS_ERR(clk))
goto fail;
dev_dbg(dev, "Module clock %pC at %lu Hz\n", clk, clk_get_rate(clk));
priv->clks[id] = clk;
if (mod->is_coupled) {
struct mstp_clock *sibling;
clock->enabled = rzg2l_mod_clock_is_enabled(&clock->hw);
sibling = rzg2l_mod_clock_get_sibling(clock, priv);
if (sibling) {
clock->sibling = sibling;
sibling->sibling = clock;
}
}
return;
fail:
dev_err(dev, "Failed to register %s clock %s: %ld\n", "module",
mod->name, PTR_ERR(clk));
}
#define rcdev_to_priv(x) container_of(x, struct rzg2l_cpg_priv, rcdev)
static int rzg2l_cpg_reset(struct reset_controller_dev *rcdev,
unsigned long id)
{
struct rzg2l_cpg_priv *priv = rcdev_to_priv(rcdev);
const struct rzg2l_cpg_info *info = priv->info;
unsigned int reg = info->resets[id].off;
u32 dis = BIT(info->resets[id].bit);
u32 we = dis << 16;
dev_dbg(rcdev->dev, "reset id:%ld offset:0x%x\n", id, CLK_RST_R(reg));
/* Reset module */
writel(we, priv->base + CLK_RST_R(reg));
/* Wait for at least one cycle of the RCLK clock (@ ca. 32 kHz) */
udelay(35);
/* Release module from reset state */
writel(we | dis, priv->base + CLK_RST_R(reg));
return 0;
}
static int rzg2l_cpg_assert(struct reset_controller_dev *rcdev,
unsigned long id)
{
struct rzg2l_cpg_priv *priv = rcdev_to_priv(rcdev);
const struct rzg2l_cpg_info *info = priv->info;
unsigned int reg = info->resets[id].off;
u32 value = BIT(info->resets[id].bit) << 16;
dev_dbg(rcdev->dev, "assert id:%ld offset:0x%x\n", id, CLK_RST_R(reg));
writel(value, priv->base + CLK_RST_R(reg));
return 0;
}
static int rzg2l_cpg_deassert(struct reset_controller_dev *rcdev,
unsigned long id)
{
struct rzg2l_cpg_priv *priv = rcdev_to_priv(rcdev);
const struct rzg2l_cpg_info *info = priv->info;
unsigned int reg = info->resets[id].off;
u32 dis = BIT(info->resets[id].bit);
u32 value = (dis << 16) | dis;
dev_dbg(rcdev->dev, "deassert id:%ld offset:0x%x\n", id,
CLK_RST_R(reg));
writel(value, priv->base + CLK_RST_R(reg));
return 0;
}
static int rzg2l_cpg_status(struct reset_controller_dev *rcdev,
unsigned long id)
{
struct rzg2l_cpg_priv *priv = rcdev_to_priv(rcdev);
const struct rzg2l_cpg_info *info = priv->info;
unsigned int reg = info->resets[id].off;
u32 bitmask = BIT(info->resets[id].bit);
s8 monbit = info->resets[id].monbit;
if (info->has_clk_mon_regs) {
return !!(readl(priv->base + CLK_MRST_R(reg)) & bitmask);
} else if (monbit >= 0) {
u32 monbitmask = BIT(monbit);
return !!(readl(priv->base + CPG_RST_MON) & monbitmask);
}
return -ENOTSUPP;
}
static const struct reset_control_ops rzg2l_cpg_reset_ops = {
.reset = rzg2l_cpg_reset,
.assert = rzg2l_cpg_assert,
.deassert = rzg2l_cpg_deassert,
.status = rzg2l_cpg_status,
};
static int rzg2l_cpg_reset_xlate(struct reset_controller_dev *rcdev,
const struct of_phandle_args *reset_spec)
{
struct rzg2l_cpg_priv *priv = rcdev_to_priv(rcdev);
const struct rzg2l_cpg_info *info = priv->info;
unsigned int id = reset_spec->args[0];
if (id >= rcdev->nr_resets || !info->resets[id].off) {
dev_err(rcdev->dev, "Invalid reset index %u\n", id);
return -EINVAL;
}
return id;
}
static int rzg2l_cpg_reset_controller_register(struct rzg2l_cpg_priv *priv)
{
priv->rcdev.ops = &rzg2l_cpg_reset_ops;
priv->rcdev.of_node = priv->dev->of_node;
priv->rcdev.dev = priv->dev;
priv->rcdev.of_reset_n_cells = 1;
priv->rcdev.of_xlate = rzg2l_cpg_reset_xlate;
priv->rcdev.nr_resets = priv->num_resets;
return devm_reset_controller_register(priv->dev, &priv->rcdev);
}
static bool rzg2l_cpg_is_pm_clk(struct rzg2l_cpg_priv *priv,
const struct of_phandle_args *clkspec)
{
const struct rzg2l_cpg_info *info = priv->info;
unsigned int id;
unsigned int i;
if (clkspec->args_count != 2)
return false;
if (clkspec->args[0] != CPG_MOD)
return false;
id = clkspec->args[1] + info->num_total_core_clks;
for (i = 0; i < info->num_no_pm_mod_clks; i++) {
if (info->no_pm_mod_clks[i] == id)
return false;
}
return true;
}
static int rzg2l_cpg_attach_dev(struct generic_pm_domain *domain, struct device *dev)
{
struct rzg2l_cpg_priv *priv = container_of(domain, struct rzg2l_cpg_priv, genpd);
struct device_node *np = dev->of_node;
struct of_phandle_args clkspec;
bool once = true;
struct clk *clk;
int error;
int i = 0;
while (!of_parse_phandle_with_args(np, "clocks", "#clock-cells", i,
&clkspec)) {
if (rzg2l_cpg_is_pm_clk(priv, &clkspec)) {
if (once) {
once = false;
error = pm_clk_create(dev);
if (error) {
of_node_put(clkspec.np);
goto err;
}
}
clk = of_clk_get_from_provider(&clkspec);
of_node_put(clkspec.np);
if (IS_ERR(clk)) {
error = PTR_ERR(clk);
goto fail_destroy;
}
error = pm_clk_add_clk(dev, clk);
if (error) {
dev_err(dev, "pm_clk_add_clk failed %d\n",
error);
goto fail_put;
}
} else {
of_node_put(clkspec.np);
}
i++;
}
return 0;
fail_put:
clk_put(clk);
fail_destroy:
pm_clk_destroy(dev);
err:
return error;
}
static void rzg2l_cpg_detach_dev(struct generic_pm_domain *unused, struct device *dev)
{
if (!pm_clk_no_clocks(dev))
pm_clk_destroy(dev);
}
static void rzg2l_cpg_genpd_remove(void *data)
{
pm_genpd_remove(data);
}
static int __init rzg2l_cpg_add_clk_domain(struct rzg2l_cpg_priv *priv)
{
struct device *dev = priv->dev;
struct device_node *np = dev->of_node;
struct generic_pm_domain *genpd = &priv->genpd;
int ret;
genpd->name = np->name;
genpd->flags = GENPD_FLAG_PM_CLK | GENPD_FLAG_ALWAYS_ON |
GENPD_FLAG_ACTIVE_WAKEUP;
genpd->attach_dev = rzg2l_cpg_attach_dev;
genpd->detach_dev = rzg2l_cpg_detach_dev;
ret = pm_genpd_init(genpd, &pm_domain_always_on_gov, false);
if (ret)
return ret;
ret = devm_add_action_or_reset(dev, rzg2l_cpg_genpd_remove, genpd);
if (ret)
return ret;
return of_genpd_add_provider_simple(np, genpd);
}
static int __init rzg2l_cpg_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct device_node *np = dev->of_node;
const struct rzg2l_cpg_info *info;
struct rzg2l_cpg_priv *priv;
unsigned int nclks, i;
struct clk **clks;
int error;
info = of_device_get_match_data(dev);
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->dev = dev;
priv->info = info;
spin_lock_init(&priv->rmw_lock);
priv->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(priv->base))
return PTR_ERR(priv->base);
nclks = info->num_total_core_clks + info->num_hw_mod_clks;
clks = devm_kmalloc_array(dev, nclks, sizeof(*clks), GFP_KERNEL);
if (!clks)
return -ENOMEM;
dev_set_drvdata(dev, priv);
priv->clks = clks;
priv->num_core_clks = info->num_total_core_clks;
priv->num_mod_clks = info->num_hw_mod_clks;
priv->num_resets = info->num_resets;
priv->last_dt_core_clk = info->last_dt_core_clk;
for (i = 0; i < nclks; i++)
clks[i] = ERR_PTR(-ENOENT);
for (i = 0; i < info->num_core_clks; i++)
rzg2l_cpg_register_core_clk(&info->core_clks[i], info, priv);
for (i = 0; i < info->num_mod_clks; i++)
rzg2l_cpg_register_mod_clk(&info->mod_clks[i], info, priv);
error = of_clk_add_provider(np, rzg2l_cpg_clk_src_twocell_get, priv);
if (error)
return error;
error = devm_add_action_or_reset(dev, rzg2l_cpg_del_clk_provider, np);
if (error)
return error;
error = rzg2l_cpg_add_clk_domain(priv);
if (error)
return error;
error = rzg2l_cpg_reset_controller_register(priv);
if (error)
return error;
return 0;
}
static const struct of_device_id rzg2l_cpg_match[] = {
#ifdef CONFIG_CLK_R9A07G043
{
.compatible = "renesas,r9a07g043-cpg",
.data = &r9a07g043_cpg_info,
},
#endif
#ifdef CONFIG_CLK_R9A07G044
{
.compatible = "renesas,r9a07g044-cpg",
.data = &r9a07g044_cpg_info,
},
#endif
#ifdef CONFIG_CLK_R9A07G054
{
.compatible = "renesas,r9a07g054-cpg",
.data = &r9a07g054_cpg_info,
},
#endif
#ifdef CONFIG_CLK_R9A09G011
{
.compatible = "renesas,r9a09g011-cpg",
.data = &r9a09g011_cpg_info,
},
#endif
{ /* sentinel */ }
};
static struct platform_driver rzg2l_cpg_driver = {
.driver = {
.name = "rzg2l-cpg",
.of_match_table = rzg2l_cpg_match,
},
};
static int __init rzg2l_cpg_init(void)
{
return platform_driver_probe(&rzg2l_cpg_driver, rzg2l_cpg_probe);
}
subsys_initcall(rzg2l_cpg_init);
MODULE_DESCRIPTION("Renesas RZ/G2L CPG Driver");