| // SPDX-License-Identifier: GPL-2.0 |
| /* Copyright (c) 2019, Vladimir Oltean <olteanv@gmail.com> |
| * |
| * This module is not a complete tagger implementation. It only provides |
| * primitives for taggers that rely on 802.1Q VLAN tags to use. The |
| * dsa_8021q_netdev_ops is registered for API compliance and not used |
| * directly by callers. |
| */ |
| #include <linux/if_bridge.h> |
| #include <linux/if_vlan.h> |
| #include <linux/dsa/8021q.h> |
| |
| #include "dsa_priv.h" |
| |
| /* Binary structure of the fake 12-bit VID field (when the TPID is |
| * ETH_P_DSA_8021Q): |
| * |
| * | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |
| * +-----------+-----+-----------------+-----------+-----------------------+ |
| * | DIR | SVL | SWITCH_ID | SUBVLAN | PORT | |
| * +-----------+-----+-----------------+-----------+-----------------------+ |
| * |
| * DIR - VID[11:10]: |
| * Direction flags. |
| * * 1 (0b01) for RX VLAN, |
| * * 2 (0b10) for TX VLAN. |
| * These values make the special VIDs of 0, 1 and 4095 to be left |
| * unused by this coding scheme. |
| * |
| * SVL/SUBVLAN - { VID[9], VID[5:4] }: |
| * Sub-VLAN encoding. Valid only when DIR indicates an RX VLAN. |
| * * 0 (0b000): Field does not encode a sub-VLAN, either because |
| * received traffic is untagged, PVID-tagged or because a second |
| * VLAN tag is present after this tag and not inside of it. |
| * * 1 (0b001): Received traffic is tagged with a VID value private |
| * to the host. This field encodes the index in the host's lookup |
| * table through which the value of the ingress VLAN ID can be |
| * recovered. |
| * * 2 (0b010): Field encodes a sub-VLAN. |
| * ... |
| * * 7 (0b111): Field encodes a sub-VLAN. |
| * When DIR indicates a TX VLAN, SUBVLAN must be transmitted as zero |
| * (by the host) and ignored on receive (by the switch). |
| * |
| * SWITCH_ID - VID[8:6]: |
| * Index of switch within DSA tree. Must be between 0 and 7. |
| * |
| * PORT - VID[3:0]: |
| * Index of switch port. Must be between 0 and 15. |
| */ |
| |
| #define DSA_8021Q_DIR_SHIFT 10 |
| #define DSA_8021Q_DIR_MASK GENMASK(11, 10) |
| #define DSA_8021Q_DIR(x) (((x) << DSA_8021Q_DIR_SHIFT) & \ |
| DSA_8021Q_DIR_MASK) |
| #define DSA_8021Q_DIR_RX DSA_8021Q_DIR(1) |
| #define DSA_8021Q_DIR_TX DSA_8021Q_DIR(2) |
| |
| #define DSA_8021Q_SWITCH_ID_SHIFT 6 |
| #define DSA_8021Q_SWITCH_ID_MASK GENMASK(8, 6) |
| #define DSA_8021Q_SWITCH_ID(x) (((x) << DSA_8021Q_SWITCH_ID_SHIFT) & \ |
| DSA_8021Q_SWITCH_ID_MASK) |
| |
| #define DSA_8021Q_SUBVLAN_HI_SHIFT 9 |
| #define DSA_8021Q_SUBVLAN_HI_MASK GENMASK(9, 9) |
| #define DSA_8021Q_SUBVLAN_LO_SHIFT 4 |
| #define DSA_8021Q_SUBVLAN_LO_MASK GENMASK(4, 3) |
| #define DSA_8021Q_SUBVLAN_HI(x) (((x) & GENMASK(2, 2)) >> 2) |
| #define DSA_8021Q_SUBVLAN_LO(x) ((x) & GENMASK(1, 0)) |
| #define DSA_8021Q_SUBVLAN(x) \ |
| (((DSA_8021Q_SUBVLAN_LO(x) << DSA_8021Q_SUBVLAN_LO_SHIFT) & \ |
| DSA_8021Q_SUBVLAN_LO_MASK) | \ |
| ((DSA_8021Q_SUBVLAN_HI(x) << DSA_8021Q_SUBVLAN_HI_SHIFT) & \ |
| DSA_8021Q_SUBVLAN_HI_MASK)) |
| |
| #define DSA_8021Q_PORT_SHIFT 0 |
| #define DSA_8021Q_PORT_MASK GENMASK(3, 0) |
| #define DSA_8021Q_PORT(x) (((x) << DSA_8021Q_PORT_SHIFT) & \ |
| DSA_8021Q_PORT_MASK) |
| |
| /* Returns the VID to be inserted into the frame from xmit for switch steering |
| * instructions on egress. Encodes switch ID and port ID. |
| */ |
| u16 dsa_8021q_tx_vid(struct dsa_switch *ds, int port) |
| { |
| return DSA_8021Q_DIR_TX | DSA_8021Q_SWITCH_ID(ds->index) | |
| DSA_8021Q_PORT(port); |
| } |
| EXPORT_SYMBOL_GPL(dsa_8021q_tx_vid); |
| |
| /* Returns the VID that will be installed as pvid for this switch port, sent as |
| * tagged egress towards the CPU port and decoded by the rcv function. |
| */ |
| u16 dsa_8021q_rx_vid(struct dsa_switch *ds, int port) |
| { |
| return DSA_8021Q_DIR_RX | DSA_8021Q_SWITCH_ID(ds->index) | |
| DSA_8021Q_PORT(port); |
| } |
| EXPORT_SYMBOL_GPL(dsa_8021q_rx_vid); |
| |
| u16 dsa_8021q_rx_vid_subvlan(struct dsa_switch *ds, int port, u16 subvlan) |
| { |
| return DSA_8021Q_DIR_RX | DSA_8021Q_SWITCH_ID(ds->index) | |
| DSA_8021Q_PORT(port) | DSA_8021Q_SUBVLAN(subvlan); |
| } |
| EXPORT_SYMBOL_GPL(dsa_8021q_rx_vid_subvlan); |
| |
| /* Returns the decoded switch ID from the RX VID. */ |
| int dsa_8021q_rx_switch_id(u16 vid) |
| { |
| return (vid & DSA_8021Q_SWITCH_ID_MASK) >> DSA_8021Q_SWITCH_ID_SHIFT; |
| } |
| EXPORT_SYMBOL_GPL(dsa_8021q_rx_switch_id); |
| |
| /* Returns the decoded port ID from the RX VID. */ |
| int dsa_8021q_rx_source_port(u16 vid) |
| { |
| return (vid & DSA_8021Q_PORT_MASK) >> DSA_8021Q_PORT_SHIFT; |
| } |
| EXPORT_SYMBOL_GPL(dsa_8021q_rx_source_port); |
| |
| /* Returns the decoded subvlan from the RX VID. */ |
| u16 dsa_8021q_rx_subvlan(u16 vid) |
| { |
| u16 svl_hi, svl_lo; |
| |
| svl_hi = (vid & DSA_8021Q_SUBVLAN_HI_MASK) >> |
| DSA_8021Q_SUBVLAN_HI_SHIFT; |
| svl_lo = (vid & DSA_8021Q_SUBVLAN_LO_MASK) >> |
| DSA_8021Q_SUBVLAN_LO_SHIFT; |
| |
| return (svl_hi << 2) | svl_lo; |
| } |
| EXPORT_SYMBOL_GPL(dsa_8021q_rx_subvlan); |
| |
| bool vid_is_dsa_8021q(u16 vid) |
| { |
| return ((vid & DSA_8021Q_DIR_MASK) == DSA_8021Q_DIR_RX || |
| (vid & DSA_8021Q_DIR_MASK) == DSA_8021Q_DIR_TX); |
| } |
| EXPORT_SYMBOL_GPL(vid_is_dsa_8021q); |
| |
| /* If @enabled is true, installs @vid with @flags into the switch port's HW |
| * filter. |
| * If @enabled is false, deletes @vid (ignores @flags) from the port. Had the |
| * user explicitly configured this @vid through the bridge core, then the @vid |
| * is installed again, but this time with the flags from the bridge layer. |
| */ |
| static int dsa_8021q_vid_apply(struct dsa_switch *ds, int port, u16 vid, |
| u16 flags, bool enabled) |
| { |
| struct dsa_port *dp = dsa_to_port(ds, port); |
| |
| if (enabled) |
| return dsa_port_vid_add(dp, vid, flags); |
| |
| return dsa_port_vid_del(dp, vid); |
| } |
| |
| /* RX VLAN tagging (left) and TX VLAN tagging (right) setup shown for a single |
| * front-panel switch port (here swp0). |
| * |
| * Port identification through VLAN (802.1Q) tags has different requirements |
| * for it to work effectively: |
| * - On RX (ingress from network): each front-panel port must have a pvid |
| * that uniquely identifies it, and the egress of this pvid must be tagged |
| * towards the CPU port, so that software can recover the source port based |
| * on the VID in the frame. But this would only work for standalone ports; |
| * if bridged, this VLAN setup would break autonomous forwarding and would |
| * force all switched traffic to pass through the CPU. So we must also make |
| * the other front-panel ports members of this VID we're adding, albeit |
| * we're not making it their PVID (they'll still have their own). |
| * By the way - just because we're installing the same VID in multiple |
| * switch ports doesn't mean that they'll start to talk to one another, even |
| * while not bridged: the final forwarding decision is still an AND between |
| * the L2 forwarding information (which is limiting forwarding in this case) |
| * and the VLAN-based restrictions (of which there are none in this case, |
| * since all ports are members). |
| * - On TX (ingress from CPU and towards network) we are faced with a problem. |
| * If we were to tag traffic (from within DSA) with the port's pvid, all |
| * would be well, assuming the switch ports were standalone. Frames would |
| * have no choice but to be directed towards the correct front-panel port. |
| * But because we also want the RX VLAN to not break bridging, then |
| * inevitably that means that we have to give them a choice (of what |
| * front-panel port to go out on), and therefore we cannot steer traffic |
| * based on the RX VID. So what we do is simply install one more VID on the |
| * front-panel and CPU ports, and profit off of the fact that steering will |
| * work just by virtue of the fact that there is only one other port that's |
| * a member of the VID we're tagging the traffic with - the desired one. |
| * |
| * So at the end, each front-panel port will have one RX VID (also the PVID), |
| * the RX VID of all other front-panel ports, and one TX VID. Whereas the CPU |
| * port will have the RX and TX VIDs of all front-panel ports, and on top of |
| * that, is also tagged-input and tagged-output (VLAN trunk). |
| * |
| * CPU port CPU port |
| * +-------------+-----+-------------+ +-------------+-----+-------------+ |
| * | RX VID | | | | TX VID | | | |
| * | of swp0 | | | | of swp0 | | | |
| * | +-----+ | | +-----+ | |
| * | ^ T | | | Tagged | |
| * | | | | | ingress | |
| * | +-------+---+---+-------+ | | +-----------+ | |
| * | | | | | | | | Untagged | |
| * | | U v U v U v | | v egress | |
| * | +-----+ +-----+ +-----+ +-----+ | | +-----+ +-----+ +-----+ +-----+ | |
| * | | | | | | | | | | | | | | | | | | | | |
| * | |PVID | | | | | | | | | | | | | | | | | | |
| * +-+-----+-+-----+-+-----+-+-----+-+ +-+-----+-+-----+-+-----+-+-----+-+ |
| * swp0 swp1 swp2 swp3 swp0 swp1 swp2 swp3 |
| */ |
| int dsa_port_setup_8021q_tagging(struct dsa_switch *ds, int port, bool enabled) |
| { |
| int upstream = dsa_upstream_port(ds, port); |
| u16 rx_vid = dsa_8021q_rx_vid(ds, port); |
| u16 tx_vid = dsa_8021q_tx_vid(ds, port); |
| int i, err; |
| |
| /* The CPU port is implicitly configured by |
| * configuring the front-panel ports |
| */ |
| if (!dsa_is_user_port(ds, port)) |
| return 0; |
| |
| /* Add this user port's RX VID to the membership list of all others |
| * (including itself). This is so that bridging will not be hindered. |
| * L2 forwarding rules still take precedence when there are no VLAN |
| * restrictions, so there are no concerns about leaking traffic. |
| */ |
| for (i = 0; i < ds->num_ports; i++) { |
| u16 flags; |
| |
| if (i == upstream) |
| continue; |
| else if (i == port) |
| /* The RX VID is pvid on this port */ |
| flags = BRIDGE_VLAN_INFO_UNTAGGED | |
| BRIDGE_VLAN_INFO_PVID; |
| else |
| /* The RX VID is a regular VLAN on all others */ |
| flags = BRIDGE_VLAN_INFO_UNTAGGED; |
| |
| err = dsa_8021q_vid_apply(ds, i, rx_vid, flags, enabled); |
| if (err) { |
| dev_err(ds->dev, "Failed to apply RX VID %d to port %d: %d\n", |
| rx_vid, port, err); |
| return err; |
| } |
| } |
| |
| /* CPU port needs to see this port's RX VID |
| * as tagged egress. |
| */ |
| err = dsa_8021q_vid_apply(ds, upstream, rx_vid, 0, enabled); |
| if (err) { |
| dev_err(ds->dev, "Failed to apply RX VID %d to port %d: %d\n", |
| rx_vid, port, err); |
| return err; |
| } |
| |
| /* Finally apply the TX VID on this port and on the CPU port */ |
| err = dsa_8021q_vid_apply(ds, port, tx_vid, BRIDGE_VLAN_INFO_UNTAGGED, |
| enabled); |
| if (err) { |
| dev_err(ds->dev, "Failed to apply TX VID %d on port %d: %d\n", |
| tx_vid, port, err); |
| return err; |
| } |
| err = dsa_8021q_vid_apply(ds, upstream, tx_vid, 0, enabled); |
| if (err) { |
| dev_err(ds->dev, "Failed to apply TX VID %d on port %d: %d\n", |
| tx_vid, upstream, err); |
| return err; |
| } |
| |
| return err; |
| } |
| EXPORT_SYMBOL_GPL(dsa_port_setup_8021q_tagging); |
| |
| static int dsa_8021q_crosschip_link_apply(struct dsa_switch *ds, int port, |
| struct dsa_switch *other_ds, |
| int other_port, bool enabled) |
| { |
| u16 rx_vid = dsa_8021q_rx_vid(ds, port); |
| |
| /* @rx_vid of local @ds port @port goes to @other_port of |
| * @other_ds |
| */ |
| return dsa_8021q_vid_apply(other_ds, other_port, rx_vid, |
| BRIDGE_VLAN_INFO_UNTAGGED, enabled); |
| } |
| |
| static int dsa_8021q_crosschip_link_add(struct dsa_switch *ds, int port, |
| struct dsa_switch *other_ds, |
| int other_port, |
| struct list_head *crosschip_links) |
| { |
| struct dsa_8021q_crosschip_link *c; |
| |
| list_for_each_entry(c, crosschip_links, list) { |
| if (c->port == port && c->other_ds == other_ds && |
| c->other_port == other_port) { |
| refcount_inc(&c->refcount); |
| return 0; |
| } |
| } |
| |
| dev_dbg(ds->dev, "adding crosschip link from port %d to %s port %d\n", |
| port, dev_name(other_ds->dev), other_port); |
| |
| c = kzalloc(sizeof(*c), GFP_KERNEL); |
| if (!c) |
| return -ENOMEM; |
| |
| c->port = port; |
| c->other_ds = other_ds; |
| c->other_port = other_port; |
| refcount_set(&c->refcount, 1); |
| |
| list_add(&c->list, crosschip_links); |
| |
| return 0; |
| } |
| |
| static void dsa_8021q_crosschip_link_del(struct dsa_switch *ds, |
| struct dsa_8021q_crosschip_link *c, |
| struct list_head *crosschip_links, |
| bool *keep) |
| { |
| *keep = !refcount_dec_and_test(&c->refcount); |
| |
| if (*keep) |
| return; |
| |
| dev_dbg(ds->dev, |
| "deleting crosschip link from port %d to %s port %d\n", |
| c->port, dev_name(c->other_ds->dev), c->other_port); |
| |
| list_del(&c->list); |
| kfree(c); |
| } |
| |
| /* Make traffic from local port @port be received by remote port @other_port. |
| * This means that our @rx_vid needs to be installed on @other_ds's upstream |
| * and user ports. The user ports should be egress-untagged so that they can |
| * pop the dsa_8021q VLAN. But the @other_upstream can be either egress-tagged |
| * or untagged: it doesn't matter, since it should never egress a frame having |
| * our @rx_vid. |
| */ |
| int dsa_8021q_crosschip_bridge_join(struct dsa_switch *ds, int port, |
| struct dsa_switch *other_ds, |
| int other_port, |
| struct list_head *crosschip_links) |
| { |
| /* @other_upstream is how @other_ds reaches us. If we are part |
| * of disjoint trees, then we are probably connected through |
| * our CPU ports. If we're part of the same tree though, we should |
| * probably use dsa_towards_port. |
| */ |
| int other_upstream = dsa_upstream_port(other_ds, other_port); |
| int rc; |
| |
| rc = dsa_8021q_crosschip_link_add(ds, port, other_ds, |
| other_port, crosschip_links); |
| if (rc) |
| return rc; |
| |
| rc = dsa_8021q_crosschip_link_apply(ds, port, other_ds, |
| other_port, true); |
| if (rc) |
| return rc; |
| |
| rc = dsa_8021q_crosschip_link_add(ds, port, other_ds, |
| other_upstream, |
| crosschip_links); |
| if (rc) |
| return rc; |
| |
| return dsa_8021q_crosschip_link_apply(ds, port, other_ds, |
| other_upstream, true); |
| } |
| EXPORT_SYMBOL_GPL(dsa_8021q_crosschip_bridge_join); |
| |
| int dsa_8021q_crosschip_bridge_leave(struct dsa_switch *ds, int port, |
| struct dsa_switch *other_ds, |
| int other_port, |
| struct list_head *crosschip_links) |
| { |
| int other_upstream = dsa_upstream_port(other_ds, other_port); |
| struct dsa_8021q_crosschip_link *c, *n; |
| |
| list_for_each_entry_safe(c, n, crosschip_links, list) { |
| if (c->port == port && c->other_ds == other_ds && |
| (c->other_port == other_port || |
| c->other_port == other_upstream)) { |
| struct dsa_switch *other_ds = c->other_ds; |
| int other_port = c->other_port; |
| bool keep; |
| int rc; |
| |
| dsa_8021q_crosschip_link_del(ds, c, crosschip_links, |
| &keep); |
| if (keep) |
| continue; |
| |
| rc = dsa_8021q_crosschip_link_apply(ds, port, |
| other_ds, |
| other_port, |
| false); |
| if (rc) |
| return rc; |
| } |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(dsa_8021q_crosschip_bridge_leave); |
| |
| struct sk_buff *dsa_8021q_xmit(struct sk_buff *skb, struct net_device *netdev, |
| u16 tpid, u16 tci) |
| { |
| /* skb->data points at skb_mac_header, which |
| * is fine for vlan_insert_tag. |
| */ |
| return vlan_insert_tag(skb, htons(tpid), tci); |
| } |
| EXPORT_SYMBOL_GPL(dsa_8021q_xmit); |
| |
| MODULE_LICENSE("GPL v2"); |