| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) 2011, 2012 STRATO. All rights reserved. |
| */ |
| |
| #include <linux/blkdev.h> |
| #include <linux/ratelimit.h> |
| #include <linux/sched/mm.h> |
| #include <crypto/hash.h> |
| #include "ctree.h" |
| #include "discard.h" |
| #include "volumes.h" |
| #include "disk-io.h" |
| #include "ordered-data.h" |
| #include "transaction.h" |
| #include "backref.h" |
| #include "extent_io.h" |
| #include "dev-replace.h" |
| #include "check-integrity.h" |
| #include "rcu-string.h" |
| #include "raid56.h" |
| #include "block-group.h" |
| #include "zoned.h" |
| |
| /* |
| * This is only the first step towards a full-features scrub. It reads all |
| * extent and super block and verifies the checksums. In case a bad checksum |
| * is found or the extent cannot be read, good data will be written back if |
| * any can be found. |
| * |
| * Future enhancements: |
| * - In case an unrepairable extent is encountered, track which files are |
| * affected and report them |
| * - track and record media errors, throw out bad devices |
| * - add a mode to also read unallocated space |
| */ |
| |
| struct scrub_block; |
| struct scrub_ctx; |
| |
| /* |
| * the following three values only influence the performance. |
| * The last one configures the number of parallel and outstanding I/O |
| * operations. The first two values configure an upper limit for the number |
| * of (dynamically allocated) pages that are added to a bio. |
| */ |
| #define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */ |
| #define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */ |
| #define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */ |
| |
| /* |
| * the following value times PAGE_SIZE needs to be large enough to match the |
| * largest node/leaf/sector size that shall be supported. |
| * Values larger than BTRFS_STRIPE_LEN are not supported. |
| */ |
| #define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */ |
| |
| struct scrub_recover { |
| refcount_t refs; |
| struct btrfs_bio *bbio; |
| u64 map_length; |
| }; |
| |
| struct scrub_page { |
| struct scrub_block *sblock; |
| struct page *page; |
| struct btrfs_device *dev; |
| struct list_head list; |
| u64 flags; /* extent flags */ |
| u64 generation; |
| u64 logical; |
| u64 physical; |
| u64 physical_for_dev_replace; |
| atomic_t refs; |
| u8 mirror_num; |
| int have_csum:1; |
| int io_error:1; |
| u8 csum[BTRFS_CSUM_SIZE]; |
| |
| struct scrub_recover *recover; |
| }; |
| |
| struct scrub_bio { |
| int index; |
| struct scrub_ctx *sctx; |
| struct btrfs_device *dev; |
| struct bio *bio; |
| blk_status_t status; |
| u64 logical; |
| u64 physical; |
| #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO |
| struct scrub_page *pagev[SCRUB_PAGES_PER_WR_BIO]; |
| #else |
| struct scrub_page *pagev[SCRUB_PAGES_PER_RD_BIO]; |
| #endif |
| int page_count; |
| int next_free; |
| struct btrfs_work work; |
| }; |
| |
| struct scrub_block { |
| struct scrub_page *pagev[SCRUB_MAX_PAGES_PER_BLOCK]; |
| int page_count; |
| atomic_t outstanding_pages; |
| refcount_t refs; /* free mem on transition to zero */ |
| struct scrub_ctx *sctx; |
| struct scrub_parity *sparity; |
| struct { |
| unsigned int header_error:1; |
| unsigned int checksum_error:1; |
| unsigned int no_io_error_seen:1; |
| unsigned int generation_error:1; /* also sets header_error */ |
| |
| /* The following is for the data used to check parity */ |
| /* It is for the data with checksum */ |
| unsigned int data_corrected:1; |
| }; |
| struct btrfs_work work; |
| }; |
| |
| /* Used for the chunks with parity stripe such RAID5/6 */ |
| struct scrub_parity { |
| struct scrub_ctx *sctx; |
| |
| struct btrfs_device *scrub_dev; |
| |
| u64 logic_start; |
| |
| u64 logic_end; |
| |
| int nsectors; |
| |
| u32 stripe_len; |
| |
| refcount_t refs; |
| |
| struct list_head spages; |
| |
| /* Work of parity check and repair */ |
| struct btrfs_work work; |
| |
| /* Mark the parity blocks which have data */ |
| unsigned long *dbitmap; |
| |
| /* |
| * Mark the parity blocks which have data, but errors happen when |
| * read data or check data |
| */ |
| unsigned long *ebitmap; |
| |
| unsigned long bitmap[]; |
| }; |
| |
| struct scrub_ctx { |
| struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX]; |
| struct btrfs_fs_info *fs_info; |
| int first_free; |
| int curr; |
| atomic_t bios_in_flight; |
| atomic_t workers_pending; |
| spinlock_t list_lock; |
| wait_queue_head_t list_wait; |
| struct list_head csum_list; |
| atomic_t cancel_req; |
| int readonly; |
| int pages_per_rd_bio; |
| |
| int is_dev_replace; |
| u64 write_pointer; |
| |
| struct scrub_bio *wr_curr_bio; |
| struct mutex wr_lock; |
| int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */ |
| struct btrfs_device *wr_tgtdev; |
| bool flush_all_writes; |
| |
| /* |
| * statistics |
| */ |
| struct btrfs_scrub_progress stat; |
| spinlock_t stat_lock; |
| |
| /* |
| * Use a ref counter to avoid use-after-free issues. Scrub workers |
| * decrement bios_in_flight and workers_pending and then do a wakeup |
| * on the list_wait wait queue. We must ensure the main scrub task |
| * doesn't free the scrub context before or while the workers are |
| * doing the wakeup() call. |
| */ |
| refcount_t refs; |
| }; |
| |
| struct scrub_warning { |
| struct btrfs_path *path; |
| u64 extent_item_size; |
| const char *errstr; |
| u64 physical; |
| u64 logical; |
| struct btrfs_device *dev; |
| }; |
| |
| struct full_stripe_lock { |
| struct rb_node node; |
| u64 logical; |
| u64 refs; |
| struct mutex mutex; |
| }; |
| |
| static void scrub_pending_bio_inc(struct scrub_ctx *sctx); |
| static void scrub_pending_bio_dec(struct scrub_ctx *sctx); |
| static int scrub_handle_errored_block(struct scrub_block *sblock_to_check); |
| static int scrub_setup_recheck_block(struct scrub_block *original_sblock, |
| struct scrub_block *sblocks_for_recheck); |
| static void scrub_recheck_block(struct btrfs_fs_info *fs_info, |
| struct scrub_block *sblock, |
| int retry_failed_mirror); |
| static void scrub_recheck_block_checksum(struct scrub_block *sblock); |
| static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, |
| struct scrub_block *sblock_good); |
| static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad, |
| struct scrub_block *sblock_good, |
| int page_num, int force_write); |
| static void scrub_write_block_to_dev_replace(struct scrub_block *sblock); |
| static int scrub_write_page_to_dev_replace(struct scrub_block *sblock, |
| int page_num); |
| static int scrub_checksum_data(struct scrub_block *sblock); |
| static int scrub_checksum_tree_block(struct scrub_block *sblock); |
| static int scrub_checksum_super(struct scrub_block *sblock); |
| static void scrub_block_get(struct scrub_block *sblock); |
| static void scrub_block_put(struct scrub_block *sblock); |
| static void scrub_page_get(struct scrub_page *spage); |
| static void scrub_page_put(struct scrub_page *spage); |
| static void scrub_parity_get(struct scrub_parity *sparity); |
| static void scrub_parity_put(struct scrub_parity *sparity); |
| static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx, |
| struct scrub_page *spage); |
| static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u32 len, |
| u64 physical, struct btrfs_device *dev, u64 flags, |
| u64 gen, int mirror_num, u8 *csum, |
| u64 physical_for_dev_replace); |
| static void scrub_bio_end_io(struct bio *bio); |
| static void scrub_bio_end_io_worker(struct btrfs_work *work); |
| static void scrub_block_complete(struct scrub_block *sblock); |
| static void scrub_remap_extent(struct btrfs_fs_info *fs_info, |
| u64 extent_logical, u32 extent_len, |
| u64 *extent_physical, |
| struct btrfs_device **extent_dev, |
| int *extent_mirror_num); |
| static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx, |
| struct scrub_page *spage); |
| static void scrub_wr_submit(struct scrub_ctx *sctx); |
| static void scrub_wr_bio_end_io(struct bio *bio); |
| static void scrub_wr_bio_end_io_worker(struct btrfs_work *work); |
| static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info); |
| static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info); |
| static void scrub_put_ctx(struct scrub_ctx *sctx); |
| |
| static inline int scrub_is_page_on_raid56(struct scrub_page *spage) |
| { |
| return spage->recover && |
| (spage->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK); |
| } |
| |
| static void scrub_pending_bio_inc(struct scrub_ctx *sctx) |
| { |
| refcount_inc(&sctx->refs); |
| atomic_inc(&sctx->bios_in_flight); |
| } |
| |
| static void scrub_pending_bio_dec(struct scrub_ctx *sctx) |
| { |
| atomic_dec(&sctx->bios_in_flight); |
| wake_up(&sctx->list_wait); |
| scrub_put_ctx(sctx); |
| } |
| |
| static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) |
| { |
| while (atomic_read(&fs_info->scrub_pause_req)) { |
| mutex_unlock(&fs_info->scrub_lock); |
| wait_event(fs_info->scrub_pause_wait, |
| atomic_read(&fs_info->scrub_pause_req) == 0); |
| mutex_lock(&fs_info->scrub_lock); |
| } |
| } |
| |
| static void scrub_pause_on(struct btrfs_fs_info *fs_info) |
| { |
| atomic_inc(&fs_info->scrubs_paused); |
| wake_up(&fs_info->scrub_pause_wait); |
| } |
| |
| static void scrub_pause_off(struct btrfs_fs_info *fs_info) |
| { |
| mutex_lock(&fs_info->scrub_lock); |
| __scrub_blocked_if_needed(fs_info); |
| atomic_dec(&fs_info->scrubs_paused); |
| mutex_unlock(&fs_info->scrub_lock); |
| |
| wake_up(&fs_info->scrub_pause_wait); |
| } |
| |
| static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) |
| { |
| scrub_pause_on(fs_info); |
| scrub_pause_off(fs_info); |
| } |
| |
| /* |
| * Insert new full stripe lock into full stripe locks tree |
| * |
| * Return pointer to existing or newly inserted full_stripe_lock structure if |
| * everything works well. |
| * Return ERR_PTR(-ENOMEM) if we failed to allocate memory |
| * |
| * NOTE: caller must hold full_stripe_locks_root->lock before calling this |
| * function |
| */ |
| static struct full_stripe_lock *insert_full_stripe_lock( |
| struct btrfs_full_stripe_locks_tree *locks_root, |
| u64 fstripe_logical) |
| { |
| struct rb_node **p; |
| struct rb_node *parent = NULL; |
| struct full_stripe_lock *entry; |
| struct full_stripe_lock *ret; |
| |
| lockdep_assert_held(&locks_root->lock); |
| |
| p = &locks_root->root.rb_node; |
| while (*p) { |
| parent = *p; |
| entry = rb_entry(parent, struct full_stripe_lock, node); |
| if (fstripe_logical < entry->logical) { |
| p = &(*p)->rb_left; |
| } else if (fstripe_logical > entry->logical) { |
| p = &(*p)->rb_right; |
| } else { |
| entry->refs++; |
| return entry; |
| } |
| } |
| |
| /* |
| * Insert new lock. |
| */ |
| ret = kmalloc(sizeof(*ret), GFP_KERNEL); |
| if (!ret) |
| return ERR_PTR(-ENOMEM); |
| ret->logical = fstripe_logical; |
| ret->refs = 1; |
| mutex_init(&ret->mutex); |
| |
| rb_link_node(&ret->node, parent, p); |
| rb_insert_color(&ret->node, &locks_root->root); |
| return ret; |
| } |
| |
| /* |
| * Search for a full stripe lock of a block group |
| * |
| * Return pointer to existing full stripe lock if found |
| * Return NULL if not found |
| */ |
| static struct full_stripe_lock *search_full_stripe_lock( |
| struct btrfs_full_stripe_locks_tree *locks_root, |
| u64 fstripe_logical) |
| { |
| struct rb_node *node; |
| struct full_stripe_lock *entry; |
| |
| lockdep_assert_held(&locks_root->lock); |
| |
| node = locks_root->root.rb_node; |
| while (node) { |
| entry = rb_entry(node, struct full_stripe_lock, node); |
| if (fstripe_logical < entry->logical) |
| node = node->rb_left; |
| else if (fstripe_logical > entry->logical) |
| node = node->rb_right; |
| else |
| return entry; |
| } |
| return NULL; |
| } |
| |
| /* |
| * Helper to get full stripe logical from a normal bytenr. |
| * |
| * Caller must ensure @cache is a RAID56 block group. |
| */ |
| static u64 get_full_stripe_logical(struct btrfs_block_group *cache, u64 bytenr) |
| { |
| u64 ret; |
| |
| /* |
| * Due to chunk item size limit, full stripe length should not be |
| * larger than U32_MAX. Just a sanity check here. |
| */ |
| WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX); |
| |
| /* |
| * round_down() can only handle power of 2, while RAID56 full |
| * stripe length can be 64KiB * n, so we need to manually round down. |
| */ |
| ret = div64_u64(bytenr - cache->start, cache->full_stripe_len) * |
| cache->full_stripe_len + cache->start; |
| return ret; |
| } |
| |
| /* |
| * Lock a full stripe to avoid concurrency of recovery and read |
| * |
| * It's only used for profiles with parities (RAID5/6), for other profiles it |
| * does nothing. |
| * |
| * Return 0 if we locked full stripe covering @bytenr, with a mutex held. |
| * So caller must call unlock_full_stripe() at the same context. |
| * |
| * Return <0 if encounters error. |
| */ |
| static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr, |
| bool *locked_ret) |
| { |
| struct btrfs_block_group *bg_cache; |
| struct btrfs_full_stripe_locks_tree *locks_root; |
| struct full_stripe_lock *existing; |
| u64 fstripe_start; |
| int ret = 0; |
| |
| *locked_ret = false; |
| bg_cache = btrfs_lookup_block_group(fs_info, bytenr); |
| if (!bg_cache) { |
| ASSERT(0); |
| return -ENOENT; |
| } |
| |
| /* Profiles not based on parity don't need full stripe lock */ |
| if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) |
| goto out; |
| locks_root = &bg_cache->full_stripe_locks_root; |
| |
| fstripe_start = get_full_stripe_logical(bg_cache, bytenr); |
| |
| /* Now insert the full stripe lock */ |
| mutex_lock(&locks_root->lock); |
| existing = insert_full_stripe_lock(locks_root, fstripe_start); |
| mutex_unlock(&locks_root->lock); |
| if (IS_ERR(existing)) { |
| ret = PTR_ERR(existing); |
| goto out; |
| } |
| mutex_lock(&existing->mutex); |
| *locked_ret = true; |
| out: |
| btrfs_put_block_group(bg_cache); |
| return ret; |
| } |
| |
| /* |
| * Unlock a full stripe. |
| * |
| * NOTE: Caller must ensure it's the same context calling corresponding |
| * lock_full_stripe(). |
| * |
| * Return 0 if we unlock full stripe without problem. |
| * Return <0 for error |
| */ |
| static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr, |
| bool locked) |
| { |
| struct btrfs_block_group *bg_cache; |
| struct btrfs_full_stripe_locks_tree *locks_root; |
| struct full_stripe_lock *fstripe_lock; |
| u64 fstripe_start; |
| bool freeit = false; |
| int ret = 0; |
| |
| /* If we didn't acquire full stripe lock, no need to continue */ |
| if (!locked) |
| return 0; |
| |
| bg_cache = btrfs_lookup_block_group(fs_info, bytenr); |
| if (!bg_cache) { |
| ASSERT(0); |
| return -ENOENT; |
| } |
| if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) |
| goto out; |
| |
| locks_root = &bg_cache->full_stripe_locks_root; |
| fstripe_start = get_full_stripe_logical(bg_cache, bytenr); |
| |
| mutex_lock(&locks_root->lock); |
| fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start); |
| /* Unpaired unlock_full_stripe() detected */ |
| if (!fstripe_lock) { |
| WARN_ON(1); |
| ret = -ENOENT; |
| mutex_unlock(&locks_root->lock); |
| goto out; |
| } |
| |
| if (fstripe_lock->refs == 0) { |
| WARN_ON(1); |
| btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow", |
| fstripe_lock->logical); |
| } else { |
| fstripe_lock->refs--; |
| } |
| |
| if (fstripe_lock->refs == 0) { |
| rb_erase(&fstripe_lock->node, &locks_root->root); |
| freeit = true; |
| } |
| mutex_unlock(&locks_root->lock); |
| |
| mutex_unlock(&fstripe_lock->mutex); |
| if (freeit) |
| kfree(fstripe_lock); |
| out: |
| btrfs_put_block_group(bg_cache); |
| return ret; |
| } |
| |
| static void scrub_free_csums(struct scrub_ctx *sctx) |
| { |
| while (!list_empty(&sctx->csum_list)) { |
| struct btrfs_ordered_sum *sum; |
| sum = list_first_entry(&sctx->csum_list, |
| struct btrfs_ordered_sum, list); |
| list_del(&sum->list); |
| kfree(sum); |
| } |
| } |
| |
| static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx) |
| { |
| int i; |
| |
| if (!sctx) |
| return; |
| |
| /* this can happen when scrub is cancelled */ |
| if (sctx->curr != -1) { |
| struct scrub_bio *sbio = sctx->bios[sctx->curr]; |
| |
| for (i = 0; i < sbio->page_count; i++) { |
| WARN_ON(!sbio->pagev[i]->page); |
| scrub_block_put(sbio->pagev[i]->sblock); |
| } |
| bio_put(sbio->bio); |
| } |
| |
| for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) { |
| struct scrub_bio *sbio = sctx->bios[i]; |
| |
| if (!sbio) |
| break; |
| kfree(sbio); |
| } |
| |
| kfree(sctx->wr_curr_bio); |
| scrub_free_csums(sctx); |
| kfree(sctx); |
| } |
| |
| static void scrub_put_ctx(struct scrub_ctx *sctx) |
| { |
| if (refcount_dec_and_test(&sctx->refs)) |
| scrub_free_ctx(sctx); |
| } |
| |
| static noinline_for_stack struct scrub_ctx *scrub_setup_ctx( |
| struct btrfs_fs_info *fs_info, int is_dev_replace) |
| { |
| struct scrub_ctx *sctx; |
| int i; |
| |
| sctx = kzalloc(sizeof(*sctx), GFP_KERNEL); |
| if (!sctx) |
| goto nomem; |
| refcount_set(&sctx->refs, 1); |
| sctx->is_dev_replace = is_dev_replace; |
| sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO; |
| sctx->curr = -1; |
| sctx->fs_info = fs_info; |
| INIT_LIST_HEAD(&sctx->csum_list); |
| for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) { |
| struct scrub_bio *sbio; |
| |
| sbio = kzalloc(sizeof(*sbio), GFP_KERNEL); |
| if (!sbio) |
| goto nomem; |
| sctx->bios[i] = sbio; |
| |
| sbio->index = i; |
| sbio->sctx = sctx; |
| sbio->page_count = 0; |
| btrfs_init_work(&sbio->work, scrub_bio_end_io_worker, NULL, |
| NULL); |
| |
| if (i != SCRUB_BIOS_PER_SCTX - 1) |
| sctx->bios[i]->next_free = i + 1; |
| else |
| sctx->bios[i]->next_free = -1; |
| } |
| sctx->first_free = 0; |
| atomic_set(&sctx->bios_in_flight, 0); |
| atomic_set(&sctx->workers_pending, 0); |
| atomic_set(&sctx->cancel_req, 0); |
| |
| spin_lock_init(&sctx->list_lock); |
| spin_lock_init(&sctx->stat_lock); |
| init_waitqueue_head(&sctx->list_wait); |
| |
| WARN_ON(sctx->wr_curr_bio != NULL); |
| mutex_init(&sctx->wr_lock); |
| sctx->wr_curr_bio = NULL; |
| if (is_dev_replace) { |
| WARN_ON(!fs_info->dev_replace.tgtdev); |
| sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO; |
| sctx->wr_tgtdev = fs_info->dev_replace.tgtdev; |
| sctx->flush_all_writes = false; |
| } |
| |
| return sctx; |
| |
| nomem: |
| scrub_free_ctx(sctx); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root, |
| void *warn_ctx) |
| { |
| u64 isize; |
| u32 nlink; |
| int ret; |
| int i; |
| unsigned nofs_flag; |
| struct extent_buffer *eb; |
| struct btrfs_inode_item *inode_item; |
| struct scrub_warning *swarn = warn_ctx; |
| struct btrfs_fs_info *fs_info = swarn->dev->fs_info; |
| struct inode_fs_paths *ipath = NULL; |
| struct btrfs_root *local_root; |
| struct btrfs_key key; |
| |
| local_root = btrfs_get_fs_root(fs_info, root, true); |
| if (IS_ERR(local_root)) { |
| ret = PTR_ERR(local_root); |
| goto err; |
| } |
| |
| /* |
| * this makes the path point to (inum INODE_ITEM ioff) |
| */ |
| key.objectid = inum; |
| key.type = BTRFS_INODE_ITEM_KEY; |
| key.offset = 0; |
| |
| ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0); |
| if (ret) { |
| btrfs_put_root(local_root); |
| btrfs_release_path(swarn->path); |
| goto err; |
| } |
| |
| eb = swarn->path->nodes[0]; |
| inode_item = btrfs_item_ptr(eb, swarn->path->slots[0], |
| struct btrfs_inode_item); |
| isize = btrfs_inode_size(eb, inode_item); |
| nlink = btrfs_inode_nlink(eb, inode_item); |
| btrfs_release_path(swarn->path); |
| |
| /* |
| * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub |
| * uses GFP_NOFS in this context, so we keep it consistent but it does |
| * not seem to be strictly necessary. |
| */ |
| nofs_flag = memalloc_nofs_save(); |
| ipath = init_ipath(4096, local_root, swarn->path); |
| memalloc_nofs_restore(nofs_flag); |
| if (IS_ERR(ipath)) { |
| btrfs_put_root(local_root); |
| ret = PTR_ERR(ipath); |
| ipath = NULL; |
| goto err; |
| } |
| ret = paths_from_inode(inum, ipath); |
| |
| if (ret < 0) |
| goto err; |
| |
| /* |
| * we deliberately ignore the bit ipath might have been too small to |
| * hold all of the paths here |
| */ |
| for (i = 0; i < ipath->fspath->elem_cnt; ++i) |
| btrfs_warn_in_rcu(fs_info, |
| "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)", |
| swarn->errstr, swarn->logical, |
| rcu_str_deref(swarn->dev->name), |
| swarn->physical, |
| root, inum, offset, |
| min(isize - offset, (u64)PAGE_SIZE), nlink, |
| (char *)(unsigned long)ipath->fspath->val[i]); |
| |
| btrfs_put_root(local_root); |
| free_ipath(ipath); |
| return 0; |
| |
| err: |
| btrfs_warn_in_rcu(fs_info, |
| "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d", |
| swarn->errstr, swarn->logical, |
| rcu_str_deref(swarn->dev->name), |
| swarn->physical, |
| root, inum, offset, ret); |
| |
| free_ipath(ipath); |
| return 0; |
| } |
| |
| static void scrub_print_warning(const char *errstr, struct scrub_block *sblock) |
| { |
| struct btrfs_device *dev; |
| struct btrfs_fs_info *fs_info; |
| struct btrfs_path *path; |
| struct btrfs_key found_key; |
| struct extent_buffer *eb; |
| struct btrfs_extent_item *ei; |
| struct scrub_warning swarn; |
| unsigned long ptr = 0; |
| u64 extent_item_pos; |
| u64 flags = 0; |
| u64 ref_root; |
| u32 item_size; |
| u8 ref_level = 0; |
| int ret; |
| |
| WARN_ON(sblock->page_count < 1); |
| dev = sblock->pagev[0]->dev; |
| fs_info = sblock->sctx->fs_info; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return; |
| |
| swarn.physical = sblock->pagev[0]->physical; |
| swarn.logical = sblock->pagev[0]->logical; |
| swarn.errstr = errstr; |
| swarn.dev = NULL; |
| |
| ret = extent_from_logical(fs_info, swarn.logical, path, &found_key, |
| &flags); |
| if (ret < 0) |
| goto out; |
| |
| extent_item_pos = swarn.logical - found_key.objectid; |
| swarn.extent_item_size = found_key.offset; |
| |
| eb = path->nodes[0]; |
| ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); |
| item_size = btrfs_item_size_nr(eb, path->slots[0]); |
| |
| if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { |
| do { |
| ret = tree_backref_for_extent(&ptr, eb, &found_key, ei, |
| item_size, &ref_root, |
| &ref_level); |
| btrfs_warn_in_rcu(fs_info, |
| "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu", |
| errstr, swarn.logical, |
| rcu_str_deref(dev->name), |
| swarn.physical, |
| ref_level ? "node" : "leaf", |
| ret < 0 ? -1 : ref_level, |
| ret < 0 ? -1 : ref_root); |
| } while (ret != 1); |
| btrfs_release_path(path); |
| } else { |
| btrfs_release_path(path); |
| swarn.path = path; |
| swarn.dev = dev; |
| iterate_extent_inodes(fs_info, found_key.objectid, |
| extent_item_pos, 1, |
| scrub_print_warning_inode, &swarn, false); |
| } |
| |
| out: |
| btrfs_free_path(path); |
| } |
| |
| static inline void scrub_get_recover(struct scrub_recover *recover) |
| { |
| refcount_inc(&recover->refs); |
| } |
| |
| static inline void scrub_put_recover(struct btrfs_fs_info *fs_info, |
| struct scrub_recover *recover) |
| { |
| if (refcount_dec_and_test(&recover->refs)) { |
| btrfs_bio_counter_dec(fs_info); |
| btrfs_put_bbio(recover->bbio); |
| kfree(recover); |
| } |
| } |
| |
| /* |
| * scrub_handle_errored_block gets called when either verification of the |
| * pages failed or the bio failed to read, e.g. with EIO. In the latter |
| * case, this function handles all pages in the bio, even though only one |
| * may be bad. |
| * The goal of this function is to repair the errored block by using the |
| * contents of one of the mirrors. |
| */ |
| static int scrub_handle_errored_block(struct scrub_block *sblock_to_check) |
| { |
| struct scrub_ctx *sctx = sblock_to_check->sctx; |
| struct btrfs_device *dev; |
| struct btrfs_fs_info *fs_info; |
| u64 logical; |
| unsigned int failed_mirror_index; |
| unsigned int is_metadata; |
| unsigned int have_csum; |
| struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */ |
| struct scrub_block *sblock_bad; |
| int ret; |
| int mirror_index; |
| int page_num; |
| int success; |
| bool full_stripe_locked; |
| unsigned int nofs_flag; |
| static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, |
| DEFAULT_RATELIMIT_BURST); |
| |
| BUG_ON(sblock_to_check->page_count < 1); |
| fs_info = sctx->fs_info; |
| if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) { |
| /* |
| * if we find an error in a super block, we just report it. |
| * They will get written with the next transaction commit |
| * anyway |
| */ |
| spin_lock(&sctx->stat_lock); |
| ++sctx->stat.super_errors; |
| spin_unlock(&sctx->stat_lock); |
| return 0; |
| } |
| logical = sblock_to_check->pagev[0]->logical; |
| BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1); |
| failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1; |
| is_metadata = !(sblock_to_check->pagev[0]->flags & |
| BTRFS_EXTENT_FLAG_DATA); |
| have_csum = sblock_to_check->pagev[0]->have_csum; |
| dev = sblock_to_check->pagev[0]->dev; |
| |
| if (btrfs_is_zoned(fs_info) && !sctx->is_dev_replace) |
| return btrfs_repair_one_zone(fs_info, logical); |
| |
| /* |
| * We must use GFP_NOFS because the scrub task might be waiting for a |
| * worker task executing this function and in turn a transaction commit |
| * might be waiting the scrub task to pause (which needs to wait for all |
| * the worker tasks to complete before pausing). |
| * We do allocations in the workers through insert_full_stripe_lock() |
| * and scrub_add_page_to_wr_bio(), which happens down the call chain of |
| * this function. |
| */ |
| nofs_flag = memalloc_nofs_save(); |
| /* |
| * For RAID5/6, race can happen for a different device scrub thread. |
| * For data corruption, Parity and Data threads will both try |
| * to recovery the data. |
| * Race can lead to doubly added csum error, or even unrecoverable |
| * error. |
| */ |
| ret = lock_full_stripe(fs_info, logical, &full_stripe_locked); |
| if (ret < 0) { |
| memalloc_nofs_restore(nofs_flag); |
| spin_lock(&sctx->stat_lock); |
| if (ret == -ENOMEM) |
| sctx->stat.malloc_errors++; |
| sctx->stat.read_errors++; |
| sctx->stat.uncorrectable_errors++; |
| spin_unlock(&sctx->stat_lock); |
| return ret; |
| } |
| |
| /* |
| * read all mirrors one after the other. This includes to |
| * re-read the extent or metadata block that failed (that was |
| * the cause that this fixup code is called) another time, |
| * page by page this time in order to know which pages |
| * caused I/O errors and which ones are good (for all mirrors). |
| * It is the goal to handle the situation when more than one |
| * mirror contains I/O errors, but the errors do not |
| * overlap, i.e. the data can be repaired by selecting the |
| * pages from those mirrors without I/O error on the |
| * particular pages. One example (with blocks >= 2 * PAGE_SIZE) |
| * would be that mirror #1 has an I/O error on the first page, |
| * the second page is good, and mirror #2 has an I/O error on |
| * the second page, but the first page is good. |
| * Then the first page of the first mirror can be repaired by |
| * taking the first page of the second mirror, and the |
| * second page of the second mirror can be repaired by |
| * copying the contents of the 2nd page of the 1st mirror. |
| * One more note: if the pages of one mirror contain I/O |
| * errors, the checksum cannot be verified. In order to get |
| * the best data for repairing, the first attempt is to find |
| * a mirror without I/O errors and with a validated checksum. |
| * Only if this is not possible, the pages are picked from |
| * mirrors with I/O errors without considering the checksum. |
| * If the latter is the case, at the end, the checksum of the |
| * repaired area is verified in order to correctly maintain |
| * the statistics. |
| */ |
| |
| sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS, |
| sizeof(*sblocks_for_recheck), GFP_KERNEL); |
| if (!sblocks_for_recheck) { |
| spin_lock(&sctx->stat_lock); |
| sctx->stat.malloc_errors++; |
| sctx->stat.read_errors++; |
| sctx->stat.uncorrectable_errors++; |
| spin_unlock(&sctx->stat_lock); |
| btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); |
| goto out; |
| } |
| |
| /* setup the context, map the logical blocks and alloc the pages */ |
| ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck); |
| if (ret) { |
| spin_lock(&sctx->stat_lock); |
| sctx->stat.read_errors++; |
| sctx->stat.uncorrectable_errors++; |
| spin_unlock(&sctx->stat_lock); |
| btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); |
| goto out; |
| } |
| BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS); |
| sblock_bad = sblocks_for_recheck + failed_mirror_index; |
| |
| /* build and submit the bios for the failed mirror, check checksums */ |
| scrub_recheck_block(fs_info, sblock_bad, 1); |
| |
| if (!sblock_bad->header_error && !sblock_bad->checksum_error && |
| sblock_bad->no_io_error_seen) { |
| /* |
| * the error disappeared after reading page by page, or |
| * the area was part of a huge bio and other parts of the |
| * bio caused I/O errors, or the block layer merged several |
| * read requests into one and the error is caused by a |
| * different bio (usually one of the two latter cases is |
| * the cause) |
| */ |
| spin_lock(&sctx->stat_lock); |
| sctx->stat.unverified_errors++; |
| sblock_to_check->data_corrected = 1; |
| spin_unlock(&sctx->stat_lock); |
| |
| if (sctx->is_dev_replace) |
| scrub_write_block_to_dev_replace(sblock_bad); |
| goto out; |
| } |
| |
| if (!sblock_bad->no_io_error_seen) { |
| spin_lock(&sctx->stat_lock); |
| sctx->stat.read_errors++; |
| spin_unlock(&sctx->stat_lock); |
| if (__ratelimit(&rs)) |
| scrub_print_warning("i/o error", sblock_to_check); |
| btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); |
| } else if (sblock_bad->checksum_error) { |
| spin_lock(&sctx->stat_lock); |
| sctx->stat.csum_errors++; |
| spin_unlock(&sctx->stat_lock); |
| if (__ratelimit(&rs)) |
| scrub_print_warning("checksum error", sblock_to_check); |
| btrfs_dev_stat_inc_and_print(dev, |
| BTRFS_DEV_STAT_CORRUPTION_ERRS); |
| } else if (sblock_bad->header_error) { |
| spin_lock(&sctx->stat_lock); |
| sctx->stat.verify_errors++; |
| spin_unlock(&sctx->stat_lock); |
| if (__ratelimit(&rs)) |
| scrub_print_warning("checksum/header error", |
| sblock_to_check); |
| if (sblock_bad->generation_error) |
| btrfs_dev_stat_inc_and_print(dev, |
| BTRFS_DEV_STAT_GENERATION_ERRS); |
| else |
| btrfs_dev_stat_inc_and_print(dev, |
| BTRFS_DEV_STAT_CORRUPTION_ERRS); |
| } |
| |
| if (sctx->readonly) { |
| ASSERT(!sctx->is_dev_replace); |
| goto out; |
| } |
| |
| /* |
| * now build and submit the bios for the other mirrors, check |
| * checksums. |
| * First try to pick the mirror which is completely without I/O |
| * errors and also does not have a checksum error. |
| * If one is found, and if a checksum is present, the full block |
| * that is known to contain an error is rewritten. Afterwards |
| * the block is known to be corrected. |
| * If a mirror is found which is completely correct, and no |
| * checksum is present, only those pages are rewritten that had |
| * an I/O error in the block to be repaired, since it cannot be |
| * determined, which copy of the other pages is better (and it |
| * could happen otherwise that a correct page would be |
| * overwritten by a bad one). |
| */ |
| for (mirror_index = 0; ;mirror_index++) { |
| struct scrub_block *sblock_other; |
| |
| if (mirror_index == failed_mirror_index) |
| continue; |
| |
| /* raid56's mirror can be more than BTRFS_MAX_MIRRORS */ |
| if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) { |
| if (mirror_index >= BTRFS_MAX_MIRRORS) |
| break; |
| if (!sblocks_for_recheck[mirror_index].page_count) |
| break; |
| |
| sblock_other = sblocks_for_recheck + mirror_index; |
| } else { |
| struct scrub_recover *r = sblock_bad->pagev[0]->recover; |
| int max_allowed = r->bbio->num_stripes - |
| r->bbio->num_tgtdevs; |
| |
| if (mirror_index >= max_allowed) |
| break; |
| if (!sblocks_for_recheck[1].page_count) |
| break; |
| |
| ASSERT(failed_mirror_index == 0); |
| sblock_other = sblocks_for_recheck + 1; |
| sblock_other->pagev[0]->mirror_num = 1 + mirror_index; |
| } |
| |
| /* build and submit the bios, check checksums */ |
| scrub_recheck_block(fs_info, sblock_other, 0); |
| |
| if (!sblock_other->header_error && |
| !sblock_other->checksum_error && |
| sblock_other->no_io_error_seen) { |
| if (sctx->is_dev_replace) { |
| scrub_write_block_to_dev_replace(sblock_other); |
| goto corrected_error; |
| } else { |
| ret = scrub_repair_block_from_good_copy( |
| sblock_bad, sblock_other); |
| if (!ret) |
| goto corrected_error; |
| } |
| } |
| } |
| |
| if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace) |
| goto did_not_correct_error; |
| |
| /* |
| * In case of I/O errors in the area that is supposed to be |
| * repaired, continue by picking good copies of those pages. |
| * Select the good pages from mirrors to rewrite bad pages from |
| * the area to fix. Afterwards verify the checksum of the block |
| * that is supposed to be repaired. This verification step is |
| * only done for the purpose of statistic counting and for the |
| * final scrub report, whether errors remain. |
| * A perfect algorithm could make use of the checksum and try |
| * all possible combinations of pages from the different mirrors |
| * until the checksum verification succeeds. For example, when |
| * the 2nd page of mirror #1 faces I/O errors, and the 2nd page |
| * of mirror #2 is readable but the final checksum test fails, |
| * then the 2nd page of mirror #3 could be tried, whether now |
| * the final checksum succeeds. But this would be a rare |
| * exception and is therefore not implemented. At least it is |
| * avoided that the good copy is overwritten. |
| * A more useful improvement would be to pick the sectors |
| * without I/O error based on sector sizes (512 bytes on legacy |
| * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one |
| * mirror could be repaired by taking 512 byte of a different |
| * mirror, even if other 512 byte sectors in the same PAGE_SIZE |
| * area are unreadable. |
| */ |
| success = 1; |
| for (page_num = 0; page_num < sblock_bad->page_count; |
| page_num++) { |
| struct scrub_page *spage_bad = sblock_bad->pagev[page_num]; |
| struct scrub_block *sblock_other = NULL; |
| |
| /* skip no-io-error page in scrub */ |
| if (!spage_bad->io_error && !sctx->is_dev_replace) |
| continue; |
| |
| if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) { |
| /* |
| * In case of dev replace, if raid56 rebuild process |
| * didn't work out correct data, then copy the content |
| * in sblock_bad to make sure target device is identical |
| * to source device, instead of writing garbage data in |
| * sblock_for_recheck array to target device. |
| */ |
| sblock_other = NULL; |
| } else if (spage_bad->io_error) { |
| /* try to find no-io-error page in mirrors */ |
| for (mirror_index = 0; |
| mirror_index < BTRFS_MAX_MIRRORS && |
| sblocks_for_recheck[mirror_index].page_count > 0; |
| mirror_index++) { |
| if (!sblocks_for_recheck[mirror_index]. |
| pagev[page_num]->io_error) { |
| sblock_other = sblocks_for_recheck + |
| mirror_index; |
| break; |
| } |
| } |
| if (!sblock_other) |
| success = 0; |
| } |
| |
| if (sctx->is_dev_replace) { |
| /* |
| * did not find a mirror to fetch the page |
| * from. scrub_write_page_to_dev_replace() |
| * handles this case (page->io_error), by |
| * filling the block with zeros before |
| * submitting the write request |
| */ |
| if (!sblock_other) |
| sblock_other = sblock_bad; |
| |
| if (scrub_write_page_to_dev_replace(sblock_other, |
| page_num) != 0) { |
| atomic64_inc( |
| &fs_info->dev_replace.num_write_errors); |
| success = 0; |
| } |
| } else if (sblock_other) { |
| ret = scrub_repair_page_from_good_copy(sblock_bad, |
| sblock_other, |
| page_num, 0); |
| if (0 == ret) |
| spage_bad->io_error = 0; |
| else |
| success = 0; |
| } |
| } |
| |
| if (success && !sctx->is_dev_replace) { |
| if (is_metadata || have_csum) { |
| /* |
| * need to verify the checksum now that all |
| * sectors on disk are repaired (the write |
| * request for data to be repaired is on its way). |
| * Just be lazy and use scrub_recheck_block() |
| * which re-reads the data before the checksum |
| * is verified, but most likely the data comes out |
| * of the page cache. |
| */ |
| scrub_recheck_block(fs_info, sblock_bad, 1); |
| if (!sblock_bad->header_error && |
| !sblock_bad->checksum_error && |
| sblock_bad->no_io_error_seen) |
| goto corrected_error; |
| else |
| goto did_not_correct_error; |
| } else { |
| corrected_error: |
| spin_lock(&sctx->stat_lock); |
| sctx->stat.corrected_errors++; |
| sblock_to_check->data_corrected = 1; |
| spin_unlock(&sctx->stat_lock); |
| btrfs_err_rl_in_rcu(fs_info, |
| "fixed up error at logical %llu on dev %s", |
| logical, rcu_str_deref(dev->name)); |
| } |
| } else { |
| did_not_correct_error: |
| spin_lock(&sctx->stat_lock); |
| sctx->stat.uncorrectable_errors++; |
| spin_unlock(&sctx->stat_lock); |
| btrfs_err_rl_in_rcu(fs_info, |
| "unable to fixup (regular) error at logical %llu on dev %s", |
| logical, rcu_str_deref(dev->name)); |
| } |
| |
| out: |
| if (sblocks_for_recheck) { |
| for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS; |
| mirror_index++) { |
| struct scrub_block *sblock = sblocks_for_recheck + |
| mirror_index; |
| struct scrub_recover *recover; |
| int page_index; |
| |
| for (page_index = 0; page_index < sblock->page_count; |
| page_index++) { |
| sblock->pagev[page_index]->sblock = NULL; |
| recover = sblock->pagev[page_index]->recover; |
| if (recover) { |
| scrub_put_recover(fs_info, recover); |
| sblock->pagev[page_index]->recover = |
| NULL; |
| } |
| scrub_page_put(sblock->pagev[page_index]); |
| } |
| } |
| kfree(sblocks_for_recheck); |
| } |
| |
| ret = unlock_full_stripe(fs_info, logical, full_stripe_locked); |
| memalloc_nofs_restore(nofs_flag); |
| if (ret < 0) |
| return ret; |
| return 0; |
| } |
| |
| static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio) |
| { |
| if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5) |
| return 2; |
| else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) |
| return 3; |
| else |
| return (int)bbio->num_stripes; |
| } |
| |
| static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type, |
| u64 *raid_map, |
| u64 mapped_length, |
| int nstripes, int mirror, |
| int *stripe_index, |
| u64 *stripe_offset) |
| { |
| int i; |
| |
| if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { |
| /* RAID5/6 */ |
| for (i = 0; i < nstripes; i++) { |
| if (raid_map[i] == RAID6_Q_STRIPE || |
| raid_map[i] == RAID5_P_STRIPE) |
| continue; |
| |
| if (logical >= raid_map[i] && |
| logical < raid_map[i] + mapped_length) |
| break; |
| } |
| |
| *stripe_index = i; |
| *stripe_offset = logical - raid_map[i]; |
| } else { |
| /* The other RAID type */ |
| *stripe_index = mirror; |
| *stripe_offset = 0; |
| } |
| } |
| |
| static int scrub_setup_recheck_block(struct scrub_block *original_sblock, |
| struct scrub_block *sblocks_for_recheck) |
| { |
| struct scrub_ctx *sctx = original_sblock->sctx; |
| struct btrfs_fs_info *fs_info = sctx->fs_info; |
| u64 length = original_sblock->page_count * PAGE_SIZE; |
| u64 logical = original_sblock->pagev[0]->logical; |
| u64 generation = original_sblock->pagev[0]->generation; |
| u64 flags = original_sblock->pagev[0]->flags; |
| u64 have_csum = original_sblock->pagev[0]->have_csum; |
| struct scrub_recover *recover; |
| struct btrfs_bio *bbio; |
| u64 sublen; |
| u64 mapped_length; |
| u64 stripe_offset; |
| int stripe_index; |
| int page_index = 0; |
| int mirror_index; |
| int nmirrors; |
| int ret; |
| |
| /* |
| * note: the two members refs and outstanding_pages |
| * are not used (and not set) in the blocks that are used for |
| * the recheck procedure |
| */ |
| |
| while (length > 0) { |
| sublen = min_t(u64, length, PAGE_SIZE); |
| mapped_length = sublen; |
| bbio = NULL; |
| |
| /* |
| * with a length of PAGE_SIZE, each returned stripe |
| * represents one mirror |
| */ |
| btrfs_bio_counter_inc_blocked(fs_info); |
| ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, |
| logical, &mapped_length, &bbio); |
| if (ret || !bbio || mapped_length < sublen) { |
| btrfs_put_bbio(bbio); |
| btrfs_bio_counter_dec(fs_info); |
| return -EIO; |
| } |
| |
| recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS); |
| if (!recover) { |
| btrfs_put_bbio(bbio); |
| btrfs_bio_counter_dec(fs_info); |
| return -ENOMEM; |
| } |
| |
| refcount_set(&recover->refs, 1); |
| recover->bbio = bbio; |
| recover->map_length = mapped_length; |
| |
| BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK); |
| |
| nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS); |
| |
| for (mirror_index = 0; mirror_index < nmirrors; |
| mirror_index++) { |
| struct scrub_block *sblock; |
| struct scrub_page *spage; |
| |
| sblock = sblocks_for_recheck + mirror_index; |
| sblock->sctx = sctx; |
| |
| spage = kzalloc(sizeof(*spage), GFP_NOFS); |
| if (!spage) { |
| leave_nomem: |
| spin_lock(&sctx->stat_lock); |
| sctx->stat.malloc_errors++; |
| spin_unlock(&sctx->stat_lock); |
| scrub_put_recover(fs_info, recover); |
| return -ENOMEM; |
| } |
| scrub_page_get(spage); |
| sblock->pagev[page_index] = spage; |
| spage->sblock = sblock; |
| spage->flags = flags; |
| spage->generation = generation; |
| spage->logical = logical; |
| spage->have_csum = have_csum; |
| if (have_csum) |
| memcpy(spage->csum, |
| original_sblock->pagev[0]->csum, |
| sctx->fs_info->csum_size); |
| |
| scrub_stripe_index_and_offset(logical, |
| bbio->map_type, |
| bbio->raid_map, |
| mapped_length, |
| bbio->num_stripes - |
| bbio->num_tgtdevs, |
| mirror_index, |
| &stripe_index, |
| &stripe_offset); |
| spage->physical = bbio->stripes[stripe_index].physical + |
| stripe_offset; |
| spage->dev = bbio->stripes[stripe_index].dev; |
| |
| BUG_ON(page_index >= original_sblock->page_count); |
| spage->physical_for_dev_replace = |
| original_sblock->pagev[page_index]-> |
| physical_for_dev_replace; |
| /* for missing devices, dev->bdev is NULL */ |
| spage->mirror_num = mirror_index + 1; |
| sblock->page_count++; |
| spage->page = alloc_page(GFP_NOFS); |
| if (!spage->page) |
| goto leave_nomem; |
| |
| scrub_get_recover(recover); |
| spage->recover = recover; |
| } |
| scrub_put_recover(fs_info, recover); |
| length -= sublen; |
| logical += sublen; |
| page_index++; |
| } |
| |
| return 0; |
| } |
| |
| static void scrub_bio_wait_endio(struct bio *bio) |
| { |
| complete(bio->bi_private); |
| } |
| |
| static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info, |
| struct bio *bio, |
| struct scrub_page *spage) |
| { |
| DECLARE_COMPLETION_ONSTACK(done); |
| int ret; |
| int mirror_num; |
| |
| bio->bi_iter.bi_sector = spage->logical >> 9; |
| bio->bi_private = &done; |
| bio->bi_end_io = scrub_bio_wait_endio; |
| |
| mirror_num = spage->sblock->pagev[0]->mirror_num; |
| ret = raid56_parity_recover(fs_info, bio, spage->recover->bbio, |
| spage->recover->map_length, |
| mirror_num, 0); |
| if (ret) |
| return ret; |
| |
| wait_for_completion_io(&done); |
| return blk_status_to_errno(bio->bi_status); |
| } |
| |
| static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info, |
| struct scrub_block *sblock) |
| { |
| struct scrub_page *first_page = sblock->pagev[0]; |
| struct bio *bio; |
| int page_num; |
| |
| /* All pages in sblock belong to the same stripe on the same device. */ |
| ASSERT(first_page->dev); |
| if (!first_page->dev->bdev) |
| goto out; |
| |
| bio = btrfs_io_bio_alloc(BIO_MAX_PAGES); |
| bio_set_dev(bio, first_page->dev->bdev); |
| |
| for (page_num = 0; page_num < sblock->page_count; page_num++) { |
| struct scrub_page *spage = sblock->pagev[page_num]; |
| |
| WARN_ON(!spage->page); |
| bio_add_page(bio, spage->page, PAGE_SIZE, 0); |
| } |
| |
| if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) { |
| bio_put(bio); |
| goto out; |
| } |
| |
| bio_put(bio); |
| |
| scrub_recheck_block_checksum(sblock); |
| |
| return; |
| out: |
| for (page_num = 0; page_num < sblock->page_count; page_num++) |
| sblock->pagev[page_num]->io_error = 1; |
| |
| sblock->no_io_error_seen = 0; |
| } |
| |
| /* |
| * this function will check the on disk data for checksum errors, header |
| * errors and read I/O errors. If any I/O errors happen, the exact pages |
| * which are errored are marked as being bad. The goal is to enable scrub |
| * to take those pages that are not errored from all the mirrors so that |
| * the pages that are errored in the just handled mirror can be repaired. |
| */ |
| static void scrub_recheck_block(struct btrfs_fs_info *fs_info, |
| struct scrub_block *sblock, |
| int retry_failed_mirror) |
| { |
| int page_num; |
| |
| sblock->no_io_error_seen = 1; |
| |
| /* short cut for raid56 */ |
| if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0])) |
| return scrub_recheck_block_on_raid56(fs_info, sblock); |
| |
| for (page_num = 0; page_num < sblock->page_count; page_num++) { |
| struct bio *bio; |
| struct scrub_page *spage = sblock->pagev[page_num]; |
| |
| if (spage->dev->bdev == NULL) { |
| spage->io_error = 1; |
| sblock->no_io_error_seen = 0; |
| continue; |
| } |
| |
| WARN_ON(!spage->page); |
| bio = btrfs_io_bio_alloc(1); |
| bio_set_dev(bio, spage->dev->bdev); |
| |
| bio_add_page(bio, spage->page, PAGE_SIZE, 0); |
| bio->bi_iter.bi_sector = spage->physical >> 9; |
| bio->bi_opf = REQ_OP_READ; |
| |
| if (btrfsic_submit_bio_wait(bio)) { |
| spage->io_error = 1; |
| sblock->no_io_error_seen = 0; |
| } |
| |
| bio_put(bio); |
| } |
| |
| if (sblock->no_io_error_seen) |
| scrub_recheck_block_checksum(sblock); |
| } |
| |
| static inline int scrub_check_fsid(u8 fsid[], |
| struct scrub_page *spage) |
| { |
| struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices; |
| int ret; |
| |
| ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE); |
| return !ret; |
| } |
| |
| static void scrub_recheck_block_checksum(struct scrub_block *sblock) |
| { |
| sblock->header_error = 0; |
| sblock->checksum_error = 0; |
| sblock->generation_error = 0; |
| |
| if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA) |
| scrub_checksum_data(sblock); |
| else |
| scrub_checksum_tree_block(sblock); |
| } |
| |
| static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, |
| struct scrub_block *sblock_good) |
| { |
| int page_num; |
| int ret = 0; |
| |
| for (page_num = 0; page_num < sblock_bad->page_count; page_num++) { |
| int ret_sub; |
| |
| ret_sub = scrub_repair_page_from_good_copy(sblock_bad, |
| sblock_good, |
| page_num, 1); |
| if (ret_sub) |
| ret = ret_sub; |
| } |
| |
| return ret; |
| } |
| |
| static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad, |
| struct scrub_block *sblock_good, |
| int page_num, int force_write) |
| { |
| struct scrub_page *spage_bad = sblock_bad->pagev[page_num]; |
| struct scrub_page *spage_good = sblock_good->pagev[page_num]; |
| struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info; |
| |
| BUG_ON(spage_bad->page == NULL); |
| BUG_ON(spage_good->page == NULL); |
| if (force_write || sblock_bad->header_error || |
| sblock_bad->checksum_error || spage_bad->io_error) { |
| struct bio *bio; |
| int ret; |
| |
| if (!spage_bad->dev->bdev) { |
| btrfs_warn_rl(fs_info, |
| "scrub_repair_page_from_good_copy(bdev == NULL) is unexpected"); |
| return -EIO; |
| } |
| |
| bio = btrfs_io_bio_alloc(1); |
| bio_set_dev(bio, spage_bad->dev->bdev); |
| bio->bi_iter.bi_sector = spage_bad->physical >> 9; |
| bio->bi_opf = REQ_OP_WRITE; |
| |
| ret = bio_add_page(bio, spage_good->page, PAGE_SIZE, 0); |
| if (PAGE_SIZE != ret) { |
| bio_put(bio); |
| return -EIO; |
| } |
| |
| if (btrfsic_submit_bio_wait(bio)) { |
| btrfs_dev_stat_inc_and_print(spage_bad->dev, |
| BTRFS_DEV_STAT_WRITE_ERRS); |
| atomic64_inc(&fs_info->dev_replace.num_write_errors); |
| bio_put(bio); |
| return -EIO; |
| } |
| bio_put(bio); |
| } |
| |
| return 0; |
| } |
| |
| static void scrub_write_block_to_dev_replace(struct scrub_block *sblock) |
| { |
| struct btrfs_fs_info *fs_info = sblock->sctx->fs_info; |
| int page_num; |
| |
| /* |
| * This block is used for the check of the parity on the source device, |
| * so the data needn't be written into the destination device. |
| */ |
| if (sblock->sparity) |
| return; |
| |
| for (page_num = 0; page_num < sblock->page_count; page_num++) { |
| int ret; |
| |
| ret = scrub_write_page_to_dev_replace(sblock, page_num); |
| if (ret) |
| atomic64_inc(&fs_info->dev_replace.num_write_errors); |
| } |
| } |
| |
| static int scrub_write_page_to_dev_replace(struct scrub_block *sblock, |
| int page_num) |
| { |
| struct scrub_page *spage = sblock->pagev[page_num]; |
| |
| BUG_ON(spage->page == NULL); |
| if (spage->io_error) |
| clear_page(page_address(spage->page)); |
| |
| return scrub_add_page_to_wr_bio(sblock->sctx, spage); |
| } |
| |
| static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical) |
| { |
| int ret = 0; |
| u64 length; |
| |
| if (!btrfs_is_zoned(sctx->fs_info)) |
| return 0; |
| |
| if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) |
| return 0; |
| |
| if (sctx->write_pointer < physical) { |
| length = physical - sctx->write_pointer; |
| |
| ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev, |
| sctx->write_pointer, length); |
| if (!ret) |
| sctx->write_pointer = physical; |
| } |
| return ret; |
| } |
| |
| static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx, |
| struct scrub_page *spage) |
| { |
| struct scrub_bio *sbio; |
| int ret; |
| |
| mutex_lock(&sctx->wr_lock); |
| again: |
| if (!sctx->wr_curr_bio) { |
| sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio), |
| GFP_KERNEL); |
| if (!sctx->wr_curr_bio) { |
| mutex_unlock(&sctx->wr_lock); |
| return -ENOMEM; |
| } |
| sctx->wr_curr_bio->sctx = sctx; |
| sctx->wr_curr_bio->page_count = 0; |
| } |
| sbio = sctx->wr_curr_bio; |
| if (sbio->page_count == 0) { |
| struct bio *bio; |
| |
| ret = fill_writer_pointer_gap(sctx, |
| spage->physical_for_dev_replace); |
| if (ret) { |
| mutex_unlock(&sctx->wr_lock); |
| return ret; |
| } |
| |
| sbio->physical = spage->physical_for_dev_replace; |
| sbio->logical = spage->logical; |
| sbio->dev = sctx->wr_tgtdev; |
| bio = sbio->bio; |
| if (!bio) { |
| bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio); |
| sbio->bio = bio; |
| } |
| |
| bio->bi_private = sbio; |
| bio->bi_end_io = scrub_wr_bio_end_io; |
| bio_set_dev(bio, sbio->dev->bdev); |
| bio->bi_iter.bi_sector = sbio->physical >> 9; |
| bio->bi_opf = REQ_OP_WRITE; |
| sbio->status = 0; |
| } else if (sbio->physical + sbio->page_count * PAGE_SIZE != |
| spage->physical_for_dev_replace || |
| sbio->logical + sbio->page_count * PAGE_SIZE != |
| spage->logical) { |
| scrub_wr_submit(sctx); |
| goto again; |
| } |
| |
| ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0); |
| if (ret != PAGE_SIZE) { |
| if (sbio->page_count < 1) { |
| bio_put(sbio->bio); |
| sbio->bio = NULL; |
| mutex_unlock(&sctx->wr_lock); |
| return -EIO; |
| } |
| scrub_wr_submit(sctx); |
| goto again; |
| } |
| |
| sbio->pagev[sbio->page_count] = spage; |
| scrub_page_get(spage); |
| sbio->page_count++; |
| if (sbio->page_count == sctx->pages_per_wr_bio) |
| scrub_wr_submit(sctx); |
| mutex_unlock(&sctx->wr_lock); |
| |
| return 0; |
| } |
| |
| static void scrub_wr_submit(struct scrub_ctx *sctx) |
| { |
| struct scrub_bio *sbio; |
| |
| if (!sctx->wr_curr_bio) |
| return; |
| |
| sbio = sctx->wr_curr_bio; |
| sctx->wr_curr_bio = NULL; |
| WARN_ON(!sbio->bio->bi_bdev); |
| scrub_pending_bio_inc(sctx); |
| /* process all writes in a single worker thread. Then the block layer |
| * orders the requests before sending them to the driver which |
| * doubled the write performance on spinning disks when measured |
| * with Linux 3.5 */ |
| btrfsic_submit_bio(sbio->bio); |
| |
| if (btrfs_is_zoned(sctx->fs_info)) |
| sctx->write_pointer = sbio->physical + sbio->page_count * PAGE_SIZE; |
| } |
| |
| static void scrub_wr_bio_end_io(struct bio *bio) |
| { |
| struct scrub_bio *sbio = bio->bi_private; |
| struct btrfs_fs_info *fs_info = sbio->dev->fs_info; |
| |
| sbio->status = bio->bi_status; |
| sbio->bio = bio; |
| |
| btrfs_init_work(&sbio->work, scrub_wr_bio_end_io_worker, NULL, NULL); |
| btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work); |
| } |
| |
| static void scrub_wr_bio_end_io_worker(struct btrfs_work *work) |
| { |
| struct scrub_bio *sbio = container_of(work, struct scrub_bio, work); |
| struct scrub_ctx *sctx = sbio->sctx; |
| int i; |
| |
| WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO); |
| if (sbio->status) { |
| struct btrfs_dev_replace *dev_replace = |
| &sbio->sctx->fs_info->dev_replace; |
| |
| for (i = 0; i < sbio->page_count; i++) { |
| struct scrub_page *spage = sbio->pagev[i]; |
| |
| spage->io_error = 1; |
| atomic64_inc(&dev_replace->num_write_errors); |
| } |
| } |
| |
| for (i = 0; i < sbio->page_count; i++) |
| scrub_page_put(sbio->pagev[i]); |
| |
| bio_put(sbio->bio); |
| kfree(sbio); |
| scrub_pending_bio_dec(sctx); |
| } |
| |
| static int scrub_checksum(struct scrub_block *sblock) |
| { |
| u64 flags; |
| int ret; |
| |
| /* |
| * No need to initialize these stats currently, |
| * because this function only use return value |
| * instead of these stats value. |
| * |
| * Todo: |
| * always use stats |
| */ |
| sblock->header_error = 0; |
| sblock->generation_error = 0; |
| sblock->checksum_error = 0; |
| |
| WARN_ON(sblock->page_count < 1); |
| flags = sblock->pagev[0]->flags; |
| ret = 0; |
| if (flags & BTRFS_EXTENT_FLAG_DATA) |
| ret = scrub_checksum_data(sblock); |
| else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) |
| ret = scrub_checksum_tree_block(sblock); |
| else if (flags & BTRFS_EXTENT_FLAG_SUPER) |
| (void)scrub_checksum_super(sblock); |
| else |
| WARN_ON(1); |
| if (ret) |
| scrub_handle_errored_block(sblock); |
| |
| return ret; |
| } |
| |
| static int scrub_checksum_data(struct scrub_block *sblock) |
| { |
| struct scrub_ctx *sctx = sblock->sctx; |
| struct btrfs_fs_info *fs_info = sctx->fs_info; |
| SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); |
| u8 csum[BTRFS_CSUM_SIZE]; |
| struct scrub_page *spage; |
| char *kaddr; |
| |
| BUG_ON(sblock->page_count < 1); |
| spage = sblock->pagev[0]; |
| if (!spage->have_csum) |
| return 0; |
| |
| kaddr = page_address(spage->page); |
| |
| shash->tfm = fs_info->csum_shash; |
| crypto_shash_init(shash); |
| |
| /* |
| * In scrub_pages() and scrub_pages_for_parity() we ensure each spage |
| * only contains one sector of data. |
| */ |
| crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum); |
| |
| if (memcmp(csum, spage->csum, fs_info->csum_size)) |
| sblock->checksum_error = 1; |
| return sblock->checksum_error; |
| } |
| |
| static int scrub_checksum_tree_block(struct scrub_block *sblock) |
| { |
| struct scrub_ctx *sctx = sblock->sctx; |
| struct btrfs_header *h; |
| struct btrfs_fs_info *fs_info = sctx->fs_info; |
| SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); |
| u8 calculated_csum[BTRFS_CSUM_SIZE]; |
| u8 on_disk_csum[BTRFS_CSUM_SIZE]; |
| /* |
| * This is done in sectorsize steps even for metadata as there's a |
| * constraint for nodesize to be aligned to sectorsize. This will need |
| * to change so we don't misuse data and metadata units like that. |
| */ |
| const u32 sectorsize = sctx->fs_info->sectorsize; |
| const int num_sectors = fs_info->nodesize >> fs_info->sectorsize_bits; |
| int i; |
| struct scrub_page *spage; |
| char *kaddr; |
| |
| BUG_ON(sblock->page_count < 1); |
| |
| /* Each member in pagev is just one block, not a full page */ |
| ASSERT(sblock->page_count == num_sectors); |
| |
| spage = sblock->pagev[0]; |
| kaddr = page_address(spage->page); |
| h = (struct btrfs_header *)kaddr; |
| memcpy(on_disk_csum, h->csum, sctx->fs_info->csum_size); |
| |
| /* |
| * we don't use the getter functions here, as we |
| * a) don't have an extent buffer and |
| * b) the page is already kmapped |
| */ |
| if (spage->logical != btrfs_stack_header_bytenr(h)) |
| sblock->header_error = 1; |
| |
| if (spage->generation != btrfs_stack_header_generation(h)) { |
| sblock->header_error = 1; |
| sblock->generation_error = 1; |
| } |
| |
| if (!scrub_check_fsid(h->fsid, spage)) |
| sblock->header_error = 1; |
| |
| if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid, |
| BTRFS_UUID_SIZE)) |
| sblock->header_error = 1; |
| |
| shash->tfm = fs_info->csum_shash; |
| crypto_shash_init(shash); |
| crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE, |
| sectorsize - BTRFS_CSUM_SIZE); |
| |
| for (i = 1; i < num_sectors; i++) { |
| kaddr = page_address(sblock->pagev[i]->page); |
| crypto_shash_update(shash, kaddr, sectorsize); |
| } |
| |
| crypto_shash_final(shash, calculated_csum); |
| if (memcmp(calculated_csum, on_disk_csum, sctx->fs_info->csum_size)) |
| sblock->checksum_error = 1; |
| |
| return sblock->header_error || sblock->checksum_error; |
| } |
| |
| static int scrub_checksum_super(struct scrub_block *sblock) |
| { |
| struct btrfs_super_block *s; |
| struct scrub_ctx *sctx = sblock->sctx; |
| struct btrfs_fs_info *fs_info = sctx->fs_info; |
| SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); |
| u8 calculated_csum[BTRFS_CSUM_SIZE]; |
| struct scrub_page *spage; |
| char *kaddr; |
| int fail_gen = 0; |
| int fail_cor = 0; |
| |
| BUG_ON(sblock->page_count < 1); |
| spage = sblock->pagev[0]; |
| kaddr = page_address(spage->page); |
| s = (struct btrfs_super_block *)kaddr; |
| |
| if (spage->logical != btrfs_super_bytenr(s)) |
| ++fail_cor; |
| |
| if (spage->generation != btrfs_super_generation(s)) |
| ++fail_gen; |
| |
| if (!scrub_check_fsid(s->fsid, spage)) |
| ++fail_cor; |
| |
| shash->tfm = fs_info->csum_shash; |
| crypto_shash_init(shash); |
| crypto_shash_digest(shash, kaddr + BTRFS_CSUM_SIZE, |
| BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, calculated_csum); |
| |
| if (memcmp(calculated_csum, s->csum, sctx->fs_info->csum_size)) |
| ++fail_cor; |
| |
| if (fail_cor + fail_gen) { |
| /* |
| * if we find an error in a super block, we just report it. |
| * They will get written with the next transaction commit |
| * anyway |
| */ |
| spin_lock(&sctx->stat_lock); |
| ++sctx->stat.super_errors; |
| spin_unlock(&sctx->stat_lock); |
| if (fail_cor) |
| btrfs_dev_stat_inc_and_print(spage->dev, |
| BTRFS_DEV_STAT_CORRUPTION_ERRS); |
| else |
| btrfs_dev_stat_inc_and_print(spage->dev, |
| BTRFS_DEV_STAT_GENERATION_ERRS); |
| } |
| |
| return fail_cor + fail_gen; |
| } |
| |
| static void scrub_block_get(struct scrub_block *sblock) |
| { |
| refcount_inc(&sblock->refs); |
| } |
| |
| static void scrub_block_put(struct scrub_block *sblock) |
| { |
| if (refcount_dec_and_test(&sblock->refs)) { |
| int i; |
| |
| if (sblock->sparity) |
| scrub_parity_put(sblock->sparity); |
| |
| for (i = 0; i < sblock->page_count; i++) |
| scrub_page_put(sblock->pagev[i]); |
| kfree(sblock); |
| } |
| } |
| |
| static void scrub_page_get(struct scrub_page *spage) |
| { |
| atomic_inc(&spage->refs); |
| } |
| |
| static void scrub_page_put(struct scrub_page *spage) |
| { |
| if (atomic_dec_and_test(&spage->refs)) { |
| if (spage->page) |
| __free_page(spage->page); |
| kfree(spage); |
| } |
| } |
| |
| static void scrub_submit(struct scrub_ctx *sctx) |
| { |
| struct scrub_bio *sbio; |
| |
| if (sctx->curr == -1) |
| return; |
| |
| sbio = sctx->bios[sctx->curr]; |
| sctx->curr = -1; |
| scrub_pending_bio_inc(sctx); |
| btrfsic_submit_bio(sbio->bio); |
| } |
| |
| static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx, |
| struct scrub_page *spage) |
| { |
| struct scrub_block *sblock = spage->sblock; |
| struct scrub_bio *sbio; |
| int ret; |
| |
| again: |
| /* |
| * grab a fresh bio or wait for one to become available |
| */ |
| while (sctx->curr == -1) { |
| spin_lock(&sctx->list_lock); |
| sctx->curr = sctx->first_free; |
| if (sctx->curr != -1) { |
| sctx->first_free = sctx->bios[sctx->curr]->next_free; |
| sctx->bios[sctx->curr]->next_free = -1; |
| sctx->bios[sctx->curr]->page_count = 0; |
| spin_unlock(&sctx->list_lock); |
| } else { |
| spin_unlock(&sctx->list_lock); |
| wait_event(sctx->list_wait, sctx->first_free != -1); |
| } |
| } |
| sbio = sctx->bios[sctx->curr]; |
| if (sbio->page_count == 0) { |
| struct bio *bio; |
| |
| sbio->physical = spage->physical; |
| sbio->logical = spage->logical; |
| sbio->dev = spage->dev; |
| bio = sbio->bio; |
| if (!bio) { |
| bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio); |
| sbio->bio = bio; |
| } |
| |
| bio->bi_private = sbio; |
| bio->bi_end_io = scrub_bio_end_io; |
| bio_set_dev(bio, sbio->dev->bdev); |
| bio->bi_iter.bi_sector = sbio->physical >> 9; |
| bio->bi_opf = REQ_OP_READ; |
| sbio->status = 0; |
| } else if (sbio->physical + sbio->page_count * PAGE_SIZE != |
| spage->physical || |
| sbio->logical + sbio->page_count * PAGE_SIZE != |
| spage->logical || |
| sbio->dev != spage->dev) { |
| scrub_submit(sctx); |
| goto again; |
| } |
| |
| sbio->pagev[sbio->page_count] = spage; |
| ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0); |
| if (ret != PAGE_SIZE) { |
| if (sbio->page_count < 1) { |
| bio_put(sbio->bio); |
| sbio->bio = NULL; |
| return -EIO; |
| } |
| scrub_submit(sctx); |
| goto again; |
| } |
| |
| scrub_block_get(sblock); /* one for the page added to the bio */ |
| atomic_inc(&sblock->outstanding_pages); |
| sbio->page_count++; |
| if (sbio->page_count == sctx->pages_per_rd_bio) |
| scrub_submit(sctx); |
| |
| return 0; |
| } |
| |
| static void scrub_missing_raid56_end_io(struct bio *bio) |
| { |
| struct scrub_block *sblock = bio->bi_private; |
| struct btrfs_fs_info *fs_info = sblock->sctx->fs_info; |
| |
| if (bio->bi_status) |
| sblock->no_io_error_seen = 0; |
| |
| bio_put(bio); |
| |
| btrfs_queue_work(fs_info->scrub_workers, &sblock->work); |
| } |
| |
| static void scrub_missing_raid56_worker(struct btrfs_work *work) |
| { |
| struct scrub_block *sblock = container_of(work, struct scrub_block, work); |
| struct scrub_ctx *sctx = sblock->sctx; |
| struct btrfs_fs_info *fs_info = sctx->fs_info; |
| u64 logical; |
| struct btrfs_device *dev; |
| |
| logical = sblock->pagev[0]->logical; |
| dev = sblock->pagev[0]->dev; |
| |
| if (sblock->no_io_error_seen) |
| scrub_recheck_block_checksum(sblock); |
| |
| if (!sblock->no_io_error_seen) { |
| spin_lock(&sctx->stat_lock); |
| sctx->stat.read_errors++; |
| spin_unlock(&sctx->stat_lock); |
| btrfs_err_rl_in_rcu(fs_info, |
| "IO error rebuilding logical %llu for dev %s", |
| logical, rcu_str_deref(dev->name)); |
| } else if (sblock->header_error || sblock->checksum_error) { |
| spin_lock(&sctx->stat_lock); |
| sctx->stat.uncorrectable_errors++; |
| spin_unlock(&sctx->stat_lock); |
| btrfs_err_rl_in_rcu(fs_info, |
| "failed to rebuild valid logical %llu for dev %s", |
| logical, rcu_str_deref(dev->name)); |
| } else { |
| scrub_write_block_to_dev_replace(sblock); |
| } |
| |
| if (sctx->is_dev_replace && sctx->flush_all_writes) { |
| mutex_lock(&sctx->wr_lock); |
| scrub_wr_submit(sctx); |
| mutex_unlock(&sctx->wr_lock); |
| } |
| |
| scrub_block_put(sblock); |
| scrub_pending_bio_dec(sctx); |
| } |
| |
| static void scrub_missing_raid56_pages(struct scrub_block *sblock) |
| { |
| struct scrub_ctx *sctx = sblock->sctx; |
| struct btrfs_fs_info *fs_info = sctx->fs_info; |
| u64 length = sblock->page_count * PAGE_SIZE; |
| u64 logical = sblock->pagev[0]->logical; |
| struct btrfs_bio *bbio = NULL; |
| struct bio *bio; |
| struct btrfs_raid_bio *rbio; |
| int ret; |
| int i; |
| |
| btrfs_bio_counter_inc_blocked(fs_info); |
| ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical, |
| &length, &bbio); |
| if (ret || !bbio || !bbio->raid_map) |
| goto bbio_out; |
| |
| if (WARN_ON(!sctx->is_dev_replace || |
| !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) { |
| /* |
| * We shouldn't be scrubbing a missing device. Even for dev |
| * replace, we should only get here for RAID 5/6. We either |
| * managed to mount something with no mirrors remaining or |
| * there's a bug in scrub_remap_extent()/btrfs_map_block(). |
| */ |
| goto bbio_out; |
| } |
| |
| bio = btrfs_io_bio_alloc(0); |
| bio->bi_iter.bi_sector = logical >> 9; |
| bio->bi_private = sblock; |
| bio->bi_end_io = scrub_missing_raid56_end_io; |
| |
| rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length); |
| if (!rbio) |
| goto rbio_out; |
| |
| for (i = 0; i < sblock->page_count; i++) { |
| struct scrub_page *spage = sblock->pagev[i]; |
| |
| raid56_add_scrub_pages(rbio, spage->page, spage->logical); |
| } |
| |
| btrfs_init_work(&sblock->work, scrub_missing_raid56_worker, NULL, NULL); |
| scrub_block_get(sblock); |
| scrub_pending_bio_inc(sctx); |
| raid56_submit_missing_rbio(rbio); |
| return; |
| |
| rbio_out: |
| bio_put(bio); |
| bbio_out: |
| btrfs_bio_counter_dec(fs_info); |
| btrfs_put_bbio(bbio); |
| spin_lock(&sctx->stat_lock); |
| sctx->stat.malloc_errors++; |
| spin_unlock(&sctx->stat_lock); |
| } |
| |
| static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u32 len, |
| u64 physical, struct btrfs_device *dev, u64 flags, |
| u64 gen, int mirror_num, u8 *csum, |
| u64 physical_for_dev_replace) |
| { |
| struct scrub_block *sblock; |
| const u32 sectorsize = sctx->fs_info->sectorsize; |
| int index; |
| |
| sblock = kzalloc(sizeof(*sblock), GFP_KERNEL); |
| if (!sblock) { |
| spin_lock(&sctx->stat_lock); |
| sctx->stat.malloc_errors++; |
| spin_unlock(&sctx->stat_lock); |
| return -ENOMEM; |
| } |
| |
| /* one ref inside this function, plus one for each page added to |
| * a bio later on */ |
| refcount_set(&sblock->refs, 1); |
| sblock->sctx = sctx; |
| sblock->no_io_error_seen = 1; |
| |
| for (index = 0; len > 0; index++) { |
| struct scrub_page *spage; |
| /* |
| * Here we will allocate one page for one sector to scrub. |
| * This is fine if PAGE_SIZE == sectorsize, but will cost |
| * more memory for PAGE_SIZE > sectorsize case. |
| */ |
| u32 l = min(sectorsize, len); |
| |
| spage = kzalloc(sizeof(*spage), GFP_KERNEL); |
| if (!spage) { |
| leave_nomem: |
| spin_lock(&sctx->stat_lock); |
| sctx->stat.malloc_errors++; |
| spin_unlock(&sctx->stat_lock); |
| scrub_block_put(sblock); |
| return -ENOMEM; |
| } |
| BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK); |
| scrub_page_get(spage); |
| sblock->pagev[index] = spage; |
| spage->sblock = sblock; |
| spage->dev = dev; |
| spage->flags = flags; |
| spage->generation = gen; |
| spage->logical = logical; |
| spage->physical = physical; |
| spage->physical_for_dev_replace = physical_for_dev_replace; |
| spage->mirror_num = mirror_num; |
| if (csum) { |
| spage->have_csum = 1; |
| memcpy(spage->csum, csum, sctx->fs_info->csum_size); |
| } else { |
| spage->have_csum = 0; |
| } |
| sblock->page_count++; |
| spage->page = alloc_page(GFP_KERNEL); |
| if (!spage->page) |
| goto leave_nomem; |
| len -= l; |
| logical += l; |
| physical += l; |
| physical_for_dev_replace += l; |
| } |
| |
| WARN_ON(sblock->page_count == 0); |
| if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) { |
| /* |
| * This case should only be hit for RAID 5/6 device replace. See |
| * the comment in scrub_missing_raid56_pages() for details. |
| */ |
| scrub_missing_raid56_pages(sblock); |
| } else { |
| for (index = 0; index < sblock->page_count; index++) { |
| struct scrub_page *spage = sblock->pagev[index]; |
| int ret; |
| |
| ret = scrub_add_page_to_rd_bio(sctx, spage); |
| if (ret) { |
| scrub_block_put(sblock); |
| return ret; |
| } |
| } |
| |
| if (flags & BTRFS_EXTENT_FLAG_SUPER) |
| scrub_submit(sctx); |
| } |
| |
| /* last one frees, either here or in bio completion for last page */ |
| scrub_block_put(sblock); |
| return 0; |
| } |
| |
| static void scrub_bio_end_io(struct bio *bio) |
| { |
| struct scrub_bio *sbio = bio->bi_private; |
| struct btrfs_fs_info *fs_info = sbio->dev->fs_info; |
| |
| sbio->status = bio->bi_status; |
| sbio->bio = bio; |
| |
| btrfs_queue_work(fs_info->scrub_workers, &sbio->work); |
| } |
| |
| static void scrub_bio_end_io_worker(struct btrfs_work *work) |
| { |
| struct scrub_bio *sbio = container_of(work, struct scrub_bio, work); |
| struct scrub_ctx *sctx = sbio->sctx; |
| int i; |
| |
| BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO); |
| if (sbio->status) { |
| for (i = 0; i < sbio->page_count; i++) { |
| struct scrub_page *spage = sbio->pagev[i]; |
| |
| spage->io_error = 1; |
| spage->sblock->no_io_error_seen = 0; |
| } |
| } |
| |
| /* now complete the scrub_block items that have all pages completed */ |
| for (i = 0; i < sbio->page_count; i++) { |
| struct scrub_page *spage = sbio->pagev[i]; |
| struct scrub_block *sblock = spage->sblock; |
| |
| if (atomic_dec_and_test(&sblock->outstanding_pages)) |
| scrub_block_complete(sblock); |
| scrub_block_put(sblock); |
| } |
| |
| bio_put(sbio->bio); |
| sbio->bio = NULL; |
| spin_lock(&sctx->list_lock); |
| sbio->next_free = sctx->first_free; |
| sctx->first_free = sbio->index; |
| spin_unlock(&sctx->list_lock); |
| |
| if (sctx->is_dev_replace && sctx->flush_all_writes) { |
| mutex_lock(&sctx->wr_lock); |
| scrub_wr_submit(sctx); |
| mutex_unlock(&sctx->wr_lock); |
| } |
| |
| scrub_pending_bio_dec(sctx); |
| } |
| |
| static inline void __scrub_mark_bitmap(struct scrub_parity *sparity, |
| unsigned long *bitmap, |
| u64 start, u32 len) |
| { |
| u64 offset; |
| u32 nsectors; |
| u32 sectorsize_bits = sparity->sctx->fs_info->sectorsize_bits; |
| |
| if (len >= sparity->stripe_len) { |
| bitmap_set(bitmap, 0, sparity->nsectors); |
| return; |
| } |
| |
| start -= sparity->logic_start; |
| start = div64_u64_rem(start, sparity->stripe_len, &offset); |
| offset = offset >> sectorsize_bits; |
| nsectors = len >> sectorsize_bits; |
| |
| if (offset + nsectors <= sparity->nsectors) { |
| bitmap_set(bitmap, offset, nsectors); |
| return; |
| } |
| |
| bitmap_set(bitmap, offset, sparity->nsectors - offset); |
| bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset)); |
| } |
| |
| static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity, |
| u64 start, u32 len) |
| { |
| __scrub_mark_bitmap(sparity, sparity->ebitmap, start, len); |
| } |
| |
| static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity, |
| u64 start, u32 len) |
| { |
| __scrub_mark_bitmap(sparity, sparity->dbitmap, start, len); |
| } |
| |
| static void scrub_block_complete(struct scrub_block *sblock) |
| { |
| int corrupted = 0; |
| |
| if (!sblock->no_io_error_seen) { |
| corrupted = 1; |
| scrub_handle_errored_block(sblock); |
| } else { |
| /* |
| * if has checksum error, write via repair mechanism in |
| * dev replace case, otherwise write here in dev replace |
| * case. |
| */ |
| corrupted = scrub_checksum(sblock); |
| if (!corrupted && sblock->sctx->is_dev_replace) |
| scrub_write_block_to_dev_replace(sblock); |
| } |
| |
| if (sblock->sparity && corrupted && !sblock->data_corrected) { |
| u64 start = sblock->pagev[0]->logical; |
| u64 end = sblock->pagev[sblock->page_count - 1]->logical + |
| PAGE_SIZE; |
| |
| ASSERT(end - start <= U32_MAX); |
| scrub_parity_mark_sectors_error(sblock->sparity, |
| start, end - start); |
| } |
| } |
| |
| static void drop_csum_range(struct scrub_ctx *sctx, struct btrfs_ordered_sum *sum) |
| { |
| sctx->stat.csum_discards += sum->len >> sctx->fs_info->sectorsize_bits; |
| list_del(&sum->list); |
| kfree(sum); |
| } |
| |
| /* |
| * Find the desired csum for range [logical, logical + sectorsize), and store |
| * the csum into @csum. |
| * |
| * The search source is sctx->csum_list, which is a pre-populated list |
| * storing bytenr ordered csum ranges. We're reponsible to cleanup any range |
| * that is before @logical. |
| * |
| * Return 0 if there is no csum for the range. |
| * Return 1 if there is csum for the range and copied to @csum. |
| */ |
| static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum) |
| { |
| bool found = false; |
| |
| while (!list_empty(&sctx->csum_list)) { |
| struct btrfs_ordered_sum *sum = NULL; |
| unsigned long index; |
| unsigned long num_sectors; |
| |
| sum = list_first_entry(&sctx->csum_list, |
| struct btrfs_ordered_sum, list); |
| /* The current csum range is beyond our range, no csum found */ |
| if (sum->bytenr > logical) |
| break; |
| |
| /* |
| * The current sum is before our bytenr, since scrub is always |
| * done in bytenr order, the csum will never be used anymore, |
| * clean it up so that later calls won't bother with the range, |
| * and continue search the next range. |
| */ |
| if (sum->bytenr + sum->len <= logical) { |
| drop_csum_range(sctx, sum); |
| continue; |
| } |
| |
| /* Now the csum range covers our bytenr, copy the csum */ |
| found = true; |
| index = (logical - sum->bytenr) >> sctx->fs_info->sectorsize_bits; |
| num_sectors = sum->len >> sctx->fs_info->sectorsize_bits; |
| |
| memcpy(csum, sum->sums + index * sctx->fs_info->csum_size, |
| sctx->fs_info->csum_size); |
| |
| /* Cleanup the range if we're at the end of the csum range */ |
| if (index == num_sectors - 1) |
| drop_csum_range(sctx, sum); |
| break; |
| } |
| if (!found) |
| return 0; |
| return 1; |
| } |
| |
| /* scrub extent tries to collect up to 64 kB for each bio */ |
| static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map, |
| u64 logical, u32 len, |
| u64 physical, struct btrfs_device *dev, u64 flags, |
| u64 gen, int mirror_num, u64 physical_for_dev_replace) |
| { |
| int ret; |
| u8 csum[BTRFS_CSUM_SIZE]; |
| u32 blocksize; |
| |
| if (flags & BTRFS_EXTENT_FLAG_DATA) { |
| if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) |
| blocksize = map->stripe_len; |
| else |
| blocksize = sctx->fs_info->sectorsize; |
| spin_lock(&sctx->stat_lock); |
| sctx->stat.data_extents_scrubbed++; |
| sctx->stat.data_bytes_scrubbed += len; |
| spin_unlock(&sctx->stat_lock); |
| } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { |
| if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) |
| blocksize = map->stripe_len; |
| else |
| blocksize = sctx->fs_info->nodesize; |
| spin_lock(&sctx->stat_lock); |
| sctx->stat.tree_extents_scrubbed++; |
| sctx->stat.tree_bytes_scrubbed += len; |
| spin_unlock(&sctx->stat_lock); |
| } else { |
| blocksize = sctx->fs_info->sectorsize; |
| WARN_ON(1); |
| } |
| |
| while (len) { |
| u32 l = min(len, blocksize); |
| int have_csum = 0; |
| |
| if (flags & BTRFS_EXTENT_FLAG_DATA) { |
| /* push csums to sbio */ |
| have_csum = scrub_find_csum(sctx, logical, csum); |
| if (have_csum == 0) |
| ++sctx->stat.no_csum; |
| } |
| ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen, |
| mirror_num, have_csum ? csum : NULL, |
| physical_for_dev_replace); |
| if (ret) |
| return ret; |
| len -= l; |
| logical += l; |
| physical += l; |
| physical_for_dev_replace += l; |
| } |
| return 0; |
| } |
| |
| static int scrub_pages_for_parity(struct scrub_parity *sparity, |
| u64 logical, u32 len, |
| u64 physical, struct btrfs_device *dev, |
| u64 flags, u64 gen, int mirror_num, u8 *csum) |
| { |
| struct scrub_ctx *sctx = sparity->sctx; |
| struct scrub_block *sblock; |
| const u32 sectorsize = sctx->fs_info->sectorsize; |
| int index; |
| |
| ASSERT(IS_ALIGNED(len, sectorsize)); |
| |
| sblock = kzalloc(sizeof(*sblock), GFP_KERNEL); |
| if (!sblock) { |
| spin_lock(&sctx->stat_lock); |
| sctx->stat.malloc_errors++; |
| spin_unlock(&sctx->stat_lock); |
| return -ENOMEM; |
| } |
| |
| /* one ref inside this function, plus one for each page added to |
| * a bio later on */ |
| refcount_set(&sblock->refs, 1); |
| sblock->sctx = sctx; |
| sblock->no_io_error_seen = 1; |
| sblock->sparity = sparity; |
| scrub_parity_get(sparity); |
| |
| for (index = 0; len > 0; index++) { |
| struct scrub_page *spage; |
| |
| spage = kzalloc(sizeof(*spage), GFP_KERNEL); |
| if (!spage) { |
| leave_nomem: |
| spin_lock(&sctx->stat_lock); |
| sctx->stat.malloc_errors++; |
| spin_unlock(&sctx->stat_lock); |
| scrub_block_put(sblock); |
| return -ENOMEM; |
| } |
| BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK); |
| /* For scrub block */ |
| scrub_page_get(spage); |
| sblock->pagev[index] = spage; |
| /* For scrub parity */ |
| scrub_page_get(spage); |
| list_add_tail(&spage->list, &sparity->spages); |
| spage->sblock = sblock; |
| spage->dev = dev; |
| spage->flags = flags; |
| spage->generation = gen; |
| spage->logical = logical; |
| spage->physical = physical; |
| spage->mirror_num = mirror_num; |
| if (csum) { |
| spage->have_csum = 1; |
| memcpy(spage->csum, csum, sctx->fs_info->csum_size); |
| } else { |
| spage->have_csum = 0; |
| } |
| sblock->page_count++; |
| spage->page = alloc_page(GFP_KERNEL); |
| if (!spage->page) |
| goto leave_nomem; |
| |
| |
| /* Iterate over the stripe range in sectorsize steps */ |
| len -= sectorsize; |
| logical += sectorsize; |
| physical += sectorsize; |
| } |
| |
| WARN_ON(sblock->page_count == 0); |
| for (index = 0; index < sblock->page_count; index++) { |
| struct scrub_page *spage = sblock->pagev[index]; |
| int ret; |
| |
| ret = scrub_add_page_to_rd_bio(sctx, spage); |
| if (ret) { |
| scrub_block_put(sblock); |
| return ret; |
| } |
| } |
| |
| /* last one frees, either here or in bio completion for last page */ |
| scrub_block_put(sblock); |
| return 0; |
| } |
| |
| static int scrub_extent_for_parity(struct scrub_parity *sparity, |
| u64 logical, u32 len, |
| u64 physical, struct btrfs_device *dev, |
| u64 flags, u64 gen, int mirror_num) |
| { |
| struct scrub_ctx *sctx = sparity->sctx; |
| int ret; |
| u8 csum[BTRFS_CSUM_SIZE]; |
| u32 blocksize; |
| |
| if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) { |
| scrub_parity_mark_sectors_error(sparity, logical, len); |
| return 0; |
| } |
| |
| if (flags & BTRFS_EXTENT_FLAG_DATA) { |
| blocksize = sparity->stripe_len; |
| } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { |
| blocksize = sparity->stripe_len; |
| } else { |
| blocksize = sctx->fs_info->sectorsize; |
| WARN_ON(1); |
| } |
| |
| while (len) { |
| u32 l = min(len, blocksize); |
| int have_csum = 0; |
| |
| if (flags & BTRFS_EXTENT_FLAG_DATA) { |
| /* push csums to sbio */ |
| have_csum = scrub_find_csum(sctx, logical, csum); |
| if (have_csum == 0) |
| goto skip; |
| } |
| ret = scrub_pages_for_parity(sparity, logical, l, physical, dev, |
| flags, gen, mirror_num, |
| have_csum ? csum : NULL); |
| if (ret) |
| return ret; |
| skip: |
| len -= l; |
| logical += l; |
| physical += l; |
| } |
| return 0; |
| } |
| |
| /* |
| * Given a physical address, this will calculate it's |
| * logical offset. if this is a parity stripe, it will return |
| * the most left data stripe's logical offset. |
| * |
| * return 0 if it is a data stripe, 1 means parity stripe. |
| */ |
| static int get_raid56_logic_offset(u64 physical, int num, |
| struct map_lookup *map, u64 *offset, |
| u64 *stripe_start) |
| { |
| int i; |
| int j = 0; |
| u64 stripe_nr; |
| u64 last_offset; |
| u32 stripe_index; |
| u32 rot; |
| const int data_stripes = nr_data_stripes(map); |
| |
| last_offset = (physical - map->stripes[num].physical) * data_stripes; |
| if (stripe_start) |
| *stripe_start = last_offset; |
| |
| *offset = last_offset; |
| for (i = 0; i < data_stripes; i++) { |
| *offset = last_offset + i * map->stripe_len; |
| |
| stripe_nr = div64_u64(*offset, map->stripe_len); |
| stripe_nr = div_u64(stripe_nr, data_stripes); |
| |
| /* Work out the disk rotation on this stripe-set */ |
| stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot); |
| /* calculate which stripe this data locates */ |
| rot += i; |
| stripe_index = rot % map->num_stripes; |
| if (stripe_index == num) |
| return 0; |
| if (stripe_index < num) |
| j++; |
| } |
| *offset = last_offset + j * map->stripe_len; |
| return 1; |
| } |
| |
| static void scrub_free_parity(struct scrub_parity *sparity) |
| { |
| struct scrub_ctx *sctx = sparity->sctx; |
| struct scrub_page *curr, *next; |
| int nbits; |
| |
| nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors); |
| if (nbits) { |
| spin_lock(&sctx->stat_lock); |
| sctx->stat.read_errors += nbits; |
| sctx->stat.uncorrectable_errors += nbits; |
| spin_unlock(&sctx->stat_lock); |
| } |
| |
| list_for_each_entry_safe(curr, next, &sparity->spages, list) { |
| list_del_init(&curr->list); |
| scrub_page_put(curr); |
| } |
| |
| kfree(sparity); |
| } |
| |
| static void scrub_parity_bio_endio_worker(struct btrfs_work *work) |
| { |
| struct scrub_parity *sparity = container_of(work, struct scrub_parity, |
| work); |
| struct scrub_ctx *sctx = sparity->sctx; |
| |
| scrub_free_parity(sparity); |
| scrub_pending_bio_dec(sctx); |
| } |
| |
| static void scrub_parity_bio_endio(struct bio *bio) |
| { |
| struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private; |
| struct btrfs_fs_info *fs_info = sparity->sctx->fs_info; |
| |
| if (bio->bi_status) |
| bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap, |
| sparity->nsectors); |
| |
| bio_put(bio); |
| |
| btrfs_init_work(&sparity->work, scrub_parity_bio_endio_worker, NULL, |
| NULL); |
| btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work); |
| } |
| |
| static void scrub_parity_check_and_repair(struct scrub_parity *sparity) |
| { |
| struct scrub_ctx *sctx = sparity->sctx; |
| struct btrfs_fs_info *fs_info = sctx->fs_info; |
| struct bio *bio; |
| struct btrfs_raid_bio *rbio; |
| struct btrfs_bio *bbio = NULL; |
| u64 length; |
| int ret; |
| |
| if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap, |
| sparity->nsectors)) |
| goto out; |
| |
| length = sparity->logic_end - sparity->logic_start; |
| |
| btrfs_bio_counter_inc_blocked(fs_info); |
| ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start, |
| &length, &bbio); |
| if (ret || !bbio || !bbio->raid_map) |
| goto bbio_out; |
| |
| bio = btrfs_io_bio_alloc(0); |
| bio->bi_iter.bi_sector = sparity->logic_start >> 9; |
| bio->bi_private = sparity; |
| bio->bi_end_io = scrub_parity_bio_endio; |
| |
| rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio, |
| length, sparity->scrub_dev, |
| sparity->dbitmap, |
| sparity->nsectors); |
| if (!rbio) |
| goto rbio_out; |
| |
| scrub_pending_bio_inc(sctx); |
| raid56_parity_submit_scrub_rbio(rbio); |
| return; |
| |
| rbio_out: |
| bio_put(bio); |
| bbio_out: |
| btrfs_bio_counter_dec(fs_info); |
| btrfs_put_bbio(bbio); |
| bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap, |
| sparity->nsectors); |
| spin_lock(&sctx->stat_lock); |
| sctx->stat.malloc_errors++; |
| spin_unlock(&sctx->stat_lock); |
| out: |
| scrub_free_parity(sparity); |
| } |
| |
| static inline int scrub_calc_parity_bitmap_len(int nsectors) |
| { |
| return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long); |
| } |
| |
| static void scrub_parity_get(struct scrub_parity *sparity) |
| { |
| refcount_inc(&sparity->refs); |
| } |
| |
| static void scrub_parity_put(struct scrub_parity *sparity) |
| { |
| if (!refcount_dec_and_test(&sparity->refs)) |
| return; |
| |
| scrub_parity_check_and_repair(sparity); |
| } |
| |
| static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx, |
| struct map_lookup *map, |
| struct btrfs_device *sdev, |
| struct btrfs_path *path, |
| u64 logic_start, |
| u64 logic_end) |
| { |
| struct btrfs_fs_info *fs_info = sctx->fs_info; |
| struct btrfs_root *root = fs_info->extent_root; |
| struct btrfs_root *csum_root = fs_info->csum_root; |
| struct btrfs_extent_item *extent; |
| struct btrfs_bio *bbio = NULL; |
| u64 flags; |
| int ret; |
| int slot; |
| struct extent_buffer *l; |
| struct btrfs_key key; |
| u64 generation; |
| u64 extent_logical; |
| u64 extent_physical; |
| /* Check the comment in scrub_stripe() for why u32 is enough here */ |
| u32 extent_len; |
| u64 mapped_length; |
| struct btrfs_device *extent_dev; |
| struct scrub_parity *sparity; |
| int nsectors; |
| int bitmap_len; |
| int extent_mirror_num; |
| int stop_loop = 0; |
| |
| ASSERT(map->stripe_len <= U32_MAX); |
| nsectors = map->stripe_len >> fs_info->sectorsize_bits; |
| bitmap_len = scrub_calc_parity_bitmap_len(nsectors); |
| sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len, |
| GFP_NOFS); |
| if (!sparity) { |
| spin_lock(&sctx->stat_lock); |
| sctx->stat.malloc_errors++; |
| spin_unlock(&sctx->stat_lock); |
| return -ENOMEM; |
| } |
| |
| ASSERT(map->stripe_len <= U32_MAX); |
| sparity->stripe_len = map->stripe_len; |
| sparity->nsectors = nsectors; |
| sparity->sctx = sctx; |
| sparity->scrub_dev = sdev; |
| sparity->logic_start = logic_start; |
| sparity->logic_end = logic_end; |
| refcount_set(&sparity->refs, 1); |
| INIT_LIST_HEAD(&sparity->spages); |
| sparity->dbitmap = sparity->bitmap; |
| sparity->ebitmap = (void *)sparity->bitmap + bitmap_len; |
| |
| ret = 0; |
| while (logic_start < logic_end) { |
| if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) |
| key.type = BTRFS_METADATA_ITEM_KEY; |
| else |
| key.type = BTRFS_EXTENT_ITEM_KEY; |
| key.objectid = logic_start; |
| key.offset = (u64)-1; |
| |
| ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| if (ret < 0) |
| goto out; |
| |
| if (ret > 0) { |
| ret = btrfs_previous_extent_item(root, path, 0); |
| if (ret < 0) |
| goto out; |
| if (ret > 0) { |
| btrfs_release_path(path); |
| ret = btrfs_search_slot(NULL, root, &key, |
| path, 0, 0); |
| if (ret < 0) |
| goto out; |
| } |
| } |
| |
| stop_loop = 0; |
| while (1) { |
| u64 bytes; |
| |
| l = path->nodes[0]; |
| slot = path->slots[0]; |
| if (slot >= btrfs_header_nritems(l)) { |
| ret = btrfs_next_leaf(root, path); |
| if (ret == 0) |
| continue; |
| if (ret < 0) |
| goto out; |
| |
| stop_loop = 1; |
| break; |
| } |
| btrfs_item_key_to_cpu(l, &key, slot); |
| |
| if (key.type != BTRFS_EXTENT_ITEM_KEY && |
| key.type != BTRFS_METADATA_ITEM_KEY) |
| goto next; |
| |
| if (key.type == BTRFS_METADATA_ITEM_KEY) |
| bytes = fs_info->nodesize; |
| else |
| bytes = key.offset; |
| |
| if (key.objectid + bytes <= logic_start) |
| goto next; |
| |
| if (key.objectid >= logic_end) { |
| stop_loop = 1; |
| break; |
| } |
| |
| while (key.objectid >= logic_start + map->stripe_len) |
| logic_start += map->stripe_len; |
| |
| extent = btrfs_item_ptr(l, slot, |
| struct btrfs_extent_item); |
| flags = btrfs_extent_flags(l, extent); |
| generation = btrfs_extent_generation(l, extent); |
| |
| if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) && |
| (key.objectid < logic_start || |
| key.objectid + bytes > |
| logic_start + map->stripe_len)) { |
| btrfs_err(fs_info, |
| "scrub: tree block %llu spanning stripes, ignored. logical=%llu", |
| key.objectid, logic_start); |
| spin_lock(&sctx->stat_lock); |
| sctx->stat.uncorrectable_errors++; |
| spin_unlock(&sctx->stat_lock); |
| goto next; |
| } |
| again: |
| extent_logical = key.objectid; |
| ASSERT(bytes <= U32_MAX); |
| extent_len = bytes; |
| |
| if (extent_logical < logic_start) { |
| extent_len -= logic_start - extent_logical; |
| extent_logical = logic_start; |
| } |
| |
| if (extent_logical + extent_len > |
| logic_start + map->stripe_len) |
| extent_len = logic_start + map->stripe_len - |
| extent_logical; |
| |
| scrub_parity_mark_sectors_data(sparity, extent_logical, |
| extent_len); |
| |
| mapped_length = extent_len; |
| bbio = NULL; |
| ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, |
| extent_logical, &mapped_length, &bbio, |
| 0); |
| if (!ret) { |
| if (!bbio || mapped_length < extent_len) |
| ret = -EIO; |
| } |
| if (ret) { |
| btrfs_put_bbio(bbio); |
| goto out; |
| } |
| extent_physical = bbio->stripes[0].physical; |
| extent_mirror_num = bbio->mirror_num; |
| extent_dev = bbio->stripes[0].dev; |
| btrfs_put_bbio(bbio); |
| |
| ret = btrfs_lookup_csums_range(csum_root, |
| extent_logical, |
| extent_logical + extent_len - 1, |
| &sctx->csum_list, 1); |
| if (ret) |
| goto out; |
| |
| ret = scrub_extent_for_parity(sparity, extent_logical, |
| extent_len, |
| extent_physical, |
| extent_dev, flags, |
| generation, |
| extent_mirror_num); |
| |
| scrub_free_csums(sctx); |
| |
| if (ret) |
| goto out; |
| |
| if (extent_logical + extent_len < |
| key.objectid + bytes) { |
| logic_start += map->stripe_len; |
| |
| if (logic_start >= logic_end) { |
| stop_loop = 1; |
| break; |
| } |
| |
| if (logic_start < key.objectid + bytes) { |
| cond_resched(); |
| goto again; |
| } |
| } |
| next: |
| path->slots[0]++; |
| } |
| |
| btrfs_release_path(path); |
| |
| if (stop_loop) |
| break; |
| |
| logic_start += map->stripe_len; |
| } |
| out: |
| if (ret < 0) { |
| ASSERT(logic_end - logic_start <= U32_MAX); |
| scrub_parity_mark_sectors_error(sparity, logic_start, |
| logic_end - logic_start); |
| } |
| scrub_parity_put(sparity); |
| scrub_submit(sctx); |
| mutex_lock(&sctx->wr_lock); |
| scrub_wr_submit(sctx); |
| mutex_unlock(&sctx->wr_lock); |
| |
| btrfs_release_path(path); |
| return ret < 0 ? ret : 0; |
| } |
| |
| static void sync_replace_for_zoned(struct scrub_ctx *sctx) |
| { |
| if (!btrfs_is_zoned(sctx->fs_info)) |
| return; |
| |
| sctx->flush_all_writes = true; |
| scrub_submit(sctx); |
| mutex_lock(&sctx->wr_lock); |
| scrub_wr_submit(sctx); |
| mutex_unlock(&sctx->wr_lock); |
| |
| wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); |
| } |
| |
| static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical, |
| u64 physical, u64 physical_end) |
| { |
| struct btrfs_fs_info *fs_info = sctx->fs_info; |
| int ret = 0; |
| |
| if (!btrfs_is_zoned(fs_info)) |
| return 0; |
| |
| wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); |
| |
| mutex_lock(&sctx->wr_lock); |
| if (sctx->write_pointer < physical_end) { |
| ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical, |
| physical, |
| sctx->write_pointer); |
| if (ret) |
| btrfs_err(fs_info, |
| "zoned: failed to recover write pointer"); |
| } |
| mutex_unlock(&sctx->wr_lock); |
| btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical); |
| |
| return ret; |
| } |
| |
| static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx, |
| struct map_lookup *map, |
| struct btrfs_device *scrub_dev, |
| int num, u64 base, u64 length, |
| struct btrfs_block_group *cache) |
| { |
| struct btrfs_path *path, *ppath; |
| struct btrfs_fs_info *fs_info = sctx->fs_info; |
| struct btrfs_root *root = fs_info->extent_root; |
| struct btrfs_root *csum_root = fs_info->csum_root; |
| struct btrfs_extent_item *extent; |
| struct blk_plug plug; |
| u64 flags; |
| int ret; |
| int slot; |
| u64 nstripes; |
| struct extent_buffer *l; |
| u64 physical; |
| u64 logical; |
| u64 logic_end; |
| u64 physical_end; |
| u64 generation; |
| int mirror_num; |
| struct reada_control *reada1; |
| struct reada_control *reada2; |
| struct btrfs_key key; |
| struct btrfs_key key_end; |
| u64 increment = map->stripe_len; |
| u64 offset; |
| u64 extent_logical; |
| u64 extent_physical; |
| /* |
| * Unlike chunk length, extent length should never go beyond |
| * BTRFS_MAX_EXTENT_SIZE, thus u32 is enough here. |
| */ |
| u32 extent_len; |
| u64 stripe_logical; |
| u64 stripe_end; |
| struct btrfs_device *extent_dev; |
| int extent_mirror_num; |
| int stop_loop = 0; |
| |
| physical = map->stripes[num].physical; |
| offset = 0; |
| nstripes = div64_u64(length, map->stripe_len); |
| if (map->type & BTRFS_BLOCK_GROUP_RAID0) { |
| offset = map->stripe_len * num; |
| increment = map->stripe_len * map->num_stripes; |
| mirror_num = 1; |
| } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { |
| int factor = map->num_stripes / map->sub_stripes; |
| offset = map->stripe_len * (num / map->sub_stripes); |
| increment = map->stripe_len * factor; |
| mirror_num = num % map->sub_stripes + 1; |
| } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) { |
| increment = map->stripe_len; |
| mirror_num = num % map->num_stripes + 1; |
| } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { |
| increment = map->stripe_len; |
| mirror_num = num % map->num_stripes + 1; |
| } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { |
| get_raid56_logic_offset(physical, num, map, &offset, NULL); |
| increment = map->stripe_len * nr_data_stripes(map); |
| mirror_num = 1; |
| } else { |
| increment = map->stripe_len; |
| mirror_num = 1; |
| } |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| ppath = btrfs_alloc_path(); |
| if (!ppath) { |
| btrfs_free_path(path); |
| return -ENOMEM; |
| } |
| |
| /* |
| * work on commit root. The related disk blocks are static as |
| * long as COW is applied. This means, it is save to rewrite |
| * them to repair disk errors without any race conditions |
| */ |
| path->search_commit_root = 1; |
| path->skip_locking = 1; |
| |
| ppath->search_commit_root = 1; |
| ppath->skip_locking = 1; |
| /* |
| * trigger the readahead for extent tree csum tree and wait for |
| * completion. During readahead, the scrub is officially paused |
| * to not hold off transaction commits |
| */ |
| logical = base + offset; |
| physical_end = physical + nstripes * map->stripe_len; |
| if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { |
| get_raid56_logic_offset(physical_end, num, |
| map, &logic_end, NULL); |
| logic_end += base; |
| } else { |
| logic_end = logical + increment * nstripes; |
| } |
| wait_event(sctx->list_wait, |
| atomic_read(&sctx->bios_in_flight) == 0); |
| scrub_blocked_if_needed(fs_info); |
| |
| /* FIXME it might be better to start readahead at commit root */ |
| key.objectid = logical; |
| key.type = BTRFS_EXTENT_ITEM_KEY; |
| key.offset = (u64)0; |
| key_end.objectid = logic_end; |
| key_end.type = BTRFS_METADATA_ITEM_KEY; |
| key_end.offset = (u64)-1; |
| reada1 = btrfs_reada_add(root, &key, &key_end); |
| |
| if (cache->flags & BTRFS_BLOCK_GROUP_DATA) { |
| key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; |
| key.type = BTRFS_EXTENT_CSUM_KEY; |
| key.offset = logical; |
| key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID; |
| key_end.type = BTRFS_EXTENT_CSUM_KEY; |
| key_end.offset = logic_end; |
| reada2 = btrfs_reada_add(csum_root, &key, &key_end); |
| } else { |
| reada2 = NULL; |
| } |
| |
| if (!IS_ERR(reada1)) |
| btrfs_reada_wait(reada1); |
| if (!IS_ERR_OR_NULL(reada2)) |
| btrfs_reada_wait(reada2); |
| |
| |
| /* |
| * collect all data csums for the stripe to avoid seeking during |
| * the scrub. This might currently (crc32) end up to be about 1MB |
| */ |
| blk_start_plug(&plug); |
| |
| if (sctx->is_dev_replace && |
| btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) { |
| mutex_lock(&sctx->wr_lock); |
| sctx->write_pointer = physical; |
| mutex_unlock(&sctx->wr_lock); |
| sctx->flush_all_writes = true; |
| } |
| |
| /* |
| * now find all extents for each stripe and scrub them |
| */ |
| ret = 0; |
| while (physical < physical_end) { |
| /* |
| * canceled? |
| */ |
| if (atomic_read(&fs_info->scrub_cancel_req) || |
| atomic_read(&sctx->cancel_req)) { |
| ret = -ECANCELED; |
| goto out; |
| } |
| /* |
| * check to see if we have to pause |
| */ |
| if (atomic_read(&fs_info->scrub_pause_req)) { |
| /* push queued extents */ |
| sctx->flush_all_writes = true; |
| scrub_submit(sctx); |
| mutex_lock(&sctx->wr_lock); |
| scrub_wr_submit(sctx); |
| mutex_unlock(&sctx->wr_lock); |
| wait_event(sctx->list_wait, |
| atomic_read(&sctx->bios_in_flight) == 0); |
| sctx->flush_all_writes = false; |
| scrub_blocked_if_needed(fs_info); |
| } |
| |
| if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { |
| ret = get_raid56_logic_offset(physical, num, map, |
| &logical, |
| &stripe_logical); |
| logical += base; |
| if (ret) { |
| /* it is parity strip */ |
| stripe_logical += base; |
| stripe_end = stripe_logical + increment; |
| ret = scrub_raid56_parity(sctx, map, scrub_dev, |
| ppath, stripe_logical, |
| stripe_end); |
| if (ret) |
| goto out; |
| goto skip; |
| } |
| } |
| |
| if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) |
| key.type = BTRFS_METADATA_ITEM_KEY; |
| else |
| key.type = BTRFS_EXTENT_ITEM_KEY; |
| key.objectid = logical; |
| key.offset = (u64)-1; |
| |
| ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| if (ret < 0) |
| goto out; |
| |
| if (ret > 0) { |
| ret = btrfs_previous_extent_item(root, path, 0); |
| if (ret < 0) |
| goto out; |
| if (ret > 0) { |
| /* there's no smaller item, so stick with the |
| * larger one */ |
| btrfs_release_path(path); |
| ret = btrfs_search_slot(NULL, root, &key, |
| path, 0, 0); |
| if (ret < 0) |
| goto out; |
| } |
| } |
| |
| stop_loop = 0; |
| while (1) { |
| u64 bytes; |
| |
| l = path->nodes[0]; |
| slot = path->slots[0]; |
| if (slot >= btrfs_header_nritems(l)) { |
| ret = btrfs_next_leaf(root, path); |
| if (ret == 0) |
| continue; |
| if (ret < 0) |
| goto out; |
| |
| stop_loop = 1; |
| break; |
| } |
| btrfs_item_key_to_cpu(l, &key, slot); |
| |
| if (key.type != BTRFS_EXTENT_ITEM_KEY && |
| key.type != BTRFS_METADATA_ITEM_KEY) |
| goto next; |
| |
| if (key.type == BTRFS_METADATA_ITEM_KEY) |
| bytes = fs_info->nodesize; |
| else |
| bytes = key.offset; |
| |
| if (key.objectid + bytes <= logical) |
| goto next; |
| |
| if (key.objectid >= logical + map->stripe_len) { |
| /* out of this device extent */ |
| if (key.objectid >= logic_end) |
| stop_loop = 1; |
| break; |
| } |
| |
| /* |
| * If our block group was removed in the meanwhile, just |
| * stop scrubbing since there is no point in continuing. |
| * Continuing would prevent reusing its device extents |
| * for new block groups for a long time. |
| */ |
| spin_lock(&cache->lock); |
| if (cache->removed) { |
| spin_unlock(&cache->lock); |
| ret = 0; |
| goto out; |
| } |
| spin_unlock(&cache->lock); |
| |
| extent = btrfs_item_ptr(l, slot, |
| struct btrfs_extent_item); |
| flags = btrfs_extent_flags(l, extent); |
| generation = btrfs_extent_generation(l, extent); |
| |
| if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) && |
| (key.objectid < logical || |
| key.objectid + bytes > |
| logical + map->stripe_len)) { |
| btrfs_err(fs_info, |
| "scrub: tree block %llu spanning stripes, ignored. logical=%llu", |
| key.objectid, logical); |
| spin_lock(&sctx->stat_lock); |
| sctx->stat.uncorrectable_errors++; |
| spin_unlock(&sctx->stat_lock); |
| goto next; |
| } |
| |
| again: |
| extent_logical = key.objectid; |
| ASSERT(bytes <= U32_MAX); |
| extent_len = bytes; |
| |
| /* |
| * trim extent to this stripe |
| */ |
| if (extent_logical < logical) { |
| extent_len -= logical - extent_logical; |
| extent_logical = logical; |
| } |
| if (extent_logical + extent_len > |
| logical + map->stripe_len) { |
| extent_len = logical + map->stripe_len - |
| extent_logical; |
| } |
| |
| extent_physical = extent_logical - logical + physical; |
| extent_dev = scrub_dev; |
| extent_mirror_num = mirror_num; |
| if (sctx->is_dev_replace) |
| scrub_remap_extent(fs_info, extent_logical, |
| extent_len, &extent_physical, |
| &extent_dev, |
| &extent_mirror_num); |
| |
| if (flags & BTRFS_EXTENT_FLAG_DATA) { |
| ret = btrfs_lookup_csums_range(csum_root, |
| extent_logical, |
| extent_logical + extent_len - 1, |
| &sctx->csum_list, 1); |
| if (ret) |
| goto out; |
| } |
| |
| ret = scrub_extent(sctx, map, extent_logical, extent_len, |
| extent_physical, extent_dev, flags, |
| generation, extent_mirror_num, |
| extent_logical - logical + physical); |
| |
| scrub_free_csums(sctx); |
| |
| if (ret) |
| goto out; |
| |
| if (sctx->is_dev_replace) |
| sync_replace_for_zoned(sctx); |
| |
| if (extent_logical + extent_len < |
| key.objectid + bytes) { |
| if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { |
| /* |
| * loop until we find next data stripe |
| * or we have finished all stripes. |
| */ |
| loop: |
| physical += map->stripe_len; |
| ret = get_raid56_logic_offset(physical, |
| num, map, &logical, |
| &stripe_logical); |
| logical += base; |
| |
| if (ret && physical < physical_end) { |
| stripe_logical += base; |
| stripe_end = stripe_logical + |
| increment; |
| ret = scrub_raid56_parity(sctx, |
| map, scrub_dev, ppath, |
| stripe_logical, |
| stripe_end); |
| if (ret) |
| goto out; |
| goto loop; |
| } |
| } else { |
| physical += map->stripe_len; |
| logical += increment; |
| } |
| if (logical < key.objectid + bytes) { |
| cond_resched(); |
| goto again; |
| } |
| |
| if (physical >= physical_end) { |
| stop_loop = 1; |
| break; |
| } |
| } |
| next: |
| path->slots[0]++; |
| } |
| btrfs_release_path(path); |
| skip: |
| logical += increment; |
| physical += map->stripe_len; |
| spin_lock(&sctx->stat_lock); |
| if (stop_loop) |
| sctx->stat.last_physical = map->stripes[num].physical + |
| length; |
| else |
| sctx->stat.last_physical = physical; |
| spin_unlock(&sctx->stat_lock); |
| if (stop_loop) |
| break; |
| } |
| out: |
| /* push queued extents */ |
| scrub_submit(sctx); |
| mutex_lock(&sctx->wr_lock); |
| scrub_wr_submit(sctx); |
| mutex_unlock(&sctx->wr_lock); |
| |
| blk_finish_plug(&plug); |
| btrfs_free_path(path); |
| btrfs_free_path(ppath); |
| |
| if (sctx->is_dev_replace && ret >= 0) { |
| int ret2; |
| |
| ret2 = sync_write_pointer_for_zoned(sctx, base + offset, |
| map->stripes[num].physical, |
| physical_end); |
| if (ret2) |
| ret = ret2; |
| } |
| |
| return ret < 0 ? ret : 0; |
| } |
| |
| static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx, |
| struct btrfs_device *scrub_dev, |
| u64 chunk_offset, u64 length, |
| u64 dev_offset, |
| struct btrfs_block_group *cache) |
| { |
| struct btrfs_fs_info *fs_info = sctx->fs_info; |
| struct extent_map_tree *map_tree = &fs_info->mapping_tree; |
| struct map_lookup *map; |
| struct extent_map *em; |
| int i; |
| int ret = 0; |
| |
| read_lock(&map_tree->lock); |
| em = lookup_extent_mapping(map_tree, chunk_offset, 1); |
| read_unlock(&map_tree->lock); |
| |
| if (!em) { |
| /* |
| * Might have been an unused block group deleted by the cleaner |
| * kthread or relocation. |
| */ |
| spin_lock(&cache->lock); |
| if (!cache->removed) |
| ret = -EINVAL; |
| spin_unlock(&cache->lock); |
| |
| return ret; |
| } |
| |
| map = em->map_lookup; |
| if (em->start != chunk_offset) |
| goto out; |
| |
| if (em->len < length) |
| goto out; |
| |
| for (i = 0; i < map->num_stripes; ++i) { |
| if (map->stripes[i].dev->bdev == scrub_dev->bdev && |
| map->stripes[i].physical == dev_offset) { |
| ret = scrub_stripe(sctx, map, scrub_dev, i, |
| chunk_offset, length, cache); |
| if (ret) |
| goto out; |
| } |
| } |
| out: |
| free_extent_map(em); |
| |
| return ret; |
| } |
| |
| static int finish_extent_writes_for_zoned(struct btrfs_root *root, |
| struct btrfs_block_group *cache) |
| { |
| struct btrfs_fs_info *fs_info = cache->fs_info; |
| struct btrfs_trans_handle *trans; |
| |
| if (!btrfs_is_zoned(fs_info)) |
| return 0; |
| |
| btrfs_wait_block_group_reservations(cache); |
| btrfs_wait_nocow_writers(cache); |
| btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length); |
| |
| trans = btrfs_join_transaction(root); |
| if (IS_ERR(trans)) |
| return PTR_ERR(trans); |
| return btrfs_commit_transaction(trans); |
| } |
| |
| static noinline_for_stack |
| int scrub_enumerate_chunks(struct scrub_ctx *sctx, |
| struct btrfs_device *scrub_dev, u64 start, u64 end) |
| { |
| struct btrfs_dev_extent *dev_extent = NULL; |
| struct btrfs_path *path; |
| struct btrfs_fs_info *fs_info = sctx->fs_info; |
| struct btrfs_root *root = fs_info->dev_root; |
| u64 length; |
| u64 chunk_offset; |
| int ret = 0; |
| int ro_set; |
| int slot; |
| struct extent_buffer *l; |
| struct btrfs_key key; |
| struct btrfs_key found_key; |
| struct btrfs_block_group *cache; |
| struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| path->reada = READA_FORWARD; |
| path->search_commit_root = 1; |
| path->skip_locking = 1; |
| |
| key.objectid = scrub_dev->devid; |
| key.offset = 0ull; |
| key.type = BTRFS_DEV_EXTENT_KEY; |
| |
| while (1) { |
| ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| if (ret < 0) |
| break; |
| if (ret > 0) { |
| if (path->slots[0] >= |
| btrfs_header_nritems(path->nodes[0])) { |
| ret = btrfs_next_leaf(root, path); |
| if (ret < 0) |
| break; |
| if (ret > 0) { |
| ret = 0; |
| break; |
| } |
| } else { |
| ret = 0; |
| } |
| } |
| |
| l = path->nodes[0]; |
| slot = path->slots[0]; |
| |
| btrfs_item_key_to_cpu(l, &found_key, slot); |
| |
| if (found_key.objectid != scrub_dev->devid) |
| break; |
| |
| if (found_key.type != BTRFS_DEV_EXTENT_KEY) |
| break; |
| |
| if (found_key.offset >= end) |
| break; |
| |
| if (found_key.offset < key.offset) |
| break; |
| |
| dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); |
| length = btrfs_dev_extent_length(l, dev_extent); |
| |
| if (found_key.offset + length <= start) |
| goto skip; |
| |
| chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); |
| |
| /* |
| * get a reference on the corresponding block group to prevent |
| * the chunk from going away while we scrub it |
| */ |
| cache = btrfs_lookup_block_group(fs_info, chunk_offset); |
| |
| /* some chunks are removed but not committed to disk yet, |
| * continue scrubbing */ |
| if (!cache) |
| goto skip; |
| |
| if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) { |
| spin_lock(&cache->lock); |
| if (!cache->to_copy) { |
| spin_unlock(&cache->lock); |
| ro_set = 0; |
| goto done; |
| } |
| spin_unlock(&cache->lock); |
| } |
| |
| /* |
| * Make sure that while we are scrubbing the corresponding block |
| * group doesn't get its logical address and its device extents |
| * reused for another block group, which can possibly be of a |
| * different type and different profile. We do this to prevent |
| * false error detections and crashes due to bogus attempts to |
| * repair extents. |
| */ |
| spin_lock(&cache->lock); |
| if (cache->removed) { |
| spin_unlock(&cache->lock); |
| btrfs_put_block_group(cache); |
| goto skip; |
| } |
| btrfs_freeze_block_group(cache); |
| spin_unlock(&cache->lock); |
| |
| /* |
| * we need call btrfs_inc_block_group_ro() with scrubs_paused, |
| * to avoid deadlock caused by: |
| * btrfs_inc_block_group_ro() |
| * -> btrfs_wait_for_commit() |
| * -> btrfs_commit_transaction() |
| * -> btrfs_scrub_pause() |
| */ |
| scrub_pause_on(fs_info); |
| |
| /* |
| * Don't do chunk preallocation for scrub. |
| * |
| * This is especially important for SYSTEM bgs, or we can hit |
| * -EFBIG from btrfs_finish_chunk_alloc() like: |
| * 1. The only SYSTEM bg is marked RO. |
| * Since SYSTEM bg is small, that's pretty common. |
| * 2. New SYSTEM bg will be allocated |
| * Due to regular version will allocate new chunk. |
| * 3. New SYSTEM bg is empty and will get cleaned up |
| * Before cleanup really happens, it's marked RO again. |
| * 4. Empty SYSTEM bg get scrubbed |
| * We go back to 2. |
| * |
| * This can easily boost the amount of SYSTEM chunks if cleaner |
| * thread can't be triggered fast enough, and use up all space |
| * of btrfs_super_block::sys_chunk_array |
| * |
| * While for dev replace, we need to try our best to mark block |
| * group RO, to prevent race between: |
| * - Write duplication |
| * Contains latest data |
| * - Scrub copy |
| * Contains data from commit tree |
| * |
| * If target block group is not marked RO, nocow writes can |
| * be overwritten by scrub copy, causing data corruption. |
| * So for dev-replace, it's not allowed to continue if a block |
| * group is not RO. |
| */ |
| ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace); |
| if (!ret && sctx->is_dev_replace) { |
| ret = finish_extent_writes_for_zoned(root, cache); |
| if (ret) { |
| btrfs_dec_block_group_ro(cache); |
| scrub_pause_off(fs_info); |
| btrfs_put_block_group(cache); |
| break; |
| } |
| } |
| |
| if (ret == 0) { |
| ro_set = 1; |
| } else if (ret == -ENOSPC && !sctx->is_dev_replace) { |
| /* |
| * btrfs_inc_block_group_ro return -ENOSPC when it |
| * failed in creating new chunk for metadata. |
| * It is not a problem for scrub, because |
| * metadata are always cowed, and our scrub paused |
| * commit_transactions. |
| */ |
| ro_set = 0; |
| } else if (ret == -ETXTBSY) { |
| btrfs_warn(fs_info, |
| "skipping scrub of block group %llu due to active swapfile", |
| cache->start); |
| scrub_pause_off(fs_info); |
| ret = 0; |
| goto skip_unfreeze; |
| } else { |
| btrfs_warn(fs_info, |
| "failed setting block group ro: %d", ret); |
| btrfs_unfreeze_block_group(cache); |
| btrfs_put_block_group(cache); |
| scrub_pause_off(fs_info); |
| break; |
| } |
| |
| /* |
| * Now the target block is marked RO, wait for nocow writes to |
| * finish before dev-replace. |
| * COW is fine, as COW never overwrites extents in commit tree. |
| */ |
| if (sctx->is_dev_replace) { |
| btrfs_wait_nocow_writers(cache); |
| btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, |
| cache->length); |
| } |
| |
| scrub_pause_off(fs_info); |
| down_write(&dev_replace->rwsem); |
| dev_replace->cursor_right = found_key.offset + length; |
| dev_replace->cursor_left = found_key.offset; |
| dev_replace->item_needs_writeback = 1; |
| up_write(&dev_replace->rwsem); |
| |
| ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length, |
| found_key.offset, cache); |
| |
| /* |
| * flush, submit all pending read and write bios, afterwards |
| * wait for them. |
| * Note that in the dev replace case, a read request causes |
| * write requests that are submitted in the read completion |
| * worker. Therefore in the current situation, it is required |
| * that all write requests are flushed, so that all read and |
| * write requests are really completed when bios_in_flight |
| * changes to 0. |
| */ |
| sctx->flush_all_writes = true; |
| scrub_submit(sctx); |
| mutex_lock(&sctx->wr_lock); |
| scrub_wr_submit(sctx); |
| mutex_unlock(&sctx->wr_lock); |
| |
| wait_event(sctx->list_wait, |
| atomic_read(&sctx->bios_in_flight) == 0); |
| |
| scrub_pause_on(fs_info); |
| |
| /* |
| * must be called before we decrease @scrub_paused. |
| * make sure we don't block transaction commit while |
| * we are waiting pending workers finished. |
| */ |
| wait_event(sctx->list_wait, |
| atomic_read(&sctx->workers_pending) == 0); |
| sctx->flush_all_writes = false; |
| |
| scrub_pause_off(fs_info); |
| |
| if (sctx->is_dev_replace && |
| !btrfs_finish_block_group_to_copy(dev_replace->srcdev, |
| cache, found_key.offset)) |
| ro_set = 0; |
| |
| done: |
| down_write(&dev_replace->rwsem); |
| dev_replace->cursor_left = dev_replace->cursor_right; |
| dev_replace->item_needs_writeback = 1; |
| up_write(&dev_replace->rwsem); |
| |
| if (ro_set) |
| btrfs_dec_block_group_ro(cache); |
| |
| /* |
| * We might have prevented the cleaner kthread from deleting |
| * this block group if it was already unused because we raced |
| * and set it to RO mode first. So add it back to the unused |
| * list, otherwise it might not ever be deleted unless a manual |
| * balance is triggered or it becomes used and unused again. |
| */ |
| spin_lock(&cache->lock); |
| if (!cache->removed && !cache->ro && cache->reserved == 0 && |
| cache->used == 0) { |
| spin_unlock(&cache->lock); |
| if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) |
| btrfs_discard_queue_work(&fs_info->discard_ctl, |
| cache); |
| else |
| btrfs_mark_bg_unused(cache); |
| } else { |
| spin_unlock(&cache->lock); |
| } |
| skip_unfreeze: |
| btrfs_unfreeze_block_group(cache); |
| btrfs_put_block_group(cache); |
| if (ret) |
| break; |
| if (sctx->is_dev_replace && |
| atomic64_read(&dev_replace->num_write_errors) > 0) { |
| ret = -EIO; |
| break; |
| } |
| if (sctx->stat.malloc_errors > 0) { |
| ret = -ENOMEM; |
| break; |
| } |
| skip: |
| key.offset = found_key.offset + length; |
| btrfs_release_path(path); |
| } |
| |
| btrfs_free_path(path); |
| |
| return ret; |
| } |
| |
| static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx, |
| struct btrfs_device *scrub_dev) |
| { |
| int i; |
| u64 bytenr; |
| u64 gen; |
| int ret; |
| struct btrfs_fs_info *fs_info = sctx->fs_info; |
| |
| if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) |
| return -EROFS; |
| |
| /* Seed devices of a new filesystem has their own generation. */ |
| if (scrub_dev->fs_devices != fs_info->fs_devices) |
| gen = scrub_dev->generation; |
| else |
| gen = fs_info->last_trans_committed; |
| |
| for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { |
| bytenr = btrfs_sb_offset(i); |
| if (bytenr + BTRFS_SUPER_INFO_SIZE > |
| scrub_dev->commit_total_bytes) |
| break; |
| if (!btrfs_check_super_location(scrub_dev, bytenr)) |
| continue; |
| |
| ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr, |
| scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i, |
| NULL, bytenr); |
| if (ret) |
| return ret; |
| } |
| wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); |
| |
| return 0; |
| } |
| |
| static void scrub_workers_put(struct btrfs_fs_info *fs_info) |
| { |
| if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt, |
| &fs_info->scrub_lock)) { |
| struct btrfs_workqueue *scrub_workers = NULL; |
| struct btrfs_workqueue *scrub_wr_comp = NULL; |
| struct btrfs_workqueue *scrub_parity = NULL; |
| |
| scrub_workers = fs_info->scrub_workers; |
| scrub_wr_comp = fs_info->scrub_wr_completion_workers; |
| scrub_parity = fs_info->scrub_parity_workers; |
| |
| fs_info->scrub_workers = NULL; |
| fs_info->scrub_wr_completion_workers = NULL; |
| fs_info->scrub_parity_workers = NULL; |
| mutex_unlock(&fs_info->scrub_lock); |
| |
| btrfs_destroy_workqueue(scrub_workers); |
| btrfs_destroy_workqueue(scrub_wr_comp); |
| btrfs_destroy_workqueue(scrub_parity); |
| } |
| } |
| |
| /* |
| * get a reference count on fs_info->scrub_workers. start worker if necessary |
| */ |
| static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info, |
| int is_dev_replace) |
| { |
| struct btrfs_workqueue *scrub_workers = NULL; |
| struct btrfs_workqueue *scrub_wr_comp = NULL; |
| struct btrfs_workqueue *scrub_parity = NULL; |
| unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND; |
| int max_active = fs_info->thread_pool_size; |
| int ret = -ENOMEM; |
| |
| if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt)) |
| return 0; |
| |
| scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub", flags, |
| is_dev_replace ? 1 : max_active, 4); |
| if (!scrub_workers) |
| goto fail_scrub_workers; |
| |
| scrub_wr_comp = btrfs_alloc_workqueue(fs_info, "scrubwrc", flags, |
| max_active, 2); |
| if (!scrub_wr_comp) |
| goto fail_scrub_wr_completion_workers; |
| |
| scrub_parity = btrfs_alloc_workqueue(fs_info, "scrubparity", flags, |
| max_active, 2); |
| if (!scrub_parity) |
| goto fail_scrub_parity_workers; |
| |
| mutex_lock(&fs_info->scrub_lock); |
| if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) { |
| ASSERT(fs_info->scrub_workers == NULL && |
| fs_info->scrub_wr_completion_workers == NULL && |
| fs_info->scrub_parity_workers == NULL); |
| fs_info->scrub_workers = scrub_workers; |
| fs_info->scrub_wr_completion_workers = scrub_wr_comp; |
| fs_info->scrub_parity_workers = scrub_parity; |
| refcount_set(&fs_info->scrub_workers_refcnt, 1); |
| mutex_unlock(&fs_info->scrub_lock); |
| return 0; |
| } |
| /* Other thread raced in and created the workers for us */ |
| refcount_inc(&fs_info->scrub_workers_refcnt); |
| mutex_unlock(&fs_info->scrub_lock); |
| |
| ret = 0; |
| btrfs_destroy_workqueue(scrub_parity); |
| fail_scrub_parity_workers: |
| btrfs_destroy_workqueue(scrub_wr_comp); |
| fail_scrub_wr_completion_workers: |
| btrfs_destroy_workqueue(scrub_workers); |
| fail_scrub_workers: |
| return ret; |
| } |
| |
| int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start, |
| u64 end, struct btrfs_scrub_progress *progress, |
| int readonly, int is_dev_replace) |
| { |
| struct scrub_ctx *sctx; |
| int ret; |
| struct btrfs_device *dev; |
| unsigned int nofs_flag; |
| |
| if (btrfs_fs_closing(fs_info)) |
| return -EAGAIN; |
| |
| if (fs_info->nodesize > BTRFS_STRIPE_LEN) { |
| /* |
| * in this case scrub is unable to calculate the checksum |
| * the way scrub is implemented. Do not handle this |
| * situation at all because it won't ever happen. |
| */ |
| btrfs_err(fs_info, |
| "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails", |
| fs_info->nodesize, |
| BTRFS_STRIPE_LEN); |
| return -EINVAL; |
| } |
| |
| if (fs_info->nodesize > |
| PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK || |
| fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) { |
| /* |
| * would exhaust the array bounds of pagev member in |
| * struct scrub_block |
| */ |
| btrfs_err(fs_info, |
| "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails", |
| fs_info->nodesize, |
| SCRUB_MAX_PAGES_PER_BLOCK, |
| fs_info->sectorsize, |
| SCRUB_MAX_PAGES_PER_BLOCK); |
| return -EINVAL; |
| } |
| |
| /* Allocate outside of device_list_mutex */ |
| sctx = scrub_setup_ctx(fs_info, is_dev_replace); |
| if (IS_ERR(sctx)) |
| return PTR_ERR(sctx); |
| |
| ret = scrub_workers_get(fs_info, is_dev_replace); |
| if (ret) |
| goto out_free_ctx; |
| |
| mutex_lock(&fs_info->fs_devices->device_list_mutex); |
| dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL); |
| if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) && |
| !is_dev_replace)) { |
| mutex_unlock(&fs_info->fs_devices->device_list_mutex); |
| ret = -ENODEV; |
| goto out; |
| } |
| |
| if (!is_dev_replace && !readonly && |
| !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) { |
| mutex_unlock(&fs_info->fs_devices->device_list_mutex); |
| btrfs_err_in_rcu(fs_info, |
| "scrub on devid %llu: filesystem on %s is not writable", |
| devid, rcu_str_deref(dev->name)); |
| ret = -EROFS; |
| goto out; |
| } |
| |
| mutex_lock(&fs_info->scrub_lock); |
| if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || |
| test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) { |
| mutex_unlock(&fs_info->scrub_lock); |
| mutex_unlock(&fs_info->fs_devices->device_list_mutex); |
| ret = -EIO; |
| goto out; |
| } |
| |
| down_read(&fs_info->dev_replace.rwsem); |
| if (dev->scrub_ctx || |
| (!is_dev_replace && |
| btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) { |
| up_read(&fs_info->dev_replace.rwsem); |
| mutex_unlock(&fs_info->scrub_lock); |
| mutex_unlock(&fs_info->fs_devices->device_list_mutex); |
| ret = -EINPROGRESS; |
| goto out; |
| } |
| up_read(&fs_info->dev_replace.rwsem); |
| |
| sctx->readonly = readonly; |
| dev->scrub_ctx = sctx; |
| mutex_unlock(&fs_info->fs_devices->device_list_mutex); |
| |
| /* |
| * checking @scrub_pause_req here, we can avoid |
| * race between committing transaction and scrubbing. |
| */ |
| __scrub_blocked_if_needed(fs_info); |
| atomic_inc(&fs_info->scrubs_running); |
| mutex_unlock(&fs_info->scrub_lock); |
| |
| /* |
| * In order to avoid deadlock with reclaim when there is a transaction |
| * trying to pause scrub, make sure we use GFP_NOFS for all the |
| * allocations done at btrfs_scrub_pages() and scrub_pages_for_parity() |
| * invoked by our callees. The pausing request is done when the |
| * transaction commit starts, and it blocks the transaction until scrub |
| * is paused (done at specific points at scrub_stripe() or right above |
| * before incrementing fs_info->scrubs_running). |
| */ |
| nofs_flag = memalloc_nofs_save(); |
| if (!is_dev_replace) { |
| btrfs_info(fs_info, "scrub: started on devid %llu", devid); |
| /* |
| * by holding device list mutex, we can |
| * kick off writing super in log tree sync. |
| */ |
| mutex_lock(&fs_info->fs_devices->device_list_mutex); |
| ret = scrub_supers(sctx, dev); |
| mutex_unlock(&fs_info->fs_devices->device_list_mutex); |
| } |
| |
| if (!ret) |
| ret = scrub_enumerate_chunks(sctx, dev, start, end); |
| memalloc_nofs_restore(nofs_flag); |
| |
| wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); |
| atomic_dec(&fs_info->scrubs_running); |
| wake_up(&fs_info->scrub_pause_wait); |
| |
| wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0); |
| |
| if (progress) |
| memcpy(progress, &sctx->stat, sizeof(*progress)); |
| |
| if (!is_dev_replace) |
| btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d", |
| ret ? "not finished" : "finished", devid, ret); |
| |
| mutex_lock(&fs_info->scrub_lock); |
| dev->scrub_ctx = NULL; |
| mutex_unlock(&fs_info->scrub_lock); |
| |
| scrub_workers_put(fs_info); |
| scrub_put_ctx(sctx); |
| |
| return ret; |
| out: |
| scrub_workers_put(fs_info); |
| out_free_ctx: |
| scrub_free_ctx(sctx); |
| |
| return ret; |
| } |
| |
| void btrfs_scrub_pause(struct btrfs_fs_info *fs_info) |
| { |
| mutex_lock(&fs_info->scrub_lock); |
| atomic_inc(&fs_info->scrub_pause_req); |
| while (atomic_read(&fs_info->scrubs_paused) != |
| atomic_read(&fs_info->scrubs_running)) { |
| mutex_unlock(&fs_info->scrub_lock); |
| wait_event(fs_info->scrub_pause_wait, |
| atomic_read(&fs_info->scrubs_paused) == |
| atomic_read(&fs_info->scrubs_running)); |
| mutex_lock(&fs_info->scrub_lock); |
| } |
| mutex_unlock(&fs_info->scrub_lock); |
| } |
| |
| void btrfs_scrub_continue(struct btrfs_fs_info *fs_info) |
| { |
| atomic_dec(&fs_info->scrub_pause_req); |
| wake_up(&fs_info->scrub_pause_wait); |
| } |
| |
| int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info) |
| { |
| mutex_lock(&fs_info->scrub_lock); |
| if (!atomic_read(&fs_info->scrubs_running)) { |
| mutex_unlock(&fs_info->scrub_lock); |
| return -ENOTCONN; |
| } |
| |
| atomic_inc(&fs_info->scrub_cancel_req); |
| while (atomic_read(&fs_info->scrubs_running)) { |
| mutex_unlock(&fs_info->scrub_lock); |
| wait_event(fs_info->scrub_pause_wait, |
| atomic_read(&fs_info->scrubs_running) == 0); |
| mutex_lock(&fs_info->scrub_lock); |
| } |
| atomic_dec(&fs_info->scrub_cancel_req); |
| mutex_unlock(&fs_info->scrub_lock); |
| |
| return 0; |
| } |
| |
| int btrfs_scrub_cancel_dev(struct btrfs_device *dev) |
| { |
| struct btrfs_fs_info *fs_info = dev->fs_info; |
| struct scrub_ctx *sctx; |
| |
| mutex_lock(&fs_info->scrub_lock); |
| sctx = dev->scrub_ctx; |
| if (!sctx) { |
| mutex_unlock(&fs_info->scrub_lock); |
| return -ENOTCONN; |
| } |
| atomic_inc(&sctx->cancel_req); |
| while (dev->scrub_ctx) { |
| mutex_unlock(&fs_info->scrub_lock); |
| wait_event(fs_info->scrub_pause_wait, |
| dev->scrub_ctx == NULL); |
| mutex_lock(&fs_info->scrub_lock); |
| } |
| mutex_unlock(&fs_info->scrub_lock); |
| |
| return 0; |
| } |
| |
| int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid, |
| struct btrfs_scrub_progress *progress) |
| { |
| struct btrfs_device *dev; |
| struct scrub_ctx *sctx = NULL; |
| |
| mutex_lock(&fs_info->fs_devices->device_list_mutex); |
| dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL); |
| if (dev) |
| sctx = dev->scrub_ctx; |
| if (sctx) |
| memcpy(progress, &sctx->stat, sizeof(*progress)); |
| mutex_unlock(&fs_info->fs_devices->device_list_mutex); |
| |
| return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV; |
| } |
| |
| static void scrub_remap_extent(struct btrfs_fs_info *fs_info, |
| u64 extent_logical, u32 extent_len, |
| u64 *extent_physical, |
| struct btrfs_device **extent_dev, |
| int *extent_mirror_num) |
| { |
| u64 mapped_length; |
| struct btrfs_bio *bbio = NULL; |
| int ret; |
| |
| mapped_length = extent_len; |
| ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical, |
| &mapped_length, &bbio, 0); |
| if (ret || !bbio || mapped_length < extent_len || |
| !bbio->stripes[0].dev->bdev) { |
| btrfs_put_bbio(bbio); |
| return; |
| } |
| |
| *extent_physical = bbio->stripes[0].physical; |
| *extent_mirror_num = bbio->mirror_num; |
| *extent_dev = bbio->stripes[0].dev; |
| btrfs_put_bbio(bbio); |
| } |