| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * net/sched/sch_netem.c Network emulator |
| * |
| * Many of the algorithms and ideas for this came from |
| * NIST Net which is not copyrighted. |
| * |
| * Authors: Stephen Hemminger <shemminger@osdl.org> |
| * Catalin(ux aka Dino) BOIE <catab at umbrella dot ro> |
| */ |
| |
| #include <linux/mm.h> |
| #include <linux/module.h> |
| #include <linux/slab.h> |
| #include <linux/types.h> |
| #include <linux/kernel.h> |
| #include <linux/errno.h> |
| #include <linux/skbuff.h> |
| #include <linux/vmalloc.h> |
| #include <linux/rtnetlink.h> |
| #include <linux/reciprocal_div.h> |
| #include <linux/rbtree.h> |
| |
| #include <net/gso.h> |
| #include <net/netlink.h> |
| #include <net/pkt_sched.h> |
| #include <net/inet_ecn.h> |
| |
| #define VERSION "1.3" |
| |
| /* Network Emulation Queuing algorithm. |
| ==================================== |
| |
| Sources: [1] Mark Carson, Darrin Santay, "NIST Net - A Linux-based |
| Network Emulation Tool |
| [2] Luigi Rizzo, DummyNet for FreeBSD |
| |
| ---------------------------------------------------------------- |
| |
| This started out as a simple way to delay outgoing packets to |
| test TCP but has grown to include most of the functionality |
| of a full blown network emulator like NISTnet. It can delay |
| packets and add random jitter (and correlation). The random |
| distribution can be loaded from a table as well to provide |
| normal, Pareto, or experimental curves. Packet loss, |
| duplication, and reordering can also be emulated. |
| |
| This qdisc does not do classification that can be handled in |
| layering other disciplines. It does not need to do bandwidth |
| control either since that can be handled by using token |
| bucket or other rate control. |
| |
| Correlated Loss Generator models |
| |
| Added generation of correlated loss according to the |
| "Gilbert-Elliot" model, a 4-state markov model. |
| |
| References: |
| [1] NetemCLG Home http://netgroup.uniroma2.it/NetemCLG |
| [2] S. Salsano, F. Ludovici, A. Ordine, "Definition of a general |
| and intuitive loss model for packet networks and its implementation |
| in the Netem module in the Linux kernel", available in [1] |
| |
| Authors: Stefano Salsano <stefano.salsano at uniroma2.it |
| Fabio Ludovici <fabio.ludovici at yahoo.it> |
| */ |
| |
| struct disttable { |
| u32 size; |
| s16 table[] __counted_by(size); |
| }; |
| |
| struct netem_sched_data { |
| /* internal t(ime)fifo qdisc uses t_root and sch->limit */ |
| struct rb_root t_root; |
| |
| /* a linear queue; reduces rbtree rebalancing when jitter is low */ |
| struct sk_buff *t_head; |
| struct sk_buff *t_tail; |
| |
| /* optional qdisc for classful handling (NULL at netem init) */ |
| struct Qdisc *qdisc; |
| |
| struct qdisc_watchdog watchdog; |
| |
| s64 latency; |
| s64 jitter; |
| |
| u32 loss; |
| u32 ecn; |
| u32 limit; |
| u32 counter; |
| u32 gap; |
| u32 duplicate; |
| u32 reorder; |
| u32 corrupt; |
| u64 rate; |
| s32 packet_overhead; |
| u32 cell_size; |
| struct reciprocal_value cell_size_reciprocal; |
| s32 cell_overhead; |
| |
| struct crndstate { |
| u32 last; |
| u32 rho; |
| } delay_cor, loss_cor, dup_cor, reorder_cor, corrupt_cor; |
| |
| struct prng { |
| u64 seed; |
| struct rnd_state prng_state; |
| } prng; |
| |
| struct disttable *delay_dist; |
| |
| enum { |
| CLG_RANDOM, |
| CLG_4_STATES, |
| CLG_GILB_ELL, |
| } loss_model; |
| |
| enum { |
| TX_IN_GAP_PERIOD = 1, |
| TX_IN_BURST_PERIOD, |
| LOST_IN_GAP_PERIOD, |
| LOST_IN_BURST_PERIOD, |
| } _4_state_model; |
| |
| enum { |
| GOOD_STATE = 1, |
| BAD_STATE, |
| } GE_state_model; |
| |
| /* Correlated Loss Generation models */ |
| struct clgstate { |
| /* state of the Markov chain */ |
| u8 state; |
| |
| /* 4-states and Gilbert-Elliot models */ |
| u32 a1; /* p13 for 4-states or p for GE */ |
| u32 a2; /* p31 for 4-states or r for GE */ |
| u32 a3; /* p32 for 4-states or h for GE */ |
| u32 a4; /* p14 for 4-states or 1-k for GE */ |
| u32 a5; /* p23 used only in 4-states */ |
| } clg; |
| |
| struct tc_netem_slot slot_config; |
| struct slotstate { |
| u64 slot_next; |
| s32 packets_left; |
| s32 bytes_left; |
| } slot; |
| |
| struct disttable *slot_dist; |
| }; |
| |
| /* Time stamp put into socket buffer control block |
| * Only valid when skbs are in our internal t(ime)fifo queue. |
| * |
| * As skb->rbnode uses same storage than skb->next, skb->prev and skb->tstamp, |
| * and skb->next & skb->prev are scratch space for a qdisc, |
| * we save skb->tstamp value in skb->cb[] before destroying it. |
| */ |
| struct netem_skb_cb { |
| u64 time_to_send; |
| }; |
| |
| static inline struct netem_skb_cb *netem_skb_cb(struct sk_buff *skb) |
| { |
| /* we assume we can use skb next/prev/tstamp as storage for rb_node */ |
| qdisc_cb_private_validate(skb, sizeof(struct netem_skb_cb)); |
| return (struct netem_skb_cb *)qdisc_skb_cb(skb)->data; |
| } |
| |
| /* init_crandom - initialize correlated random number generator |
| * Use entropy source for initial seed. |
| */ |
| static void init_crandom(struct crndstate *state, unsigned long rho) |
| { |
| state->rho = rho; |
| state->last = get_random_u32(); |
| } |
| |
| /* get_crandom - correlated random number generator |
| * Next number depends on last value. |
| * rho is scaled to avoid floating point. |
| */ |
| static u32 get_crandom(struct crndstate *state, struct prng *p) |
| { |
| u64 value, rho; |
| unsigned long answer; |
| struct rnd_state *s = &p->prng_state; |
| |
| if (!state || state->rho == 0) /* no correlation */ |
| return prandom_u32_state(s); |
| |
| value = prandom_u32_state(s); |
| rho = (u64)state->rho + 1; |
| answer = (value * ((1ull<<32) - rho) + state->last * rho) >> 32; |
| state->last = answer; |
| return answer; |
| } |
| |
| /* loss_4state - 4-state model loss generator |
| * Generates losses according to the 4-state Markov chain adopted in |
| * the GI (General and Intuitive) loss model. |
| */ |
| static bool loss_4state(struct netem_sched_data *q) |
| { |
| struct clgstate *clg = &q->clg; |
| u32 rnd = prandom_u32_state(&q->prng.prng_state); |
| |
| /* |
| * Makes a comparison between rnd and the transition |
| * probabilities outgoing from the current state, then decides the |
| * next state and if the next packet has to be transmitted or lost. |
| * The four states correspond to: |
| * TX_IN_GAP_PERIOD => successfully transmitted packets within a gap period |
| * LOST_IN_GAP_PERIOD => isolated losses within a gap period |
| * LOST_IN_BURST_PERIOD => lost packets within a burst period |
| * TX_IN_BURST_PERIOD => successfully transmitted packets within a burst period |
| */ |
| switch (clg->state) { |
| case TX_IN_GAP_PERIOD: |
| if (rnd < clg->a4) { |
| clg->state = LOST_IN_GAP_PERIOD; |
| return true; |
| } else if (clg->a4 < rnd && rnd < clg->a1 + clg->a4) { |
| clg->state = LOST_IN_BURST_PERIOD; |
| return true; |
| } else if (clg->a1 + clg->a4 < rnd) { |
| clg->state = TX_IN_GAP_PERIOD; |
| } |
| |
| break; |
| case TX_IN_BURST_PERIOD: |
| if (rnd < clg->a5) { |
| clg->state = LOST_IN_BURST_PERIOD; |
| return true; |
| } else { |
| clg->state = TX_IN_BURST_PERIOD; |
| } |
| |
| break; |
| case LOST_IN_BURST_PERIOD: |
| if (rnd < clg->a3) |
| clg->state = TX_IN_BURST_PERIOD; |
| else if (clg->a3 < rnd && rnd < clg->a2 + clg->a3) { |
| clg->state = TX_IN_GAP_PERIOD; |
| } else if (clg->a2 + clg->a3 < rnd) { |
| clg->state = LOST_IN_BURST_PERIOD; |
| return true; |
| } |
| break; |
| case LOST_IN_GAP_PERIOD: |
| clg->state = TX_IN_GAP_PERIOD; |
| break; |
| } |
| |
| return false; |
| } |
| |
| /* loss_gilb_ell - Gilbert-Elliot model loss generator |
| * Generates losses according to the Gilbert-Elliot loss model or |
| * its special cases (Gilbert or Simple Gilbert) |
| * |
| * Makes a comparison between random number and the transition |
| * probabilities outgoing from the current state, then decides the |
| * next state. A second random number is extracted and the comparison |
| * with the loss probability of the current state decides if the next |
| * packet will be transmitted or lost. |
| */ |
| static bool loss_gilb_ell(struct netem_sched_data *q) |
| { |
| struct clgstate *clg = &q->clg; |
| struct rnd_state *s = &q->prng.prng_state; |
| |
| switch (clg->state) { |
| case GOOD_STATE: |
| if (prandom_u32_state(s) < clg->a1) |
| clg->state = BAD_STATE; |
| if (prandom_u32_state(s) < clg->a4) |
| return true; |
| break; |
| case BAD_STATE: |
| if (prandom_u32_state(s) < clg->a2) |
| clg->state = GOOD_STATE; |
| if (prandom_u32_state(s) > clg->a3) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static bool loss_event(struct netem_sched_data *q) |
| { |
| switch (q->loss_model) { |
| case CLG_RANDOM: |
| /* Random packet drop 0 => none, ~0 => all */ |
| return q->loss && q->loss >= get_crandom(&q->loss_cor, &q->prng); |
| |
| case CLG_4_STATES: |
| /* 4state loss model algorithm (used also for GI model) |
| * Extracts a value from the markov 4 state loss generator, |
| * if it is 1 drops a packet and if needed writes the event in |
| * the kernel logs |
| */ |
| return loss_4state(q); |
| |
| case CLG_GILB_ELL: |
| /* Gilbert-Elliot loss model algorithm |
| * Extracts a value from the Gilbert-Elliot loss generator, |
| * if it is 1 drops a packet and if needed writes the event in |
| * the kernel logs |
| */ |
| return loss_gilb_ell(q); |
| } |
| |
| return false; /* not reached */ |
| } |
| |
| |
| /* tabledist - return a pseudo-randomly distributed value with mean mu and |
| * std deviation sigma. Uses table lookup to approximate the desired |
| * distribution, and a uniformly-distributed pseudo-random source. |
| */ |
| static s64 tabledist(s64 mu, s32 sigma, |
| struct crndstate *state, |
| struct prng *prng, |
| const struct disttable *dist) |
| { |
| s64 x; |
| long t; |
| u32 rnd; |
| |
| if (sigma == 0) |
| return mu; |
| |
| rnd = get_crandom(state, prng); |
| |
| /* default uniform distribution */ |
| if (dist == NULL) |
| return ((rnd % (2 * (u32)sigma)) + mu) - sigma; |
| |
| t = dist->table[rnd % dist->size]; |
| x = (sigma % NETEM_DIST_SCALE) * t; |
| if (x >= 0) |
| x += NETEM_DIST_SCALE/2; |
| else |
| x -= NETEM_DIST_SCALE/2; |
| |
| return x / NETEM_DIST_SCALE + (sigma / NETEM_DIST_SCALE) * t + mu; |
| } |
| |
| static u64 packet_time_ns(u64 len, const struct netem_sched_data *q) |
| { |
| len += q->packet_overhead; |
| |
| if (q->cell_size) { |
| u32 cells = reciprocal_divide(len, q->cell_size_reciprocal); |
| |
| if (len > cells * q->cell_size) /* extra cell needed for remainder */ |
| cells++; |
| len = cells * (q->cell_size + q->cell_overhead); |
| } |
| |
| return div64_u64(len * NSEC_PER_SEC, q->rate); |
| } |
| |
| static void tfifo_reset(struct Qdisc *sch) |
| { |
| struct netem_sched_data *q = qdisc_priv(sch); |
| struct rb_node *p = rb_first(&q->t_root); |
| |
| while (p) { |
| struct sk_buff *skb = rb_to_skb(p); |
| |
| p = rb_next(p); |
| rb_erase(&skb->rbnode, &q->t_root); |
| rtnl_kfree_skbs(skb, skb); |
| } |
| |
| rtnl_kfree_skbs(q->t_head, q->t_tail); |
| q->t_head = NULL; |
| q->t_tail = NULL; |
| } |
| |
| static void tfifo_enqueue(struct sk_buff *nskb, struct Qdisc *sch) |
| { |
| struct netem_sched_data *q = qdisc_priv(sch); |
| u64 tnext = netem_skb_cb(nskb)->time_to_send; |
| |
| if (!q->t_tail || tnext >= netem_skb_cb(q->t_tail)->time_to_send) { |
| if (q->t_tail) |
| q->t_tail->next = nskb; |
| else |
| q->t_head = nskb; |
| q->t_tail = nskb; |
| } else { |
| struct rb_node **p = &q->t_root.rb_node, *parent = NULL; |
| |
| while (*p) { |
| struct sk_buff *skb; |
| |
| parent = *p; |
| skb = rb_to_skb(parent); |
| if (tnext >= netem_skb_cb(skb)->time_to_send) |
| p = &parent->rb_right; |
| else |
| p = &parent->rb_left; |
| } |
| rb_link_node(&nskb->rbnode, parent, p); |
| rb_insert_color(&nskb->rbnode, &q->t_root); |
| } |
| sch->q.qlen++; |
| } |
| |
| /* netem can't properly corrupt a megapacket (like we get from GSO), so instead |
| * when we statistically choose to corrupt one, we instead segment it, returning |
| * the first packet to be corrupted, and re-enqueue the remaining frames |
| */ |
| static struct sk_buff *netem_segment(struct sk_buff *skb, struct Qdisc *sch, |
| struct sk_buff **to_free) |
| { |
| struct sk_buff *segs; |
| netdev_features_t features = netif_skb_features(skb); |
| |
| segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK); |
| |
| if (IS_ERR_OR_NULL(segs)) { |
| qdisc_drop(skb, sch, to_free); |
| return NULL; |
| } |
| consume_skb(skb); |
| return segs; |
| } |
| |
| /* |
| * Insert one skb into qdisc. |
| * Note: parent depends on return value to account for queue length. |
| * NET_XMIT_DROP: queue length didn't change. |
| * NET_XMIT_SUCCESS: one skb was queued. |
| */ |
| static int netem_enqueue(struct sk_buff *skb, struct Qdisc *sch, |
| struct sk_buff **to_free) |
| { |
| struct netem_sched_data *q = qdisc_priv(sch); |
| /* We don't fill cb now as skb_unshare() may invalidate it */ |
| struct netem_skb_cb *cb; |
| struct sk_buff *skb2; |
| struct sk_buff *segs = NULL; |
| unsigned int prev_len = qdisc_pkt_len(skb); |
| int count = 1; |
| int rc = NET_XMIT_SUCCESS; |
| int rc_drop = NET_XMIT_DROP; |
| |
| /* Do not fool qdisc_drop_all() */ |
| skb->prev = NULL; |
| |
| /* Random duplication */ |
| if (q->duplicate && q->duplicate >= get_crandom(&q->dup_cor, &q->prng)) |
| ++count; |
| |
| /* Drop packet? */ |
| if (loss_event(q)) { |
| if (q->ecn && INET_ECN_set_ce(skb)) |
| qdisc_qstats_drop(sch); /* mark packet */ |
| else |
| --count; |
| } |
| if (count == 0) { |
| qdisc_qstats_drop(sch); |
| __qdisc_drop(skb, to_free); |
| return NET_XMIT_SUCCESS | __NET_XMIT_BYPASS; |
| } |
| |
| /* If a delay is expected, orphan the skb. (orphaning usually takes |
| * place at TX completion time, so _before_ the link transit delay) |
| */ |
| if (q->latency || q->jitter || q->rate) |
| skb_orphan_partial(skb); |
| |
| /* |
| * If we need to duplicate packet, then re-insert at top of the |
| * qdisc tree, since parent queuer expects that only one |
| * skb will be queued. |
| */ |
| if (count > 1 && (skb2 = skb_clone(skb, GFP_ATOMIC)) != NULL) { |
| struct Qdisc *rootq = qdisc_root_bh(sch); |
| u32 dupsave = q->duplicate; /* prevent duplicating a dup... */ |
| |
| q->duplicate = 0; |
| rootq->enqueue(skb2, rootq, to_free); |
| q->duplicate = dupsave; |
| rc_drop = NET_XMIT_SUCCESS; |
| } |
| |
| /* |
| * Randomized packet corruption. |
| * Make copy if needed since we are modifying |
| * If packet is going to be hardware checksummed, then |
| * do it now in software before we mangle it. |
| */ |
| if (q->corrupt && q->corrupt >= get_crandom(&q->corrupt_cor, &q->prng)) { |
| if (skb_is_gso(skb)) { |
| skb = netem_segment(skb, sch, to_free); |
| if (!skb) |
| return rc_drop; |
| segs = skb->next; |
| skb_mark_not_on_list(skb); |
| qdisc_skb_cb(skb)->pkt_len = skb->len; |
| } |
| |
| skb = skb_unshare(skb, GFP_ATOMIC); |
| if (unlikely(!skb)) { |
| qdisc_qstats_drop(sch); |
| goto finish_segs; |
| } |
| if (skb->ip_summed == CHECKSUM_PARTIAL && |
| skb_checksum_help(skb)) { |
| qdisc_drop(skb, sch, to_free); |
| skb = NULL; |
| goto finish_segs; |
| } |
| |
| skb->data[get_random_u32_below(skb_headlen(skb))] ^= |
| 1<<get_random_u32_below(8); |
| } |
| |
| if (unlikely(sch->q.qlen >= sch->limit)) { |
| /* re-link segs, so that qdisc_drop_all() frees them all */ |
| skb->next = segs; |
| qdisc_drop_all(skb, sch, to_free); |
| return rc_drop; |
| } |
| |
| qdisc_qstats_backlog_inc(sch, skb); |
| |
| cb = netem_skb_cb(skb); |
| if (q->gap == 0 || /* not doing reordering */ |
| q->counter < q->gap - 1 || /* inside last reordering gap */ |
| q->reorder < get_crandom(&q->reorder_cor, &q->prng)) { |
| u64 now; |
| s64 delay; |
| |
| delay = tabledist(q->latency, q->jitter, |
| &q->delay_cor, &q->prng, q->delay_dist); |
| |
| now = ktime_get_ns(); |
| |
| if (q->rate) { |
| struct netem_skb_cb *last = NULL; |
| |
| if (sch->q.tail) |
| last = netem_skb_cb(sch->q.tail); |
| if (q->t_root.rb_node) { |
| struct sk_buff *t_skb; |
| struct netem_skb_cb *t_last; |
| |
| t_skb = skb_rb_last(&q->t_root); |
| t_last = netem_skb_cb(t_skb); |
| if (!last || |
| t_last->time_to_send > last->time_to_send) |
| last = t_last; |
| } |
| if (q->t_tail) { |
| struct netem_skb_cb *t_last = |
| netem_skb_cb(q->t_tail); |
| |
| if (!last || |
| t_last->time_to_send > last->time_to_send) |
| last = t_last; |
| } |
| |
| if (last) { |
| /* |
| * Last packet in queue is reference point (now), |
| * calculate this time bonus and subtract |
| * from delay. |
| */ |
| delay -= last->time_to_send - now; |
| delay = max_t(s64, 0, delay); |
| now = last->time_to_send; |
| } |
| |
| delay += packet_time_ns(qdisc_pkt_len(skb), q); |
| } |
| |
| cb->time_to_send = now + delay; |
| ++q->counter; |
| tfifo_enqueue(skb, sch); |
| } else { |
| /* |
| * Do re-ordering by putting one out of N packets at the front |
| * of the queue. |
| */ |
| cb->time_to_send = ktime_get_ns(); |
| q->counter = 0; |
| |
| __qdisc_enqueue_head(skb, &sch->q); |
| sch->qstats.requeues++; |
| } |
| |
| finish_segs: |
| if (segs) { |
| unsigned int len, last_len; |
| int nb; |
| |
| len = skb ? skb->len : 0; |
| nb = skb ? 1 : 0; |
| |
| while (segs) { |
| skb2 = segs->next; |
| skb_mark_not_on_list(segs); |
| qdisc_skb_cb(segs)->pkt_len = segs->len; |
| last_len = segs->len; |
| rc = qdisc_enqueue(segs, sch, to_free); |
| if (rc != NET_XMIT_SUCCESS) { |
| if (net_xmit_drop_count(rc)) |
| qdisc_qstats_drop(sch); |
| } else { |
| nb++; |
| len += last_len; |
| } |
| segs = skb2; |
| } |
| /* Parent qdiscs accounted for 1 skb of size @prev_len */ |
| qdisc_tree_reduce_backlog(sch, -(nb - 1), -(len - prev_len)); |
| } else if (!skb) { |
| return NET_XMIT_DROP; |
| } |
| return NET_XMIT_SUCCESS; |
| } |
| |
| /* Delay the next round with a new future slot with a |
| * correct number of bytes and packets. |
| */ |
| |
| static void get_slot_next(struct netem_sched_data *q, u64 now) |
| { |
| s64 next_delay; |
| |
| if (!q->slot_dist) |
| next_delay = q->slot_config.min_delay + |
| (get_random_u32() * |
| (q->slot_config.max_delay - |
| q->slot_config.min_delay) >> 32); |
| else |
| next_delay = tabledist(q->slot_config.dist_delay, |
| (s32)(q->slot_config.dist_jitter), |
| NULL, &q->prng, q->slot_dist); |
| |
| q->slot.slot_next = now + next_delay; |
| q->slot.packets_left = q->slot_config.max_packets; |
| q->slot.bytes_left = q->slot_config.max_bytes; |
| } |
| |
| static struct sk_buff *netem_peek(struct netem_sched_data *q) |
| { |
| struct sk_buff *skb = skb_rb_first(&q->t_root); |
| u64 t1, t2; |
| |
| if (!skb) |
| return q->t_head; |
| if (!q->t_head) |
| return skb; |
| |
| t1 = netem_skb_cb(skb)->time_to_send; |
| t2 = netem_skb_cb(q->t_head)->time_to_send; |
| if (t1 < t2) |
| return skb; |
| return q->t_head; |
| } |
| |
| static void netem_erase_head(struct netem_sched_data *q, struct sk_buff *skb) |
| { |
| if (skb == q->t_head) { |
| q->t_head = skb->next; |
| if (!q->t_head) |
| q->t_tail = NULL; |
| } else { |
| rb_erase(&skb->rbnode, &q->t_root); |
| } |
| } |
| |
| static struct sk_buff *netem_dequeue(struct Qdisc *sch) |
| { |
| struct netem_sched_data *q = qdisc_priv(sch); |
| struct sk_buff *skb; |
| |
| tfifo_dequeue: |
| skb = __qdisc_dequeue_head(&sch->q); |
| if (skb) { |
| qdisc_qstats_backlog_dec(sch, skb); |
| deliver: |
| qdisc_bstats_update(sch, skb); |
| return skb; |
| } |
| skb = netem_peek(q); |
| if (skb) { |
| u64 time_to_send; |
| u64 now = ktime_get_ns(); |
| |
| /* if more time remaining? */ |
| time_to_send = netem_skb_cb(skb)->time_to_send; |
| if (q->slot.slot_next && q->slot.slot_next < time_to_send) |
| get_slot_next(q, now); |
| |
| if (time_to_send <= now && q->slot.slot_next <= now) { |
| netem_erase_head(q, skb); |
| sch->q.qlen--; |
| qdisc_qstats_backlog_dec(sch, skb); |
| skb->next = NULL; |
| skb->prev = NULL; |
| /* skb->dev shares skb->rbnode area, |
| * we need to restore its value. |
| */ |
| skb->dev = qdisc_dev(sch); |
| |
| if (q->slot.slot_next) { |
| q->slot.packets_left--; |
| q->slot.bytes_left -= qdisc_pkt_len(skb); |
| if (q->slot.packets_left <= 0 || |
| q->slot.bytes_left <= 0) |
| get_slot_next(q, now); |
| } |
| |
| if (q->qdisc) { |
| unsigned int pkt_len = qdisc_pkt_len(skb); |
| struct sk_buff *to_free = NULL; |
| int err; |
| |
| err = qdisc_enqueue(skb, q->qdisc, &to_free); |
| kfree_skb_list(to_free); |
| if (err != NET_XMIT_SUCCESS && |
| net_xmit_drop_count(err)) { |
| qdisc_qstats_drop(sch); |
| qdisc_tree_reduce_backlog(sch, 1, |
| pkt_len); |
| } |
| goto tfifo_dequeue; |
| } |
| goto deliver; |
| } |
| |
| if (q->qdisc) { |
| skb = q->qdisc->ops->dequeue(q->qdisc); |
| if (skb) |
| goto deliver; |
| } |
| |
| qdisc_watchdog_schedule_ns(&q->watchdog, |
| max(time_to_send, |
| q->slot.slot_next)); |
| } |
| |
| if (q->qdisc) { |
| skb = q->qdisc->ops->dequeue(q->qdisc); |
| if (skb) |
| goto deliver; |
| } |
| return NULL; |
| } |
| |
| static void netem_reset(struct Qdisc *sch) |
| { |
| struct netem_sched_data *q = qdisc_priv(sch); |
| |
| qdisc_reset_queue(sch); |
| tfifo_reset(sch); |
| if (q->qdisc) |
| qdisc_reset(q->qdisc); |
| qdisc_watchdog_cancel(&q->watchdog); |
| } |
| |
| static void dist_free(struct disttable *d) |
| { |
| kvfree(d); |
| } |
| |
| /* |
| * Distribution data is a variable size payload containing |
| * signed 16 bit values. |
| */ |
| |
| static int get_dist_table(struct disttable **tbl, const struct nlattr *attr) |
| { |
| size_t n = nla_len(attr)/sizeof(__s16); |
| const __s16 *data = nla_data(attr); |
| struct disttable *d; |
| int i; |
| |
| if (!n || n > NETEM_DIST_MAX) |
| return -EINVAL; |
| |
| d = kvmalloc(struct_size(d, table, n), GFP_KERNEL); |
| if (!d) |
| return -ENOMEM; |
| |
| d->size = n; |
| for (i = 0; i < n; i++) |
| d->table[i] = data[i]; |
| |
| *tbl = d; |
| return 0; |
| } |
| |
| static void get_slot(struct netem_sched_data *q, const struct nlattr *attr) |
| { |
| const struct tc_netem_slot *c = nla_data(attr); |
| |
| q->slot_config = *c; |
| if (q->slot_config.max_packets == 0) |
| q->slot_config.max_packets = INT_MAX; |
| if (q->slot_config.max_bytes == 0) |
| q->slot_config.max_bytes = INT_MAX; |
| |
| /* capping dist_jitter to the range acceptable by tabledist() */ |
| q->slot_config.dist_jitter = min_t(__s64, INT_MAX, abs(q->slot_config.dist_jitter)); |
| |
| q->slot.packets_left = q->slot_config.max_packets; |
| q->slot.bytes_left = q->slot_config.max_bytes; |
| if (q->slot_config.min_delay | q->slot_config.max_delay | |
| q->slot_config.dist_jitter) |
| q->slot.slot_next = ktime_get_ns(); |
| else |
| q->slot.slot_next = 0; |
| } |
| |
| static void get_correlation(struct netem_sched_data *q, const struct nlattr *attr) |
| { |
| const struct tc_netem_corr *c = nla_data(attr); |
| |
| init_crandom(&q->delay_cor, c->delay_corr); |
| init_crandom(&q->loss_cor, c->loss_corr); |
| init_crandom(&q->dup_cor, c->dup_corr); |
| } |
| |
| static void get_reorder(struct netem_sched_data *q, const struct nlattr *attr) |
| { |
| const struct tc_netem_reorder *r = nla_data(attr); |
| |
| q->reorder = r->probability; |
| init_crandom(&q->reorder_cor, r->correlation); |
| } |
| |
| static void get_corrupt(struct netem_sched_data *q, const struct nlattr *attr) |
| { |
| const struct tc_netem_corrupt *r = nla_data(attr); |
| |
| q->corrupt = r->probability; |
| init_crandom(&q->corrupt_cor, r->correlation); |
| } |
| |
| static void get_rate(struct netem_sched_data *q, const struct nlattr *attr) |
| { |
| const struct tc_netem_rate *r = nla_data(attr); |
| |
| q->rate = r->rate; |
| q->packet_overhead = r->packet_overhead; |
| q->cell_size = r->cell_size; |
| q->cell_overhead = r->cell_overhead; |
| if (q->cell_size) |
| q->cell_size_reciprocal = reciprocal_value(q->cell_size); |
| else |
| q->cell_size_reciprocal = (struct reciprocal_value) { 0 }; |
| } |
| |
| static int get_loss_clg(struct netem_sched_data *q, const struct nlattr *attr) |
| { |
| const struct nlattr *la; |
| int rem; |
| |
| nla_for_each_nested(la, attr, rem) { |
| u16 type = nla_type(la); |
| |
| switch (type) { |
| case NETEM_LOSS_GI: { |
| const struct tc_netem_gimodel *gi = nla_data(la); |
| |
| if (nla_len(la) < sizeof(struct tc_netem_gimodel)) { |
| pr_info("netem: incorrect gi model size\n"); |
| return -EINVAL; |
| } |
| |
| q->loss_model = CLG_4_STATES; |
| |
| q->clg.state = TX_IN_GAP_PERIOD; |
| q->clg.a1 = gi->p13; |
| q->clg.a2 = gi->p31; |
| q->clg.a3 = gi->p32; |
| q->clg.a4 = gi->p14; |
| q->clg.a5 = gi->p23; |
| break; |
| } |
| |
| case NETEM_LOSS_GE: { |
| const struct tc_netem_gemodel *ge = nla_data(la); |
| |
| if (nla_len(la) < sizeof(struct tc_netem_gemodel)) { |
| pr_info("netem: incorrect ge model size\n"); |
| return -EINVAL; |
| } |
| |
| q->loss_model = CLG_GILB_ELL; |
| q->clg.state = GOOD_STATE; |
| q->clg.a1 = ge->p; |
| q->clg.a2 = ge->r; |
| q->clg.a3 = ge->h; |
| q->clg.a4 = ge->k1; |
| break; |
| } |
| |
| default: |
| pr_info("netem: unknown loss type %u\n", type); |
| return -EINVAL; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static const struct nla_policy netem_policy[TCA_NETEM_MAX + 1] = { |
| [TCA_NETEM_CORR] = { .len = sizeof(struct tc_netem_corr) }, |
| [TCA_NETEM_REORDER] = { .len = sizeof(struct tc_netem_reorder) }, |
| [TCA_NETEM_CORRUPT] = { .len = sizeof(struct tc_netem_corrupt) }, |
| [TCA_NETEM_RATE] = { .len = sizeof(struct tc_netem_rate) }, |
| [TCA_NETEM_LOSS] = { .type = NLA_NESTED }, |
| [TCA_NETEM_ECN] = { .type = NLA_U32 }, |
| [TCA_NETEM_RATE64] = { .type = NLA_U64 }, |
| [TCA_NETEM_LATENCY64] = { .type = NLA_S64 }, |
| [TCA_NETEM_JITTER64] = { .type = NLA_S64 }, |
| [TCA_NETEM_SLOT] = { .len = sizeof(struct tc_netem_slot) }, |
| [TCA_NETEM_PRNG_SEED] = { .type = NLA_U64 }, |
| }; |
| |
| static int parse_attr(struct nlattr *tb[], int maxtype, struct nlattr *nla, |
| const struct nla_policy *policy, int len) |
| { |
| int nested_len = nla_len(nla) - NLA_ALIGN(len); |
| |
| if (nested_len < 0) { |
| pr_info("netem: invalid attributes len %d\n", nested_len); |
| return -EINVAL; |
| } |
| |
| if (nested_len >= nla_attr_size(0)) |
| return nla_parse_deprecated(tb, maxtype, |
| nla_data(nla) + NLA_ALIGN(len), |
| nested_len, policy, NULL); |
| |
| memset(tb, 0, sizeof(struct nlattr *) * (maxtype + 1)); |
| return 0; |
| } |
| |
| /* Parse netlink message to set options */ |
| static int netem_change(struct Qdisc *sch, struct nlattr *opt, |
| struct netlink_ext_ack *extack) |
| { |
| struct netem_sched_data *q = qdisc_priv(sch); |
| struct nlattr *tb[TCA_NETEM_MAX + 1]; |
| struct disttable *delay_dist = NULL; |
| struct disttable *slot_dist = NULL; |
| struct tc_netem_qopt *qopt; |
| struct clgstate old_clg; |
| int old_loss_model = CLG_RANDOM; |
| int ret; |
| |
| qopt = nla_data(opt); |
| ret = parse_attr(tb, TCA_NETEM_MAX, opt, netem_policy, sizeof(*qopt)); |
| if (ret < 0) |
| return ret; |
| |
| if (tb[TCA_NETEM_DELAY_DIST]) { |
| ret = get_dist_table(&delay_dist, tb[TCA_NETEM_DELAY_DIST]); |
| if (ret) |
| goto table_free; |
| } |
| |
| if (tb[TCA_NETEM_SLOT_DIST]) { |
| ret = get_dist_table(&slot_dist, tb[TCA_NETEM_SLOT_DIST]); |
| if (ret) |
| goto table_free; |
| } |
| |
| sch_tree_lock(sch); |
| /* backup q->clg and q->loss_model */ |
| old_clg = q->clg; |
| old_loss_model = q->loss_model; |
| |
| if (tb[TCA_NETEM_LOSS]) { |
| ret = get_loss_clg(q, tb[TCA_NETEM_LOSS]); |
| if (ret) { |
| q->loss_model = old_loss_model; |
| q->clg = old_clg; |
| goto unlock; |
| } |
| } else { |
| q->loss_model = CLG_RANDOM; |
| } |
| |
| if (delay_dist) |
| swap(q->delay_dist, delay_dist); |
| if (slot_dist) |
| swap(q->slot_dist, slot_dist); |
| sch->limit = qopt->limit; |
| |
| q->latency = PSCHED_TICKS2NS(qopt->latency); |
| q->jitter = PSCHED_TICKS2NS(qopt->jitter); |
| q->limit = qopt->limit; |
| q->gap = qopt->gap; |
| q->counter = 0; |
| q->loss = qopt->loss; |
| q->duplicate = qopt->duplicate; |
| |
| /* for compatibility with earlier versions. |
| * if gap is set, need to assume 100% probability |
| */ |
| if (q->gap) |
| q->reorder = ~0; |
| |
| if (tb[TCA_NETEM_CORR]) |
| get_correlation(q, tb[TCA_NETEM_CORR]); |
| |
| if (tb[TCA_NETEM_REORDER]) |
| get_reorder(q, tb[TCA_NETEM_REORDER]); |
| |
| if (tb[TCA_NETEM_CORRUPT]) |
| get_corrupt(q, tb[TCA_NETEM_CORRUPT]); |
| |
| if (tb[TCA_NETEM_RATE]) |
| get_rate(q, tb[TCA_NETEM_RATE]); |
| |
| if (tb[TCA_NETEM_RATE64]) |
| q->rate = max_t(u64, q->rate, |
| nla_get_u64(tb[TCA_NETEM_RATE64])); |
| |
| if (tb[TCA_NETEM_LATENCY64]) |
| q->latency = nla_get_s64(tb[TCA_NETEM_LATENCY64]); |
| |
| if (tb[TCA_NETEM_JITTER64]) |
| q->jitter = nla_get_s64(tb[TCA_NETEM_JITTER64]); |
| |
| if (tb[TCA_NETEM_ECN]) |
| q->ecn = nla_get_u32(tb[TCA_NETEM_ECN]); |
| |
| if (tb[TCA_NETEM_SLOT]) |
| get_slot(q, tb[TCA_NETEM_SLOT]); |
| |
| /* capping jitter to the range acceptable by tabledist() */ |
| q->jitter = min_t(s64, abs(q->jitter), INT_MAX); |
| |
| if (tb[TCA_NETEM_PRNG_SEED]) |
| q->prng.seed = nla_get_u64(tb[TCA_NETEM_PRNG_SEED]); |
| else |
| q->prng.seed = get_random_u64(); |
| prandom_seed_state(&q->prng.prng_state, q->prng.seed); |
| |
| unlock: |
| sch_tree_unlock(sch); |
| |
| table_free: |
| dist_free(delay_dist); |
| dist_free(slot_dist); |
| return ret; |
| } |
| |
| static int netem_init(struct Qdisc *sch, struct nlattr *opt, |
| struct netlink_ext_ack *extack) |
| { |
| struct netem_sched_data *q = qdisc_priv(sch); |
| int ret; |
| |
| qdisc_watchdog_init(&q->watchdog, sch); |
| |
| if (!opt) |
| return -EINVAL; |
| |
| q->loss_model = CLG_RANDOM; |
| ret = netem_change(sch, opt, extack); |
| if (ret) |
| pr_info("netem: change failed\n"); |
| return ret; |
| } |
| |
| static void netem_destroy(struct Qdisc *sch) |
| { |
| struct netem_sched_data *q = qdisc_priv(sch); |
| |
| qdisc_watchdog_cancel(&q->watchdog); |
| if (q->qdisc) |
| qdisc_put(q->qdisc); |
| dist_free(q->delay_dist); |
| dist_free(q->slot_dist); |
| } |
| |
| static int dump_loss_model(const struct netem_sched_data *q, |
| struct sk_buff *skb) |
| { |
| struct nlattr *nest; |
| |
| nest = nla_nest_start_noflag(skb, TCA_NETEM_LOSS); |
| if (nest == NULL) |
| goto nla_put_failure; |
| |
| switch (q->loss_model) { |
| case CLG_RANDOM: |
| /* legacy loss model */ |
| nla_nest_cancel(skb, nest); |
| return 0; /* no data */ |
| |
| case CLG_4_STATES: { |
| struct tc_netem_gimodel gi = { |
| .p13 = q->clg.a1, |
| .p31 = q->clg.a2, |
| .p32 = q->clg.a3, |
| .p14 = q->clg.a4, |
| .p23 = q->clg.a5, |
| }; |
| |
| if (nla_put(skb, NETEM_LOSS_GI, sizeof(gi), &gi)) |
| goto nla_put_failure; |
| break; |
| } |
| case CLG_GILB_ELL: { |
| struct tc_netem_gemodel ge = { |
| .p = q->clg.a1, |
| .r = q->clg.a2, |
| .h = q->clg.a3, |
| .k1 = q->clg.a4, |
| }; |
| |
| if (nla_put(skb, NETEM_LOSS_GE, sizeof(ge), &ge)) |
| goto nla_put_failure; |
| break; |
| } |
| } |
| |
| nla_nest_end(skb, nest); |
| return 0; |
| |
| nla_put_failure: |
| nla_nest_cancel(skb, nest); |
| return -1; |
| } |
| |
| static int netem_dump(struct Qdisc *sch, struct sk_buff *skb) |
| { |
| const struct netem_sched_data *q = qdisc_priv(sch); |
| struct nlattr *nla = (struct nlattr *) skb_tail_pointer(skb); |
| struct tc_netem_qopt qopt; |
| struct tc_netem_corr cor; |
| struct tc_netem_reorder reorder; |
| struct tc_netem_corrupt corrupt; |
| struct tc_netem_rate rate; |
| struct tc_netem_slot slot; |
| |
| qopt.latency = min_t(psched_time_t, PSCHED_NS2TICKS(q->latency), |
| UINT_MAX); |
| qopt.jitter = min_t(psched_time_t, PSCHED_NS2TICKS(q->jitter), |
| UINT_MAX); |
| qopt.limit = q->limit; |
| qopt.loss = q->loss; |
| qopt.gap = q->gap; |
| qopt.duplicate = q->duplicate; |
| if (nla_put(skb, TCA_OPTIONS, sizeof(qopt), &qopt)) |
| goto nla_put_failure; |
| |
| if (nla_put(skb, TCA_NETEM_LATENCY64, sizeof(q->latency), &q->latency)) |
| goto nla_put_failure; |
| |
| if (nla_put(skb, TCA_NETEM_JITTER64, sizeof(q->jitter), &q->jitter)) |
| goto nla_put_failure; |
| |
| cor.delay_corr = q->delay_cor.rho; |
| cor.loss_corr = q->loss_cor.rho; |
| cor.dup_corr = q->dup_cor.rho; |
| if (nla_put(skb, TCA_NETEM_CORR, sizeof(cor), &cor)) |
| goto nla_put_failure; |
| |
| reorder.probability = q->reorder; |
| reorder.correlation = q->reorder_cor.rho; |
| if (nla_put(skb, TCA_NETEM_REORDER, sizeof(reorder), &reorder)) |
| goto nla_put_failure; |
| |
| corrupt.probability = q->corrupt; |
| corrupt.correlation = q->corrupt_cor.rho; |
| if (nla_put(skb, TCA_NETEM_CORRUPT, sizeof(corrupt), &corrupt)) |
| goto nla_put_failure; |
| |
| if (q->rate >= (1ULL << 32)) { |
| if (nla_put_u64_64bit(skb, TCA_NETEM_RATE64, q->rate, |
| TCA_NETEM_PAD)) |
| goto nla_put_failure; |
| rate.rate = ~0U; |
| } else { |
| rate.rate = q->rate; |
| } |
| rate.packet_overhead = q->packet_overhead; |
| rate.cell_size = q->cell_size; |
| rate.cell_overhead = q->cell_overhead; |
| if (nla_put(skb, TCA_NETEM_RATE, sizeof(rate), &rate)) |
| goto nla_put_failure; |
| |
| if (q->ecn && nla_put_u32(skb, TCA_NETEM_ECN, q->ecn)) |
| goto nla_put_failure; |
| |
| if (dump_loss_model(q, skb) != 0) |
| goto nla_put_failure; |
| |
| if (q->slot_config.min_delay | q->slot_config.max_delay | |
| q->slot_config.dist_jitter) { |
| slot = q->slot_config; |
| if (slot.max_packets == INT_MAX) |
| slot.max_packets = 0; |
| if (slot.max_bytes == INT_MAX) |
| slot.max_bytes = 0; |
| if (nla_put(skb, TCA_NETEM_SLOT, sizeof(slot), &slot)) |
| goto nla_put_failure; |
| } |
| |
| if (nla_put_u64_64bit(skb, TCA_NETEM_PRNG_SEED, q->prng.seed, |
| TCA_NETEM_PAD)) |
| goto nla_put_failure; |
| |
| return nla_nest_end(skb, nla); |
| |
| nla_put_failure: |
| nlmsg_trim(skb, nla); |
| return -1; |
| } |
| |
| static int netem_dump_class(struct Qdisc *sch, unsigned long cl, |
| struct sk_buff *skb, struct tcmsg *tcm) |
| { |
| struct netem_sched_data *q = qdisc_priv(sch); |
| |
| if (cl != 1 || !q->qdisc) /* only one class */ |
| return -ENOENT; |
| |
| tcm->tcm_handle |= TC_H_MIN(1); |
| tcm->tcm_info = q->qdisc->handle; |
| |
| return 0; |
| } |
| |
| static int netem_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new, |
| struct Qdisc **old, struct netlink_ext_ack *extack) |
| { |
| struct netem_sched_data *q = qdisc_priv(sch); |
| |
| *old = qdisc_replace(sch, new, &q->qdisc); |
| return 0; |
| } |
| |
| static struct Qdisc *netem_leaf(struct Qdisc *sch, unsigned long arg) |
| { |
| struct netem_sched_data *q = qdisc_priv(sch); |
| return q->qdisc; |
| } |
| |
| static unsigned long netem_find(struct Qdisc *sch, u32 classid) |
| { |
| return 1; |
| } |
| |
| static void netem_walk(struct Qdisc *sch, struct qdisc_walker *walker) |
| { |
| if (!walker->stop) { |
| if (!tc_qdisc_stats_dump(sch, 1, walker)) |
| return; |
| } |
| } |
| |
| static const struct Qdisc_class_ops netem_class_ops = { |
| .graft = netem_graft, |
| .leaf = netem_leaf, |
| .find = netem_find, |
| .walk = netem_walk, |
| .dump = netem_dump_class, |
| }; |
| |
| static struct Qdisc_ops netem_qdisc_ops __read_mostly = { |
| .id = "netem", |
| .cl_ops = &netem_class_ops, |
| .priv_size = sizeof(struct netem_sched_data), |
| .enqueue = netem_enqueue, |
| .dequeue = netem_dequeue, |
| .peek = qdisc_peek_dequeued, |
| .init = netem_init, |
| .reset = netem_reset, |
| .destroy = netem_destroy, |
| .change = netem_change, |
| .dump = netem_dump, |
| .owner = THIS_MODULE, |
| }; |
| |
| |
| static int __init netem_module_init(void) |
| { |
| pr_info("netem: version " VERSION "\n"); |
| return register_qdisc(&netem_qdisc_ops); |
| } |
| static void __exit netem_module_exit(void) |
| { |
| unregister_qdisc(&netem_qdisc_ops); |
| } |
| module_init(netem_module_init) |
| module_exit(netem_module_exit) |
| MODULE_LICENSE("GPL"); |