| /* |
| * Analog Devices AD9389B/AD9889B video encoder driver |
| * |
| * Copyright 2012 Cisco Systems, Inc. and/or its affiliates. All rights reserved. |
| * |
| * This program is free software; you may redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; version 2 of the License. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS |
| * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
| * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| * SOFTWARE. |
| */ |
| |
| /* |
| * References (c = chapter, p = page): |
| * REF_01 - Analog Devices, Programming Guide, AD9889B/AD9389B, |
| * HDMI Transitter, Rev. A, October 2010 |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/slab.h> |
| #include <linux/i2c.h> |
| #include <linux/delay.h> |
| #include <linux/videodev2.h> |
| #include <linux/workqueue.h> |
| #include <linux/v4l2-dv-timings.h> |
| #include <media/v4l2-device.h> |
| #include <media/v4l2-common.h> |
| #include <media/v4l2-dv-timings.h> |
| #include <media/v4l2-ctrls.h> |
| #include <media/ad9389b.h> |
| |
| static int debug; |
| module_param(debug, int, 0644); |
| MODULE_PARM_DESC(debug, "debug level (0-2)"); |
| |
| MODULE_DESCRIPTION("Analog Devices AD9389B/AD9889B video encoder driver"); |
| MODULE_AUTHOR("Hans Verkuil <hans.verkuil@cisco.com>"); |
| MODULE_AUTHOR("Martin Bugge <marbugge@cisco.com>"); |
| MODULE_LICENSE("GPL"); |
| |
| #define MASK_AD9389B_EDID_RDY_INT 0x04 |
| #define MASK_AD9389B_MSEN_INT 0x40 |
| #define MASK_AD9389B_HPD_INT 0x80 |
| |
| #define MASK_AD9389B_HPD_DETECT 0x40 |
| #define MASK_AD9389B_MSEN_DETECT 0x20 |
| #define MASK_AD9389B_EDID_RDY 0x10 |
| |
| #define EDID_MAX_RETRIES (8) |
| #define EDID_DELAY 250 |
| #define EDID_MAX_SEGM 8 |
| |
| /* |
| ********************************************************************** |
| * |
| * Arrays with configuration parameters for the AD9389B |
| * |
| ********************************************************************** |
| */ |
| |
| struct i2c_reg_value { |
| u8 reg; |
| u8 value; |
| }; |
| |
| struct ad9389b_state_edid { |
| /* total number of blocks */ |
| u32 blocks; |
| /* Number of segments read */ |
| u32 segments; |
| u8 data[EDID_MAX_SEGM * 256]; |
| /* Number of EDID read retries left */ |
| unsigned read_retries; |
| }; |
| |
| struct ad9389b_state { |
| struct ad9389b_platform_data pdata; |
| struct v4l2_subdev sd; |
| struct media_pad pad; |
| struct v4l2_ctrl_handler hdl; |
| int chip_revision; |
| /* Is the ad9389b powered on? */ |
| bool power_on; |
| /* Did we receive hotplug and rx-sense signals? */ |
| bool have_monitor; |
| /* timings from s_dv_timings */ |
| struct v4l2_dv_timings dv_timings; |
| /* controls */ |
| struct v4l2_ctrl *hdmi_mode_ctrl; |
| struct v4l2_ctrl *hotplug_ctrl; |
| struct v4l2_ctrl *rx_sense_ctrl; |
| struct v4l2_ctrl *have_edid0_ctrl; |
| struct v4l2_ctrl *rgb_quantization_range_ctrl; |
| struct i2c_client *edid_i2c_client; |
| struct ad9389b_state_edid edid; |
| /* Running counter of the number of detected EDIDs (for debugging) */ |
| unsigned edid_detect_counter; |
| struct workqueue_struct *work_queue; |
| struct delayed_work edid_handler; /* work entry */ |
| }; |
| |
| static void ad9389b_check_monitor_present_status(struct v4l2_subdev *sd); |
| static bool ad9389b_check_edid_status(struct v4l2_subdev *sd); |
| static void ad9389b_setup(struct v4l2_subdev *sd); |
| static int ad9389b_s_i2s_clock_freq(struct v4l2_subdev *sd, u32 freq); |
| static int ad9389b_s_clock_freq(struct v4l2_subdev *sd, u32 freq); |
| |
| static inline struct ad9389b_state *get_ad9389b_state(struct v4l2_subdev *sd) |
| { |
| return container_of(sd, struct ad9389b_state, sd); |
| } |
| |
| static inline struct v4l2_subdev *to_sd(struct v4l2_ctrl *ctrl) |
| { |
| return &container_of(ctrl->handler, struct ad9389b_state, hdl)->sd; |
| } |
| |
| /* ------------------------ I2C ----------------------------------------------- */ |
| |
| static int ad9389b_rd(struct v4l2_subdev *sd, u8 reg) |
| { |
| struct i2c_client *client = v4l2_get_subdevdata(sd); |
| |
| return i2c_smbus_read_byte_data(client, reg); |
| } |
| |
| static int ad9389b_wr(struct v4l2_subdev *sd, u8 reg, u8 val) |
| { |
| struct i2c_client *client = v4l2_get_subdevdata(sd); |
| int ret; |
| int i; |
| |
| for (i = 0; i < 3; i++) { |
| ret = i2c_smbus_write_byte_data(client, reg, val); |
| if (ret == 0) |
| return 0; |
| } |
| v4l2_err(sd, "I2C Write Problem\n"); |
| return ret; |
| } |
| |
| /* To set specific bits in the register, a clear-mask is given (to be AND-ed), |
| and then the value-mask (to be OR-ed). */ |
| static inline void ad9389b_wr_and_or(struct v4l2_subdev *sd, u8 reg, |
| u8 clr_mask, u8 val_mask) |
| { |
| ad9389b_wr(sd, reg, (ad9389b_rd(sd, reg) & clr_mask) | val_mask); |
| } |
| |
| static void ad9389b_edid_rd(struct v4l2_subdev *sd, u16 len, u8 *buf) |
| { |
| struct ad9389b_state *state = get_ad9389b_state(sd); |
| int i; |
| |
| v4l2_dbg(1, debug, sd, "%s:\n", __func__); |
| |
| for (i = 0; i < len; i++) |
| buf[i] = i2c_smbus_read_byte_data(state->edid_i2c_client, i); |
| } |
| |
| static inline bool ad9389b_have_hotplug(struct v4l2_subdev *sd) |
| { |
| return ad9389b_rd(sd, 0x42) & MASK_AD9389B_HPD_DETECT; |
| } |
| |
| static inline bool ad9389b_have_rx_sense(struct v4l2_subdev *sd) |
| { |
| return ad9389b_rd(sd, 0x42) & MASK_AD9389B_MSEN_DETECT; |
| } |
| |
| static void ad9389b_csc_conversion_mode(struct v4l2_subdev *sd, u8 mode) |
| { |
| ad9389b_wr_and_or(sd, 0x17, 0xe7, (mode & 0x3)<<3); |
| ad9389b_wr_and_or(sd, 0x18, 0x9f, (mode & 0x3)<<5); |
| } |
| |
| static void ad9389b_csc_coeff(struct v4l2_subdev *sd, |
| u16 A1, u16 A2, u16 A3, u16 A4, |
| u16 B1, u16 B2, u16 B3, u16 B4, |
| u16 C1, u16 C2, u16 C3, u16 C4) |
| { |
| /* A */ |
| ad9389b_wr_and_or(sd, 0x18, 0xe0, A1>>8); |
| ad9389b_wr(sd, 0x19, A1); |
| ad9389b_wr_and_or(sd, 0x1A, 0xe0, A2>>8); |
| ad9389b_wr(sd, 0x1B, A2); |
| ad9389b_wr_and_or(sd, 0x1c, 0xe0, A3>>8); |
| ad9389b_wr(sd, 0x1d, A3); |
| ad9389b_wr_and_or(sd, 0x1e, 0xe0, A4>>8); |
| ad9389b_wr(sd, 0x1f, A4); |
| |
| /* B */ |
| ad9389b_wr_and_or(sd, 0x20, 0xe0, B1>>8); |
| ad9389b_wr(sd, 0x21, B1); |
| ad9389b_wr_and_or(sd, 0x22, 0xe0, B2>>8); |
| ad9389b_wr(sd, 0x23, B2); |
| ad9389b_wr_and_or(sd, 0x24, 0xe0, B3>>8); |
| ad9389b_wr(sd, 0x25, B3); |
| ad9389b_wr_and_or(sd, 0x26, 0xe0, B4>>8); |
| ad9389b_wr(sd, 0x27, B4); |
| |
| /* C */ |
| ad9389b_wr_and_or(sd, 0x28, 0xe0, C1>>8); |
| ad9389b_wr(sd, 0x29, C1); |
| ad9389b_wr_and_or(sd, 0x2A, 0xe0, C2>>8); |
| ad9389b_wr(sd, 0x2B, C2); |
| ad9389b_wr_and_or(sd, 0x2C, 0xe0, C3>>8); |
| ad9389b_wr(sd, 0x2D, C3); |
| ad9389b_wr_and_or(sd, 0x2E, 0xe0, C4>>8); |
| ad9389b_wr(sd, 0x2F, C4); |
| } |
| |
| static void ad9389b_csc_rgb_full2limit(struct v4l2_subdev *sd, bool enable) |
| { |
| if (enable) { |
| u8 csc_mode = 0; |
| |
| ad9389b_csc_conversion_mode(sd, csc_mode); |
| ad9389b_csc_coeff(sd, |
| 4096-564, 0, 0, 256, |
| 0, 4096-564, 0, 256, |
| 0, 0, 4096-564, 256); |
| /* enable CSC */ |
| ad9389b_wr_and_or(sd, 0x3b, 0xfe, 0x1); |
| /* AVI infoframe: Limited range RGB (16-235) */ |
| ad9389b_wr_and_or(sd, 0xcd, 0xf9, 0x02); |
| } else { |
| /* disable CSC */ |
| ad9389b_wr_and_or(sd, 0x3b, 0xfe, 0x0); |
| /* AVI infoframe: Full range RGB (0-255) */ |
| ad9389b_wr_and_or(sd, 0xcd, 0xf9, 0x04); |
| } |
| } |
| |
| static void ad9389b_set_IT_content_AVI_InfoFrame(struct v4l2_subdev *sd) |
| { |
| struct ad9389b_state *state = get_ad9389b_state(sd); |
| |
| if (state->dv_timings.bt.standards & V4L2_DV_BT_STD_CEA861) { |
| /* CEA format, not IT */ |
| ad9389b_wr_and_or(sd, 0xcd, 0xbf, 0x00); |
| } else { |
| /* IT format */ |
| ad9389b_wr_and_or(sd, 0xcd, 0xbf, 0x40); |
| } |
| } |
| |
| static int ad9389b_set_rgb_quantization_mode(struct v4l2_subdev *sd, struct v4l2_ctrl *ctrl) |
| { |
| struct ad9389b_state *state = get_ad9389b_state(sd); |
| |
| switch (ctrl->val) { |
| case V4L2_DV_RGB_RANGE_AUTO: |
| /* automatic */ |
| if (state->dv_timings.bt.standards & V4L2_DV_BT_STD_CEA861) { |
| /* cea format, RGB limited range (16-235) */ |
| ad9389b_csc_rgb_full2limit(sd, true); |
| } else { |
| /* not cea format, RGB full range (0-255) */ |
| ad9389b_csc_rgb_full2limit(sd, false); |
| } |
| break; |
| case V4L2_DV_RGB_RANGE_LIMITED: |
| /* RGB limited range (16-235) */ |
| ad9389b_csc_rgb_full2limit(sd, true); |
| break; |
| case V4L2_DV_RGB_RANGE_FULL: |
| /* RGB full range (0-255) */ |
| ad9389b_csc_rgb_full2limit(sd, false); |
| break; |
| default: |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| static void ad9389b_set_manual_pll_gear(struct v4l2_subdev *sd, u32 pixelclock) |
| { |
| u8 gear; |
| |
| /* Workaround for TMDS PLL problem |
| * The TMDS PLL in AD9389b change gear when the chip is heated above a |
| * certain temperature. The output is disabled when the PLL change gear |
| * so the monitor has to lock on the signal again. A workaround for |
| * this is to use the manual PLL gears. This is a solution from Analog |
| * Devices that is not documented in the datasheets. |
| * 0x98 [7] = enable manual gearing. 0x98 [6:4] = gear |
| * |
| * The pixel frequency ranges are based on readout of the gear the |
| * automatic gearing selects for different pixel clocks |
| * (read from 0x9e [3:1]). |
| */ |
| |
| if (pixelclock > 140000000) |
| gear = 0xc0; /* 4th gear */ |
| else if (pixelclock > 117000000) |
| gear = 0xb0; /* 3rd gear */ |
| else if (pixelclock > 87000000) |
| gear = 0xa0; /* 2nd gear */ |
| else if (pixelclock > 60000000) |
| gear = 0x90; /* 1st gear */ |
| else |
| gear = 0x80; /* 0th gear */ |
| |
| ad9389b_wr_and_or(sd, 0x98, 0x0f, gear); |
| } |
| |
| /* ------------------------------ CTRL OPS ------------------------------ */ |
| |
| static int ad9389b_s_ctrl(struct v4l2_ctrl *ctrl) |
| { |
| struct v4l2_subdev *sd = to_sd(ctrl); |
| struct ad9389b_state *state = get_ad9389b_state(sd); |
| |
| v4l2_dbg(1, debug, sd, |
| "%s: ctrl id: %d, ctrl->val %d\n", __func__, ctrl->id, ctrl->val); |
| |
| if (state->hdmi_mode_ctrl == ctrl) { |
| /* Set HDMI or DVI-D */ |
| ad9389b_wr_and_or(sd, 0xaf, 0xfd, |
| ctrl->val == V4L2_DV_TX_MODE_HDMI ? 0x02 : 0x00); |
| return 0; |
| } |
| if (state->rgb_quantization_range_ctrl == ctrl) |
| return ad9389b_set_rgb_quantization_mode(sd, ctrl); |
| return -EINVAL; |
| } |
| |
| static const struct v4l2_ctrl_ops ad9389b_ctrl_ops = { |
| .s_ctrl = ad9389b_s_ctrl, |
| }; |
| |
| /* ---------------------------- CORE OPS ------------------------------------------- */ |
| |
| #ifdef CONFIG_VIDEO_ADV_DEBUG |
| static int ad9389b_g_register(struct v4l2_subdev *sd, struct v4l2_dbg_register *reg) |
| { |
| reg->val = ad9389b_rd(sd, reg->reg & 0xff); |
| reg->size = 1; |
| return 0; |
| } |
| |
| static int ad9389b_s_register(struct v4l2_subdev *sd, const struct v4l2_dbg_register *reg) |
| { |
| ad9389b_wr(sd, reg->reg & 0xff, reg->val & 0xff); |
| return 0; |
| } |
| #endif |
| |
| static int ad9389b_log_status(struct v4l2_subdev *sd) |
| { |
| struct ad9389b_state *state = get_ad9389b_state(sd); |
| struct ad9389b_state_edid *edid = &state->edid; |
| |
| static const char * const states[] = { |
| "in reset", |
| "reading EDID", |
| "idle", |
| "initializing HDCP", |
| "HDCP enabled", |
| "initializing HDCP repeater", |
| "6", "7", "8", "9", "A", "B", "C", "D", "E", "F" |
| }; |
| static const char * const errors[] = { |
| "no error", |
| "bad receiver BKSV", |
| "Ri mismatch", |
| "Pj mismatch", |
| "i2c error", |
| "timed out", |
| "max repeater cascade exceeded", |
| "hash check failed", |
| "too many devices", |
| "9", "A", "B", "C", "D", "E", "F" |
| }; |
| |
| u8 manual_gear; |
| |
| v4l2_info(sd, "chip revision %d\n", state->chip_revision); |
| v4l2_info(sd, "power %s\n", state->power_on ? "on" : "off"); |
| v4l2_info(sd, "%s hotplug, %s Rx Sense, %s EDID (%d block(s))\n", |
| (ad9389b_rd(sd, 0x42) & MASK_AD9389B_HPD_DETECT) ? |
| "detected" : "no", |
| (ad9389b_rd(sd, 0x42) & MASK_AD9389B_MSEN_DETECT) ? |
| "detected" : "no", |
| edid->segments ? "found" : "no", edid->blocks); |
| if (state->have_monitor) { |
| v4l2_info(sd, "%s output %s\n", |
| (ad9389b_rd(sd, 0xaf) & 0x02) ? |
| "HDMI" : "DVI-D", |
| (ad9389b_rd(sd, 0xa1) & 0x3c) ? |
| "disabled" : "enabled"); |
| } |
| v4l2_info(sd, "ad9389b: %s\n", (ad9389b_rd(sd, 0xb8) & 0x40) ? |
| "encrypted" : "no encryption"); |
| v4l2_info(sd, "state: %s, error: %s, detect count: %u, msk/irq: %02x/%02x\n", |
| states[ad9389b_rd(sd, 0xc8) & 0xf], |
| errors[ad9389b_rd(sd, 0xc8) >> 4], |
| state->edid_detect_counter, |
| ad9389b_rd(sd, 0x94), ad9389b_rd(sd, 0x96)); |
| manual_gear = ad9389b_rd(sd, 0x98) & 0x80; |
| v4l2_info(sd, "ad9389b: RGB quantization: %s range\n", |
| ad9389b_rd(sd, 0x3b) & 0x01 ? "limited" : "full"); |
| v4l2_info(sd, "ad9389b: %s gear %d\n", |
| manual_gear ? "manual" : "automatic", |
| manual_gear ? ((ad9389b_rd(sd, 0x98) & 0x70) >> 4) : |
| ((ad9389b_rd(sd, 0x9e) & 0x0e) >> 1)); |
| if (state->have_monitor) { |
| if (ad9389b_rd(sd, 0xaf) & 0x02) { |
| /* HDMI only */ |
| u8 manual_cts = ad9389b_rd(sd, 0x0a) & 0x80; |
| u32 N = (ad9389b_rd(sd, 0x01) & 0xf) << 16 | |
| ad9389b_rd(sd, 0x02) << 8 | |
| ad9389b_rd(sd, 0x03); |
| u8 vic_detect = ad9389b_rd(sd, 0x3e) >> 2; |
| u8 vic_sent = ad9389b_rd(sd, 0x3d) & 0x3f; |
| u32 CTS; |
| |
| if (manual_cts) |
| CTS = (ad9389b_rd(sd, 0x07) & 0xf) << 16 | |
| ad9389b_rd(sd, 0x08) << 8 | |
| ad9389b_rd(sd, 0x09); |
| else |
| CTS = (ad9389b_rd(sd, 0x04) & 0xf) << 16 | |
| ad9389b_rd(sd, 0x05) << 8 | |
| ad9389b_rd(sd, 0x06); |
| N = (ad9389b_rd(sd, 0x01) & 0xf) << 16 | |
| ad9389b_rd(sd, 0x02) << 8 | |
| ad9389b_rd(sd, 0x03); |
| |
| v4l2_info(sd, "ad9389b: CTS %s mode: N %d, CTS %d\n", |
| manual_cts ? "manual" : "automatic", N, CTS); |
| |
| v4l2_info(sd, "ad9389b: VIC: detected %d, sent %d\n", |
| vic_detect, vic_sent); |
| } |
| } |
| if (state->dv_timings.type == V4L2_DV_BT_656_1120) { |
| struct v4l2_bt_timings *bt = bt = &state->dv_timings.bt; |
| u32 frame_width = V4L2_DV_BT_FRAME_WIDTH(bt); |
| u32 frame_height = V4L2_DV_BT_FRAME_HEIGHT(bt); |
| u32 frame_size = frame_width * frame_height; |
| |
| v4l2_info(sd, "timings: %ux%u%s%u (%ux%u). Pix freq. = %u Hz. Polarities = 0x%x\n", |
| bt->width, bt->height, bt->interlaced ? "i" : "p", |
| frame_size > 0 ? (unsigned)bt->pixelclock / frame_size : 0, |
| frame_width, frame_height, |
| (unsigned)bt->pixelclock, bt->polarities); |
| } else { |
| v4l2_info(sd, "no timings set\n"); |
| } |
| return 0; |
| } |
| |
| /* Power up/down ad9389b */ |
| static int ad9389b_s_power(struct v4l2_subdev *sd, int on) |
| { |
| struct ad9389b_state *state = get_ad9389b_state(sd); |
| struct ad9389b_platform_data *pdata = &state->pdata; |
| const int retries = 20; |
| int i; |
| |
| v4l2_dbg(1, debug, sd, "%s: power %s\n", __func__, on ? "on" : "off"); |
| |
| state->power_on = on; |
| |
| if (!on) { |
| /* Power down */ |
| ad9389b_wr_and_or(sd, 0x41, 0xbf, 0x40); |
| return true; |
| } |
| |
| /* Power up */ |
| /* The ad9389b does not always come up immediately. |
| Retry multiple times. */ |
| for (i = 0; i < retries; i++) { |
| ad9389b_wr_and_or(sd, 0x41, 0xbf, 0x0); |
| if ((ad9389b_rd(sd, 0x41) & 0x40) == 0) |
| break; |
| ad9389b_wr_and_or(sd, 0x41, 0xbf, 0x40); |
| msleep(10); |
| } |
| if (i == retries) { |
| v4l2_dbg(1, debug, sd, "failed to powerup the ad9389b\n"); |
| ad9389b_s_power(sd, 0); |
| return false; |
| } |
| if (i > 1) |
| v4l2_dbg(1, debug, sd, |
| "needed %d retries to powerup the ad9389b\n", i); |
| |
| /* Select chip: AD9389B */ |
| ad9389b_wr_and_or(sd, 0xba, 0xef, 0x10); |
| |
| /* Reserved registers that must be set according to REF_01 p. 11*/ |
| ad9389b_wr_and_or(sd, 0x98, 0xf0, 0x07); |
| ad9389b_wr(sd, 0x9c, 0x38); |
| ad9389b_wr_and_or(sd, 0x9d, 0xfc, 0x01); |
| |
| /* Differential output drive strength */ |
| if (pdata->diff_data_drive_strength > 0) |
| ad9389b_wr(sd, 0xa2, pdata->diff_data_drive_strength); |
| else |
| ad9389b_wr(sd, 0xa2, 0x87); |
| |
| if (pdata->diff_clk_drive_strength > 0) |
| ad9389b_wr(sd, 0xa3, pdata->diff_clk_drive_strength); |
| else |
| ad9389b_wr(sd, 0xa3, 0x87); |
| |
| ad9389b_wr(sd, 0x0a, 0x01); |
| ad9389b_wr(sd, 0xbb, 0xff); |
| |
| /* Set number of attempts to read the EDID */ |
| ad9389b_wr(sd, 0xc9, 0xf); |
| return true; |
| } |
| |
| /* Enable interrupts */ |
| static void ad9389b_set_isr(struct v4l2_subdev *sd, bool enable) |
| { |
| u8 irqs = MASK_AD9389B_HPD_INT | MASK_AD9389B_MSEN_INT; |
| u8 irqs_rd; |
| int retries = 100; |
| |
| /* The datasheet says that the EDID ready interrupt should be |
| disabled if there is no hotplug. */ |
| if (!enable) |
| irqs = 0; |
| else if (ad9389b_have_hotplug(sd)) |
| irqs |= MASK_AD9389B_EDID_RDY_INT; |
| |
| /* |
| * This i2c write can fail (approx. 1 in 1000 writes). But it |
| * is essential that this register is correct, so retry it |
| * multiple times. |
| * |
| * Note that the i2c write does not report an error, but the readback |
| * clearly shows the wrong value. |
| */ |
| do { |
| ad9389b_wr(sd, 0x94, irqs); |
| irqs_rd = ad9389b_rd(sd, 0x94); |
| } while (retries-- && irqs_rd != irqs); |
| |
| if (irqs_rd != irqs) |
| v4l2_err(sd, "Could not set interrupts: hw failure?\n"); |
| } |
| |
| /* Interrupt handler */ |
| static int ad9389b_isr(struct v4l2_subdev *sd, u32 status, bool *handled) |
| { |
| u8 irq_status; |
| |
| /* disable interrupts to prevent a race condition */ |
| ad9389b_set_isr(sd, false); |
| irq_status = ad9389b_rd(sd, 0x96); |
| /* clear detected interrupts */ |
| ad9389b_wr(sd, 0x96, irq_status); |
| |
| if (irq_status & (MASK_AD9389B_HPD_INT | MASK_AD9389B_MSEN_INT)) |
| ad9389b_check_monitor_present_status(sd); |
| if (irq_status & MASK_AD9389B_EDID_RDY_INT) |
| ad9389b_check_edid_status(sd); |
| |
| /* enable interrupts */ |
| ad9389b_set_isr(sd, true); |
| *handled = true; |
| return 0; |
| } |
| |
| static const struct v4l2_subdev_core_ops ad9389b_core_ops = { |
| .log_status = ad9389b_log_status, |
| #ifdef CONFIG_VIDEO_ADV_DEBUG |
| .g_register = ad9389b_g_register, |
| .s_register = ad9389b_s_register, |
| #endif |
| .s_power = ad9389b_s_power, |
| .interrupt_service_routine = ad9389b_isr, |
| }; |
| |
| /* ------------------------------ PAD OPS ------------------------------ */ |
| |
| static int ad9389b_get_edid(struct v4l2_subdev *sd, struct v4l2_subdev_edid *edid) |
| { |
| struct ad9389b_state *state = get_ad9389b_state(sd); |
| |
| if (edid->pad != 0) |
| return -EINVAL; |
| if (edid->blocks == 0 || edid->blocks > 256) |
| return -EINVAL; |
| if (!edid->edid) |
| return -EINVAL; |
| if (!state->edid.segments) { |
| v4l2_dbg(1, debug, sd, "EDID segment 0 not found\n"); |
| return -ENODATA; |
| } |
| if (edid->start_block >= state->edid.segments * 2) |
| return -E2BIG; |
| if (edid->blocks + edid->start_block >= state->edid.segments * 2) |
| edid->blocks = state->edid.segments * 2 - edid->start_block; |
| memcpy(edid->edid, &state->edid.data[edid->start_block * 128], |
| 128 * edid->blocks); |
| return 0; |
| } |
| |
| static const struct v4l2_subdev_pad_ops ad9389b_pad_ops = { |
| .get_edid = ad9389b_get_edid, |
| }; |
| |
| /* ------------------------------ VIDEO OPS ------------------------------ */ |
| |
| /* Enable/disable ad9389b output */ |
| static int ad9389b_s_stream(struct v4l2_subdev *sd, int enable) |
| { |
| struct ad9389b_state *state = get_ad9389b_state(sd); |
| |
| v4l2_dbg(1, debug, sd, "%s: %sable\n", __func__, (enable ? "en" : "dis")); |
| |
| ad9389b_wr_and_or(sd, 0xa1, ~0x3c, (enable ? 0 : 0x3c)); |
| if (enable) { |
| ad9389b_check_monitor_present_status(sd); |
| } else { |
| ad9389b_s_power(sd, 0); |
| state->have_monitor = false; |
| } |
| return 0; |
| } |
| |
| static const struct v4l2_dv_timings_cap ad9389b_timings_cap = { |
| .type = V4L2_DV_BT_656_1120, |
| .bt = { |
| .max_width = 1920, |
| .max_height = 1200, |
| .min_pixelclock = 27000000, |
| .max_pixelclock = 170000000, |
| .standards = V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT | |
| V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT, |
| .capabilities = V4L2_DV_BT_CAP_PROGRESSIVE | |
| V4L2_DV_BT_CAP_REDUCED_BLANKING | V4L2_DV_BT_CAP_CUSTOM, |
| }, |
| }; |
| |
| static int ad9389b_s_dv_timings(struct v4l2_subdev *sd, |
| struct v4l2_dv_timings *timings) |
| { |
| struct ad9389b_state *state = get_ad9389b_state(sd); |
| |
| v4l2_dbg(1, debug, sd, "%s:\n", __func__); |
| |
| /* quick sanity check */ |
| if (!v4l2_dv_valid_timings(timings, &ad9389b_timings_cap)) |
| return -EINVAL; |
| |
| /* Fill the optional fields .standards and .flags in struct v4l2_dv_timings |
| if the format is one of the CEA or DMT timings. */ |
| v4l2_find_dv_timings_cap(timings, &ad9389b_timings_cap, 0); |
| |
| timings->bt.flags &= ~V4L2_DV_FL_REDUCED_FPS; |
| |
| /* save timings */ |
| state->dv_timings = *timings; |
| |
| /* update quantization range based on new dv_timings */ |
| ad9389b_set_rgb_quantization_mode(sd, state->rgb_quantization_range_ctrl); |
| |
| /* update PLL gear based on new dv_timings */ |
| if (state->pdata.tmds_pll_gear == AD9389B_TMDS_PLL_GEAR_SEMI_AUTOMATIC) |
| ad9389b_set_manual_pll_gear(sd, (u32)timings->bt.pixelclock); |
| |
| /* update AVI infoframe */ |
| ad9389b_set_IT_content_AVI_InfoFrame(sd); |
| |
| return 0; |
| } |
| |
| static int ad9389b_g_dv_timings(struct v4l2_subdev *sd, |
| struct v4l2_dv_timings *timings) |
| { |
| struct ad9389b_state *state = get_ad9389b_state(sd); |
| |
| v4l2_dbg(1, debug, sd, "%s:\n", __func__); |
| |
| if (!timings) |
| return -EINVAL; |
| |
| *timings = state->dv_timings; |
| |
| return 0; |
| } |
| |
| static int ad9389b_enum_dv_timings(struct v4l2_subdev *sd, |
| struct v4l2_enum_dv_timings *timings) |
| { |
| return v4l2_enum_dv_timings_cap(timings, &ad9389b_timings_cap); |
| } |
| |
| static int ad9389b_dv_timings_cap(struct v4l2_subdev *sd, |
| struct v4l2_dv_timings_cap *cap) |
| { |
| *cap = ad9389b_timings_cap; |
| return 0; |
| } |
| |
| static const struct v4l2_subdev_video_ops ad9389b_video_ops = { |
| .s_stream = ad9389b_s_stream, |
| .s_dv_timings = ad9389b_s_dv_timings, |
| .g_dv_timings = ad9389b_g_dv_timings, |
| .enum_dv_timings = ad9389b_enum_dv_timings, |
| .dv_timings_cap = ad9389b_dv_timings_cap, |
| }; |
| |
| static int ad9389b_s_audio_stream(struct v4l2_subdev *sd, int enable) |
| { |
| v4l2_dbg(1, debug, sd, "%s: %sable\n", __func__, (enable ? "en" : "dis")); |
| |
| if (enable) |
| ad9389b_wr_and_or(sd, 0x45, 0x3f, 0x80); |
| else |
| ad9389b_wr_and_or(sd, 0x45, 0x3f, 0x40); |
| |
| return 0; |
| } |
| |
| static int ad9389b_s_clock_freq(struct v4l2_subdev *sd, u32 freq) |
| { |
| u32 N; |
| |
| switch (freq) { |
| case 32000: N = 4096; break; |
| case 44100: N = 6272; break; |
| case 48000: N = 6144; break; |
| case 88200: N = 12544; break; |
| case 96000: N = 12288; break; |
| case 176400: N = 25088; break; |
| case 192000: N = 24576; break; |
| default: |
| return -EINVAL; |
| } |
| |
| /* Set N (used with CTS to regenerate the audio clock) */ |
| ad9389b_wr(sd, 0x01, (N >> 16) & 0xf); |
| ad9389b_wr(sd, 0x02, (N >> 8) & 0xff); |
| ad9389b_wr(sd, 0x03, N & 0xff); |
| |
| return 0; |
| } |
| |
| static int ad9389b_s_i2s_clock_freq(struct v4l2_subdev *sd, u32 freq) |
| { |
| u32 i2s_sf; |
| |
| switch (freq) { |
| case 32000: i2s_sf = 0x30; break; |
| case 44100: i2s_sf = 0x00; break; |
| case 48000: i2s_sf = 0x20; break; |
| case 88200: i2s_sf = 0x80; break; |
| case 96000: i2s_sf = 0xa0; break; |
| case 176400: i2s_sf = 0xc0; break; |
| case 192000: i2s_sf = 0xe0; break; |
| default: |
| return -EINVAL; |
| } |
| |
| /* Set sampling frequency for I2S audio to 48 kHz */ |
| ad9389b_wr_and_or(sd, 0x15, 0xf, i2s_sf); |
| |
| return 0; |
| } |
| |
| static int ad9389b_s_routing(struct v4l2_subdev *sd, u32 input, u32 output, u32 config) |
| { |
| /* TODO based on input/output/config */ |
| /* TODO See datasheet "Programmers guide" p. 39-40 */ |
| |
| /* Only 2 channels in use for application */ |
| ad9389b_wr_and_or(sd, 0x50, 0x1f, 0x20); |
| /* Speaker mapping */ |
| ad9389b_wr(sd, 0x51, 0x00); |
| |
| /* TODO Where should this be placed? */ |
| /* 16 bit audio word length */ |
| ad9389b_wr_and_or(sd, 0x14, 0xf0, 0x02); |
| |
| return 0; |
| } |
| |
| static const struct v4l2_subdev_audio_ops ad9389b_audio_ops = { |
| .s_stream = ad9389b_s_audio_stream, |
| .s_clock_freq = ad9389b_s_clock_freq, |
| .s_i2s_clock_freq = ad9389b_s_i2s_clock_freq, |
| .s_routing = ad9389b_s_routing, |
| }; |
| |
| /* --------------------- SUBDEV OPS --------------------------------------- */ |
| |
| static const struct v4l2_subdev_ops ad9389b_ops = { |
| .core = &ad9389b_core_ops, |
| .video = &ad9389b_video_ops, |
| .audio = &ad9389b_audio_ops, |
| .pad = &ad9389b_pad_ops, |
| }; |
| |
| /* ----------------------------------------------------------------------- */ |
| static void ad9389b_dbg_dump_edid(int lvl, int debug, struct v4l2_subdev *sd, |
| int segment, u8 *buf) |
| { |
| int i, j; |
| |
| if (debug < lvl) |
| return; |
| |
| v4l2_dbg(lvl, debug, sd, "edid segment %d\n", segment); |
| for (i = 0; i < 256; i += 16) { |
| u8 b[128]; |
| u8 *bp = b; |
| |
| if (i == 128) |
| v4l2_dbg(lvl, debug, sd, "\n"); |
| for (j = i; j < i + 16; j++) { |
| sprintf(bp, "0x%02x, ", buf[j]); |
| bp += 6; |
| } |
| bp[0] = '\0'; |
| v4l2_dbg(lvl, debug, sd, "%s\n", b); |
| } |
| } |
| |
| static void ad9389b_edid_handler(struct work_struct *work) |
| { |
| struct delayed_work *dwork = to_delayed_work(work); |
| struct ad9389b_state *state = container_of(dwork, |
| struct ad9389b_state, edid_handler); |
| struct v4l2_subdev *sd = &state->sd; |
| struct ad9389b_edid_detect ed; |
| |
| v4l2_dbg(1, debug, sd, "%s:\n", __func__); |
| |
| if (ad9389b_check_edid_status(sd)) { |
| /* Return if we received the EDID. */ |
| return; |
| } |
| |
| if (ad9389b_have_hotplug(sd)) { |
| /* We must retry reading the EDID several times, it is possible |
| * that initially the EDID couldn't be read due to i2c errors |
| * (DVI connectors are particularly prone to this problem). */ |
| if (state->edid.read_retries) { |
| state->edid.read_retries--; |
| v4l2_dbg(1, debug, sd, "%s: edid read failed\n", __func__); |
| state->have_monitor = false; |
| ad9389b_s_power(sd, false); |
| ad9389b_s_power(sd, true); |
| queue_delayed_work(state->work_queue, |
| &state->edid_handler, EDID_DELAY); |
| return; |
| } |
| } |
| |
| /* We failed to read the EDID, so send an event for this. */ |
| ed.present = false; |
| ed.segment = ad9389b_rd(sd, 0xc4); |
| v4l2_subdev_notify(sd, AD9389B_EDID_DETECT, (void *)&ed); |
| v4l2_dbg(1, debug, sd, "%s: no edid found\n", __func__); |
| } |
| |
| static void ad9389b_audio_setup(struct v4l2_subdev *sd) |
| { |
| v4l2_dbg(1, debug, sd, "%s\n", __func__); |
| |
| ad9389b_s_i2s_clock_freq(sd, 48000); |
| ad9389b_s_clock_freq(sd, 48000); |
| ad9389b_s_routing(sd, 0, 0, 0); |
| } |
| |
| /* Initial setup of AD9389b */ |
| |
| /* Configure hdmi transmitter. */ |
| static void ad9389b_setup(struct v4l2_subdev *sd) |
| { |
| struct ad9389b_state *state = get_ad9389b_state(sd); |
| |
| v4l2_dbg(1, debug, sd, "%s\n", __func__); |
| |
| /* Input format: RGB 4:4:4 */ |
| ad9389b_wr_and_or(sd, 0x15, 0xf1, 0x0); |
| /* Output format: RGB 4:4:4 */ |
| ad9389b_wr_and_or(sd, 0x16, 0x3f, 0x0); |
| /* 1st order interpolation 4:2:2 -> 4:4:4 up conversion, |
| Aspect ratio: 16:9 */ |
| ad9389b_wr_and_or(sd, 0x17, 0xf9, 0x06); |
| /* Output format: RGB 4:4:4, Active Format Information is valid. */ |
| ad9389b_wr_and_or(sd, 0x45, 0xc7, 0x08); |
| /* Underscanned */ |
| ad9389b_wr_and_or(sd, 0x46, 0x3f, 0x80); |
| /* Setup video format */ |
| ad9389b_wr(sd, 0x3c, 0x0); |
| /* Active format aspect ratio: same as picure. */ |
| ad9389b_wr(sd, 0x47, 0x80); |
| /* No encryption */ |
| ad9389b_wr_and_or(sd, 0xaf, 0xef, 0x0); |
| /* Positive clk edge capture for input video clock */ |
| ad9389b_wr_and_or(sd, 0xba, 0x1f, 0x60); |
| |
| ad9389b_audio_setup(sd); |
| |
| v4l2_ctrl_handler_setup(&state->hdl); |
| |
| ad9389b_set_IT_content_AVI_InfoFrame(sd); |
| } |
| |
| static void ad9389b_notify_monitor_detect(struct v4l2_subdev *sd) |
| { |
| struct ad9389b_monitor_detect mdt; |
| struct ad9389b_state *state = get_ad9389b_state(sd); |
| |
| mdt.present = state->have_monitor; |
| v4l2_subdev_notify(sd, AD9389B_MONITOR_DETECT, (void *)&mdt); |
| } |
| |
| static void ad9389b_check_monitor_present_status(struct v4l2_subdev *sd) |
| { |
| struct ad9389b_state *state = get_ad9389b_state(sd); |
| /* read hotplug and rx-sense state */ |
| u8 status = ad9389b_rd(sd, 0x42); |
| |
| v4l2_dbg(1, debug, sd, "%s: status: 0x%x%s%s\n", |
| __func__, |
| status, |
| status & MASK_AD9389B_HPD_DETECT ? ", hotplug" : "", |
| status & MASK_AD9389B_MSEN_DETECT ? ", rx-sense" : ""); |
| |
| if ((status & MASK_AD9389B_HPD_DETECT) && |
| ((status & MASK_AD9389B_MSEN_DETECT) || state->edid.segments)) { |
| v4l2_dbg(1, debug, sd, |
| "%s: hotplug and (rx-sense or edid)\n", __func__); |
| if (!state->have_monitor) { |
| v4l2_dbg(1, debug, sd, "%s: monitor detected\n", __func__); |
| state->have_monitor = true; |
| ad9389b_set_isr(sd, true); |
| if (!ad9389b_s_power(sd, true)) { |
| v4l2_dbg(1, debug, sd, |
| "%s: monitor detected, powerup failed\n", __func__); |
| return; |
| } |
| ad9389b_setup(sd); |
| ad9389b_notify_monitor_detect(sd); |
| state->edid.read_retries = EDID_MAX_RETRIES; |
| queue_delayed_work(state->work_queue, |
| &state->edid_handler, EDID_DELAY); |
| } |
| } else if (status & MASK_AD9389B_HPD_DETECT) { |
| v4l2_dbg(1, debug, sd, "%s: hotplug detected\n", __func__); |
| state->edid.read_retries = EDID_MAX_RETRIES; |
| queue_delayed_work(state->work_queue, |
| &state->edid_handler, EDID_DELAY); |
| } else if (!(status & MASK_AD9389B_HPD_DETECT)) { |
| v4l2_dbg(1, debug, sd, "%s: hotplug not detected\n", __func__); |
| if (state->have_monitor) { |
| v4l2_dbg(1, debug, sd, "%s: monitor not detected\n", __func__); |
| state->have_monitor = false; |
| ad9389b_notify_monitor_detect(sd); |
| } |
| ad9389b_s_power(sd, false); |
| memset(&state->edid, 0, sizeof(struct ad9389b_state_edid)); |
| } |
| |
| /* update read only ctrls */ |
| v4l2_ctrl_s_ctrl(state->hotplug_ctrl, ad9389b_have_hotplug(sd) ? 0x1 : 0x0); |
| v4l2_ctrl_s_ctrl(state->rx_sense_ctrl, ad9389b_have_rx_sense(sd) ? 0x1 : 0x0); |
| v4l2_ctrl_s_ctrl(state->have_edid0_ctrl, state->edid.segments ? 0x1 : 0x0); |
| } |
| |
| static bool edid_block_verify_crc(u8 *edid_block) |
| { |
| u8 sum = 0; |
| int i; |
| |
| for (i = 0; i < 128; i++) |
| sum += edid_block[i]; |
| return sum == 0; |
| } |
| |
| static bool edid_segment_verify_crc(struct v4l2_subdev *sd, u32 segment) |
| { |
| struct ad9389b_state *state = get_ad9389b_state(sd); |
| u32 blocks = state->edid.blocks; |
| u8 *data = state->edid.data; |
| |
| if (edid_block_verify_crc(&data[segment * 256])) { |
| if ((segment + 1) * 2 <= blocks) |
| return edid_block_verify_crc(&data[segment * 256 + 128]); |
| return true; |
| } |
| return false; |
| } |
| |
| static bool ad9389b_check_edid_status(struct v4l2_subdev *sd) |
| { |
| struct ad9389b_state *state = get_ad9389b_state(sd); |
| struct ad9389b_edid_detect ed; |
| int segment; |
| u8 edidRdy = ad9389b_rd(sd, 0xc5); |
| |
| v4l2_dbg(1, debug, sd, "%s: edid ready (retries: %d)\n", |
| __func__, EDID_MAX_RETRIES - state->edid.read_retries); |
| |
| if (!(edidRdy & MASK_AD9389B_EDID_RDY)) |
| return false; |
| |
| segment = ad9389b_rd(sd, 0xc4); |
| if (segment >= EDID_MAX_SEGM) { |
| v4l2_err(sd, "edid segment number too big\n"); |
| return false; |
| } |
| v4l2_dbg(1, debug, sd, "%s: got segment %d\n", __func__, segment); |
| ad9389b_edid_rd(sd, 256, &state->edid.data[segment * 256]); |
| ad9389b_dbg_dump_edid(2, debug, sd, segment, |
| &state->edid.data[segment * 256]); |
| if (segment == 0) { |
| state->edid.blocks = state->edid.data[0x7e] + 1; |
| v4l2_dbg(1, debug, sd, "%s: %d blocks in total\n", |
| __func__, state->edid.blocks); |
| } |
| if (!edid_segment_verify_crc(sd, segment)) { |
| /* edid crc error, force reread of edid segment */ |
| v4l2_err(sd, "%s: edid crc error\n", __func__); |
| state->have_monitor = false; |
| ad9389b_s_power(sd, false); |
| ad9389b_s_power(sd, true); |
| return false; |
| } |
| /* one more segment read ok */ |
| state->edid.segments = segment + 1; |
| if (((state->edid.data[0x7e] >> 1) + 1) > state->edid.segments) { |
| /* Request next EDID segment */ |
| v4l2_dbg(1, debug, sd, "%s: request segment %d\n", |
| __func__, state->edid.segments); |
| ad9389b_wr(sd, 0xc9, 0xf); |
| ad9389b_wr(sd, 0xc4, state->edid.segments); |
| state->edid.read_retries = EDID_MAX_RETRIES; |
| queue_delayed_work(state->work_queue, |
| &state->edid_handler, EDID_DELAY); |
| return false; |
| } |
| |
| /* report when we have all segments but report only for segment 0 */ |
| ed.present = true; |
| ed.segment = 0; |
| v4l2_subdev_notify(sd, AD9389B_EDID_DETECT, (void *)&ed); |
| state->edid_detect_counter++; |
| v4l2_ctrl_s_ctrl(state->have_edid0_ctrl, state->edid.segments ? 0x1 : 0x0); |
| return ed.present; |
| } |
| |
| /* ----------------------------------------------------------------------- */ |
| |
| static void ad9389b_init_setup(struct v4l2_subdev *sd) |
| { |
| struct ad9389b_state *state = get_ad9389b_state(sd); |
| struct ad9389b_state_edid *edid = &state->edid; |
| |
| v4l2_dbg(1, debug, sd, "%s\n", __func__); |
| |
| /* clear all interrupts */ |
| ad9389b_wr(sd, 0x96, 0xff); |
| |
| memset(edid, 0, sizeof(struct ad9389b_state_edid)); |
| state->have_monitor = false; |
| ad9389b_set_isr(sd, false); |
| } |
| |
| static int ad9389b_probe(struct i2c_client *client, const struct i2c_device_id *id) |
| { |
| const struct v4l2_dv_timings dv1080p60 = V4L2_DV_BT_CEA_1920X1080P60; |
| struct ad9389b_state *state; |
| struct ad9389b_platform_data *pdata = client->dev.platform_data; |
| struct v4l2_ctrl_handler *hdl; |
| struct v4l2_subdev *sd; |
| int err = -EIO; |
| |
| /* Check if the adapter supports the needed features */ |
| if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA)) |
| return -EIO; |
| |
| v4l_dbg(1, debug, client, "detecting ad9389b client on address 0x%x\n", |
| client->addr << 1); |
| |
| state = devm_kzalloc(&client->dev, sizeof(*state), GFP_KERNEL); |
| if (!state) |
| return -ENOMEM; |
| |
| /* Platform data */ |
| if (pdata == NULL) { |
| v4l_err(client, "No platform data!\n"); |
| return -ENODEV; |
| } |
| memcpy(&state->pdata, pdata, sizeof(state->pdata)); |
| |
| sd = &state->sd; |
| v4l2_i2c_subdev_init(sd, client, &ad9389b_ops); |
| sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE; |
| |
| hdl = &state->hdl; |
| v4l2_ctrl_handler_init(hdl, 5); |
| |
| /* private controls */ |
| |
| state->hdmi_mode_ctrl = v4l2_ctrl_new_std_menu(hdl, &ad9389b_ctrl_ops, |
| V4L2_CID_DV_TX_MODE, V4L2_DV_TX_MODE_HDMI, |
| 0, V4L2_DV_TX_MODE_DVI_D); |
| state->hdmi_mode_ctrl->is_private = true; |
| state->hotplug_ctrl = v4l2_ctrl_new_std(hdl, NULL, |
| V4L2_CID_DV_TX_HOTPLUG, 0, 1, 0, 0); |
| state->hotplug_ctrl->is_private = true; |
| state->rx_sense_ctrl = v4l2_ctrl_new_std(hdl, NULL, |
| V4L2_CID_DV_TX_RXSENSE, 0, 1, 0, 0); |
| state->rx_sense_ctrl->is_private = true; |
| state->have_edid0_ctrl = v4l2_ctrl_new_std(hdl, NULL, |
| V4L2_CID_DV_TX_EDID_PRESENT, 0, 1, 0, 0); |
| state->have_edid0_ctrl->is_private = true; |
| state->rgb_quantization_range_ctrl = |
| v4l2_ctrl_new_std_menu(hdl, &ad9389b_ctrl_ops, |
| V4L2_CID_DV_TX_RGB_RANGE, V4L2_DV_RGB_RANGE_FULL, |
| 0, V4L2_DV_RGB_RANGE_AUTO); |
| state->rgb_quantization_range_ctrl->is_private = true; |
| sd->ctrl_handler = hdl; |
| if (hdl->error) { |
| err = hdl->error; |
| |
| goto err_hdl; |
| } |
| |
| state->pad.flags = MEDIA_PAD_FL_SINK; |
| err = media_entity_init(&sd->entity, 1, &state->pad, 0); |
| if (err) |
| goto err_hdl; |
| |
| state->chip_revision = ad9389b_rd(sd, 0x0); |
| if (state->chip_revision != 2) { |
| v4l2_err(sd, "chip_revision %d != 2\n", state->chip_revision); |
| err = -EIO; |
| goto err_entity; |
| } |
| v4l2_dbg(1, debug, sd, "reg 0x41 0x%x, chip version (reg 0x00) 0x%x\n", |
| ad9389b_rd(sd, 0x41), state->chip_revision); |
| |
| state->edid_i2c_client = i2c_new_dummy(client->adapter, (0x7e>>1)); |
| if (state->edid_i2c_client == NULL) { |
| v4l2_err(sd, "failed to register edid i2c client\n"); |
| err = -ENOMEM; |
| goto err_entity; |
| } |
| |
| state->work_queue = create_singlethread_workqueue(sd->name); |
| if (state->work_queue == NULL) { |
| v4l2_err(sd, "could not create workqueue\n"); |
| err = -ENOMEM; |
| goto err_unreg; |
| } |
| |
| INIT_DELAYED_WORK(&state->edid_handler, ad9389b_edid_handler); |
| state->dv_timings = dv1080p60; |
| |
| ad9389b_init_setup(sd); |
| ad9389b_set_isr(sd, true); |
| |
| v4l2_info(sd, "%s found @ 0x%x (%s)\n", client->name, |
| client->addr << 1, client->adapter->name); |
| return 0; |
| |
| err_unreg: |
| i2c_unregister_device(state->edid_i2c_client); |
| err_entity: |
| media_entity_cleanup(&sd->entity); |
| err_hdl: |
| v4l2_ctrl_handler_free(&state->hdl); |
| return err; |
| } |
| |
| /* ----------------------------------------------------------------------- */ |
| |
| static int ad9389b_remove(struct i2c_client *client) |
| { |
| struct v4l2_subdev *sd = i2c_get_clientdata(client); |
| struct ad9389b_state *state = get_ad9389b_state(sd); |
| |
| state->chip_revision = -1; |
| |
| v4l2_dbg(1, debug, sd, "%s removed @ 0x%x (%s)\n", client->name, |
| client->addr << 1, client->adapter->name); |
| |
| ad9389b_s_stream(sd, false); |
| ad9389b_s_audio_stream(sd, false); |
| ad9389b_init_setup(sd); |
| cancel_delayed_work(&state->edid_handler); |
| i2c_unregister_device(state->edid_i2c_client); |
| destroy_workqueue(state->work_queue); |
| v4l2_device_unregister_subdev(sd); |
| media_entity_cleanup(&sd->entity); |
| v4l2_ctrl_handler_free(sd->ctrl_handler); |
| return 0; |
| } |
| |
| /* ----------------------------------------------------------------------- */ |
| |
| static struct i2c_device_id ad9389b_id[] = { |
| { "ad9389b", 0 }, |
| { "ad9889b", 0 }, |
| { } |
| }; |
| MODULE_DEVICE_TABLE(i2c, ad9389b_id); |
| |
| static struct i2c_driver ad9389b_driver = { |
| .driver = { |
| .owner = THIS_MODULE, |
| .name = "ad9389b", |
| }, |
| .probe = ad9389b_probe, |
| .remove = ad9389b_remove, |
| .id_table = ad9389b_id, |
| }; |
| |
| module_i2c_driver(ad9389b_driver); |