| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * The input core |
| * |
| * Copyright (c) 1999-2002 Vojtech Pavlik |
| */ |
| |
| |
| #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt |
| |
| #include <linux/init.h> |
| #include <linux/types.h> |
| #include <linux/idr.h> |
| #include <linux/input/mt.h> |
| #include <linux/module.h> |
| #include <linux/slab.h> |
| #include <linux/random.h> |
| #include <linux/major.h> |
| #include <linux/proc_fs.h> |
| #include <linux/sched.h> |
| #include <linux/seq_file.h> |
| #include <linux/poll.h> |
| #include <linux/device.h> |
| #include <linux/mutex.h> |
| #include <linux/rcupdate.h> |
| #include "input-compat.h" |
| #include "input-poller.h" |
| |
| MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>"); |
| MODULE_DESCRIPTION("Input core"); |
| MODULE_LICENSE("GPL"); |
| |
| #define INPUT_MAX_CHAR_DEVICES 1024 |
| #define INPUT_FIRST_DYNAMIC_DEV 256 |
| static DEFINE_IDA(input_ida); |
| |
| static LIST_HEAD(input_dev_list); |
| static LIST_HEAD(input_handler_list); |
| |
| /* |
| * input_mutex protects access to both input_dev_list and input_handler_list. |
| * This also causes input_[un]register_device and input_[un]register_handler |
| * be mutually exclusive which simplifies locking in drivers implementing |
| * input handlers. |
| */ |
| static DEFINE_MUTEX(input_mutex); |
| |
| static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 }; |
| |
| static const unsigned int input_max_code[EV_CNT] = { |
| [EV_KEY] = KEY_MAX, |
| [EV_REL] = REL_MAX, |
| [EV_ABS] = ABS_MAX, |
| [EV_MSC] = MSC_MAX, |
| [EV_SW] = SW_MAX, |
| [EV_LED] = LED_MAX, |
| [EV_SND] = SND_MAX, |
| [EV_FF] = FF_MAX, |
| }; |
| |
| static inline int is_event_supported(unsigned int code, |
| unsigned long *bm, unsigned int max) |
| { |
| return code <= max && test_bit(code, bm); |
| } |
| |
| static int input_defuzz_abs_event(int value, int old_val, int fuzz) |
| { |
| if (fuzz) { |
| if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2) |
| return old_val; |
| |
| if (value > old_val - fuzz && value < old_val + fuzz) |
| return (old_val * 3 + value) / 4; |
| |
| if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2) |
| return (old_val + value) / 2; |
| } |
| |
| return value; |
| } |
| |
| static void input_start_autorepeat(struct input_dev *dev, int code) |
| { |
| if (test_bit(EV_REP, dev->evbit) && |
| dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] && |
| dev->timer.function) { |
| dev->repeat_key = code; |
| mod_timer(&dev->timer, |
| jiffies + msecs_to_jiffies(dev->rep[REP_DELAY])); |
| } |
| } |
| |
| static void input_stop_autorepeat(struct input_dev *dev) |
| { |
| del_timer(&dev->timer); |
| } |
| |
| /* |
| * Pass event first through all filters and then, if event has not been |
| * filtered out, through all open handles. This function is called with |
| * dev->event_lock held and interrupts disabled. |
| */ |
| static unsigned int input_to_handler(struct input_handle *handle, |
| struct input_value *vals, unsigned int count) |
| { |
| struct input_handler *handler = handle->handler; |
| struct input_value *end = vals; |
| struct input_value *v; |
| |
| if (handler->filter) { |
| for (v = vals; v != vals + count; v++) { |
| if (handler->filter(handle, v->type, v->code, v->value)) |
| continue; |
| if (end != v) |
| *end = *v; |
| end++; |
| } |
| count = end - vals; |
| } |
| |
| if (!count) |
| return 0; |
| |
| if (handler->events) |
| handler->events(handle, vals, count); |
| else if (handler->event) |
| for (v = vals; v != vals + count; v++) |
| handler->event(handle, v->type, v->code, v->value); |
| |
| return count; |
| } |
| |
| /* |
| * Pass values first through all filters and then, if event has not been |
| * filtered out, through all open handles. This function is called with |
| * dev->event_lock held and interrupts disabled. |
| */ |
| static void input_pass_values(struct input_dev *dev, |
| struct input_value *vals, unsigned int count) |
| { |
| struct input_handle *handle; |
| struct input_value *v; |
| |
| if (!count) |
| return; |
| |
| rcu_read_lock(); |
| |
| handle = rcu_dereference(dev->grab); |
| if (handle) { |
| count = input_to_handler(handle, vals, count); |
| } else { |
| list_for_each_entry_rcu(handle, &dev->h_list, d_node) |
| if (handle->open) { |
| count = input_to_handler(handle, vals, count); |
| if (!count) |
| break; |
| } |
| } |
| |
| rcu_read_unlock(); |
| |
| /* trigger auto repeat for key events */ |
| if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) { |
| for (v = vals; v != vals + count; v++) { |
| if (v->type == EV_KEY && v->value != 2) { |
| if (v->value) |
| input_start_autorepeat(dev, v->code); |
| else |
| input_stop_autorepeat(dev); |
| } |
| } |
| } |
| } |
| |
| static void input_pass_event(struct input_dev *dev, |
| unsigned int type, unsigned int code, int value) |
| { |
| struct input_value vals[] = { { type, code, value } }; |
| |
| input_pass_values(dev, vals, ARRAY_SIZE(vals)); |
| } |
| |
| /* |
| * Generate software autorepeat event. Note that we take |
| * dev->event_lock here to avoid racing with input_event |
| * which may cause keys get "stuck". |
| */ |
| static void input_repeat_key(struct timer_list *t) |
| { |
| struct input_dev *dev = from_timer(dev, t, timer); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&dev->event_lock, flags); |
| |
| if (test_bit(dev->repeat_key, dev->key) && |
| is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) { |
| struct input_value vals[] = { |
| { EV_KEY, dev->repeat_key, 2 }, |
| input_value_sync |
| }; |
| |
| input_set_timestamp(dev, ktime_get()); |
| input_pass_values(dev, vals, ARRAY_SIZE(vals)); |
| |
| if (dev->rep[REP_PERIOD]) |
| mod_timer(&dev->timer, jiffies + |
| msecs_to_jiffies(dev->rep[REP_PERIOD])); |
| } |
| |
| spin_unlock_irqrestore(&dev->event_lock, flags); |
| } |
| |
| #define INPUT_IGNORE_EVENT 0 |
| #define INPUT_PASS_TO_HANDLERS 1 |
| #define INPUT_PASS_TO_DEVICE 2 |
| #define INPUT_SLOT 4 |
| #define INPUT_FLUSH 8 |
| #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE) |
| |
| static int input_handle_abs_event(struct input_dev *dev, |
| unsigned int code, int *pval) |
| { |
| struct input_mt *mt = dev->mt; |
| bool is_mt_event; |
| int *pold; |
| |
| if (code == ABS_MT_SLOT) { |
| /* |
| * "Stage" the event; we'll flush it later, when we |
| * get actual touch data. |
| */ |
| if (mt && *pval >= 0 && *pval < mt->num_slots) |
| mt->slot = *pval; |
| |
| return INPUT_IGNORE_EVENT; |
| } |
| |
| is_mt_event = input_is_mt_value(code); |
| |
| if (!is_mt_event) { |
| pold = &dev->absinfo[code].value; |
| } else if (mt) { |
| pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST]; |
| } else { |
| /* |
| * Bypass filtering for multi-touch events when |
| * not employing slots. |
| */ |
| pold = NULL; |
| } |
| |
| if (pold) { |
| *pval = input_defuzz_abs_event(*pval, *pold, |
| dev->absinfo[code].fuzz); |
| if (*pold == *pval) |
| return INPUT_IGNORE_EVENT; |
| |
| *pold = *pval; |
| } |
| |
| /* Flush pending "slot" event */ |
| if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) { |
| input_abs_set_val(dev, ABS_MT_SLOT, mt->slot); |
| return INPUT_PASS_TO_HANDLERS | INPUT_SLOT; |
| } |
| |
| return INPUT_PASS_TO_HANDLERS; |
| } |
| |
| static int input_get_disposition(struct input_dev *dev, |
| unsigned int type, unsigned int code, int *pval) |
| { |
| int disposition = INPUT_IGNORE_EVENT; |
| int value = *pval; |
| |
| switch (type) { |
| |
| case EV_SYN: |
| switch (code) { |
| case SYN_CONFIG: |
| disposition = INPUT_PASS_TO_ALL; |
| break; |
| |
| case SYN_REPORT: |
| disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH; |
| break; |
| case SYN_MT_REPORT: |
| disposition = INPUT_PASS_TO_HANDLERS; |
| break; |
| } |
| break; |
| |
| case EV_KEY: |
| if (is_event_supported(code, dev->keybit, KEY_MAX)) { |
| |
| /* auto-repeat bypasses state updates */ |
| if (value == 2) { |
| disposition = INPUT_PASS_TO_HANDLERS; |
| break; |
| } |
| |
| if (!!test_bit(code, dev->key) != !!value) { |
| |
| __change_bit(code, dev->key); |
| disposition = INPUT_PASS_TO_HANDLERS; |
| } |
| } |
| break; |
| |
| case EV_SW: |
| if (is_event_supported(code, dev->swbit, SW_MAX) && |
| !!test_bit(code, dev->sw) != !!value) { |
| |
| __change_bit(code, dev->sw); |
| disposition = INPUT_PASS_TO_HANDLERS; |
| } |
| break; |
| |
| case EV_ABS: |
| if (is_event_supported(code, dev->absbit, ABS_MAX)) |
| disposition = input_handle_abs_event(dev, code, &value); |
| |
| break; |
| |
| case EV_REL: |
| if (is_event_supported(code, dev->relbit, REL_MAX) && value) |
| disposition = INPUT_PASS_TO_HANDLERS; |
| |
| break; |
| |
| case EV_MSC: |
| if (is_event_supported(code, dev->mscbit, MSC_MAX)) |
| disposition = INPUT_PASS_TO_ALL; |
| |
| break; |
| |
| case EV_LED: |
| if (is_event_supported(code, dev->ledbit, LED_MAX) && |
| !!test_bit(code, dev->led) != !!value) { |
| |
| __change_bit(code, dev->led); |
| disposition = INPUT_PASS_TO_ALL; |
| } |
| break; |
| |
| case EV_SND: |
| if (is_event_supported(code, dev->sndbit, SND_MAX)) { |
| |
| if (!!test_bit(code, dev->snd) != !!value) |
| __change_bit(code, dev->snd); |
| disposition = INPUT_PASS_TO_ALL; |
| } |
| break; |
| |
| case EV_REP: |
| if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) { |
| dev->rep[code] = value; |
| disposition = INPUT_PASS_TO_ALL; |
| } |
| break; |
| |
| case EV_FF: |
| if (value >= 0) |
| disposition = INPUT_PASS_TO_ALL; |
| break; |
| |
| case EV_PWR: |
| disposition = INPUT_PASS_TO_ALL; |
| break; |
| } |
| |
| *pval = value; |
| return disposition; |
| } |
| |
| static void input_handle_event(struct input_dev *dev, |
| unsigned int type, unsigned int code, int value) |
| { |
| int disposition; |
| |
| /* filter-out events from inhibited devices */ |
| if (dev->inhibited) |
| return; |
| |
| disposition = input_get_disposition(dev, type, code, &value); |
| if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN) |
| add_input_randomness(type, code, value); |
| |
| if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event) |
| dev->event(dev, type, code, value); |
| |
| if (!dev->vals) |
| return; |
| |
| if (disposition & INPUT_PASS_TO_HANDLERS) { |
| struct input_value *v; |
| |
| if (disposition & INPUT_SLOT) { |
| v = &dev->vals[dev->num_vals++]; |
| v->type = EV_ABS; |
| v->code = ABS_MT_SLOT; |
| v->value = dev->mt->slot; |
| } |
| |
| v = &dev->vals[dev->num_vals++]; |
| v->type = type; |
| v->code = code; |
| v->value = value; |
| } |
| |
| if (disposition & INPUT_FLUSH) { |
| if (dev->num_vals >= 2) |
| input_pass_values(dev, dev->vals, dev->num_vals); |
| dev->num_vals = 0; |
| /* |
| * Reset the timestamp on flush so we won't end up |
| * with a stale one. Note we only need to reset the |
| * monolithic one as we use its presence when deciding |
| * whether to generate a synthetic timestamp. |
| */ |
| dev->timestamp[INPUT_CLK_MONO] = ktime_set(0, 0); |
| } else if (dev->num_vals >= dev->max_vals - 2) { |
| dev->vals[dev->num_vals++] = input_value_sync; |
| input_pass_values(dev, dev->vals, dev->num_vals); |
| dev->num_vals = 0; |
| } |
| |
| } |
| |
| /** |
| * input_event() - report new input event |
| * @dev: device that generated the event |
| * @type: type of the event |
| * @code: event code |
| * @value: value of the event |
| * |
| * This function should be used by drivers implementing various input |
| * devices to report input events. See also input_inject_event(). |
| * |
| * NOTE: input_event() may be safely used right after input device was |
| * allocated with input_allocate_device(), even before it is registered |
| * with input_register_device(), but the event will not reach any of the |
| * input handlers. Such early invocation of input_event() may be used |
| * to 'seed' initial state of a switch or initial position of absolute |
| * axis, etc. |
| */ |
| void input_event(struct input_dev *dev, |
| unsigned int type, unsigned int code, int value) |
| { |
| unsigned long flags; |
| |
| if (is_event_supported(type, dev->evbit, EV_MAX)) { |
| |
| spin_lock_irqsave(&dev->event_lock, flags); |
| input_handle_event(dev, type, code, value); |
| spin_unlock_irqrestore(&dev->event_lock, flags); |
| } |
| } |
| EXPORT_SYMBOL(input_event); |
| |
| /** |
| * input_inject_event() - send input event from input handler |
| * @handle: input handle to send event through |
| * @type: type of the event |
| * @code: event code |
| * @value: value of the event |
| * |
| * Similar to input_event() but will ignore event if device is |
| * "grabbed" and handle injecting event is not the one that owns |
| * the device. |
| */ |
| void input_inject_event(struct input_handle *handle, |
| unsigned int type, unsigned int code, int value) |
| { |
| struct input_dev *dev = handle->dev; |
| struct input_handle *grab; |
| unsigned long flags; |
| |
| if (is_event_supported(type, dev->evbit, EV_MAX)) { |
| spin_lock_irqsave(&dev->event_lock, flags); |
| |
| rcu_read_lock(); |
| grab = rcu_dereference(dev->grab); |
| if (!grab || grab == handle) |
| input_handle_event(dev, type, code, value); |
| rcu_read_unlock(); |
| |
| spin_unlock_irqrestore(&dev->event_lock, flags); |
| } |
| } |
| EXPORT_SYMBOL(input_inject_event); |
| |
| /** |
| * input_alloc_absinfo - allocates array of input_absinfo structs |
| * @dev: the input device emitting absolute events |
| * |
| * If the absinfo struct the caller asked for is already allocated, this |
| * functions will not do anything. |
| */ |
| void input_alloc_absinfo(struct input_dev *dev) |
| { |
| if (dev->absinfo) |
| return; |
| |
| dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo), GFP_KERNEL); |
| if (!dev->absinfo) { |
| dev_err(dev->dev.parent ?: &dev->dev, |
| "%s: unable to allocate memory\n", __func__); |
| /* |
| * We will handle this allocation failure in |
| * input_register_device() when we refuse to register input |
| * device with ABS bits but without absinfo. |
| */ |
| } |
| } |
| EXPORT_SYMBOL(input_alloc_absinfo); |
| |
| void input_set_abs_params(struct input_dev *dev, unsigned int axis, |
| int min, int max, int fuzz, int flat) |
| { |
| struct input_absinfo *absinfo; |
| |
| __set_bit(EV_ABS, dev->evbit); |
| __set_bit(axis, dev->absbit); |
| |
| input_alloc_absinfo(dev); |
| if (!dev->absinfo) |
| return; |
| |
| absinfo = &dev->absinfo[axis]; |
| absinfo->minimum = min; |
| absinfo->maximum = max; |
| absinfo->fuzz = fuzz; |
| absinfo->flat = flat; |
| } |
| EXPORT_SYMBOL(input_set_abs_params); |
| |
| /** |
| * input_copy_abs - Copy absinfo from one input_dev to another |
| * @dst: Destination input device to copy the abs settings to |
| * @dst_axis: ABS_* value selecting the destination axis |
| * @src: Source input device to copy the abs settings from |
| * @src_axis: ABS_* value selecting the source axis |
| * |
| * Set absinfo for the selected destination axis by copying it from |
| * the specified source input device's source axis. |
| * This is useful to e.g. setup a pen/stylus input-device for combined |
| * touchscreen/pen hardware where the pen uses the same coordinates as |
| * the touchscreen. |
| */ |
| void input_copy_abs(struct input_dev *dst, unsigned int dst_axis, |
| const struct input_dev *src, unsigned int src_axis) |
| { |
| /* src must have EV_ABS and src_axis set */ |
| if (WARN_ON(!(test_bit(EV_ABS, src->evbit) && |
| test_bit(src_axis, src->absbit)))) |
| return; |
| |
| /* |
| * input_alloc_absinfo() may have failed for the source. Our caller is |
| * expected to catch this when registering the input devices, which may |
| * happen after the input_copy_abs() call. |
| */ |
| if (!src->absinfo) |
| return; |
| |
| input_set_capability(dst, EV_ABS, dst_axis); |
| if (!dst->absinfo) |
| return; |
| |
| dst->absinfo[dst_axis] = src->absinfo[src_axis]; |
| } |
| EXPORT_SYMBOL(input_copy_abs); |
| |
| /** |
| * input_grab_device - grabs device for exclusive use |
| * @handle: input handle that wants to own the device |
| * |
| * When a device is grabbed by an input handle all events generated by |
| * the device are delivered only to this handle. Also events injected |
| * by other input handles are ignored while device is grabbed. |
| */ |
| int input_grab_device(struct input_handle *handle) |
| { |
| struct input_dev *dev = handle->dev; |
| int retval; |
| |
| retval = mutex_lock_interruptible(&dev->mutex); |
| if (retval) |
| return retval; |
| |
| if (dev->grab) { |
| retval = -EBUSY; |
| goto out; |
| } |
| |
| rcu_assign_pointer(dev->grab, handle); |
| |
| out: |
| mutex_unlock(&dev->mutex); |
| return retval; |
| } |
| EXPORT_SYMBOL(input_grab_device); |
| |
| static void __input_release_device(struct input_handle *handle) |
| { |
| struct input_dev *dev = handle->dev; |
| struct input_handle *grabber; |
| |
| grabber = rcu_dereference_protected(dev->grab, |
| lockdep_is_held(&dev->mutex)); |
| if (grabber == handle) { |
| rcu_assign_pointer(dev->grab, NULL); |
| /* Make sure input_pass_event() notices that grab is gone */ |
| synchronize_rcu(); |
| |
| list_for_each_entry(handle, &dev->h_list, d_node) |
| if (handle->open && handle->handler->start) |
| handle->handler->start(handle); |
| } |
| } |
| |
| /** |
| * input_release_device - release previously grabbed device |
| * @handle: input handle that owns the device |
| * |
| * Releases previously grabbed device so that other input handles can |
| * start receiving input events. Upon release all handlers attached |
| * to the device have their start() method called so they have a change |
| * to synchronize device state with the rest of the system. |
| */ |
| void input_release_device(struct input_handle *handle) |
| { |
| struct input_dev *dev = handle->dev; |
| |
| mutex_lock(&dev->mutex); |
| __input_release_device(handle); |
| mutex_unlock(&dev->mutex); |
| } |
| EXPORT_SYMBOL(input_release_device); |
| |
| /** |
| * input_open_device - open input device |
| * @handle: handle through which device is being accessed |
| * |
| * This function should be called by input handlers when they |
| * want to start receive events from given input device. |
| */ |
| int input_open_device(struct input_handle *handle) |
| { |
| struct input_dev *dev = handle->dev; |
| int retval; |
| |
| retval = mutex_lock_interruptible(&dev->mutex); |
| if (retval) |
| return retval; |
| |
| if (dev->going_away) { |
| retval = -ENODEV; |
| goto out; |
| } |
| |
| handle->open++; |
| |
| if (dev->users++ || dev->inhibited) { |
| /* |
| * Device is already opened and/or inhibited, |
| * so we can exit immediately and report success. |
| */ |
| goto out; |
| } |
| |
| if (dev->open) { |
| retval = dev->open(dev); |
| if (retval) { |
| dev->users--; |
| handle->open--; |
| /* |
| * Make sure we are not delivering any more events |
| * through this handle |
| */ |
| synchronize_rcu(); |
| goto out; |
| } |
| } |
| |
| if (dev->poller) |
| input_dev_poller_start(dev->poller); |
| |
| out: |
| mutex_unlock(&dev->mutex); |
| return retval; |
| } |
| EXPORT_SYMBOL(input_open_device); |
| |
| int input_flush_device(struct input_handle *handle, struct file *file) |
| { |
| struct input_dev *dev = handle->dev; |
| int retval; |
| |
| retval = mutex_lock_interruptible(&dev->mutex); |
| if (retval) |
| return retval; |
| |
| if (dev->flush) |
| retval = dev->flush(dev, file); |
| |
| mutex_unlock(&dev->mutex); |
| return retval; |
| } |
| EXPORT_SYMBOL(input_flush_device); |
| |
| /** |
| * input_close_device - close input device |
| * @handle: handle through which device is being accessed |
| * |
| * This function should be called by input handlers when they |
| * want to stop receive events from given input device. |
| */ |
| void input_close_device(struct input_handle *handle) |
| { |
| struct input_dev *dev = handle->dev; |
| |
| mutex_lock(&dev->mutex); |
| |
| __input_release_device(handle); |
| |
| if (!dev->inhibited && !--dev->users) { |
| if (dev->poller) |
| input_dev_poller_stop(dev->poller); |
| if (dev->close) |
| dev->close(dev); |
| } |
| |
| if (!--handle->open) { |
| /* |
| * synchronize_rcu() makes sure that input_pass_event() |
| * completed and that no more input events are delivered |
| * through this handle |
| */ |
| synchronize_rcu(); |
| } |
| |
| mutex_unlock(&dev->mutex); |
| } |
| EXPORT_SYMBOL(input_close_device); |
| |
| /* |
| * Simulate keyup events for all keys that are marked as pressed. |
| * The function must be called with dev->event_lock held. |
| */ |
| static void input_dev_release_keys(struct input_dev *dev) |
| { |
| bool need_sync = false; |
| int code; |
| |
| if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) { |
| for_each_set_bit(code, dev->key, KEY_CNT) { |
| input_pass_event(dev, EV_KEY, code, 0); |
| need_sync = true; |
| } |
| |
| if (need_sync) |
| input_pass_event(dev, EV_SYN, SYN_REPORT, 1); |
| |
| memset(dev->key, 0, sizeof(dev->key)); |
| } |
| } |
| |
| /* |
| * Prepare device for unregistering |
| */ |
| static void input_disconnect_device(struct input_dev *dev) |
| { |
| struct input_handle *handle; |
| |
| /* |
| * Mark device as going away. Note that we take dev->mutex here |
| * not to protect access to dev->going_away but rather to ensure |
| * that there are no threads in the middle of input_open_device() |
| */ |
| mutex_lock(&dev->mutex); |
| dev->going_away = true; |
| mutex_unlock(&dev->mutex); |
| |
| spin_lock_irq(&dev->event_lock); |
| |
| /* |
| * Simulate keyup events for all pressed keys so that handlers |
| * are not left with "stuck" keys. The driver may continue |
| * generate events even after we done here but they will not |
| * reach any handlers. |
| */ |
| input_dev_release_keys(dev); |
| |
| list_for_each_entry(handle, &dev->h_list, d_node) |
| handle->open = 0; |
| |
| spin_unlock_irq(&dev->event_lock); |
| } |
| |
| /** |
| * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry |
| * @ke: keymap entry containing scancode to be converted. |
| * @scancode: pointer to the location where converted scancode should |
| * be stored. |
| * |
| * This function is used to convert scancode stored in &struct keymap_entry |
| * into scalar form understood by legacy keymap handling methods. These |
| * methods expect scancodes to be represented as 'unsigned int'. |
| */ |
| int input_scancode_to_scalar(const struct input_keymap_entry *ke, |
| unsigned int *scancode) |
| { |
| switch (ke->len) { |
| case 1: |
| *scancode = *((u8 *)ke->scancode); |
| break; |
| |
| case 2: |
| *scancode = *((u16 *)ke->scancode); |
| break; |
| |
| case 4: |
| *scancode = *((u32 *)ke->scancode); |
| break; |
| |
| default: |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(input_scancode_to_scalar); |
| |
| /* |
| * Those routines handle the default case where no [gs]etkeycode() is |
| * defined. In this case, an array indexed by the scancode is used. |
| */ |
| |
| static unsigned int input_fetch_keycode(struct input_dev *dev, |
| unsigned int index) |
| { |
| switch (dev->keycodesize) { |
| case 1: |
| return ((u8 *)dev->keycode)[index]; |
| |
| case 2: |
| return ((u16 *)dev->keycode)[index]; |
| |
| default: |
| return ((u32 *)dev->keycode)[index]; |
| } |
| } |
| |
| static int input_default_getkeycode(struct input_dev *dev, |
| struct input_keymap_entry *ke) |
| { |
| unsigned int index; |
| int error; |
| |
| if (!dev->keycodesize) |
| return -EINVAL; |
| |
| if (ke->flags & INPUT_KEYMAP_BY_INDEX) |
| index = ke->index; |
| else { |
| error = input_scancode_to_scalar(ke, &index); |
| if (error) |
| return error; |
| } |
| |
| if (index >= dev->keycodemax) |
| return -EINVAL; |
| |
| ke->keycode = input_fetch_keycode(dev, index); |
| ke->index = index; |
| ke->len = sizeof(index); |
| memcpy(ke->scancode, &index, sizeof(index)); |
| |
| return 0; |
| } |
| |
| static int input_default_setkeycode(struct input_dev *dev, |
| const struct input_keymap_entry *ke, |
| unsigned int *old_keycode) |
| { |
| unsigned int index; |
| int error; |
| int i; |
| |
| if (!dev->keycodesize) |
| return -EINVAL; |
| |
| if (ke->flags & INPUT_KEYMAP_BY_INDEX) { |
| index = ke->index; |
| } else { |
| error = input_scancode_to_scalar(ke, &index); |
| if (error) |
| return error; |
| } |
| |
| if (index >= dev->keycodemax) |
| return -EINVAL; |
| |
| if (dev->keycodesize < sizeof(ke->keycode) && |
| (ke->keycode >> (dev->keycodesize * 8))) |
| return -EINVAL; |
| |
| switch (dev->keycodesize) { |
| case 1: { |
| u8 *k = (u8 *)dev->keycode; |
| *old_keycode = k[index]; |
| k[index] = ke->keycode; |
| break; |
| } |
| case 2: { |
| u16 *k = (u16 *)dev->keycode; |
| *old_keycode = k[index]; |
| k[index] = ke->keycode; |
| break; |
| } |
| default: { |
| u32 *k = (u32 *)dev->keycode; |
| *old_keycode = k[index]; |
| k[index] = ke->keycode; |
| break; |
| } |
| } |
| |
| if (*old_keycode <= KEY_MAX) { |
| __clear_bit(*old_keycode, dev->keybit); |
| for (i = 0; i < dev->keycodemax; i++) { |
| if (input_fetch_keycode(dev, i) == *old_keycode) { |
| __set_bit(*old_keycode, dev->keybit); |
| /* Setting the bit twice is useless, so break */ |
| break; |
| } |
| } |
| } |
| |
| __set_bit(ke->keycode, dev->keybit); |
| return 0; |
| } |
| |
| /** |
| * input_get_keycode - retrieve keycode currently mapped to a given scancode |
| * @dev: input device which keymap is being queried |
| * @ke: keymap entry |
| * |
| * This function should be called by anyone interested in retrieving current |
| * keymap. Presently evdev handlers use it. |
| */ |
| int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke) |
| { |
| unsigned long flags; |
| int retval; |
| |
| spin_lock_irqsave(&dev->event_lock, flags); |
| retval = dev->getkeycode(dev, ke); |
| spin_unlock_irqrestore(&dev->event_lock, flags); |
| |
| return retval; |
| } |
| EXPORT_SYMBOL(input_get_keycode); |
| |
| /** |
| * input_set_keycode - attribute a keycode to a given scancode |
| * @dev: input device which keymap is being updated |
| * @ke: new keymap entry |
| * |
| * This function should be called by anyone needing to update current |
| * keymap. Presently keyboard and evdev handlers use it. |
| */ |
| int input_set_keycode(struct input_dev *dev, |
| const struct input_keymap_entry *ke) |
| { |
| unsigned long flags; |
| unsigned int old_keycode; |
| int retval; |
| |
| if (ke->keycode > KEY_MAX) |
| return -EINVAL; |
| |
| spin_lock_irqsave(&dev->event_lock, flags); |
| |
| retval = dev->setkeycode(dev, ke, &old_keycode); |
| if (retval) |
| goto out; |
| |
| /* Make sure KEY_RESERVED did not get enabled. */ |
| __clear_bit(KEY_RESERVED, dev->keybit); |
| |
| /* |
| * Simulate keyup event if keycode is not present |
| * in the keymap anymore |
| */ |
| if (old_keycode > KEY_MAX) { |
| dev_warn(dev->dev.parent ?: &dev->dev, |
| "%s: got too big old keycode %#x\n", |
| __func__, old_keycode); |
| } else if (test_bit(EV_KEY, dev->evbit) && |
| !is_event_supported(old_keycode, dev->keybit, KEY_MAX) && |
| __test_and_clear_bit(old_keycode, dev->key)) { |
| struct input_value vals[] = { |
| { EV_KEY, old_keycode, 0 }, |
| input_value_sync |
| }; |
| |
| input_pass_values(dev, vals, ARRAY_SIZE(vals)); |
| } |
| |
| out: |
| spin_unlock_irqrestore(&dev->event_lock, flags); |
| |
| return retval; |
| } |
| EXPORT_SYMBOL(input_set_keycode); |
| |
| bool input_match_device_id(const struct input_dev *dev, |
| const struct input_device_id *id) |
| { |
| if (id->flags & INPUT_DEVICE_ID_MATCH_BUS) |
| if (id->bustype != dev->id.bustype) |
| return false; |
| |
| if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR) |
| if (id->vendor != dev->id.vendor) |
| return false; |
| |
| if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT) |
| if (id->product != dev->id.product) |
| return false; |
| |
| if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION) |
| if (id->version != dev->id.version) |
| return false; |
| |
| if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) || |
| !bitmap_subset(id->keybit, dev->keybit, KEY_MAX) || |
| !bitmap_subset(id->relbit, dev->relbit, REL_MAX) || |
| !bitmap_subset(id->absbit, dev->absbit, ABS_MAX) || |
| !bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) || |
| !bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) || |
| !bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) || |
| !bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) || |
| !bitmap_subset(id->swbit, dev->swbit, SW_MAX) || |
| !bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) { |
| return false; |
| } |
| |
| return true; |
| } |
| EXPORT_SYMBOL(input_match_device_id); |
| |
| static const struct input_device_id *input_match_device(struct input_handler *handler, |
| struct input_dev *dev) |
| { |
| const struct input_device_id *id; |
| |
| for (id = handler->id_table; id->flags || id->driver_info; id++) { |
| if (input_match_device_id(dev, id) && |
| (!handler->match || handler->match(handler, dev))) { |
| return id; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| static int input_attach_handler(struct input_dev *dev, struct input_handler *handler) |
| { |
| const struct input_device_id *id; |
| int error; |
| |
| id = input_match_device(handler, dev); |
| if (!id) |
| return -ENODEV; |
| |
| error = handler->connect(handler, dev, id); |
| if (error && error != -ENODEV) |
| pr_err("failed to attach handler %s to device %s, error: %d\n", |
| handler->name, kobject_name(&dev->dev.kobj), error); |
| |
| return error; |
| } |
| |
| #ifdef CONFIG_COMPAT |
| |
| static int input_bits_to_string(char *buf, int buf_size, |
| unsigned long bits, bool skip_empty) |
| { |
| int len = 0; |
| |
| if (in_compat_syscall()) { |
| u32 dword = bits >> 32; |
| if (dword || !skip_empty) |
| len += snprintf(buf, buf_size, "%x ", dword); |
| |
| dword = bits & 0xffffffffUL; |
| if (dword || !skip_empty || len) |
| len += snprintf(buf + len, max(buf_size - len, 0), |
| "%x", dword); |
| } else { |
| if (bits || !skip_empty) |
| len += snprintf(buf, buf_size, "%lx", bits); |
| } |
| |
| return len; |
| } |
| |
| #else /* !CONFIG_COMPAT */ |
| |
| static int input_bits_to_string(char *buf, int buf_size, |
| unsigned long bits, bool skip_empty) |
| { |
| return bits || !skip_empty ? |
| snprintf(buf, buf_size, "%lx", bits) : 0; |
| } |
| |
| #endif |
| |
| #ifdef CONFIG_PROC_FS |
| |
| static struct proc_dir_entry *proc_bus_input_dir; |
| static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait); |
| static int input_devices_state; |
| |
| static inline void input_wakeup_procfs_readers(void) |
| { |
| input_devices_state++; |
| wake_up(&input_devices_poll_wait); |
| } |
| |
| static __poll_t input_proc_devices_poll(struct file *file, poll_table *wait) |
| { |
| poll_wait(file, &input_devices_poll_wait, wait); |
| if (file->f_version != input_devices_state) { |
| file->f_version = input_devices_state; |
| return EPOLLIN | EPOLLRDNORM; |
| } |
| |
| return 0; |
| } |
| |
| union input_seq_state { |
| struct { |
| unsigned short pos; |
| bool mutex_acquired; |
| }; |
| void *p; |
| }; |
| |
| static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos) |
| { |
| union input_seq_state *state = (union input_seq_state *)&seq->private; |
| int error; |
| |
| /* We need to fit into seq->private pointer */ |
| BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private)); |
| |
| error = mutex_lock_interruptible(&input_mutex); |
| if (error) { |
| state->mutex_acquired = false; |
| return ERR_PTR(error); |
| } |
| |
| state->mutex_acquired = true; |
| |
| return seq_list_start(&input_dev_list, *pos); |
| } |
| |
| static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos) |
| { |
| return seq_list_next(v, &input_dev_list, pos); |
| } |
| |
| static void input_seq_stop(struct seq_file *seq, void *v) |
| { |
| union input_seq_state *state = (union input_seq_state *)&seq->private; |
| |
| if (state->mutex_acquired) |
| mutex_unlock(&input_mutex); |
| } |
| |
| static void input_seq_print_bitmap(struct seq_file *seq, const char *name, |
| unsigned long *bitmap, int max) |
| { |
| int i; |
| bool skip_empty = true; |
| char buf[18]; |
| |
| seq_printf(seq, "B: %s=", name); |
| |
| for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) { |
| if (input_bits_to_string(buf, sizeof(buf), |
| bitmap[i], skip_empty)) { |
| skip_empty = false; |
| seq_printf(seq, "%s%s", buf, i > 0 ? " " : ""); |
| } |
| } |
| |
| /* |
| * If no output was produced print a single 0. |
| */ |
| if (skip_empty) |
| seq_putc(seq, '0'); |
| |
| seq_putc(seq, '\n'); |
| } |
| |
| static int input_devices_seq_show(struct seq_file *seq, void *v) |
| { |
| struct input_dev *dev = container_of(v, struct input_dev, node); |
| const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); |
| struct input_handle *handle; |
| |
| seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n", |
| dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version); |
| |
| seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : ""); |
| seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : ""); |
| seq_printf(seq, "S: Sysfs=%s\n", path ? path : ""); |
| seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : ""); |
| seq_puts(seq, "H: Handlers="); |
| |
| list_for_each_entry(handle, &dev->h_list, d_node) |
| seq_printf(seq, "%s ", handle->name); |
| seq_putc(seq, '\n'); |
| |
| input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX); |
| |
| input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX); |
| if (test_bit(EV_KEY, dev->evbit)) |
| input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX); |
| if (test_bit(EV_REL, dev->evbit)) |
| input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX); |
| if (test_bit(EV_ABS, dev->evbit)) |
| input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX); |
| if (test_bit(EV_MSC, dev->evbit)) |
| input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX); |
| if (test_bit(EV_LED, dev->evbit)) |
| input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX); |
| if (test_bit(EV_SND, dev->evbit)) |
| input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX); |
| if (test_bit(EV_FF, dev->evbit)) |
| input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX); |
| if (test_bit(EV_SW, dev->evbit)) |
| input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX); |
| |
| seq_putc(seq, '\n'); |
| |
| kfree(path); |
| return 0; |
| } |
| |
| static const struct seq_operations input_devices_seq_ops = { |
| .start = input_devices_seq_start, |
| .next = input_devices_seq_next, |
| .stop = input_seq_stop, |
| .show = input_devices_seq_show, |
| }; |
| |
| static int input_proc_devices_open(struct inode *inode, struct file *file) |
| { |
| return seq_open(file, &input_devices_seq_ops); |
| } |
| |
| static const struct proc_ops input_devices_proc_ops = { |
| .proc_open = input_proc_devices_open, |
| .proc_poll = input_proc_devices_poll, |
| .proc_read = seq_read, |
| .proc_lseek = seq_lseek, |
| .proc_release = seq_release, |
| }; |
| |
| static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos) |
| { |
| union input_seq_state *state = (union input_seq_state *)&seq->private; |
| int error; |
| |
| /* We need to fit into seq->private pointer */ |
| BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private)); |
| |
| error = mutex_lock_interruptible(&input_mutex); |
| if (error) { |
| state->mutex_acquired = false; |
| return ERR_PTR(error); |
| } |
| |
| state->mutex_acquired = true; |
| state->pos = *pos; |
| |
| return seq_list_start(&input_handler_list, *pos); |
| } |
| |
| static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos) |
| { |
| union input_seq_state *state = (union input_seq_state *)&seq->private; |
| |
| state->pos = *pos + 1; |
| return seq_list_next(v, &input_handler_list, pos); |
| } |
| |
| static int input_handlers_seq_show(struct seq_file *seq, void *v) |
| { |
| struct input_handler *handler = container_of(v, struct input_handler, node); |
| union input_seq_state *state = (union input_seq_state *)&seq->private; |
| |
| seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name); |
| if (handler->filter) |
| seq_puts(seq, " (filter)"); |
| if (handler->legacy_minors) |
| seq_printf(seq, " Minor=%d", handler->minor); |
| seq_putc(seq, '\n'); |
| |
| return 0; |
| } |
| |
| static const struct seq_operations input_handlers_seq_ops = { |
| .start = input_handlers_seq_start, |
| .next = input_handlers_seq_next, |
| .stop = input_seq_stop, |
| .show = input_handlers_seq_show, |
| }; |
| |
| static int input_proc_handlers_open(struct inode *inode, struct file *file) |
| { |
| return seq_open(file, &input_handlers_seq_ops); |
| } |
| |
| static const struct proc_ops input_handlers_proc_ops = { |
| .proc_open = input_proc_handlers_open, |
| .proc_read = seq_read, |
| .proc_lseek = seq_lseek, |
| .proc_release = seq_release, |
| }; |
| |
| static int __init input_proc_init(void) |
| { |
| struct proc_dir_entry *entry; |
| |
| proc_bus_input_dir = proc_mkdir("bus/input", NULL); |
| if (!proc_bus_input_dir) |
| return -ENOMEM; |
| |
| entry = proc_create("devices", 0, proc_bus_input_dir, |
| &input_devices_proc_ops); |
| if (!entry) |
| goto fail1; |
| |
| entry = proc_create("handlers", 0, proc_bus_input_dir, |
| &input_handlers_proc_ops); |
| if (!entry) |
| goto fail2; |
| |
| return 0; |
| |
| fail2: remove_proc_entry("devices", proc_bus_input_dir); |
| fail1: remove_proc_entry("bus/input", NULL); |
| return -ENOMEM; |
| } |
| |
| static void input_proc_exit(void) |
| { |
| remove_proc_entry("devices", proc_bus_input_dir); |
| remove_proc_entry("handlers", proc_bus_input_dir); |
| remove_proc_entry("bus/input", NULL); |
| } |
| |
| #else /* !CONFIG_PROC_FS */ |
| static inline void input_wakeup_procfs_readers(void) { } |
| static inline int input_proc_init(void) { return 0; } |
| static inline void input_proc_exit(void) { } |
| #endif |
| |
| #define INPUT_DEV_STRING_ATTR_SHOW(name) \ |
| static ssize_t input_dev_show_##name(struct device *dev, \ |
| struct device_attribute *attr, \ |
| char *buf) \ |
| { \ |
| struct input_dev *input_dev = to_input_dev(dev); \ |
| \ |
| return scnprintf(buf, PAGE_SIZE, "%s\n", \ |
| input_dev->name ? input_dev->name : ""); \ |
| } \ |
| static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL) |
| |
| INPUT_DEV_STRING_ATTR_SHOW(name); |
| INPUT_DEV_STRING_ATTR_SHOW(phys); |
| INPUT_DEV_STRING_ATTR_SHOW(uniq); |
| |
| static int input_print_modalias_bits(char *buf, int size, |
| char name, unsigned long *bm, |
| unsigned int min_bit, unsigned int max_bit) |
| { |
| int len = 0, i; |
| |
| len += snprintf(buf, max(size, 0), "%c", name); |
| for (i = min_bit; i < max_bit; i++) |
| if (bm[BIT_WORD(i)] & BIT_MASK(i)) |
| len += snprintf(buf + len, max(size - len, 0), "%X,", i); |
| return len; |
| } |
| |
| static int input_print_modalias(char *buf, int size, struct input_dev *id, |
| int add_cr) |
| { |
| int len; |
| |
| len = snprintf(buf, max(size, 0), |
| "input:b%04Xv%04Xp%04Xe%04X-", |
| id->id.bustype, id->id.vendor, |
| id->id.product, id->id.version); |
| |
| len += input_print_modalias_bits(buf + len, size - len, |
| 'e', id->evbit, 0, EV_MAX); |
| len += input_print_modalias_bits(buf + len, size - len, |
| 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX); |
| len += input_print_modalias_bits(buf + len, size - len, |
| 'r', id->relbit, 0, REL_MAX); |
| len += input_print_modalias_bits(buf + len, size - len, |
| 'a', id->absbit, 0, ABS_MAX); |
| len += input_print_modalias_bits(buf + len, size - len, |
| 'm', id->mscbit, 0, MSC_MAX); |
| len += input_print_modalias_bits(buf + len, size - len, |
| 'l', id->ledbit, 0, LED_MAX); |
| len += input_print_modalias_bits(buf + len, size - len, |
| 's', id->sndbit, 0, SND_MAX); |
| len += input_print_modalias_bits(buf + len, size - len, |
| 'f', id->ffbit, 0, FF_MAX); |
| len += input_print_modalias_bits(buf + len, size - len, |
| 'w', id->swbit, 0, SW_MAX); |
| |
| if (add_cr) |
| len += snprintf(buf + len, max(size - len, 0), "\n"); |
| |
| return len; |
| } |
| |
| static ssize_t input_dev_show_modalias(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| struct input_dev *id = to_input_dev(dev); |
| ssize_t len; |
| |
| len = input_print_modalias(buf, PAGE_SIZE, id, 1); |
| |
| return min_t(int, len, PAGE_SIZE); |
| } |
| static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL); |
| |
| static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap, |
| int max, int add_cr); |
| |
| static ssize_t input_dev_show_properties(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| struct input_dev *input_dev = to_input_dev(dev); |
| int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit, |
| INPUT_PROP_MAX, true); |
| return min_t(int, len, PAGE_SIZE); |
| } |
| static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL); |
| |
| static int input_inhibit_device(struct input_dev *dev); |
| static int input_uninhibit_device(struct input_dev *dev); |
| |
| static ssize_t inhibited_show(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| struct input_dev *input_dev = to_input_dev(dev); |
| |
| return scnprintf(buf, PAGE_SIZE, "%d\n", input_dev->inhibited); |
| } |
| |
| static ssize_t inhibited_store(struct device *dev, |
| struct device_attribute *attr, const char *buf, |
| size_t len) |
| { |
| struct input_dev *input_dev = to_input_dev(dev); |
| ssize_t rv; |
| bool inhibited; |
| |
| if (strtobool(buf, &inhibited)) |
| return -EINVAL; |
| |
| if (inhibited) |
| rv = input_inhibit_device(input_dev); |
| else |
| rv = input_uninhibit_device(input_dev); |
| |
| if (rv != 0) |
| return rv; |
| |
| return len; |
| } |
| |
| static DEVICE_ATTR_RW(inhibited); |
| |
| static struct attribute *input_dev_attrs[] = { |
| &dev_attr_name.attr, |
| &dev_attr_phys.attr, |
| &dev_attr_uniq.attr, |
| &dev_attr_modalias.attr, |
| &dev_attr_properties.attr, |
| &dev_attr_inhibited.attr, |
| NULL |
| }; |
| |
| static const struct attribute_group input_dev_attr_group = { |
| .attrs = input_dev_attrs, |
| }; |
| |
| #define INPUT_DEV_ID_ATTR(name) \ |
| static ssize_t input_dev_show_id_##name(struct device *dev, \ |
| struct device_attribute *attr, \ |
| char *buf) \ |
| { \ |
| struct input_dev *input_dev = to_input_dev(dev); \ |
| return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \ |
| } \ |
| static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL) |
| |
| INPUT_DEV_ID_ATTR(bustype); |
| INPUT_DEV_ID_ATTR(vendor); |
| INPUT_DEV_ID_ATTR(product); |
| INPUT_DEV_ID_ATTR(version); |
| |
| static struct attribute *input_dev_id_attrs[] = { |
| &dev_attr_bustype.attr, |
| &dev_attr_vendor.attr, |
| &dev_attr_product.attr, |
| &dev_attr_version.attr, |
| NULL |
| }; |
| |
| static const struct attribute_group input_dev_id_attr_group = { |
| .name = "id", |
| .attrs = input_dev_id_attrs, |
| }; |
| |
| static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap, |
| int max, int add_cr) |
| { |
| int i; |
| int len = 0; |
| bool skip_empty = true; |
| |
| for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) { |
| len += input_bits_to_string(buf + len, max(buf_size - len, 0), |
| bitmap[i], skip_empty); |
| if (len) { |
| skip_empty = false; |
| if (i > 0) |
| len += snprintf(buf + len, max(buf_size - len, 0), " "); |
| } |
| } |
| |
| /* |
| * If no output was produced print a single 0. |
| */ |
| if (len == 0) |
| len = snprintf(buf, buf_size, "%d", 0); |
| |
| if (add_cr) |
| len += snprintf(buf + len, max(buf_size - len, 0), "\n"); |
| |
| return len; |
| } |
| |
| #define INPUT_DEV_CAP_ATTR(ev, bm) \ |
| static ssize_t input_dev_show_cap_##bm(struct device *dev, \ |
| struct device_attribute *attr, \ |
| char *buf) \ |
| { \ |
| struct input_dev *input_dev = to_input_dev(dev); \ |
| int len = input_print_bitmap(buf, PAGE_SIZE, \ |
| input_dev->bm##bit, ev##_MAX, \ |
| true); \ |
| return min_t(int, len, PAGE_SIZE); \ |
| } \ |
| static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL) |
| |
| INPUT_DEV_CAP_ATTR(EV, ev); |
| INPUT_DEV_CAP_ATTR(KEY, key); |
| INPUT_DEV_CAP_ATTR(REL, rel); |
| INPUT_DEV_CAP_ATTR(ABS, abs); |
| INPUT_DEV_CAP_ATTR(MSC, msc); |
| INPUT_DEV_CAP_ATTR(LED, led); |
| INPUT_DEV_CAP_ATTR(SND, snd); |
| INPUT_DEV_CAP_ATTR(FF, ff); |
| INPUT_DEV_CAP_ATTR(SW, sw); |
| |
| static struct attribute *input_dev_caps_attrs[] = { |
| &dev_attr_ev.attr, |
| &dev_attr_key.attr, |
| &dev_attr_rel.attr, |
| &dev_attr_abs.attr, |
| &dev_attr_msc.attr, |
| &dev_attr_led.attr, |
| &dev_attr_snd.attr, |
| &dev_attr_ff.attr, |
| &dev_attr_sw.attr, |
| NULL |
| }; |
| |
| static const struct attribute_group input_dev_caps_attr_group = { |
| .name = "capabilities", |
| .attrs = input_dev_caps_attrs, |
| }; |
| |
| static const struct attribute_group *input_dev_attr_groups[] = { |
| &input_dev_attr_group, |
| &input_dev_id_attr_group, |
| &input_dev_caps_attr_group, |
| &input_poller_attribute_group, |
| NULL |
| }; |
| |
| static void input_dev_release(struct device *device) |
| { |
| struct input_dev *dev = to_input_dev(device); |
| |
| input_ff_destroy(dev); |
| input_mt_destroy_slots(dev); |
| kfree(dev->poller); |
| kfree(dev->absinfo); |
| kfree(dev->vals); |
| kfree(dev); |
| |
| module_put(THIS_MODULE); |
| } |
| |
| /* |
| * Input uevent interface - loading event handlers based on |
| * device bitfields. |
| */ |
| static int input_add_uevent_bm_var(struct kobj_uevent_env *env, |
| const char *name, unsigned long *bitmap, int max) |
| { |
| int len; |
| |
| if (add_uevent_var(env, "%s", name)) |
| return -ENOMEM; |
| |
| len = input_print_bitmap(&env->buf[env->buflen - 1], |
| sizeof(env->buf) - env->buflen, |
| bitmap, max, false); |
| if (len >= (sizeof(env->buf) - env->buflen)) |
| return -ENOMEM; |
| |
| env->buflen += len; |
| return 0; |
| } |
| |
| static int input_add_uevent_modalias_var(struct kobj_uevent_env *env, |
| struct input_dev *dev) |
| { |
| int len; |
| |
| if (add_uevent_var(env, "MODALIAS=")) |
| return -ENOMEM; |
| |
| len = input_print_modalias(&env->buf[env->buflen - 1], |
| sizeof(env->buf) - env->buflen, |
| dev, 0); |
| if (len >= (sizeof(env->buf) - env->buflen)) |
| return -ENOMEM; |
| |
| env->buflen += len; |
| return 0; |
| } |
| |
| #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \ |
| do { \ |
| int err = add_uevent_var(env, fmt, val); \ |
| if (err) \ |
| return err; \ |
| } while (0) |
| |
| #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \ |
| do { \ |
| int err = input_add_uevent_bm_var(env, name, bm, max); \ |
| if (err) \ |
| return err; \ |
| } while (0) |
| |
| #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \ |
| do { \ |
| int err = input_add_uevent_modalias_var(env, dev); \ |
| if (err) \ |
| return err; \ |
| } while (0) |
| |
| static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env) |
| { |
| struct input_dev *dev = to_input_dev(device); |
| |
| INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x", |
| dev->id.bustype, dev->id.vendor, |
| dev->id.product, dev->id.version); |
| if (dev->name) |
| INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name); |
| if (dev->phys) |
| INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys); |
| if (dev->uniq) |
| INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq); |
| |
| INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX); |
| |
| INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX); |
| if (test_bit(EV_KEY, dev->evbit)) |
| INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX); |
| if (test_bit(EV_REL, dev->evbit)) |
| INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX); |
| if (test_bit(EV_ABS, dev->evbit)) |
| INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX); |
| if (test_bit(EV_MSC, dev->evbit)) |
| INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX); |
| if (test_bit(EV_LED, dev->evbit)) |
| INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX); |
| if (test_bit(EV_SND, dev->evbit)) |
| INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX); |
| if (test_bit(EV_FF, dev->evbit)) |
| INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX); |
| if (test_bit(EV_SW, dev->evbit)) |
| INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX); |
| |
| INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev); |
| |
| return 0; |
| } |
| |
| #define INPUT_DO_TOGGLE(dev, type, bits, on) \ |
| do { \ |
| int i; \ |
| bool active; \ |
| \ |
| if (!test_bit(EV_##type, dev->evbit)) \ |
| break; \ |
| \ |
| for_each_set_bit(i, dev->bits##bit, type##_CNT) { \ |
| active = test_bit(i, dev->bits); \ |
| if (!active && !on) \ |
| continue; \ |
| \ |
| dev->event(dev, EV_##type, i, on ? active : 0); \ |
| } \ |
| } while (0) |
| |
| static void input_dev_toggle(struct input_dev *dev, bool activate) |
| { |
| if (!dev->event) |
| return; |
| |
| INPUT_DO_TOGGLE(dev, LED, led, activate); |
| INPUT_DO_TOGGLE(dev, SND, snd, activate); |
| |
| if (activate && test_bit(EV_REP, dev->evbit)) { |
| dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]); |
| dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]); |
| } |
| } |
| |
| /** |
| * input_reset_device() - reset/restore the state of input device |
| * @dev: input device whose state needs to be reset |
| * |
| * This function tries to reset the state of an opened input device and |
| * bring internal state and state if the hardware in sync with each other. |
| * We mark all keys as released, restore LED state, repeat rate, etc. |
| */ |
| void input_reset_device(struct input_dev *dev) |
| { |
| unsigned long flags; |
| |
| mutex_lock(&dev->mutex); |
| spin_lock_irqsave(&dev->event_lock, flags); |
| |
| input_dev_toggle(dev, true); |
| input_dev_release_keys(dev); |
| |
| spin_unlock_irqrestore(&dev->event_lock, flags); |
| mutex_unlock(&dev->mutex); |
| } |
| EXPORT_SYMBOL(input_reset_device); |
| |
| static int input_inhibit_device(struct input_dev *dev) |
| { |
| int ret = 0; |
| |
| mutex_lock(&dev->mutex); |
| |
| if (dev->inhibited) |
| goto out; |
| |
| if (dev->users) { |
| if (dev->close) |
| dev->close(dev); |
| if (dev->poller) |
| input_dev_poller_stop(dev->poller); |
| } |
| |
| spin_lock_irq(&dev->event_lock); |
| input_dev_release_keys(dev); |
| input_dev_toggle(dev, false); |
| spin_unlock_irq(&dev->event_lock); |
| |
| dev->inhibited = true; |
| |
| out: |
| mutex_unlock(&dev->mutex); |
| return ret; |
| } |
| |
| static int input_uninhibit_device(struct input_dev *dev) |
| { |
| int ret = 0; |
| |
| mutex_lock(&dev->mutex); |
| |
| if (!dev->inhibited) |
| goto out; |
| |
| if (dev->users) { |
| if (dev->open) { |
| ret = dev->open(dev); |
| if (ret) |
| goto out; |
| } |
| if (dev->poller) |
| input_dev_poller_start(dev->poller); |
| } |
| |
| dev->inhibited = false; |
| spin_lock_irq(&dev->event_lock); |
| input_dev_toggle(dev, true); |
| spin_unlock_irq(&dev->event_lock); |
| |
| out: |
| mutex_unlock(&dev->mutex); |
| return ret; |
| } |
| |
| #ifdef CONFIG_PM_SLEEP |
| static int input_dev_suspend(struct device *dev) |
| { |
| struct input_dev *input_dev = to_input_dev(dev); |
| |
| spin_lock_irq(&input_dev->event_lock); |
| |
| /* |
| * Keys that are pressed now are unlikely to be |
| * still pressed when we resume. |
| */ |
| input_dev_release_keys(input_dev); |
| |
| /* Turn off LEDs and sounds, if any are active. */ |
| input_dev_toggle(input_dev, false); |
| |
| spin_unlock_irq(&input_dev->event_lock); |
| |
| return 0; |
| } |
| |
| static int input_dev_resume(struct device *dev) |
| { |
| struct input_dev *input_dev = to_input_dev(dev); |
| |
| spin_lock_irq(&input_dev->event_lock); |
| |
| /* Restore state of LEDs and sounds, if any were active. */ |
| input_dev_toggle(input_dev, true); |
| |
| spin_unlock_irq(&input_dev->event_lock); |
| |
| return 0; |
| } |
| |
| static int input_dev_freeze(struct device *dev) |
| { |
| struct input_dev *input_dev = to_input_dev(dev); |
| |
| spin_lock_irq(&input_dev->event_lock); |
| |
| /* |
| * Keys that are pressed now are unlikely to be |
| * still pressed when we resume. |
| */ |
| input_dev_release_keys(input_dev); |
| |
| spin_unlock_irq(&input_dev->event_lock); |
| |
| return 0; |
| } |
| |
| static int input_dev_poweroff(struct device *dev) |
| { |
| struct input_dev *input_dev = to_input_dev(dev); |
| |
| spin_lock_irq(&input_dev->event_lock); |
| |
| /* Turn off LEDs and sounds, if any are active. */ |
| input_dev_toggle(input_dev, false); |
| |
| spin_unlock_irq(&input_dev->event_lock); |
| |
| return 0; |
| } |
| |
| static const struct dev_pm_ops input_dev_pm_ops = { |
| .suspend = input_dev_suspend, |
| .resume = input_dev_resume, |
| .freeze = input_dev_freeze, |
| .poweroff = input_dev_poweroff, |
| .restore = input_dev_resume, |
| }; |
| #endif /* CONFIG_PM */ |
| |
| static const struct device_type input_dev_type = { |
| .groups = input_dev_attr_groups, |
| .release = input_dev_release, |
| .uevent = input_dev_uevent, |
| #ifdef CONFIG_PM_SLEEP |
| .pm = &input_dev_pm_ops, |
| #endif |
| }; |
| |
| static char *input_devnode(struct device *dev, umode_t *mode) |
| { |
| return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev)); |
| } |
| |
| struct class input_class = { |
| .name = "input", |
| .devnode = input_devnode, |
| }; |
| EXPORT_SYMBOL_GPL(input_class); |
| |
| /** |
| * input_allocate_device - allocate memory for new input device |
| * |
| * Returns prepared struct input_dev or %NULL. |
| * |
| * NOTE: Use input_free_device() to free devices that have not been |
| * registered; input_unregister_device() should be used for already |
| * registered devices. |
| */ |
| struct input_dev *input_allocate_device(void) |
| { |
| static atomic_t input_no = ATOMIC_INIT(-1); |
| struct input_dev *dev; |
| |
| dev = kzalloc(sizeof(*dev), GFP_KERNEL); |
| if (dev) { |
| dev->dev.type = &input_dev_type; |
| dev->dev.class = &input_class; |
| device_initialize(&dev->dev); |
| mutex_init(&dev->mutex); |
| spin_lock_init(&dev->event_lock); |
| timer_setup(&dev->timer, NULL, 0); |
| INIT_LIST_HEAD(&dev->h_list); |
| INIT_LIST_HEAD(&dev->node); |
| |
| dev_set_name(&dev->dev, "input%lu", |
| (unsigned long)atomic_inc_return(&input_no)); |
| |
| __module_get(THIS_MODULE); |
| } |
| |
| return dev; |
| } |
| EXPORT_SYMBOL(input_allocate_device); |
| |
| struct input_devres { |
| struct input_dev *input; |
| }; |
| |
| static int devm_input_device_match(struct device *dev, void *res, void *data) |
| { |
| struct input_devres *devres = res; |
| |
| return devres->input == data; |
| } |
| |
| static void devm_input_device_release(struct device *dev, void *res) |
| { |
| struct input_devres *devres = res; |
| struct input_dev *input = devres->input; |
| |
| dev_dbg(dev, "%s: dropping reference to %s\n", |
| __func__, dev_name(&input->dev)); |
| input_put_device(input); |
| } |
| |
| /** |
| * devm_input_allocate_device - allocate managed input device |
| * @dev: device owning the input device being created |
| * |
| * Returns prepared struct input_dev or %NULL. |
| * |
| * Managed input devices do not need to be explicitly unregistered or |
| * freed as it will be done automatically when owner device unbinds from |
| * its driver (or binding fails). Once managed input device is allocated, |
| * it is ready to be set up and registered in the same fashion as regular |
| * input device. There are no special devm_input_device_[un]register() |
| * variants, regular ones work with both managed and unmanaged devices, |
| * should you need them. In most cases however, managed input device need |
| * not be explicitly unregistered or freed. |
| * |
| * NOTE: the owner device is set up as parent of input device and users |
| * should not override it. |
| */ |
| struct input_dev *devm_input_allocate_device(struct device *dev) |
| { |
| struct input_dev *input; |
| struct input_devres *devres; |
| |
| devres = devres_alloc(devm_input_device_release, |
| sizeof(*devres), GFP_KERNEL); |
| if (!devres) |
| return NULL; |
| |
| input = input_allocate_device(); |
| if (!input) { |
| devres_free(devres); |
| return NULL; |
| } |
| |
| input->dev.parent = dev; |
| input->devres_managed = true; |
| |
| devres->input = input; |
| devres_add(dev, devres); |
| |
| return input; |
| } |
| EXPORT_SYMBOL(devm_input_allocate_device); |
| |
| /** |
| * input_free_device - free memory occupied by input_dev structure |
| * @dev: input device to free |
| * |
| * This function should only be used if input_register_device() |
| * was not called yet or if it failed. Once device was registered |
| * use input_unregister_device() and memory will be freed once last |
| * reference to the device is dropped. |
| * |
| * Device should be allocated by input_allocate_device(). |
| * |
| * NOTE: If there are references to the input device then memory |
| * will not be freed until last reference is dropped. |
| */ |
| void input_free_device(struct input_dev *dev) |
| { |
| if (dev) { |
| if (dev->devres_managed) |
| WARN_ON(devres_destroy(dev->dev.parent, |
| devm_input_device_release, |
| devm_input_device_match, |
| dev)); |
| input_put_device(dev); |
| } |
| } |
| EXPORT_SYMBOL(input_free_device); |
| |
| /** |
| * input_set_timestamp - set timestamp for input events |
| * @dev: input device to set timestamp for |
| * @timestamp: the time at which the event has occurred |
| * in CLOCK_MONOTONIC |
| * |
| * This function is intended to provide to the input system a more |
| * accurate time of when an event actually occurred. The driver should |
| * call this function as soon as a timestamp is acquired ensuring |
| * clock conversions in input_set_timestamp are done correctly. |
| * |
| * The system entering suspend state between timestamp acquisition and |
| * calling input_set_timestamp can result in inaccurate conversions. |
| */ |
| void input_set_timestamp(struct input_dev *dev, ktime_t timestamp) |
| { |
| dev->timestamp[INPUT_CLK_MONO] = timestamp; |
| dev->timestamp[INPUT_CLK_REAL] = ktime_mono_to_real(timestamp); |
| dev->timestamp[INPUT_CLK_BOOT] = ktime_mono_to_any(timestamp, |
| TK_OFFS_BOOT); |
| } |
| EXPORT_SYMBOL(input_set_timestamp); |
| |
| /** |
| * input_get_timestamp - get timestamp for input events |
| * @dev: input device to get timestamp from |
| * |
| * A valid timestamp is a timestamp of non-zero value. |
| */ |
| ktime_t *input_get_timestamp(struct input_dev *dev) |
| { |
| const ktime_t invalid_timestamp = ktime_set(0, 0); |
| |
| if (!ktime_compare(dev->timestamp[INPUT_CLK_MONO], invalid_timestamp)) |
| input_set_timestamp(dev, ktime_get()); |
| |
| return dev->timestamp; |
| } |
| EXPORT_SYMBOL(input_get_timestamp); |
| |
| /** |
| * input_set_capability - mark device as capable of a certain event |
| * @dev: device that is capable of emitting or accepting event |
| * @type: type of the event (EV_KEY, EV_REL, etc...) |
| * @code: event code |
| * |
| * In addition to setting up corresponding bit in appropriate capability |
| * bitmap the function also adjusts dev->evbit. |
| */ |
| void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code) |
| { |
| if (type < EV_CNT && input_max_code[type] && |
| code > input_max_code[type]) { |
| pr_err("%s: invalid code %u for type %u\n", __func__, code, |
| type); |
| dump_stack(); |
| return; |
| } |
| |
| switch (type) { |
| case EV_KEY: |
| __set_bit(code, dev->keybit); |
| break; |
| |
| case EV_REL: |
| __set_bit(code, dev->relbit); |
| break; |
| |
| case EV_ABS: |
| input_alloc_absinfo(dev); |
| __set_bit(code, dev->absbit); |
| break; |
| |
| case EV_MSC: |
| __set_bit(code, dev->mscbit); |
| break; |
| |
| case EV_SW: |
| __set_bit(code, dev->swbit); |
| break; |
| |
| case EV_LED: |
| __set_bit(code, dev->ledbit); |
| break; |
| |
| case EV_SND: |
| __set_bit(code, dev->sndbit); |
| break; |
| |
| case EV_FF: |
| __set_bit(code, dev->ffbit); |
| break; |
| |
| case EV_PWR: |
| /* do nothing */ |
| break; |
| |
| default: |
| pr_err("%s: unknown type %u (code %u)\n", __func__, type, code); |
| dump_stack(); |
| return; |
| } |
| |
| __set_bit(type, dev->evbit); |
| } |
| EXPORT_SYMBOL(input_set_capability); |
| |
| static unsigned int input_estimate_events_per_packet(struct input_dev *dev) |
| { |
| int mt_slots; |
| int i; |
| unsigned int events; |
| |
| if (dev->mt) { |
| mt_slots = dev->mt->num_slots; |
| } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) { |
| mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum - |
| dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1, |
| mt_slots = clamp(mt_slots, 2, 32); |
| } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) { |
| mt_slots = 2; |
| } else { |
| mt_slots = 0; |
| } |
| |
| events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */ |
| |
| if (test_bit(EV_ABS, dev->evbit)) |
| for_each_set_bit(i, dev->absbit, ABS_CNT) |
| events += input_is_mt_axis(i) ? mt_slots : 1; |
| |
| if (test_bit(EV_REL, dev->evbit)) |
| events += bitmap_weight(dev->relbit, REL_CNT); |
| |
| /* Make room for KEY and MSC events */ |
| events += 7; |
| |
| return events; |
| } |
| |
| #define INPUT_CLEANSE_BITMASK(dev, type, bits) \ |
| do { \ |
| if (!test_bit(EV_##type, dev->evbit)) \ |
| memset(dev->bits##bit, 0, \ |
| sizeof(dev->bits##bit)); \ |
| } while (0) |
| |
| static void input_cleanse_bitmasks(struct input_dev *dev) |
| { |
| INPUT_CLEANSE_BITMASK(dev, KEY, key); |
| INPUT_CLEANSE_BITMASK(dev, REL, rel); |
| INPUT_CLEANSE_BITMASK(dev, ABS, abs); |
| INPUT_CLEANSE_BITMASK(dev, MSC, msc); |
| INPUT_CLEANSE_BITMASK(dev, LED, led); |
| INPUT_CLEANSE_BITMASK(dev, SND, snd); |
| INPUT_CLEANSE_BITMASK(dev, FF, ff); |
| INPUT_CLEANSE_BITMASK(dev, SW, sw); |
| } |
| |
| static void __input_unregister_device(struct input_dev *dev) |
| { |
| struct input_handle *handle, *next; |
| |
| input_disconnect_device(dev); |
| |
| mutex_lock(&input_mutex); |
| |
| list_for_each_entry_safe(handle, next, &dev->h_list, d_node) |
| handle->handler->disconnect(handle); |
| WARN_ON(!list_empty(&dev->h_list)); |
| |
| del_timer_sync(&dev->timer); |
| list_del_init(&dev->node); |
| |
| input_wakeup_procfs_readers(); |
| |
| mutex_unlock(&input_mutex); |
| |
| device_del(&dev->dev); |
| } |
| |
| static void devm_input_device_unregister(struct device *dev, void *res) |
| { |
| struct input_devres *devres = res; |
| struct input_dev *input = devres->input; |
| |
| dev_dbg(dev, "%s: unregistering device %s\n", |
| __func__, dev_name(&input->dev)); |
| __input_unregister_device(input); |
| } |
| |
| /** |
| * input_enable_softrepeat - enable software autorepeat |
| * @dev: input device |
| * @delay: repeat delay |
| * @period: repeat period |
| * |
| * Enable software autorepeat on the input device. |
| */ |
| void input_enable_softrepeat(struct input_dev *dev, int delay, int period) |
| { |
| dev->timer.function = input_repeat_key; |
| dev->rep[REP_DELAY] = delay; |
| dev->rep[REP_PERIOD] = period; |
| } |
| EXPORT_SYMBOL(input_enable_softrepeat); |
| |
| bool input_device_enabled(struct input_dev *dev) |
| { |
| lockdep_assert_held(&dev->mutex); |
| |
| return !dev->inhibited && dev->users > 0; |
| } |
| EXPORT_SYMBOL_GPL(input_device_enabled); |
| |
| /** |
| * input_register_device - register device with input core |
| * @dev: device to be registered |
| * |
| * This function registers device with input core. The device must be |
| * allocated with input_allocate_device() and all it's capabilities |
| * set up before registering. |
| * If function fails the device must be freed with input_free_device(). |
| * Once device has been successfully registered it can be unregistered |
| * with input_unregister_device(); input_free_device() should not be |
| * called in this case. |
| * |
| * Note that this function is also used to register managed input devices |
| * (ones allocated with devm_input_allocate_device()). Such managed input |
| * devices need not be explicitly unregistered or freed, their tear down |
| * is controlled by the devres infrastructure. It is also worth noting |
| * that tear down of managed input devices is internally a 2-step process: |
| * registered managed input device is first unregistered, but stays in |
| * memory and can still handle input_event() calls (although events will |
| * not be delivered anywhere). The freeing of managed input device will |
| * happen later, when devres stack is unwound to the point where device |
| * allocation was made. |
| */ |
| int input_register_device(struct input_dev *dev) |
| { |
| struct input_devres *devres = NULL; |
| struct input_handler *handler; |
| unsigned int packet_size; |
| const char *path; |
| int error; |
| |
| if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) { |
| dev_err(&dev->dev, |
| "Absolute device without dev->absinfo, refusing to register\n"); |
| return -EINVAL; |
| } |
| |
| if (dev->devres_managed) { |
| devres = devres_alloc(devm_input_device_unregister, |
| sizeof(*devres), GFP_KERNEL); |
| if (!devres) |
| return -ENOMEM; |
| |
| devres->input = dev; |
| } |
| |
| /* Every input device generates EV_SYN/SYN_REPORT events. */ |
| __set_bit(EV_SYN, dev->evbit); |
| |
| /* KEY_RESERVED is not supposed to be transmitted to userspace. */ |
| __clear_bit(KEY_RESERVED, dev->keybit); |
| |
| /* Make sure that bitmasks not mentioned in dev->evbit are clean. */ |
| input_cleanse_bitmasks(dev); |
| |
| packet_size = input_estimate_events_per_packet(dev); |
| if (dev->hint_events_per_packet < packet_size) |
| dev->hint_events_per_packet = packet_size; |
| |
| dev->max_vals = dev->hint_events_per_packet + 2; |
| dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL); |
| if (!dev->vals) { |
| error = -ENOMEM; |
| goto err_devres_free; |
| } |
| |
| /* |
| * If delay and period are pre-set by the driver, then autorepeating |
| * is handled by the driver itself and we don't do it in input.c. |
| */ |
| if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) |
| input_enable_softrepeat(dev, 250, 33); |
| |
| if (!dev->getkeycode) |
| dev->getkeycode = input_default_getkeycode; |
| |
| if (!dev->setkeycode) |
| dev->setkeycode = input_default_setkeycode; |
| |
| if (dev->poller) |
| input_dev_poller_finalize(dev->poller); |
| |
| error = device_add(&dev->dev); |
| if (error) |
| goto err_free_vals; |
| |
| path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); |
| pr_info("%s as %s\n", |
| dev->name ? dev->name : "Unspecified device", |
| path ? path : "N/A"); |
| kfree(path); |
| |
| error = mutex_lock_interruptible(&input_mutex); |
| if (error) |
| goto err_device_del; |
| |
| list_add_tail(&dev->node, &input_dev_list); |
| |
| list_for_each_entry(handler, &input_handler_list, node) |
| input_attach_handler(dev, handler); |
| |
| input_wakeup_procfs_readers(); |
| |
| mutex_unlock(&input_mutex); |
| |
| if (dev->devres_managed) { |
| dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n", |
| __func__, dev_name(&dev->dev)); |
| devres_add(dev->dev.parent, devres); |
| } |
| return 0; |
| |
| err_device_del: |
| device_del(&dev->dev); |
| err_free_vals: |
| kfree(dev->vals); |
| dev->vals = NULL; |
| err_devres_free: |
| devres_free(devres); |
| return error; |
| } |
| EXPORT_SYMBOL(input_register_device); |
| |
| /** |
| * input_unregister_device - unregister previously registered device |
| * @dev: device to be unregistered |
| * |
| * This function unregisters an input device. Once device is unregistered |
| * the caller should not try to access it as it may get freed at any moment. |
| */ |
| void input_unregister_device(struct input_dev *dev) |
| { |
| if (dev->devres_managed) { |
| WARN_ON(devres_destroy(dev->dev.parent, |
| devm_input_device_unregister, |
| devm_input_device_match, |
| dev)); |
| __input_unregister_device(dev); |
| /* |
| * We do not do input_put_device() here because it will be done |
| * when 2nd devres fires up. |
| */ |
| } else { |
| __input_unregister_device(dev); |
| input_put_device(dev); |
| } |
| } |
| EXPORT_SYMBOL(input_unregister_device); |
| |
| /** |
| * input_register_handler - register a new input handler |
| * @handler: handler to be registered |
| * |
| * This function registers a new input handler (interface) for input |
| * devices in the system and attaches it to all input devices that |
| * are compatible with the handler. |
| */ |
| int input_register_handler(struct input_handler *handler) |
| { |
| struct input_dev *dev; |
| int error; |
| |
| error = mutex_lock_interruptible(&input_mutex); |
| if (error) |
| return error; |
| |
| INIT_LIST_HEAD(&handler->h_list); |
| |
| list_add_tail(&handler->node, &input_handler_list); |
| |
| list_for_each_entry(dev, &input_dev_list, node) |
| input_attach_handler(dev, handler); |
| |
| input_wakeup_procfs_readers(); |
| |
| mutex_unlock(&input_mutex); |
| return 0; |
| } |
| EXPORT_SYMBOL(input_register_handler); |
| |
| /** |
| * input_unregister_handler - unregisters an input handler |
| * @handler: handler to be unregistered |
| * |
| * This function disconnects a handler from its input devices and |
| * removes it from lists of known handlers. |
| */ |
| void input_unregister_handler(struct input_handler *handler) |
| { |
| struct input_handle *handle, *next; |
| |
| mutex_lock(&input_mutex); |
| |
| list_for_each_entry_safe(handle, next, &handler->h_list, h_node) |
| handler->disconnect(handle); |
| WARN_ON(!list_empty(&handler->h_list)); |
| |
| list_del_init(&handler->node); |
| |
| input_wakeup_procfs_readers(); |
| |
| mutex_unlock(&input_mutex); |
| } |
| EXPORT_SYMBOL(input_unregister_handler); |
| |
| /** |
| * input_handler_for_each_handle - handle iterator |
| * @handler: input handler to iterate |
| * @data: data for the callback |
| * @fn: function to be called for each handle |
| * |
| * Iterate over @bus's list of devices, and call @fn for each, passing |
| * it @data and stop when @fn returns a non-zero value. The function is |
| * using RCU to traverse the list and therefore may be using in atomic |
| * contexts. The @fn callback is invoked from RCU critical section and |
| * thus must not sleep. |
| */ |
| int input_handler_for_each_handle(struct input_handler *handler, void *data, |
| int (*fn)(struct input_handle *, void *)) |
| { |
| struct input_handle *handle; |
| int retval = 0; |
| |
| rcu_read_lock(); |
| |
| list_for_each_entry_rcu(handle, &handler->h_list, h_node) { |
| retval = fn(handle, data); |
| if (retval) |
| break; |
| } |
| |
| rcu_read_unlock(); |
| |
| return retval; |
| } |
| EXPORT_SYMBOL(input_handler_for_each_handle); |
| |
| /** |
| * input_register_handle - register a new input handle |
| * @handle: handle to register |
| * |
| * This function puts a new input handle onto device's |
| * and handler's lists so that events can flow through |
| * it once it is opened using input_open_device(). |
| * |
| * This function is supposed to be called from handler's |
| * connect() method. |
| */ |
| int input_register_handle(struct input_handle *handle) |
| { |
| struct input_handler *handler = handle->handler; |
| struct input_dev *dev = handle->dev; |
| int error; |
| |
| /* |
| * We take dev->mutex here to prevent race with |
| * input_release_device(). |
| */ |
| error = mutex_lock_interruptible(&dev->mutex); |
| if (error) |
| return error; |
| |
| /* |
| * Filters go to the head of the list, normal handlers |
| * to the tail. |
| */ |
| if (handler->filter) |
| list_add_rcu(&handle->d_node, &dev->h_list); |
| else |
| list_add_tail_rcu(&handle->d_node, &dev->h_list); |
| |
| mutex_unlock(&dev->mutex); |
| |
| /* |
| * Since we are supposed to be called from ->connect() |
| * which is mutually exclusive with ->disconnect() |
| * we can't be racing with input_unregister_handle() |
| * and so separate lock is not needed here. |
| */ |
| list_add_tail_rcu(&handle->h_node, &handler->h_list); |
| |
| if (handler->start) |
| handler->start(handle); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(input_register_handle); |
| |
| /** |
| * input_unregister_handle - unregister an input handle |
| * @handle: handle to unregister |
| * |
| * This function removes input handle from device's |
| * and handler's lists. |
| * |
| * This function is supposed to be called from handler's |
| * disconnect() method. |
| */ |
| void input_unregister_handle(struct input_handle *handle) |
| { |
| struct input_dev *dev = handle->dev; |
| |
| list_del_rcu(&handle->h_node); |
| |
| /* |
| * Take dev->mutex to prevent race with input_release_device(). |
| */ |
| mutex_lock(&dev->mutex); |
| list_del_rcu(&handle->d_node); |
| mutex_unlock(&dev->mutex); |
| |
| synchronize_rcu(); |
| } |
| EXPORT_SYMBOL(input_unregister_handle); |
| |
| /** |
| * input_get_new_minor - allocates a new input minor number |
| * @legacy_base: beginning or the legacy range to be searched |
| * @legacy_num: size of legacy range |
| * @allow_dynamic: whether we can also take ID from the dynamic range |
| * |
| * This function allocates a new device minor for from input major namespace. |
| * Caller can request legacy minor by specifying @legacy_base and @legacy_num |
| * parameters and whether ID can be allocated from dynamic range if there are |
| * no free IDs in legacy range. |
| */ |
| int input_get_new_minor(int legacy_base, unsigned int legacy_num, |
| bool allow_dynamic) |
| { |
| /* |
| * This function should be called from input handler's ->connect() |
| * methods, which are serialized with input_mutex, so no additional |
| * locking is needed here. |
| */ |
| if (legacy_base >= 0) { |
| int minor = ida_simple_get(&input_ida, |
| legacy_base, |
| legacy_base + legacy_num, |
| GFP_KERNEL); |
| if (minor >= 0 || !allow_dynamic) |
| return minor; |
| } |
| |
| return ida_simple_get(&input_ida, |
| INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES, |
| GFP_KERNEL); |
| } |
| EXPORT_SYMBOL(input_get_new_minor); |
| |
| /** |
| * input_free_minor - release previously allocated minor |
| * @minor: minor to be released |
| * |
| * This function releases previously allocated input minor so that it can be |
| * reused later. |
| */ |
| void input_free_minor(unsigned int minor) |
| { |
| ida_simple_remove(&input_ida, minor); |
| } |
| EXPORT_SYMBOL(input_free_minor); |
| |
| static int __init input_init(void) |
| { |
| int err; |
| |
| err = class_register(&input_class); |
| if (err) { |
| pr_err("unable to register input_dev class\n"); |
| return err; |
| } |
| |
| err = input_proc_init(); |
| if (err) |
| goto fail1; |
| |
| err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0), |
| INPUT_MAX_CHAR_DEVICES, "input"); |
| if (err) { |
| pr_err("unable to register char major %d", INPUT_MAJOR); |
| goto fail2; |
| } |
| |
| return 0; |
| |
| fail2: input_proc_exit(); |
| fail1: class_unregister(&input_class); |
| return err; |
| } |
| |
| static void __exit input_exit(void) |
| { |
| input_proc_exit(); |
| unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0), |
| INPUT_MAX_CHAR_DEVICES); |
| class_unregister(&input_class); |
| } |
| |
| subsys_initcall(input_init); |
| module_exit(input_exit); |