blob: 9aaf83c8d57df7d3877484a87060769956dbb9cb [file] [log] [blame]
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kvm_host.h>
#include "irq.h"
#include "mmu.h"
#include "kvm_cache_regs.h"
#include "x86.h"
#include "smm.h"
#include "cpuid.h"
#include "pmu.h"
#include <linux/module.h>
#include <linux/mod_devicetable.h>
#include <linux/kernel.h>
#include <linux/vmalloc.h>
#include <linux/highmem.h>
#include <linux/amd-iommu.h>
#include <linux/sched.h>
#include <linux/trace_events.h>
#include <linux/slab.h>
#include <linux/hashtable.h>
#include <linux/objtool.h>
#include <linux/psp-sev.h>
#include <linux/file.h>
#include <linux/pagemap.h>
#include <linux/swap.h>
#include <linux/rwsem.h>
#include <linux/cc_platform.h>
#include <linux/smp.h>
#include <asm/apic.h>
#include <asm/perf_event.h>
#include <asm/tlbflush.h>
#include <asm/desc.h>
#include <asm/debugreg.h>
#include <asm/kvm_para.h>
#include <asm/irq_remapping.h>
#include <asm/spec-ctrl.h>
#include <asm/cpu_device_id.h>
#include <asm/traps.h>
#include <asm/reboot.h>
#include <asm/fpu/api.h>
#include <trace/events/ipi.h>
#include "trace.h"
#include "svm.h"
#include "svm_ops.h"
#include "kvm_onhyperv.h"
#include "svm_onhyperv.h"
MODULE_AUTHOR("Qumranet");
MODULE_LICENSE("GPL");
#ifdef MODULE
static const struct x86_cpu_id svm_cpu_id[] = {
X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL),
{}
};
MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
#endif
#define SEG_TYPE_LDT 2
#define SEG_TYPE_BUSY_TSS16 3
static bool erratum_383_found __read_mostly;
u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
/*
* Set osvw_len to higher value when updated Revision Guides
* are published and we know what the new status bits are
*/
static uint64_t osvw_len = 4, osvw_status;
static DEFINE_PER_CPU(u64, current_tsc_ratio);
#define X2APIC_MSR(x) (APIC_BASE_MSR + (x >> 4))
static const struct svm_direct_access_msrs {
u32 index; /* Index of the MSR */
bool always; /* True if intercept is initially cleared */
} direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = {
{ .index = MSR_STAR, .always = true },
{ .index = MSR_IA32_SYSENTER_CS, .always = true },
{ .index = MSR_IA32_SYSENTER_EIP, .always = false },
{ .index = MSR_IA32_SYSENTER_ESP, .always = false },
#ifdef CONFIG_X86_64
{ .index = MSR_GS_BASE, .always = true },
{ .index = MSR_FS_BASE, .always = true },
{ .index = MSR_KERNEL_GS_BASE, .always = true },
{ .index = MSR_LSTAR, .always = true },
{ .index = MSR_CSTAR, .always = true },
{ .index = MSR_SYSCALL_MASK, .always = true },
#endif
{ .index = MSR_IA32_SPEC_CTRL, .always = false },
{ .index = MSR_IA32_PRED_CMD, .always = false },
{ .index = MSR_IA32_FLUSH_CMD, .always = false },
{ .index = MSR_IA32_LASTBRANCHFROMIP, .always = false },
{ .index = MSR_IA32_LASTBRANCHTOIP, .always = false },
{ .index = MSR_IA32_LASTINTFROMIP, .always = false },
{ .index = MSR_IA32_LASTINTTOIP, .always = false },
{ .index = MSR_IA32_XSS, .always = false },
{ .index = MSR_EFER, .always = false },
{ .index = MSR_IA32_CR_PAT, .always = false },
{ .index = MSR_AMD64_SEV_ES_GHCB, .always = true },
{ .index = MSR_TSC_AUX, .always = false },
{ .index = X2APIC_MSR(APIC_ID), .always = false },
{ .index = X2APIC_MSR(APIC_LVR), .always = false },
{ .index = X2APIC_MSR(APIC_TASKPRI), .always = false },
{ .index = X2APIC_MSR(APIC_ARBPRI), .always = false },
{ .index = X2APIC_MSR(APIC_PROCPRI), .always = false },
{ .index = X2APIC_MSR(APIC_EOI), .always = false },
{ .index = X2APIC_MSR(APIC_RRR), .always = false },
{ .index = X2APIC_MSR(APIC_LDR), .always = false },
{ .index = X2APIC_MSR(APIC_DFR), .always = false },
{ .index = X2APIC_MSR(APIC_SPIV), .always = false },
{ .index = X2APIC_MSR(APIC_ISR), .always = false },
{ .index = X2APIC_MSR(APIC_TMR), .always = false },
{ .index = X2APIC_MSR(APIC_IRR), .always = false },
{ .index = X2APIC_MSR(APIC_ESR), .always = false },
{ .index = X2APIC_MSR(APIC_ICR), .always = false },
{ .index = X2APIC_MSR(APIC_ICR2), .always = false },
/*
* Note:
* AMD does not virtualize APIC TSC-deadline timer mode, but it is
* emulated by KVM. When setting APIC LVTT (0x832) register bit 18,
* the AVIC hardware would generate GP fault. Therefore, always
* intercept the MSR 0x832, and do not setup direct_access_msr.
*/
{ .index = X2APIC_MSR(APIC_LVTTHMR), .always = false },
{ .index = X2APIC_MSR(APIC_LVTPC), .always = false },
{ .index = X2APIC_MSR(APIC_LVT0), .always = false },
{ .index = X2APIC_MSR(APIC_LVT1), .always = false },
{ .index = X2APIC_MSR(APIC_LVTERR), .always = false },
{ .index = X2APIC_MSR(APIC_TMICT), .always = false },
{ .index = X2APIC_MSR(APIC_TMCCT), .always = false },
{ .index = X2APIC_MSR(APIC_TDCR), .always = false },
{ .index = MSR_INVALID, .always = false },
};
/*
* These 2 parameters are used to config the controls for Pause-Loop Exiting:
* pause_filter_count: On processors that support Pause filtering(indicated
* by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
* count value. On VMRUN this value is loaded into an internal counter.
* Each time a pause instruction is executed, this counter is decremented
* until it reaches zero at which time a #VMEXIT is generated if pause
* intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause
* Intercept Filtering for more details.
* This also indicate if ple logic enabled.
*
* pause_filter_thresh: In addition, some processor families support advanced
* pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
* the amount of time a guest is allowed to execute in a pause loop.
* In this mode, a 16-bit pause filter threshold field is added in the
* VMCB. The threshold value is a cycle count that is used to reset the
* pause counter. As with simple pause filtering, VMRUN loads the pause
* count value from VMCB into an internal counter. Then, on each pause
* instruction the hardware checks the elapsed number of cycles since
* the most recent pause instruction against the pause filter threshold.
* If the elapsed cycle count is greater than the pause filter threshold,
* then the internal pause count is reloaded from the VMCB and execution
* continues. If the elapsed cycle count is less than the pause filter
* threshold, then the internal pause count is decremented. If the count
* value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
* triggered. If advanced pause filtering is supported and pause filter
* threshold field is set to zero, the filter will operate in the simpler,
* count only mode.
*/
static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
module_param(pause_filter_thresh, ushort, 0444);
static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
module_param(pause_filter_count, ushort, 0444);
/* Default doubles per-vcpu window every exit. */
static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
module_param(pause_filter_count_grow, ushort, 0444);
/* Default resets per-vcpu window every exit to pause_filter_count. */
static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
module_param(pause_filter_count_shrink, ushort, 0444);
/* Default is to compute the maximum so we can never overflow. */
static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
module_param(pause_filter_count_max, ushort, 0444);
/*
* Use nested page tables by default. Note, NPT may get forced off by
* svm_hardware_setup() if it's unsupported by hardware or the host kernel.
*/
bool npt_enabled = true;
module_param_named(npt, npt_enabled, bool, 0444);
/* allow nested virtualization in KVM/SVM */
static int nested = true;
module_param(nested, int, 0444);
/* enable/disable Next RIP Save */
int nrips = true;
module_param(nrips, int, 0444);
/* enable/disable Virtual VMLOAD VMSAVE */
static int vls = true;
module_param(vls, int, 0444);
/* enable/disable Virtual GIF */
int vgif = true;
module_param(vgif, int, 0444);
/* enable/disable LBR virtualization */
static int lbrv = true;
module_param(lbrv, int, 0444);
static int tsc_scaling = true;
module_param(tsc_scaling, int, 0444);
/*
* enable / disable AVIC. Because the defaults differ for APICv
* support between VMX and SVM we cannot use module_param_named.
*/
static bool avic;
module_param(avic, bool, 0444);
bool __read_mostly dump_invalid_vmcb;
module_param(dump_invalid_vmcb, bool, 0644);
bool intercept_smi = true;
module_param(intercept_smi, bool, 0444);
bool vnmi = true;
module_param(vnmi, bool, 0444);
static bool svm_gp_erratum_intercept = true;
static u8 rsm_ins_bytes[] = "\x0f\xaa";
static unsigned long iopm_base;
DEFINE_PER_CPU(struct svm_cpu_data, svm_data);
/*
* Only MSR_TSC_AUX is switched via the user return hook. EFER is switched via
* the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE.
*
* RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to
* defer the restoration of TSC_AUX until the CPU returns to userspace.
*/
static int tsc_aux_uret_slot __read_mostly = -1;
static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
#define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
#define MSRS_RANGE_SIZE 2048
#define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
u32 svm_msrpm_offset(u32 msr)
{
u32 offset;
int i;
for (i = 0; i < NUM_MSR_MAPS; i++) {
if (msr < msrpm_ranges[i] ||
msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
continue;
offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
offset += (i * MSRS_RANGE_SIZE); /* add range offset */
/* Now we have the u8 offset - but need the u32 offset */
return offset / 4;
}
/* MSR not in any range */
return MSR_INVALID;
}
static void svm_flush_tlb_current(struct kvm_vcpu *vcpu);
static int get_npt_level(void)
{
#ifdef CONFIG_X86_64
return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
#else
return PT32E_ROOT_LEVEL;
#endif
}
int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
{
struct vcpu_svm *svm = to_svm(vcpu);
u64 old_efer = vcpu->arch.efer;
vcpu->arch.efer = efer;
if (!npt_enabled) {
/* Shadow paging assumes NX to be available. */
efer |= EFER_NX;
if (!(efer & EFER_LMA))
efer &= ~EFER_LME;
}
if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) {
if (!(efer & EFER_SVME)) {
svm_leave_nested(vcpu);
svm_set_gif(svm, true);
/* #GP intercept is still needed for vmware backdoor */
if (!enable_vmware_backdoor)
clr_exception_intercept(svm, GP_VECTOR);
/*
* Free the nested guest state, unless we are in SMM.
* In this case we will return to the nested guest
* as soon as we leave SMM.
*/
if (!is_smm(vcpu))
svm_free_nested(svm);
} else {
int ret = svm_allocate_nested(svm);
if (ret) {
vcpu->arch.efer = old_efer;
return ret;
}
/*
* Never intercept #GP for SEV guests, KVM can't
* decrypt guest memory to workaround the erratum.
*/
if (svm_gp_erratum_intercept && !sev_guest(vcpu->kvm))
set_exception_intercept(svm, GP_VECTOR);
}
}
svm->vmcb->save.efer = efer | EFER_SVME;
vmcb_mark_dirty(svm->vmcb, VMCB_CR);
return 0;
}
static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
u32 ret = 0;
if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
return ret;
}
static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
{
struct vcpu_svm *svm = to_svm(vcpu);
if (mask == 0)
svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
else
svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
}
static int __svm_skip_emulated_instruction(struct kvm_vcpu *vcpu,
bool commit_side_effects)
{
struct vcpu_svm *svm = to_svm(vcpu);
unsigned long old_rflags;
/*
* SEV-ES does not expose the next RIP. The RIP update is controlled by
* the type of exit and the #VC handler in the guest.
*/
if (sev_es_guest(vcpu->kvm))
goto done;
if (nrips && svm->vmcb->control.next_rip != 0) {
WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
svm->next_rip = svm->vmcb->control.next_rip;
}
if (!svm->next_rip) {
if (unlikely(!commit_side_effects))
old_rflags = svm->vmcb->save.rflags;
if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
return 0;
if (unlikely(!commit_side_effects))
svm->vmcb->save.rflags = old_rflags;
} else {
kvm_rip_write(vcpu, svm->next_rip);
}
done:
if (likely(commit_side_effects))
svm_set_interrupt_shadow(vcpu, 0);
return 1;
}
static int svm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
{
return __svm_skip_emulated_instruction(vcpu, true);
}
static int svm_update_soft_interrupt_rip(struct kvm_vcpu *vcpu)
{
unsigned long rip, old_rip = kvm_rip_read(vcpu);
struct vcpu_svm *svm = to_svm(vcpu);
/*
* Due to architectural shortcomings, the CPU doesn't always provide
* NextRIP, e.g. if KVM intercepted an exception that occurred while
* the CPU was vectoring an INTO/INT3 in the guest. Temporarily skip
* the instruction even if NextRIP is supported to acquire the next
* RIP so that it can be shoved into the NextRIP field, otherwise
* hardware will fail to advance guest RIP during event injection.
* Drop the exception/interrupt if emulation fails and effectively
* retry the instruction, it's the least awful option. If NRIPS is
* in use, the skip must not commit any side effects such as clearing
* the interrupt shadow or RFLAGS.RF.
*/
if (!__svm_skip_emulated_instruction(vcpu, !nrips))
return -EIO;
rip = kvm_rip_read(vcpu);
/*
* Save the injection information, even when using next_rip, as the
* VMCB's next_rip will be lost (cleared on VM-Exit) if the injection
* doesn't complete due to a VM-Exit occurring while the CPU is
* vectoring the event. Decoding the instruction isn't guaranteed to
* work as there may be no backing instruction, e.g. if the event is
* being injected by L1 for L2, or if the guest is patching INT3 into
* a different instruction.
*/
svm->soft_int_injected = true;
svm->soft_int_csbase = svm->vmcb->save.cs.base;
svm->soft_int_old_rip = old_rip;
svm->soft_int_next_rip = rip;
if (nrips)
kvm_rip_write(vcpu, old_rip);
if (static_cpu_has(X86_FEATURE_NRIPS))
svm->vmcb->control.next_rip = rip;
return 0;
}
static void svm_inject_exception(struct kvm_vcpu *vcpu)
{
struct kvm_queued_exception *ex = &vcpu->arch.exception;
struct vcpu_svm *svm = to_svm(vcpu);
kvm_deliver_exception_payload(vcpu, ex);
if (kvm_exception_is_soft(ex->vector) &&
svm_update_soft_interrupt_rip(vcpu))
return;
svm->vmcb->control.event_inj = ex->vector
| SVM_EVTINJ_VALID
| (ex->has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
| SVM_EVTINJ_TYPE_EXEPT;
svm->vmcb->control.event_inj_err = ex->error_code;
}
static void svm_init_erratum_383(void)
{
u32 low, high;
int err;
u64 val;
if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
return;
/* Use _safe variants to not break nested virtualization */
val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
if (err)
return;
val |= (1ULL << 47);
low = lower_32_bits(val);
high = upper_32_bits(val);
native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
erratum_383_found = true;
}
static void svm_init_osvw(struct kvm_vcpu *vcpu)
{
/*
* Guests should see errata 400 and 415 as fixed (assuming that
* HLT and IO instructions are intercepted).
*/
vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
vcpu->arch.osvw.status = osvw_status & ~(6ULL);
/*
* By increasing VCPU's osvw.length to 3 we are telling the guest that
* all osvw.status bits inside that length, including bit 0 (which is
* reserved for erratum 298), are valid. However, if host processor's
* osvw_len is 0 then osvw_status[0] carries no information. We need to
* be conservative here and therefore we tell the guest that erratum 298
* is present (because we really don't know).
*/
if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
vcpu->arch.osvw.status |= 1;
}
static bool __kvm_is_svm_supported(void)
{
int cpu = smp_processor_id();
struct cpuinfo_x86 *c = &cpu_data(cpu);
if (c->x86_vendor != X86_VENDOR_AMD &&
c->x86_vendor != X86_VENDOR_HYGON) {
pr_err("CPU %d isn't AMD or Hygon\n", cpu);
return false;
}
if (!cpu_has(c, X86_FEATURE_SVM)) {
pr_err("SVM not supported by CPU %d\n", cpu);
return false;
}
if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) {
pr_info("KVM is unsupported when running as an SEV guest\n");
return false;
}
return true;
}
static bool kvm_is_svm_supported(void)
{
bool supported;
migrate_disable();
supported = __kvm_is_svm_supported();
migrate_enable();
return supported;
}
static int svm_check_processor_compat(void)
{
if (!__kvm_is_svm_supported())
return -EIO;
return 0;
}
static void __svm_write_tsc_multiplier(u64 multiplier)
{
if (multiplier == __this_cpu_read(current_tsc_ratio))
return;
wrmsrl(MSR_AMD64_TSC_RATIO, multiplier);
__this_cpu_write(current_tsc_ratio, multiplier);
}
static inline void kvm_cpu_svm_disable(void)
{
uint64_t efer;
wrmsrl(MSR_VM_HSAVE_PA, 0);
rdmsrl(MSR_EFER, efer);
if (efer & EFER_SVME) {
/*
* Force GIF=1 prior to disabling SVM, e.g. to ensure INIT and
* NMI aren't blocked.
*/
stgi();
wrmsrl(MSR_EFER, efer & ~EFER_SVME);
}
}
static void svm_emergency_disable(void)
{
kvm_rebooting = true;
kvm_cpu_svm_disable();
}
static void svm_hardware_disable(void)
{
/* Make sure we clean up behind us */
if (tsc_scaling)
__svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
kvm_cpu_svm_disable();
amd_pmu_disable_virt();
}
static int svm_hardware_enable(void)
{
struct svm_cpu_data *sd;
uint64_t efer;
int me = raw_smp_processor_id();
rdmsrl(MSR_EFER, efer);
if (efer & EFER_SVME)
return -EBUSY;
sd = per_cpu_ptr(&svm_data, me);
sd->asid_generation = 1;
sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
sd->next_asid = sd->max_asid + 1;
sd->min_asid = max_sev_asid + 1;
wrmsrl(MSR_EFER, efer | EFER_SVME);
wrmsrl(MSR_VM_HSAVE_PA, sd->save_area_pa);
if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
/*
* Set the default value, even if we don't use TSC scaling
* to avoid having stale value in the msr
*/
__svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
}
/*
* Get OSVW bits.
*
* Note that it is possible to have a system with mixed processor
* revisions and therefore different OSVW bits. If bits are not the same
* on different processors then choose the worst case (i.e. if erratum
* is present on one processor and not on another then assume that the
* erratum is present everywhere).
*/
if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
uint64_t len, status = 0;
int err;
len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
if (!err)
status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
&err);
if (err)
osvw_status = osvw_len = 0;
else {
if (len < osvw_len)
osvw_len = len;
osvw_status |= status;
osvw_status &= (1ULL << osvw_len) - 1;
}
} else
osvw_status = osvw_len = 0;
svm_init_erratum_383();
amd_pmu_enable_virt();
/*
* If TSC_AUX virtualization is supported, TSC_AUX becomes a swap type
* "B" field (see sev_es_prepare_switch_to_guest()) for SEV-ES guests.
* Since Linux does not change the value of TSC_AUX once set, prime the
* TSC_AUX field now to avoid a RDMSR on every vCPU run.
*/
if (boot_cpu_has(X86_FEATURE_V_TSC_AUX)) {
struct sev_es_save_area *hostsa;
u32 __maybe_unused msr_hi;
hostsa = (struct sev_es_save_area *)(page_address(sd->save_area) + 0x400);
rdmsr(MSR_TSC_AUX, hostsa->tsc_aux, msr_hi);
}
return 0;
}
static void svm_cpu_uninit(int cpu)
{
struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
if (!sd->save_area)
return;
kfree(sd->sev_vmcbs);
__free_page(sd->save_area);
sd->save_area_pa = 0;
sd->save_area = NULL;
}
static int svm_cpu_init(int cpu)
{
struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
int ret = -ENOMEM;
memset(sd, 0, sizeof(struct svm_cpu_data));
sd->save_area = snp_safe_alloc_page(NULL);
if (!sd->save_area)
return ret;
ret = sev_cpu_init(sd);
if (ret)
goto free_save_area;
sd->save_area_pa = __sme_page_pa(sd->save_area);
return 0;
free_save_area:
__free_page(sd->save_area);
sd->save_area = NULL;
return ret;
}
static void set_dr_intercepts(struct vcpu_svm *svm)
{
struct vmcb *vmcb = svm->vmcb01.ptr;
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_READ);
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_READ);
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_READ);
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_READ);
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_READ);
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_READ);
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_READ);
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_WRITE);
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_WRITE);
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_WRITE);
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_WRITE);
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_WRITE);
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_WRITE);
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_WRITE);
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ);
vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE);
recalc_intercepts(svm);
}
static void clr_dr_intercepts(struct vcpu_svm *svm)
{
struct vmcb *vmcb = svm->vmcb01.ptr;
vmcb->control.intercepts[INTERCEPT_DR] = 0;
recalc_intercepts(svm);
}
static int direct_access_msr_slot(u32 msr)
{
u32 i;
for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
if (direct_access_msrs[i].index == msr)
return i;
return -ENOENT;
}
static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read,
int write)
{
struct vcpu_svm *svm = to_svm(vcpu);
int slot = direct_access_msr_slot(msr);
if (slot == -ENOENT)
return;
/* Set the shadow bitmaps to the desired intercept states */
if (read)
set_bit(slot, svm->shadow_msr_intercept.read);
else
clear_bit(slot, svm->shadow_msr_intercept.read);
if (write)
set_bit(slot, svm->shadow_msr_intercept.write);
else
clear_bit(slot, svm->shadow_msr_intercept.write);
}
static bool valid_msr_intercept(u32 index)
{
return direct_access_msr_slot(index) != -ENOENT;
}
static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
{
u8 bit_write;
unsigned long tmp;
u32 offset;
u32 *msrpm;
/*
* For non-nested case:
* If the L01 MSR bitmap does not intercept the MSR, then we need to
* save it.
*
* For nested case:
* If the L02 MSR bitmap does not intercept the MSR, then we need to
* save it.
*/
msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
to_svm(vcpu)->msrpm;
offset = svm_msrpm_offset(msr);
bit_write = 2 * (msr & 0x0f) + 1;
tmp = msrpm[offset];
BUG_ON(offset == MSR_INVALID);
return test_bit(bit_write, &tmp);
}
static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm,
u32 msr, int read, int write)
{
struct vcpu_svm *svm = to_svm(vcpu);
u8 bit_read, bit_write;
unsigned long tmp;
u32 offset;
/*
* If this warning triggers extend the direct_access_msrs list at the
* beginning of the file
*/
WARN_ON(!valid_msr_intercept(msr));
/* Enforce non allowed MSRs to trap */
if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
read = 0;
if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
write = 0;
offset = svm_msrpm_offset(msr);
bit_read = 2 * (msr & 0x0f);
bit_write = 2 * (msr & 0x0f) + 1;
tmp = msrpm[offset];
BUG_ON(offset == MSR_INVALID);
read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp);
write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
msrpm[offset] = tmp;
svm_hv_vmcb_dirty_nested_enlightenments(vcpu);
svm->nested.force_msr_bitmap_recalc = true;
}
void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr,
int read, int write)
{
set_shadow_msr_intercept(vcpu, msr, read, write);
set_msr_interception_bitmap(vcpu, msrpm, msr, read, write);
}
u32 *svm_vcpu_alloc_msrpm(void)
{
unsigned int order = get_order(MSRPM_SIZE);
struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, order);
u32 *msrpm;
if (!pages)
return NULL;
msrpm = page_address(pages);
memset(msrpm, 0xff, PAGE_SIZE * (1 << order));
return msrpm;
}
void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm)
{
int i;
for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
if (!direct_access_msrs[i].always)
continue;
set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1);
}
}
void svm_set_x2apic_msr_interception(struct vcpu_svm *svm, bool intercept)
{
int i;
if (intercept == svm->x2avic_msrs_intercepted)
return;
if (!x2avic_enabled)
return;
for (i = 0; i < MAX_DIRECT_ACCESS_MSRS; i++) {
int index = direct_access_msrs[i].index;
if ((index < APIC_BASE_MSR) ||
(index > APIC_BASE_MSR + 0xff))
continue;
set_msr_interception(&svm->vcpu, svm->msrpm, index,
!intercept, !intercept);
}
svm->x2avic_msrs_intercepted = intercept;
}
void svm_vcpu_free_msrpm(u32 *msrpm)
{
__free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE));
}
static void svm_msr_filter_changed(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
u32 i;
/*
* Set intercept permissions for all direct access MSRs again. They
* will automatically get filtered through the MSR filter, so we are
* back in sync after this.
*/
for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
u32 msr = direct_access_msrs[i].index;
u32 read = test_bit(i, svm->shadow_msr_intercept.read);
u32 write = test_bit(i, svm->shadow_msr_intercept.write);
set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write);
}
}
static void add_msr_offset(u32 offset)
{
int i;
for (i = 0; i < MSRPM_OFFSETS; ++i) {
/* Offset already in list? */
if (msrpm_offsets[i] == offset)
return;
/* Slot used by another offset? */
if (msrpm_offsets[i] != MSR_INVALID)
continue;
/* Add offset to list */
msrpm_offsets[i] = offset;
return;
}
/*
* If this BUG triggers the msrpm_offsets table has an overflow. Just
* increase MSRPM_OFFSETS in this case.
*/
BUG();
}
static void init_msrpm_offsets(void)
{
int i;
memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
u32 offset;
offset = svm_msrpm_offset(direct_access_msrs[i].index);
BUG_ON(offset == MSR_INVALID);
add_msr_offset(offset);
}
}
void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb)
{
to_vmcb->save.dbgctl = from_vmcb->save.dbgctl;
to_vmcb->save.br_from = from_vmcb->save.br_from;
to_vmcb->save.br_to = from_vmcb->save.br_to;
to_vmcb->save.last_excp_from = from_vmcb->save.last_excp_from;
to_vmcb->save.last_excp_to = from_vmcb->save.last_excp_to;
vmcb_mark_dirty(to_vmcb, VMCB_LBR);
}
static void svm_enable_lbrv(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
/* Move the LBR msrs to the vmcb02 so that the guest can see them. */
if (is_guest_mode(vcpu))
svm_copy_lbrs(svm->vmcb, svm->vmcb01.ptr);
}
static void svm_disable_lbrv(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
/*
* Move the LBR msrs back to the vmcb01 to avoid copying them
* on nested guest entries.
*/
if (is_guest_mode(vcpu))
svm_copy_lbrs(svm->vmcb01.ptr, svm->vmcb);
}
static struct vmcb *svm_get_lbr_vmcb(struct vcpu_svm *svm)
{
/*
* If LBR virtualization is disabled, the LBR MSRs are always kept in
* vmcb01. If LBR virtualization is enabled and L1 is running VMs of
* its own, the MSRs are moved between vmcb01 and vmcb02 as needed.
*/
return svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK ? svm->vmcb :
svm->vmcb01.ptr;
}
void svm_update_lbrv(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
bool current_enable_lbrv = svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK;
bool enable_lbrv = (svm_get_lbr_vmcb(svm)->save.dbgctl & DEBUGCTLMSR_LBR) ||
(is_guest_mode(vcpu) && guest_can_use(vcpu, X86_FEATURE_LBRV) &&
(svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK));
if (enable_lbrv == current_enable_lbrv)
return;
if (enable_lbrv)
svm_enable_lbrv(vcpu);
else
svm_disable_lbrv(vcpu);
}
void disable_nmi_singlestep(struct vcpu_svm *svm)
{
svm->nmi_singlestep = false;
if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
/* Clear our flags if they were not set by the guest */
if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
}
}
static void grow_ple_window(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
struct vmcb_control_area *control = &svm->vmcb->control;
int old = control->pause_filter_count;
if (kvm_pause_in_guest(vcpu->kvm))
return;
control->pause_filter_count = __grow_ple_window(old,
pause_filter_count,
pause_filter_count_grow,
pause_filter_count_max);
if (control->pause_filter_count != old) {
vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
trace_kvm_ple_window_update(vcpu->vcpu_id,
control->pause_filter_count, old);
}
}
static void shrink_ple_window(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
struct vmcb_control_area *control = &svm->vmcb->control;
int old = control->pause_filter_count;
if (kvm_pause_in_guest(vcpu->kvm))
return;
control->pause_filter_count =
__shrink_ple_window(old,
pause_filter_count,
pause_filter_count_shrink,
pause_filter_count);
if (control->pause_filter_count != old) {
vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
trace_kvm_ple_window_update(vcpu->vcpu_id,
control->pause_filter_count, old);
}
}
static void svm_hardware_unsetup(void)
{
int cpu;
sev_hardware_unsetup();
for_each_possible_cpu(cpu)
svm_cpu_uninit(cpu);
__free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT),
get_order(IOPM_SIZE));
iopm_base = 0;
}
static void init_seg(struct vmcb_seg *seg)
{
seg->selector = 0;
seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
seg->limit = 0xffff;
seg->base = 0;
}
static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
{
seg->selector = 0;
seg->attrib = SVM_SELECTOR_P_MASK | type;
seg->limit = 0xffff;
seg->base = 0;
}
static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
return svm->nested.ctl.tsc_offset;
}
static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
return svm->tsc_ratio_msr;
}
static void svm_write_tsc_offset(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset;
svm->vmcb->control.tsc_offset = vcpu->arch.tsc_offset;
vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
}
void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu)
{
preempt_disable();
if (to_svm(vcpu)->guest_state_loaded)
__svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio);
preempt_enable();
}
/* Evaluate instruction intercepts that depend on guest CPUID features. */
static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu,
struct vcpu_svm *svm)
{
/*
* Intercept INVPCID if shadow paging is enabled to sync/free shadow
* roots, or if INVPCID is disabled in the guest to inject #UD.
*/
if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) {
if (!npt_enabled ||
!guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID))
svm_set_intercept(svm, INTERCEPT_INVPCID);
else
svm_clr_intercept(svm, INTERCEPT_INVPCID);
}
if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) {
if (guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
svm_clr_intercept(svm, INTERCEPT_RDTSCP);
else
svm_set_intercept(svm, INTERCEPT_RDTSCP);
}
}
static inline void init_vmcb_after_set_cpuid(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
if (guest_cpuid_is_intel(vcpu)) {
/*
* We must intercept SYSENTER_EIP and SYSENTER_ESP
* accesses because the processor only stores 32 bits.
* For the same reason we cannot use virtual VMLOAD/VMSAVE.
*/
svm_set_intercept(svm, INTERCEPT_VMLOAD);
svm_set_intercept(svm, INTERCEPT_VMSAVE);
svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 0, 0);
set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 0, 0);
} else {
/*
* If hardware supports Virtual VMLOAD VMSAVE then enable it
* in VMCB and clear intercepts to avoid #VMEXIT.
*/
if (vls) {
svm_clr_intercept(svm, INTERCEPT_VMLOAD);
svm_clr_intercept(svm, INTERCEPT_VMSAVE);
svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
}
/* No need to intercept these MSRs */
set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 1, 1);
set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 1, 1);
}
}
static void init_vmcb(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
struct vmcb *vmcb = svm->vmcb01.ptr;
struct vmcb_control_area *control = &vmcb->control;
struct vmcb_save_area *save = &vmcb->save;
svm_set_intercept(svm, INTERCEPT_CR0_READ);
svm_set_intercept(svm, INTERCEPT_CR3_READ);
svm_set_intercept(svm, INTERCEPT_CR4_READ);
svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
svm_set_intercept(svm, INTERCEPT_CR3_WRITE);
svm_set_intercept(svm, INTERCEPT_CR4_WRITE);
if (!kvm_vcpu_apicv_active(vcpu))
svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
set_dr_intercepts(svm);
set_exception_intercept(svm, PF_VECTOR);
set_exception_intercept(svm, UD_VECTOR);
set_exception_intercept(svm, MC_VECTOR);
set_exception_intercept(svm, AC_VECTOR);
set_exception_intercept(svm, DB_VECTOR);
/*
* Guest access to VMware backdoor ports could legitimately
* trigger #GP because of TSS I/O permission bitmap.
* We intercept those #GP and allow access to them anyway
* as VMware does.
*/
if (enable_vmware_backdoor)
set_exception_intercept(svm, GP_VECTOR);
svm_set_intercept(svm, INTERCEPT_INTR);
svm_set_intercept(svm, INTERCEPT_NMI);
if (intercept_smi)
svm_set_intercept(svm, INTERCEPT_SMI);
svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
svm_set_intercept(svm, INTERCEPT_RDPMC);
svm_set_intercept(svm, INTERCEPT_CPUID);
svm_set_intercept(svm, INTERCEPT_INVD);
svm_set_intercept(svm, INTERCEPT_INVLPG);
svm_set_intercept(svm, INTERCEPT_INVLPGA);
svm_set_intercept(svm, INTERCEPT_IOIO_PROT);
svm_set_intercept(svm, INTERCEPT_MSR_PROT);
svm_set_intercept(svm, INTERCEPT_TASK_SWITCH);
svm_set_intercept(svm, INTERCEPT_SHUTDOWN);
svm_set_intercept(svm, INTERCEPT_VMRUN);
svm_set_intercept(svm, INTERCEPT_VMMCALL);
svm_set_intercept(svm, INTERCEPT_VMLOAD);
svm_set_intercept(svm, INTERCEPT_VMSAVE);
svm_set_intercept(svm, INTERCEPT_STGI);
svm_set_intercept(svm, INTERCEPT_CLGI);
svm_set_intercept(svm, INTERCEPT_SKINIT);
svm_set_intercept(svm, INTERCEPT_WBINVD);
svm_set_intercept(svm, INTERCEPT_XSETBV);
svm_set_intercept(svm, INTERCEPT_RDPRU);
svm_set_intercept(svm, INTERCEPT_RSM);
if (!kvm_mwait_in_guest(vcpu->kvm)) {
svm_set_intercept(svm, INTERCEPT_MONITOR);
svm_set_intercept(svm, INTERCEPT_MWAIT);
}
if (!kvm_hlt_in_guest(vcpu->kvm))
svm_set_intercept(svm, INTERCEPT_HLT);
control->iopm_base_pa = __sme_set(iopm_base);
control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
control->int_ctl = V_INTR_MASKING_MASK;
init_seg(&save->es);
init_seg(&save->ss);
init_seg(&save->ds);
init_seg(&save->fs);
init_seg(&save->gs);
save->cs.selector = 0xf000;
save->cs.base = 0xffff0000;
/* Executable/Readable Code Segment */
save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
save->cs.limit = 0xffff;
save->gdtr.base = 0;
save->gdtr.limit = 0xffff;
save->idtr.base = 0;
save->idtr.limit = 0xffff;
init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
if (npt_enabled) {
/* Setup VMCB for Nested Paging */
control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
svm_clr_intercept(svm, INTERCEPT_INVLPG);
clr_exception_intercept(svm, PF_VECTOR);
svm_clr_intercept(svm, INTERCEPT_CR3_READ);
svm_clr_intercept(svm, INTERCEPT_CR3_WRITE);
save->g_pat = vcpu->arch.pat;
save->cr3 = 0;
}
svm->current_vmcb->asid_generation = 0;
svm->asid = 0;
svm->nested.vmcb12_gpa = INVALID_GPA;
svm->nested.last_vmcb12_gpa = INVALID_GPA;
if (!kvm_pause_in_guest(vcpu->kvm)) {
control->pause_filter_count = pause_filter_count;
if (pause_filter_thresh)
control->pause_filter_thresh = pause_filter_thresh;
svm_set_intercept(svm, INTERCEPT_PAUSE);
} else {
svm_clr_intercept(svm, INTERCEPT_PAUSE);
}
svm_recalc_instruction_intercepts(vcpu, svm);
/*
* If the host supports V_SPEC_CTRL then disable the interception
* of MSR_IA32_SPEC_CTRL.
*/
if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
if (kvm_vcpu_apicv_active(vcpu))
avic_init_vmcb(svm, vmcb);
if (vnmi)
svm->vmcb->control.int_ctl |= V_NMI_ENABLE_MASK;
if (vgif) {
svm_clr_intercept(svm, INTERCEPT_STGI);
svm_clr_intercept(svm, INTERCEPT_CLGI);
svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
}
if (sev_guest(vcpu->kvm))
sev_init_vmcb(svm);
svm_hv_init_vmcb(vmcb);
init_vmcb_after_set_cpuid(vcpu);
vmcb_mark_all_dirty(vmcb);
enable_gif(svm);
}
static void __svm_vcpu_reset(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
svm_vcpu_init_msrpm(vcpu, svm->msrpm);
svm_init_osvw(vcpu);
vcpu->arch.microcode_version = 0x01000065;
svm->tsc_ratio_msr = kvm_caps.default_tsc_scaling_ratio;
svm->nmi_masked = false;
svm->awaiting_iret_completion = false;
if (sev_es_guest(vcpu->kvm))
sev_es_vcpu_reset(svm);
}
static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
{
struct vcpu_svm *svm = to_svm(vcpu);
svm->spec_ctrl = 0;
svm->virt_spec_ctrl = 0;
init_vmcb(vcpu);
if (!init_event)
__svm_vcpu_reset(vcpu);
}
void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb)
{
svm->current_vmcb = target_vmcb;
svm->vmcb = target_vmcb->ptr;
}
static int svm_vcpu_create(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm;
struct page *vmcb01_page;
struct page *vmsa_page = NULL;
int err;
BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
svm = to_svm(vcpu);
err = -ENOMEM;
vmcb01_page = snp_safe_alloc_page(vcpu);
if (!vmcb01_page)
goto out;
if (sev_es_guest(vcpu->kvm)) {
/*
* SEV-ES guests require a separate VMSA page used to contain
* the encrypted register state of the guest.
*/
vmsa_page = snp_safe_alloc_page(vcpu);
if (!vmsa_page)
goto error_free_vmcb_page;
/*
* SEV-ES guests maintain an encrypted version of their FPU
* state which is restored and saved on VMRUN and VMEXIT.
* Mark vcpu->arch.guest_fpu->fpstate as scratch so it won't
* do xsave/xrstor on it.
*/
fpstate_set_confidential(&vcpu->arch.guest_fpu);
}
err = avic_init_vcpu(svm);
if (err)
goto error_free_vmsa_page;
svm->msrpm = svm_vcpu_alloc_msrpm();
if (!svm->msrpm) {
err = -ENOMEM;
goto error_free_vmsa_page;
}
svm->x2avic_msrs_intercepted = true;
svm->vmcb01.ptr = page_address(vmcb01_page);
svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT);
svm_switch_vmcb(svm, &svm->vmcb01);
if (vmsa_page)
svm->sev_es.vmsa = page_address(vmsa_page);
svm->guest_state_loaded = false;
return 0;
error_free_vmsa_page:
if (vmsa_page)
__free_page(vmsa_page);
error_free_vmcb_page:
__free_page(vmcb01_page);
out:
return err;
}
static void svm_clear_current_vmcb(struct vmcb *vmcb)
{
int i;
for_each_online_cpu(i)
cmpxchg(per_cpu_ptr(&svm_data.current_vmcb, i), vmcb, NULL);
}
static void svm_vcpu_free(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
/*
* The vmcb page can be recycled, causing a false negative in
* svm_vcpu_load(). So, ensure that no logical CPU has this
* vmcb page recorded as its current vmcb.
*/
svm_clear_current_vmcb(svm->vmcb);
svm_leave_nested(vcpu);
svm_free_nested(svm);
sev_free_vcpu(vcpu);
__free_page(pfn_to_page(__sme_clr(svm->vmcb01.pa) >> PAGE_SHIFT));
__free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE));
}
static struct sev_es_save_area *sev_es_host_save_area(struct svm_cpu_data *sd)
{
return page_address(sd->save_area) + 0x400;
}
static void svm_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
if (sev_es_guest(vcpu->kvm))
sev_es_unmap_ghcb(svm);
if (svm->guest_state_loaded)
return;
/*
* Save additional host state that will be restored on VMEXIT (sev-es)
* or subsequent vmload of host save area.
*/
vmsave(sd->save_area_pa);
if (sev_es_guest(vcpu->kvm))
sev_es_prepare_switch_to_guest(sev_es_host_save_area(sd));
if (tsc_scaling)
__svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio);
/*
* TSC_AUX is always virtualized for SEV-ES guests when the feature is
* available. The user return MSR support is not required in this case
* because TSC_AUX is restored on #VMEXIT from the host save area
* (which has been initialized in svm_hardware_enable()).
*/
if (likely(tsc_aux_uret_slot >= 0) &&
(!boot_cpu_has(X86_FEATURE_V_TSC_AUX) || !sev_es_guest(vcpu->kvm)))
kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull);
svm->guest_state_loaded = true;
}
static void svm_prepare_host_switch(struct kvm_vcpu *vcpu)
{
to_svm(vcpu)->guest_state_loaded = false;
}
static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
if (sd->current_vmcb != svm->vmcb) {
sd->current_vmcb = svm->vmcb;
if (!cpu_feature_enabled(X86_FEATURE_IBPB_ON_VMEXIT))
indirect_branch_prediction_barrier();
}
if (kvm_vcpu_apicv_active(vcpu))
avic_vcpu_load(vcpu, cpu);
}
static void svm_vcpu_put(struct kvm_vcpu *vcpu)
{
if (kvm_vcpu_apicv_active(vcpu))
avic_vcpu_put(vcpu);
svm_prepare_host_switch(vcpu);
++vcpu->stat.host_state_reload;
}
static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
unsigned long rflags = svm->vmcb->save.rflags;
if (svm->nmi_singlestep) {
/* Hide our flags if they were not set by the guest */
if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
rflags &= ~X86_EFLAGS_TF;
if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
rflags &= ~X86_EFLAGS_RF;
}
return rflags;
}
static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
{
if (to_svm(vcpu)->nmi_singlestep)
rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
/*
* Any change of EFLAGS.VM is accompanied by a reload of SS
* (caused by either a task switch or an inter-privilege IRET),
* so we do not need to update the CPL here.
*/
to_svm(vcpu)->vmcb->save.rflags = rflags;
}
static bool svm_get_if_flag(struct kvm_vcpu *vcpu)
{
struct vmcb *vmcb = to_svm(vcpu)->vmcb;
return sev_es_guest(vcpu->kvm)
? vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK
: kvm_get_rflags(vcpu) & X86_EFLAGS_IF;
}
static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
{
kvm_register_mark_available(vcpu, reg);
switch (reg) {
case VCPU_EXREG_PDPTR:
/*
* When !npt_enabled, mmu->pdptrs[] is already available since
* it is always updated per SDM when moving to CRs.
*/
if (npt_enabled)
load_pdptrs(vcpu, kvm_read_cr3(vcpu));
break;
default:
KVM_BUG_ON(1, vcpu->kvm);
}
}
static void svm_set_vintr(struct vcpu_svm *svm)
{
struct vmcb_control_area *control;
/*
* The following fields are ignored when AVIC is enabled
*/
WARN_ON(kvm_vcpu_apicv_activated(&svm->vcpu));
svm_set_intercept(svm, INTERCEPT_VINTR);
/*
* Recalculating intercepts may have cleared the VINTR intercept. If
* V_INTR_MASKING is enabled in vmcb12, then the effective RFLAGS.IF
* for L1 physical interrupts is L1's RFLAGS.IF at the time of VMRUN.
* Requesting an interrupt window if save.RFLAGS.IF=0 is pointless as
* interrupts will never be unblocked while L2 is running.
*/
if (!svm_is_intercept(svm, INTERCEPT_VINTR))
return;
/*
* This is just a dummy VINTR to actually cause a vmexit to happen.
* Actual injection of virtual interrupts happens through EVENTINJ.
*/
control = &svm->vmcb->control;
control->int_vector = 0x0;
control->int_ctl &= ~V_INTR_PRIO_MASK;
control->int_ctl |= V_IRQ_MASK |
((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
}
static void svm_clear_vintr(struct vcpu_svm *svm)
{
svm_clr_intercept(svm, INTERCEPT_VINTR);
/* Drop int_ctl fields related to VINTR injection. */
svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
if (is_guest_mode(&svm->vcpu)) {
svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) !=
(svm->nested.ctl.int_ctl & V_TPR_MASK));
svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl &
V_IRQ_INJECTION_BITS_MASK;
svm->vmcb->control.int_vector = svm->nested.ctl.int_vector;
}
vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
}
static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
{
struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save;
switch (seg) {
case VCPU_SREG_CS: return &save->cs;
case VCPU_SREG_DS: return &save->ds;
case VCPU_SREG_ES: return &save->es;
case VCPU_SREG_FS: return &save01->fs;
case VCPU_SREG_GS: return &save01->gs;
case VCPU_SREG_SS: return &save->ss;
case VCPU_SREG_TR: return &save01->tr;
case VCPU_SREG_LDTR: return &save01->ldtr;
}
BUG();
return NULL;
}
static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
{
struct vmcb_seg *s = svm_seg(vcpu, seg);
return s->base;
}
static void svm_get_segment(struct kvm_vcpu *vcpu,
struct kvm_segment *var, int seg)
{
struct vmcb_seg *s = svm_seg(vcpu, seg);
var->base = s->base;
var->limit = s->limit;
var->selector = s->selector;
var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
/*
* AMD CPUs circa 2014 track the G bit for all segments except CS.
* However, the SVM spec states that the G bit is not observed by the
* CPU, and some VMware virtual CPUs drop the G bit for all segments.
* So let's synthesize a legal G bit for all segments, this helps
* running KVM nested. It also helps cross-vendor migration, because
* Intel's vmentry has a check on the 'G' bit.
*/
var->g = s->limit > 0xfffff;
/*
* AMD's VMCB does not have an explicit unusable field, so emulate it
* for cross vendor migration purposes by "not present"
*/
var->unusable = !var->present;
switch (seg) {
case VCPU_SREG_TR:
/*
* Work around a bug where the busy flag in the tr selector
* isn't exposed
*/
var->type |= 0x2;
break;
case VCPU_SREG_DS:
case VCPU_SREG_ES:
case VCPU_SREG_FS:
case VCPU_SREG_GS:
/*
* The accessed bit must always be set in the segment
* descriptor cache, although it can be cleared in the
* descriptor, the cached bit always remains at 1. Since
* Intel has a check on this, set it here to support
* cross-vendor migration.
*/
if (!var->unusable)
var->type |= 0x1;
break;
case VCPU_SREG_SS:
/*
* On AMD CPUs sometimes the DB bit in the segment
* descriptor is left as 1, although the whole segment has
* been made unusable. Clear it here to pass an Intel VMX
* entry check when cross vendor migrating.
*/
if (var->unusable)
var->db = 0;
/* This is symmetric with svm_set_segment() */
var->dpl = to_svm(vcpu)->vmcb->save.cpl;
break;
}
}
static int svm_get_cpl(struct kvm_vcpu *vcpu)
{
struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
return save->cpl;
}
static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
{
struct kvm_segment cs;
svm_get_segment(vcpu, &cs, VCPU_SREG_CS);
*db = cs.db;
*l = cs.l;
}
static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
{
struct vcpu_svm *svm = to_svm(vcpu);
dt->size = svm->vmcb->save.idtr.limit;
dt->address = svm->vmcb->save.idtr.base;
}
static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
{
struct vcpu_svm *svm = to_svm(vcpu);
svm->vmcb->save.idtr.limit = dt->size;
svm->vmcb->save.idtr.base = dt->address ;
vmcb_mark_dirty(svm->vmcb, VMCB_DT);
}
static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
{
struct vcpu_svm *svm = to_svm(vcpu);
dt->size = svm->vmcb->save.gdtr.limit;
dt->address = svm->vmcb->save.gdtr.base;
}
static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
{
struct vcpu_svm *svm = to_svm(vcpu);
svm->vmcb->save.gdtr.limit = dt->size;
svm->vmcb->save.gdtr.base = dt->address ;
vmcb_mark_dirty(svm->vmcb, VMCB_DT);
}
static void sev_post_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
{
struct vcpu_svm *svm = to_svm(vcpu);
/*
* For guests that don't set guest_state_protected, the cr3 update is
* handled via kvm_mmu_load() while entering the guest. For guests
* that do (SEV-ES/SEV-SNP), the cr3 update needs to be written to
* VMCB save area now, since the save area will become the initial
* contents of the VMSA, and future VMCB save area updates won't be
* seen.
*/
if (sev_es_guest(vcpu->kvm)) {
svm->vmcb->save.cr3 = cr3;
vmcb_mark_dirty(svm->vmcb, VMCB_CR);
}
}
static bool svm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
{
return true;
}
void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
{
struct vcpu_svm *svm = to_svm(vcpu);
u64 hcr0 = cr0;
bool old_paging = is_paging(vcpu);
#ifdef CONFIG_X86_64
if (vcpu->arch.efer & EFER_LME) {
if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
vcpu->arch.efer |= EFER_LMA;
if (!vcpu->arch.guest_state_protected)
svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
}
if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
vcpu->arch.efer &= ~EFER_LMA;
if (!vcpu->arch.guest_state_protected)
svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
}
}
#endif
vcpu->arch.cr0 = cr0;
if (!npt_enabled) {
hcr0 |= X86_CR0_PG | X86_CR0_WP;
if (old_paging != is_paging(vcpu))
svm_set_cr4(vcpu, kvm_read_cr4(vcpu));
}
/*
* re-enable caching here because the QEMU bios
* does not do it - this results in some delay at
* reboot
*/
if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
hcr0 &= ~(X86_CR0_CD | X86_CR0_NW);
svm->vmcb->save.cr0 = hcr0;
vmcb_mark_dirty(svm->vmcb, VMCB_CR);
/*
* SEV-ES guests must always keep the CR intercepts cleared. CR
* tracking is done using the CR write traps.
*/
if (sev_es_guest(vcpu->kvm))
return;
if (hcr0 == cr0) {
/* Selective CR0 write remains on. */
svm_clr_intercept(svm, INTERCEPT_CR0_READ);
svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
} else {
svm_set_intercept(svm, INTERCEPT_CR0_READ);
svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
}
}
static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
{
return true;
}
void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
{
unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
unsigned long old_cr4 = vcpu->arch.cr4;
if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
svm_flush_tlb_current(vcpu);
vcpu->arch.cr4 = cr4;
if (!npt_enabled) {
cr4 |= X86_CR4_PAE;
if (!is_paging(vcpu))
cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
}
cr4 |= host_cr4_mce;
to_svm(vcpu)->vmcb->save.cr4 = cr4;
vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
kvm_update_cpuid_runtime(vcpu);
}
static void svm_set_segment(struct kvm_vcpu *vcpu,
struct kvm_segment *var, int seg)
{
struct vcpu_svm *svm = to_svm(vcpu);
struct vmcb_seg *s = svm_seg(vcpu, seg);
s->base = var->base;
s->limit = var->limit;
s->selector = var->selector;
s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
/*
* This is always accurate, except if SYSRET returned to a segment
* with SS.DPL != 3. Intel does not have this quirk, and always
* forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
* would entail passing the CPL to userspace and back.
*/
if (seg == VCPU_SREG_SS)
/* This is symmetric with svm_get_segment() */
svm->vmcb->save.cpl = (var->dpl & 3);
vmcb_mark_dirty(svm->vmcb, VMCB_SEG);
}
static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
clr_exception_intercept(svm, BP_VECTOR);
if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
set_exception_intercept(svm, BP_VECTOR);
}
}
static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
{
if (sd->next_asid > sd->max_asid) {
++sd->asid_generation;
sd->next_asid = sd->min_asid;
svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
}
svm->current_vmcb->asid_generation = sd->asid_generation;
svm->asid = sd->next_asid++;
}
static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value)
{
struct vmcb *vmcb = svm->vmcb;
if (svm->vcpu.arch.guest_state_protected)
return;
if (unlikely(value != vmcb->save.dr6)) {
vmcb->save.dr6 = value;
vmcb_mark_dirty(vmcb, VMCB_DR);
}
}
static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
if (WARN_ON_ONCE(sev_es_guest(vcpu->kvm)))
return;
get_debugreg(vcpu->arch.db[0], 0);
get_debugreg(vcpu->arch.db[1], 1);
get_debugreg(vcpu->arch.db[2], 2);
get_debugreg(vcpu->arch.db[3], 3);
/*
* We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here,
* because db_interception might need it. We can do it before vmentry.
*/
vcpu->arch.dr6 = svm->vmcb->save.dr6;
vcpu->arch.dr7 = svm->vmcb->save.dr7;
vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
set_dr_intercepts(svm);
}
static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
{
struct vcpu_svm *svm = to_svm(vcpu);
if (vcpu->arch.guest_state_protected)
return;
svm->vmcb->save.dr7 = value;
vmcb_mark_dirty(svm->vmcb, VMCB_DR);
}
static int pf_interception(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
u64 fault_address = svm->vmcb->control.exit_info_2;
u64 error_code = svm->vmcb->control.exit_info_1;
return kvm_handle_page_fault(vcpu, error_code, fault_address,
static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
svm->vmcb->control.insn_bytes : NULL,
svm->vmcb->control.insn_len);
}
static int npf_interception(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
u64 fault_address = svm->vmcb->control.exit_info_2;
u64 error_code = svm->vmcb->control.exit_info_1;
trace_kvm_page_fault(vcpu, fault_address, error_code);
return kvm_mmu_page_fault(vcpu, fault_address, error_code,
static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
svm->vmcb->control.insn_bytes : NULL,
svm->vmcb->control.insn_len);
}
static int db_interception(struct kvm_vcpu *vcpu)
{
struct kvm_run *kvm_run = vcpu->run;
struct vcpu_svm *svm = to_svm(vcpu);
if (!(vcpu->guest_debug &
(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
!svm->nmi_singlestep) {
u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW;
kvm_queue_exception_p(vcpu, DB_VECTOR, payload);
return 1;
}
if (svm->nmi_singlestep) {
disable_nmi_singlestep(svm);
/* Make sure we check for pending NMIs upon entry */
kvm_make_request(KVM_REQ_EVENT, vcpu);
}
if (vcpu->guest_debug &
(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
kvm_run->exit_reason = KVM_EXIT_DEBUG;
kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6;
kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7;
kvm_run->debug.arch.pc =
svm->vmcb->save.cs.base + svm->vmcb->save.rip;
kvm_run->debug.arch.exception = DB_VECTOR;
return 0;
}
return 1;
}
static int bp_interception(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
struct kvm_run *kvm_run = vcpu->run;
kvm_run->exit_reason = KVM_EXIT_DEBUG;
kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
kvm_run->debug.arch.exception = BP_VECTOR;
return 0;
}
static int ud_interception(struct kvm_vcpu *vcpu)
{
return handle_ud(vcpu);
}
static int ac_interception(struct kvm_vcpu *vcpu)
{
kvm_queue_exception_e(vcpu, AC_VECTOR, 0);
return 1;
}
static bool is_erratum_383(void)
{
int err, i;
u64 value;
if (!erratum_383_found)
return false;
value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
if (err)
return false;
/* Bit 62 may or may not be set for this mce */
value &= ~(1ULL << 62);
if (value != 0xb600000000010015ULL)
return false;
/* Clear MCi_STATUS registers */
for (i = 0; i < 6; ++i)
native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
if (!err) {
u32 low, high;
value &= ~(1ULL << 2);
low = lower_32_bits(value);
high = upper_32_bits(value);
native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
}
/* Flush tlb to evict multi-match entries */
__flush_tlb_all();
return true;
}
static void svm_handle_mce(struct kvm_vcpu *vcpu)
{
if (is_erratum_383()) {
/*
* Erratum 383 triggered. Guest state is corrupt so kill the
* guest.
*/
pr_err("Guest triggered AMD Erratum 383\n");
kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
return;
}
/*
* On an #MC intercept the MCE handler is not called automatically in
* the host. So do it by hand here.
*/
kvm_machine_check();
}
static int mc_interception(struct kvm_vcpu *vcpu)
{
return 1;
}
static int shutdown_interception(struct kvm_vcpu *vcpu)
{
struct kvm_run *kvm_run = vcpu->run;
struct vcpu_svm *svm = to_svm(vcpu);
/*
* VMCB is undefined after a SHUTDOWN intercept. INIT the vCPU to put
* the VMCB in a known good state. Unfortuately, KVM doesn't have
* KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking
* userspace. At a platform view, INIT is acceptable behavior as
* there exist bare metal platforms that automatically INIT the CPU
* in response to shutdown.
*
* The VM save area for SEV-ES guests has already been encrypted so it
* cannot be reinitialized, i.e. synthesizing INIT is futile.
*/
if (!sev_es_guest(vcpu->kvm)) {
clear_page(svm->vmcb);
kvm_vcpu_reset(vcpu, true);
}
kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
return 0;
}
static int io_interception(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
int size, in, string;
unsigned port;
++vcpu->stat.io_exits;
string = (io_info & SVM_IOIO_STR_MASK) != 0;
in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
port = io_info >> 16;
size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
if (string) {
if (sev_es_guest(vcpu->kvm))
return sev_es_string_io(svm, size, port, in);
else
return kvm_emulate_instruction(vcpu, 0);
}
svm->next_rip = svm->vmcb->control.exit_info_2;
return kvm_fast_pio(vcpu, size, port, in);
}
static int nmi_interception(struct kvm_vcpu *vcpu)
{
return 1;
}
static int smi_interception(struct kvm_vcpu *vcpu)
{
return 1;
}
static int intr_interception(struct kvm_vcpu *vcpu)
{
++vcpu->stat.irq_exits;
return 1;
}
static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload)
{
struct vcpu_svm *svm = to_svm(vcpu);
struct vmcb *vmcb12;
struct kvm_host_map map;
int ret;
if (nested_svm_check_permissions(vcpu))
return 1;
ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
if (ret) {
if (ret == -EINVAL)
kvm_inject_gp(vcpu, 0);
return 1;
}
vmcb12 = map.hva;
ret = kvm_skip_emulated_instruction(vcpu);
if (vmload) {
svm_copy_vmloadsave_state(svm->vmcb, vmcb12);
svm->sysenter_eip_hi = 0;
svm->sysenter_esp_hi = 0;
} else {
svm_copy_vmloadsave_state(vmcb12, svm->vmcb);
}
kvm_vcpu_unmap(vcpu, &map, true);
return ret;
}
static int vmload_interception(struct kvm_vcpu *vcpu)
{
return vmload_vmsave_interception(vcpu, true);
}
static int vmsave_interception(struct kvm_vcpu *vcpu)
{
return vmload_vmsave_interception(vcpu, false);
}
static int vmrun_interception(struct kvm_vcpu *vcpu)
{
if (nested_svm_check_permissions(vcpu))
return 1;
return nested_svm_vmrun(vcpu);
}
enum {
NONE_SVM_INSTR,
SVM_INSTR_VMRUN,
SVM_INSTR_VMLOAD,
SVM_INSTR_VMSAVE,
};
/* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */
static int svm_instr_opcode(struct kvm_vcpu *vcpu)
{
struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
if (ctxt->b != 0x1 || ctxt->opcode_len != 2)
return NONE_SVM_INSTR;
switch (ctxt->modrm) {
case 0xd8: /* VMRUN */
return SVM_INSTR_VMRUN;
case 0xda: /* VMLOAD */
return SVM_INSTR_VMLOAD;
case 0xdb: /* VMSAVE */
return SVM_INSTR_VMSAVE;
default:
break;
}
return NONE_SVM_INSTR;
}
static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode)
{
const int guest_mode_exit_codes[] = {
[SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN,
[SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD,
[SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE,
};
int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = {
[SVM_INSTR_VMRUN] = vmrun_interception,
[SVM_INSTR_VMLOAD] = vmload_interception,
[SVM_INSTR_VMSAVE] = vmsave_interception,
};
struct vcpu_svm *svm = to_svm(vcpu);
int ret;
if (is_guest_mode(vcpu)) {
/* Returns '1' or -errno on failure, '0' on success. */
ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]);
if (ret)
return ret;
return 1;
}
return svm_instr_handlers[opcode](vcpu);
}
/*
* #GP handling code. Note that #GP can be triggered under the following two
* cases:
* 1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on
* some AMD CPUs when EAX of these instructions are in the reserved memory
* regions (e.g. SMM memory on host).
* 2) VMware backdoor
*/
static int gp_interception(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
u32 error_code = svm->vmcb->control.exit_info_1;
int opcode;
/* Both #GP cases have zero error_code */
if (error_code)
goto reinject;
/* Decode the instruction for usage later */
if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK)
goto reinject;
opcode = svm_instr_opcode(vcpu);
if (opcode == NONE_SVM_INSTR) {
if (!enable_vmware_backdoor)
goto reinject;
/*
* VMware backdoor emulation on #GP interception only handles
* IN{S}, OUT{S}, and RDPMC.
*/
if (!is_guest_mode(vcpu))
return kvm_emulate_instruction(vcpu,
EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE);
} else {
/* All SVM instructions expect page aligned RAX */
if (svm->vmcb->save.rax & ~PAGE_MASK)
goto reinject;
return emulate_svm_instr(vcpu, opcode);
}
reinject:
kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
return 1;
}
void svm_set_gif(struct vcpu_svm *svm, bool value)
{
if (value) {
/*
* If VGIF is enabled, the STGI intercept is only added to
* detect the opening of the SMI/NMI window; remove it now.
* Likewise, clear the VINTR intercept, we will set it
* again while processing KVM_REQ_EVENT if needed.
*/
if (vgif)
svm_clr_intercept(svm, INTERCEPT_STGI);
if (svm_is_intercept(svm, INTERCEPT_VINTR))
svm_clear_vintr(svm);
enable_gif(svm);
if (svm->vcpu.arch.smi_pending ||
svm->vcpu.arch.nmi_pending ||
kvm_cpu_has_injectable_intr(&svm->vcpu) ||
kvm_apic_has_pending_init_or_sipi(&svm->vcpu))
kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
} else {
disable_gif(svm);
/*
* After a CLGI no interrupts should come. But if vGIF is
* in use, we still rely on the VINTR intercept (rather than
* STGI) to detect an open interrupt window.
*/
if (!vgif)
svm_clear_vintr(svm);
}
}
static int stgi_interception(struct kvm_vcpu *vcpu)
{
int ret;
if (nested_svm_check_permissions(vcpu))
return 1;
ret = kvm_skip_emulated_instruction(vcpu);
svm_set_gif(to_svm(vcpu), true);
return ret;
}
static int clgi_interception(struct kvm_vcpu *vcpu)
{
int ret;
if (nested_svm_check_permissions(vcpu))
return 1;
ret = kvm_skip_emulated_instruction(vcpu);
svm_set_gif(to_svm(vcpu), false);
return ret;
}
static int invlpga_interception(struct kvm_vcpu *vcpu)
{
gva_t gva = kvm_rax_read(vcpu);
u32 asid = kvm_rcx_read(vcpu);
/* FIXME: Handle an address size prefix. */
if (!is_long_mode(vcpu))
gva = (u32)gva;
trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva);
/* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
kvm_mmu_invlpg(vcpu, gva);
return kvm_skip_emulated_instruction(vcpu);
}
static int skinit_interception(struct kvm_vcpu *vcpu)
{
trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu));
kvm_queue_exception(vcpu, UD_VECTOR);
return 1;
}
static int task_switch_interception(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
u16 tss_selector;
int reason;
int int_type = svm->vmcb->control.exit_int_info &
SVM_EXITINTINFO_TYPE_MASK;
int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
uint32_t type =
svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
uint32_t idt_v =
svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
bool has_error_code = false;
u32 error_code = 0;
tss_selector = (u16)svm->vmcb->control.exit_info_1;
if (svm->vmcb->control.exit_info_2 &
(1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
reason = TASK_SWITCH_IRET;
else if (svm->vmcb->control.exit_info_2 &
(1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
reason = TASK_SWITCH_JMP;
else if (idt_v)
reason = TASK_SWITCH_GATE;
else
reason = TASK_SWITCH_CALL;
if (reason == TASK_SWITCH_GATE) {
switch (type) {
case SVM_EXITINTINFO_TYPE_NMI:
vcpu->arch.nmi_injected = false;
break;
case SVM_EXITINTINFO_TYPE_EXEPT:
if (svm->vmcb->control.exit_info_2 &
(1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
has_error_code = true;
error_code =
(u32)svm->vmcb->control.exit_info_2;
}
kvm_clear_exception_queue(vcpu);
break;
case SVM_EXITINTINFO_TYPE_INTR:
case SVM_EXITINTINFO_TYPE_SOFT:
kvm_clear_interrupt_queue(vcpu);
break;
default:
break;
}
}
if (reason != TASK_SWITCH_GATE ||
int_type == SVM_EXITINTINFO_TYPE_SOFT ||
(int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
(int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
if (!svm_skip_emulated_instruction(vcpu))
return 0;
}
if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
int_vec = -1;
return kvm_task_switch(vcpu, tss_selector, int_vec, reason,
has_error_code, error_code);
}
static void svm_clr_iret_intercept(struct vcpu_svm *svm)
{
if (!sev_es_guest(svm->vcpu.kvm))
svm_clr_intercept(svm, INTERCEPT_IRET);
}
static void svm_set_iret_intercept(struct vcpu_svm *svm)
{
if (!sev_es_guest(svm->vcpu.kvm))
svm_set_intercept(svm, INTERCEPT_IRET);
}
static int iret_interception(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
WARN_ON_ONCE(sev_es_guest(vcpu->kvm));
++vcpu->stat.nmi_window_exits;
svm->awaiting_iret_completion = true;
svm_clr_iret_intercept(svm);
svm->nmi_iret_rip = kvm_rip_read(vcpu);
kvm_make_request(KVM_REQ_EVENT, vcpu);
return 1;
}
static int invlpg_interception(struct kvm_vcpu *vcpu)
{
if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
return kvm_emulate_instruction(vcpu, 0);
kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1);
return kvm_skip_emulated_instruction(vcpu);
}
static int emulate_on_interception(struct kvm_vcpu *vcpu)
{
return kvm_emulate_instruction(vcpu, 0);
}
static int rsm_interception(struct kvm_vcpu *vcpu)
{
return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2);
}
static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu,
unsigned long val)
{
struct vcpu_svm *svm = to_svm(vcpu);
unsigned long cr0 = vcpu->arch.cr0;
bool ret = false;
if (!is_guest_mode(vcpu) ||
(!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0))))
return false;
cr0 &= ~SVM_CR0_SELECTIVE_MASK;
val &= ~SVM_CR0_SELECTIVE_MASK;
if (cr0 ^ val) {
svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
}
return ret;
}
#define CR_VALID (1ULL << 63)
static int cr_interception(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
int reg, cr;
unsigned long val;
int err;
if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
return emulate_on_interception(vcpu);
if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
return emulate_on_interception(vcpu);
reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
else
cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
err = 0;
if (cr >= 16) { /* mov to cr */
cr -= 16;
val = kvm_register_read(vcpu, reg);
trace_kvm_cr_write(cr, val);
switch (cr) {
case 0:
if (!check_selective_cr0_intercepted(vcpu, val))
err = kvm_set_cr0(vcpu, val);
else
return 1;
break;
case 3:
err = kvm_set_cr3(vcpu, val);
break;
case 4:
err = kvm_set_cr4(vcpu, val);
break;
case 8:
err = kvm_set_cr8(vcpu, val);
break;
default:
WARN(1, "unhandled write to CR%d", cr);
kvm_queue_exception(vcpu, UD_VECTOR);
return 1;
}
} else { /* mov from cr */
switch (cr) {
case 0:
val = kvm_read_cr0(vcpu);
break;
case 2:
val = vcpu->arch.cr2;
break;
case 3:
val = kvm_read_cr3(vcpu);
break;
case 4:
val = kvm_read_cr4(vcpu);
break;
case 8:
val = kvm_get_cr8(vcpu);
break;
default:
WARN(1, "unhandled read from CR%d", cr);
kvm_queue_exception(vcpu, UD_VECTOR);
return 1;
}
kvm_register_write(vcpu, reg, val);
trace_kvm_cr_read(cr, val);
}
return kvm_complete_insn_gp(vcpu, err);
}
static int cr_trap(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
unsigned long old_value, new_value;
unsigned int cr;
int ret = 0;
new_value = (unsigned long)svm->vmcb->control.exit_info_1;
cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP;
switch (cr) {
case 0:
old_value = kvm_read_cr0(vcpu);
svm_set_cr0(vcpu, new_value);
kvm_post_set_cr0(vcpu, old_value, new_value);
break;
case 4:
old_value = kvm_read_cr4(vcpu);
svm_set_cr4(vcpu, new_value);
kvm_post_set_cr4(vcpu, old_value, new_value);
break;
case 8:
ret = kvm_set_cr8(vcpu, new_value);
break;
default:
WARN(1, "unhandled CR%d write trap", cr);
kvm_queue_exception(vcpu, UD_VECTOR);
return 1;
}
return kvm_complete_insn_gp(vcpu, ret);
}
static int dr_interception(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
int reg, dr;
int err = 0;
/*
* SEV-ES intercepts DR7 only to disable guest debugging and the guest issues a VMGEXIT
* for DR7 write only. KVM cannot change DR7 (always swapped as type 'A') so return early.
*/
if (sev_es_guest(vcpu->kvm))
return 1;
if (vcpu->guest_debug == 0) {
/*
* No more DR vmexits; force a reload of the debug registers
* and reenter on this instruction. The next vmexit will
* retrieve the full state of the debug registers.
*/
clr_dr_intercepts(svm);
vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
return 1;
}
if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
return emulate_on_interception(vcpu);
reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
if (dr >= 16) { /* mov to DRn */
dr -= 16;
err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
} else {
kvm_register_write(vcpu, reg, kvm_get_dr(vcpu, dr));
}
return kvm_complete_insn_gp(vcpu, err);
}
static int cr8_write_interception(struct kvm_vcpu *vcpu)
{
int r;
u8 cr8_prev = kvm_get_cr8(vcpu);
/* instruction emulation calls kvm_set_cr8() */
r = cr_interception(vcpu);
if (lapic_in_kernel(vcpu))
return r;
if (cr8_prev <= kvm_get_cr8(vcpu))
return r;
vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
return 0;
}
static int efer_trap(struct kvm_vcpu *vcpu)
{
struct msr_data msr_info;
int ret;
/*
* Clear the EFER_SVME bit from EFER. The SVM code always sets this
* bit in svm_set_efer(), but __kvm_valid_efer() checks it against
* whether the guest has X86_FEATURE_SVM - this avoids a failure if
* the guest doesn't have X86_FEATURE_SVM.
*/
msr_info.host_initiated = false;
msr_info.index = MSR_EFER;
msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME;
ret = kvm_set_msr_common(vcpu, &msr_info);
return kvm_complete_insn_gp(vcpu, ret);
}
static int svm_get_msr_feature(struct kvm_msr_entry *msr)
{
msr->data = 0;
switch (msr->index) {
case MSR_AMD64_DE_CFG:
if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC))
msr->data |= MSR_AMD64_DE_CFG_LFENCE_SERIALIZE;
break;
default:
return KVM_MSR_RET_INVALID;
}
return 0;
}
static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
{
struct vcpu_svm *svm = to_svm(vcpu);
switch (msr_info->index) {
case MSR_AMD64_TSC_RATIO:
if (!msr_info->host_initiated &&
!guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR))
return 1;
msr_info->data = svm->tsc_ratio_msr;
break;
case MSR_STAR:
msr_info->data = svm->vmcb01.ptr->save.star;
break;
#ifdef CONFIG_X86_64
case MSR_LSTAR:
msr_info->data = svm->vmcb01.ptr->save.lstar;
break;
case MSR_CSTAR:
msr_info->data = svm->vmcb01.ptr->save.cstar;
break;
case MSR_KERNEL_GS_BASE:
msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base;
break;
case MSR_SYSCALL_MASK:
msr_info->data = svm->vmcb01.ptr->save.sfmask;
break;
#endif
case MSR_IA32_SYSENTER_CS:
msr_info->data = svm->vmcb01.ptr->save.sysenter_cs;
break;
case MSR_IA32_SYSENTER_EIP:
msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip;
if (guest_cpuid_is_intel(vcpu))
msr_info->data |= (u64)svm->sysenter_eip_hi << 32;
break;
case MSR_IA32_SYSENTER_ESP:
msr_info->data = svm->vmcb01.ptr->save.sysenter_esp;
if (guest_cpuid_is_intel(vcpu))
msr_info->data |= (u64)svm->sysenter_esp_hi << 32;
break;
case MSR_TSC_AUX:
msr_info->data = svm->tsc_aux;
break;
case MSR_IA32_DEBUGCTLMSR:
msr_info->data = svm_get_lbr_vmcb(svm)->save.dbgctl;
break;
case MSR_IA32_LASTBRANCHFROMIP:
msr_info->data = svm_get_lbr_vmcb(svm)->save.br_from;
break;
case MSR_IA32_LASTBRANCHTOIP:
msr_info->data = svm_get_lbr_vmcb(svm)->save.br_to;
break;
case MSR_IA32_LASTINTFROMIP:
msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_from;
break;
case MSR_IA32_LASTINTTOIP:
msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_to;
break;
case MSR_VM_HSAVE_PA:
msr_info->data = svm->nested.hsave_msr;
break;
case MSR_VM_CR:
msr_info->data = svm->nested.vm_cr_msr;
break;
case MSR_IA32_SPEC_CTRL:
if (!msr_info->host_initiated &&
!guest_has_spec_ctrl_msr(vcpu))
return 1;
if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
msr_info->data = svm->vmcb->save.spec_ctrl;
else
msr_info->data = svm->spec_ctrl;
break;
case MSR_AMD64_VIRT_SPEC_CTRL:
if (!msr_info->host_initiated &&
!guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
return 1;
msr_info->data = svm->virt_spec_ctrl;
break;
case MSR_F15H_IC_CFG: {
int family, model;
family = guest_cpuid_family(vcpu);
model = guest_cpuid_model(vcpu);
if (family < 0 || model < 0)
return kvm_get_msr_common(vcpu, msr_info);
msr_info->data = 0;
if (family == 0x15 &&
(model >= 0x2 && model < 0x20))
msr_info->data = 0x1E;
}
break;
case MSR_AMD64_DE_CFG:
msr_info->data = svm->msr_decfg;
break;
default:
return kvm_get_msr_common(vcpu, msr_info);
}
return 0;
}
static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err)
{
struct vcpu_svm *svm = to_svm(vcpu);
if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->sev_es.ghcb))
return kvm_complete_insn_gp(vcpu, err);
ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 1);
ghcb_set_sw_exit_info_2(svm->sev_es.ghcb,
X86_TRAP_GP |
SVM_EVTINJ_TYPE_EXEPT |
SVM_EVTINJ_VALID);
return 1;
}
static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
{
struct vcpu_svm *svm = to_svm(vcpu);
int svm_dis, chg_mask;
if (data & ~SVM_VM_CR_VALID_MASK)
return 1;
chg_mask = SVM_VM_CR_VALID_MASK;
if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
svm->nested.vm_cr_msr &= ~chg_mask;
svm->nested.vm_cr_msr |= (data & chg_mask);
svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
/* check for svm_disable while efer.svme is set */
if (svm_dis && (vcpu->arch.efer & EFER_SVME))
return 1;
return 0;
}
static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
{
struct vcpu_svm *svm = to_svm(vcpu);
int ret = 0;
u32 ecx = msr->index;
u64 data = msr->data;
switch (ecx) {
case MSR_AMD64_TSC_RATIO:
if (!guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR)) {
if (!msr->host_initiated)
return 1;
/*
* In case TSC scaling is not enabled, always
* leave this MSR at the default value.
*
* Due to bug in qemu 6.2.0, it would try to set
* this msr to 0 if tsc scaling is not enabled.
* Ignore this value as well.
*/
if (data != 0 && data != svm->tsc_ratio_msr)
return 1;
break;
}
if (data & SVM_TSC_RATIO_RSVD)
return 1;
svm->tsc_ratio_msr = data;
if (guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR) &&
is_guest_mode(vcpu))
nested_svm_update_tsc_ratio_msr(vcpu);
break;
case MSR_IA32_CR_PAT:
ret = kvm_set_msr_common(vcpu, msr);
if (ret)
break;
svm->vmcb01.ptr->save.g_pat = data;
if (is_guest_mode(vcpu))
nested_vmcb02_compute_g_pat(svm);
vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
break;
case MSR_IA32_SPEC_CTRL:
if (!msr->host_initiated &&
!guest_has_spec_ctrl_msr(vcpu))
return 1;
if (kvm_spec_ctrl_test_value(data))
return 1;
if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
svm->vmcb->save.spec_ctrl = data;
else
svm->spec_ctrl = data;
if (!data)
break;
/*
* For non-nested:
* When it's written (to non-zero) for the first time, pass
* it through.
*
* For nested:
* The handling of the MSR bitmap for L2 guests is done in
* nested_svm_vmrun_msrpm.
* We update the L1 MSR bit as well since it will end up
* touching the MSR anyway now.
*/
set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
break;
case MSR_AMD64_VIRT_SPEC_CTRL:
if (!msr->host_initiated &&
!guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
return 1;
if (data & ~SPEC_CTRL_SSBD)
return 1;
svm->virt_spec_ctrl = data;
break;
case MSR_STAR:
svm->vmcb01.ptr->save.star = data;
break;
#ifdef CONFIG_X86_64
case MSR_LSTAR:
svm->vmcb01.ptr->save.lstar = data;
break;
case MSR_CSTAR:
svm->vmcb01.ptr->save.cstar = data;
break;
case MSR_KERNEL_GS_BASE:
svm->vmcb01.ptr->save.kernel_gs_base = data;
break;
case MSR_SYSCALL_MASK:
svm->vmcb01.ptr->save.sfmask = data;
break;
#endif
case MSR_IA32_SYSENTER_CS:
svm->vmcb01.ptr->save.sysenter_cs = data;
break;
case MSR_IA32_SYSENTER_EIP:
svm->vmcb01.ptr->save.sysenter_eip = (u32)data;
/*
* We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs
* when we spoof an Intel vendor ID (for cross vendor migration).
* In this case we use this intercept to track the high
* 32 bit part of these msrs to support Intel's
* implementation of SYSENTER/SYSEXIT.
*/
svm->sysenter_eip_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0;
break;
case MSR_IA32_SYSENTER_ESP:
svm->vmcb01.ptr->save.sysenter_esp = (u32)data;
svm->sysenter_esp_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0;
break;
case MSR_TSC_AUX:
/*
* TSC_AUX is always virtualized for SEV-ES guests when the
* feature is available. The user return MSR support is not
* required in this case because TSC_AUX is restored on #VMEXIT
* from the host save area (which has been initialized in
* svm_hardware_enable()).
*/
if (boot_cpu_has(X86_FEATURE_V_TSC_AUX) && sev_es_guest(vcpu->kvm))
break;
/*
* TSC_AUX is usually changed only during boot and never read
* directly. Intercept TSC_AUX instead of exposing it to the
* guest via direct_access_msrs, and switch it via user return.
*/
preempt_disable();
ret = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull);
preempt_enable();
if (ret)
break;
svm->tsc_aux = data;
break;
case MSR_IA32_DEBUGCTLMSR:
if (!lbrv) {
kvm_pr_unimpl_wrmsr(vcpu, ecx, data);
break;
}
if (data & DEBUGCTL_RESERVED_BITS)
return 1;
svm_get_lbr_vmcb(svm)->save.dbgctl = data;
svm_update_lbrv(vcpu);
break;
case MSR_VM_HSAVE_PA:
/*
* Old kernels did not validate the value written to
* MSR_VM_HSAVE_PA. Allow KVM_SET_MSR to set an invalid
* value to allow live migrating buggy or malicious guests
* originating from those kernels.
*/
if (!msr->host_initiated && !page_address_valid(vcpu, data))
return 1;
svm->nested.hsave_msr = data & PAGE_MASK;
break;
case MSR_VM_CR:
return svm_set_vm_cr(vcpu, data);
case MSR_VM_IGNNE:
kvm_pr_unimpl_wrmsr(vcpu, ecx, data);
break;
case MSR_AMD64_DE_CFG: {
struct kvm_msr_entry msr_entry;
msr_entry.index = msr->index;
if (svm_get_msr_feature(&msr_entry))
return 1;
/* Check the supported bits */
if (data & ~msr_entry.data)
return 1;
/* Don't allow the guest to change a bit, #GP */
if (!msr->host_initiated && (data ^ msr_entry.data))
return 1;
svm->msr_decfg = data;
break;
}
default:
return kvm_set_msr_common(vcpu, msr);
}
return ret;
}
static int msr_interception(struct kvm_vcpu *vcpu)
{
if (to_svm(vcpu)->vmcb->control.exit_info_1)
return kvm_emulate_wrmsr(vcpu);
else
return kvm_emulate_rdmsr(vcpu);
}
static int interrupt_window_interception(struct kvm_vcpu *vcpu)
{
kvm_make_request(KVM_REQ_EVENT, vcpu);
svm_clear_vintr(to_svm(vcpu));
/*
* If not running nested, for AVIC, the only reason to end up here is ExtINTs.
* In this case AVIC was temporarily disabled for
* requesting the IRQ window and we have to re-enable it.
*
* If running nested, still remove the VM wide AVIC inhibit to
* support case in which the interrupt window was requested when the
* vCPU was not running nested.
* All vCPUs which run still run nested, will remain to have their
* AVIC still inhibited due to per-cpu AVIC inhibition.
*/
kvm_clear_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
++vcpu->stat.irq_window_exits;
return 1;
}
static int pause_interception(struct kvm_vcpu *vcpu)
{
bool in_kernel;
/*
* CPL is not made available for an SEV-ES guest, therefore
* vcpu->arch.preempted_in_kernel can never be true. Just
* set in_kernel to false as well.
*/
in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0;
grow_ple_window(vcpu);
kvm_vcpu_on_spin(vcpu, in_kernel);
return kvm_skip_emulated_instruction(vcpu);
}
static int invpcid_interception(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
unsigned long type;
gva_t gva;
if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
kvm_queue_exception(vcpu, UD_VECTOR);
return 1;
}
/*
* For an INVPCID intercept:
* EXITINFO1 provides the linear address of the memory operand.
* EXITINFO2 provides the contents of the register operand.
*/
type = svm->vmcb->control.exit_info_2;
gva = svm->vmcb->control.exit_info_1;
return kvm_handle_invpcid(vcpu, type, gva);
}
static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = {
[SVM_EXIT_READ_CR0] = cr_interception,
[SVM_EXIT_READ_CR3] = cr_interception,
[SVM_EXIT_READ_CR4] = cr_interception,
[SVM_EXIT_READ_CR8] = cr_interception,
[SVM_EXIT_CR0_SEL_WRITE] = cr_interception,
[SVM_EXIT_WRITE_CR0] = cr_interception,
[SVM_EXIT_WRITE_CR3] = cr_interception,
[SVM_EXIT_WRITE_CR4] = cr_interception,
[SVM_EXIT_WRITE_CR8] = cr8_write_interception,
[SVM_EXIT_READ_DR0] = dr_interception,
[SVM_EXIT_READ_DR1] = dr_interception,
[SVM_EXIT_READ_DR2] = dr_interception,
[SVM_EXIT_READ_DR3] = dr_interception,
[SVM_EXIT_READ_DR4] = dr_interception,
[SVM_EXIT_READ_DR5] = dr_interception,
[SVM_EXIT_READ_DR6] = dr_interception,
[SVM_EXIT_READ_DR7] = dr_interception,
[SVM_EXIT_WRITE_DR0] = dr_interception,
[SVM_EXIT_WRITE_DR1] = dr_interception,
[SVM_EXIT_WRITE_DR2] = dr_interception,
[SVM_EXIT_WRITE_DR3] = dr_interception,
[SVM_EXIT_WRITE_DR4] = dr_interception,
[SVM_EXIT_WRITE_DR5] = dr_interception,
[SVM_EXIT_WRITE_DR6] = dr_interception,
[SVM_EXIT_WRITE_DR7] = dr_interception,
[SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
[SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
[SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
[SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
[SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
[SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception,
[SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception,
[SVM_EXIT_INTR] = intr_interception,
[SVM_EXIT_NMI] = nmi_interception,
[SVM_EXIT_SMI] = smi_interception,
[SVM_EXIT_VINTR] = interrupt_window_interception,
[SVM_EXIT_RDPMC] = kvm_emulate_rdpmc,
[SVM_EXIT_CPUID] = kvm_emulate_cpuid,
[SVM_EXIT_IRET] = iret_interception,
[SVM_EXIT_INVD] = kvm_emulate_invd,
[SVM_EXIT_PAUSE] = pause_interception,
[SVM_EXIT_HLT] = kvm_emulate_halt,
[SVM_EXIT_INVLPG] = invlpg_interception,
[SVM_EXIT_INVLPGA] = invlpga_interception,
[SVM_EXIT_IOIO] = io_interception,
[SVM_EXIT_MSR] = msr_interception,
[SVM_EXIT_TASK_SWITCH] = task_switch_interception,
[SVM_EXIT_SHUTDOWN] = shutdown_interception,
[SVM_EXIT_VMRUN] = vmrun_interception,
[SVM_EXIT_VMMCALL] = kvm_emulate_hypercall,
[SVM_EXIT_VMLOAD] = vmload_interception,
[SVM_EXIT_VMSAVE] = vmsave_interception,
[SVM_EXIT_STGI] = stgi_interception,
[SVM_EXIT_CLGI] = clgi_interception,
[SVM_EXIT_SKINIT] = skinit_interception,
[SVM_EXIT_RDTSCP] = kvm_handle_invalid_op,
[SVM_EXIT_WBINVD] = kvm_emulate_wbinvd,
[SVM_EXIT_MONITOR] = kvm_emulate_monitor,
[SVM_EXIT_MWAIT] = kvm_emulate_mwait,
[SVM_EXIT_XSETBV] = kvm_emulate_xsetbv,
[SVM_EXIT_RDPRU] = kvm_handle_invalid_op,
[SVM_EXIT_EFER_WRITE_TRAP] = efer_trap,
[SVM_EXIT_CR0_WRITE_TRAP] = cr_trap,
[SVM_EXIT_CR4_WRITE_TRAP] = cr_trap,
[SVM_EXIT_CR8_WRITE_TRAP] = cr_trap,
[SVM_EXIT_INVPCID] = invpcid_interception,
[SVM_EXIT_NPF] = npf_interception,
[SVM_EXIT_RSM] = rsm_interception,
[SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception,
[SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception,
[SVM_EXIT_VMGEXIT] = sev_handle_vmgexit,
};
static void dump_vmcb(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
struct vmcb_control_area *control = &svm->vmcb->control;
struct vmcb_save_area *save = &svm->vmcb->save;
struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save;
if (!dump_invalid_vmcb) {
pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
return;
}
pr_err("VMCB %p, last attempted VMRUN on CPU %d\n",
svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu);
pr_err("VMCB Control Area:\n");
pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff);
pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16);
pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff);
pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16);
pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]);
pr_err("%-20s%08x %08x\n", "intercepts:",
control->intercepts[INTERCEPT_WORD3],
control->intercepts[INTERCEPT_WORD4]);
pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
pr_err("%-20s%d\n", "pause filter threshold:",
control->pause_filter_thresh);
pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
pr_err("%-20s%d\n", "asid:", control->asid);
pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
pr_err("%-20s%08x\n", "int_state:", control->int_state);
pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa);
pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa);
pr_err("VMCB State Save Area:\n");
pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
"es:",
save->es.selector, save->es.attrib,
save->es.limit, save->es.base);
pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
"cs:",
save->cs.selector, save->cs.attrib,
save->cs.limit, save->cs.base);
pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
"ss:",
save->ss.selector, save->ss.attrib,
save->ss.limit, save->ss.base);
pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
"ds:",
save->ds.selector, save->ds.attrib,
save->ds.limit, save->ds.base);
pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
"fs:",
save01->fs.selector, save01->fs.attrib,
save01->fs.limit, save01->fs.base);
pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
"gs:",
save01->gs.selector, save01->gs.attrib,
save01->gs.limit, save01->gs.base);
pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
"gdtr:",
save->gdtr.selector, save->gdtr.attrib,
save->gdtr.limit, save->gdtr.base);
pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
"ldtr:",
save01->ldtr.selector, save01->ldtr.attrib,
save01->ldtr.limit, save01->ldtr.base);
pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
"idtr:",
save->idtr.selector, save->idtr.attrib,
save->idtr.limit, save->idtr.base);
pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
"tr:",
save01->tr.selector, save01->tr.attrib,
save01->tr.limit, save01->tr.base);
pr_err("vmpl: %d cpl: %d efer: %016llx\n",
save->vmpl, save->cpl, save->efer);
pr_err("%-15s %016llx %-13s %016llx\n",
"cr0:", save->cr0, "cr2:", save->cr2);
pr_err("%-15s %016llx %-13s %016llx\n",
"cr3:", save->cr3, "cr4:", save->cr4);
pr_err("%-15s %016llx %-13s %016llx\n",
"dr6:", save->dr6, "dr7:", save->dr7);
pr_err("%-15s %016llx %-13s %016llx\n",
"rip:", save->rip, "rflags:", save->rflags);
pr_err("%-15s %016llx %-13s %016llx\n",
"rsp:", save->rsp, "rax:", save->rax);
pr_err("%-15s %016llx %-13s %016llx\n",
"star:", save01->star, "lstar:", save01->lstar);
pr_err("%-15s %016llx %-13s %016llx\n",
"cstar:", save01->cstar, "sfmask:", save01->sfmask);
pr_err("%-15s %016llx %-13s %016llx\n",
"kernel_gs_base:", save01->kernel_gs_base,
"sysenter_cs:", save01->sysenter_cs);
pr_err("%-15s %016llx %-13s %016llx\n",
"sysenter_esp:", save01->sysenter_esp,
"sysenter_eip:", save01->sysenter_eip);
pr_err("%-15s %016llx %-13s %016llx\n",
"gpat:", save->g_pat, "dbgctl:", save->dbgctl);
pr_err("%-15s %016llx %-13s %016llx\n",
"br_from:", save->br_from, "br_to:", save->br_to);
pr_err("%-15s %016llx %-13s %016llx\n",
"excp_from:", save->last_excp_from,
"excp_to:", save->last_excp_to);
}
static bool svm_check_exit_valid(u64 exit_code)
{
return (exit_code < ARRAY_SIZE(svm_exit_handlers) &&
svm_exit_handlers[exit_code]);
}
static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code)
{
vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code);
dump_vmcb(vcpu);
vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
vcpu->run->internal.ndata = 2;
vcpu->run->internal.data[0] = exit_code;
vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
return 0;
}
int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code)
{
if (!svm_check_exit_valid(exit_code))
return svm_handle_invalid_exit(vcpu, exit_code);
#ifdef CONFIG_MITIGATION_RETPOLINE
if (exit_code == SVM_EXIT_MSR)
return msr_interception(vcpu);
else if (exit_code == SVM_EXIT_VINTR)
return interrupt_window_interception(vcpu);
else if (exit_code == SVM_EXIT_INTR)
return intr_interception(vcpu);
else if (exit_code == SVM_EXIT_HLT)
return kvm_emulate_halt(vcpu);
else if (exit_code == SVM_EXIT_NPF)
return npf_interception(vcpu);
#endif
return svm_exit_handlers[exit_code](vcpu);
}
static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
u64 *info1, u64 *info2,
u32 *intr_info, u32 *error_code)
{
struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
*reason = control->exit_code;
*info1 = control->exit_info_1;
*info2 = control->exit_info_2;
*intr_info = control->exit_int_info;
if ((*intr_info & SVM_EXITINTINFO_VALID) &&
(*intr_info & SVM_EXITINTINFO_VALID_ERR))
*error_code = control->exit_int_info_err;
else
*error_code = 0;
}
static int svm_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
{
struct vcpu_svm *svm = to_svm(vcpu);
struct kvm_run *kvm_run = vcpu->run;
u32 exit_code = svm->vmcb->control.exit_code;
/* SEV-ES guests must use the CR write traps to track CR registers. */
if (!sev_es_guest(vcpu->kvm)) {
if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE))
vcpu->arch.cr0 = svm->vmcb->save.cr0;
if (npt_enabled)
vcpu->arch.cr3 = svm->vmcb->save.cr3;
}
if (is_guest_mode(vcpu)) {
int vmexit;
trace_kvm_nested_vmexit(vcpu, KVM_ISA_SVM);
vmexit = nested_svm_exit_special(svm);
if (vmexit == NESTED_EXIT_CONTINUE)
vmexit = nested_svm_exit_handled(svm);
if (vmexit == NESTED_EXIT_DONE)
return 1;
}
if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
kvm_run->fail_entry.hardware_entry_failure_reason
= svm->vmcb->control.exit_code;
kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
dump_vmcb(vcpu);
return 0;
}
if (exit_fastpath != EXIT_FASTPATH_NONE)
return 1;
return svm_invoke_exit_handler(vcpu, exit_code);
}
static void pre_svm_run(struct kvm_vcpu *vcpu)
{
struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
struct vcpu_svm *svm = to_svm(vcpu);
/*
* If the previous vmrun of the vmcb occurred on a different physical
* cpu, then mark the vmcb dirty and assign a new asid. Hardware's
* vmcb clean bits are per logical CPU, as are KVM's asid assignments.
*/
if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) {
svm->current_vmcb->asid_generation = 0;
vmcb_mark_all_dirty(svm->vmcb);
svm->current_vmcb->cpu = vcpu->cpu;
}
if (sev_guest(vcpu->kvm))
return pre_sev_run(svm, vcpu->cpu);
/* FIXME: handle wraparound of asid_generation */
if (svm->current_vmcb->asid_generation != sd->asid_generation)
new_asid(svm, sd);
}
static void svm_inject_nmi(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
if (svm->nmi_l1_to_l2)
return;
/*
* No need to manually track NMI masking when vNMI is enabled, hardware
* automatically sets V_NMI_BLOCKING_MASK as appropriate, including the
* case where software directly injects an NMI.
*/
if (!is_vnmi_enabled(svm)) {
svm->nmi_masked = true;
svm_set_iret_intercept(svm);
}
++vcpu->stat.nmi_injections;
}
static bool svm_is_vnmi_pending(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
if (!is_vnmi_enabled(svm))
return false;
return !!(svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK);
}
static bool svm_set_vnmi_pending(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
if (!is_vnmi_enabled(svm))
return false;
if (svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK)
return false;
svm->vmcb->control.int_ctl |= V_NMI_PENDING_MASK;
vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
/*
* Because the pending NMI is serviced by hardware, KVM can't know when
* the NMI is "injected", but for all intents and purposes, passing the
* NMI off to hardware counts as injection.
*/
++vcpu->stat.nmi_injections;
return true;
}
static void svm_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
{
struct vcpu_svm *svm = to_svm(vcpu);
u32 type;
if (vcpu->arch.interrupt.soft) {
if (svm_update_soft_interrupt_rip(vcpu))
return;
type = SVM_EVTINJ_TYPE_SOFT;
} else {
type = SVM_EVTINJ_TYPE_INTR;
}
trace_kvm_inj_virq(vcpu->arch.interrupt.nr,
vcpu->arch.interrupt.soft, reinjected);
++vcpu->stat.irq_injections;
svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
SVM_EVTINJ_VALID | type;
}
void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode,
int trig_mode, int vector)
{
/*
* apic->apicv_active must be read after vcpu->mode.
* Pairs with smp_store_release in vcpu_enter_guest.
*/
bool in_guest_mode = (smp_load_acquire(&vcpu->mode) == IN_GUEST_MODE);
/* Note, this is called iff the local APIC is in-kernel. */
if (!READ_ONCE(vcpu->arch.apic->apicv_active)) {
/* Process the interrupt via kvm_check_and_inject_events(). */
kvm_make_request(KVM_REQ_EVENT, vcpu);
kvm_vcpu_kick(vcpu);
return;
}
trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector);
if (in_guest_mode) {
/*
* Signal the doorbell to tell hardware to inject the IRQ. If
* the vCPU exits the guest before the doorbell chimes, hardware
* will automatically process AVIC interrupts at the next VMRUN.
*/
avic_ring_doorbell(vcpu);
} else {
/*
* Wake the vCPU if it was blocking. KVM will then detect the
* pending IRQ when checking if the vCPU has a wake event.
*/
kvm_vcpu_wake_up(vcpu);
}
}
static void svm_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode,
int trig_mode, int vector)
{
kvm_lapic_set_irr(vector, apic);
/*
* Pairs with the smp_mb_*() after setting vcpu->guest_mode in
* vcpu_enter_guest() to ensure the write to the vIRR is ordered before
* the read of guest_mode. This guarantees that either VMRUN will see
* and process the new vIRR entry, or that svm_complete_interrupt_delivery
* will signal the doorbell if the CPU has already entered the guest.
*/
smp_mb__after_atomic();
svm_complete_interrupt_delivery(apic->vcpu, delivery_mode, trig_mode, vector);
}
static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
{
struct vcpu_svm *svm = to_svm(vcpu);
/*
* SEV-ES guests must always keep the CR intercepts cleared. CR
* tracking is done using the CR write traps.
*/
if (sev_es_guest(vcpu->kvm))
return;
if (nested_svm_virtualize_tpr(vcpu))
return;
svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
if (irr == -1)
return;
if (tpr >= irr)
svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
}
static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
if (is_vnmi_enabled(svm))
return svm->vmcb->control.int_ctl & V_NMI_BLOCKING_MASK;
else
return svm->nmi_masked;
}
static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
{
struct vcpu_svm *svm = to_svm(vcpu);
if (is_vnmi_enabled(svm)) {
if (masked)
svm->vmcb->control.int_ctl |= V_NMI_BLOCKING_MASK;
else
svm->vmcb->control.int_ctl &= ~V_NMI_BLOCKING_MASK;
} else {
svm->nmi_masked = masked;
if (masked)
svm_set_iret_intercept(svm);
else
svm_clr_iret_intercept(svm);
}
}
bool svm_nmi_blocked(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
struct vmcb *vmcb = svm->vmcb;
if (!gif_set(svm))
return true;
if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
return false;
if (svm_get_nmi_mask(vcpu))
return true;
return vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK;
}
static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
{
struct vcpu_svm *svm = to_svm(vcpu);
if (svm->nested.nested_run_pending)
return -EBUSY;
if (svm_nmi_blocked(vcpu))
return 0;
/* An NMI must not be injected into L2 if it's supposed to VM-Exit. */
if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
return -EBUSY;
return 1;
}
bool svm_interrupt_blocked(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
struct vmcb *vmcb = svm->vmcb;
if (!gif_set(svm))
return true;
if (is_guest_mode(vcpu)) {
/* As long as interrupts are being delivered... */
if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK)
? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF)
: !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
return true;
/* ... vmexits aren't blocked by the interrupt shadow */
if (nested_exit_on_intr(svm))
return false;
} else {
if (!svm_get_if_flag(vcpu))
return true;
}
return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK);
}
static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
{
struct vcpu_svm *svm = to_svm(vcpu);
if (svm->nested.nested_run_pending)
return -EBUSY;
if (svm_interrupt_blocked(vcpu))
return 0;
/*
* An IRQ must not be injected into L2 if it's supposed to VM-Exit,
* e.g. if the IRQ arrived asynchronously after checking nested events.
*/
if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm))
return -EBUSY;
return 1;
}
static void svm_enable_irq_window(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
/*
* In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
* 1, because that's a separate STGI/VMRUN intercept. The next time we
* get that intercept, this function will be called again though and
* we'll get the vintr intercept. However, if the vGIF feature is
* enabled, the STGI interception will not occur. Enable the irq
* window under the assumption that the hardware will set the GIF.
*/
if (vgif || gif_set(svm)) {
/*
* IRQ window is not needed when AVIC is enabled,
* unless we have pending ExtINT since it cannot be injected
* via AVIC. In such case, KVM needs to temporarily disable AVIC,
* and fallback to injecting IRQ via V_IRQ.
*
* If running nested, AVIC is already locally inhibited
* on this vCPU, therefore there is no need to request
* the VM wide AVIC inhibition.
*/
if (!is_guest_mode(vcpu))
kvm_set_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
svm_set_vintr(svm);
}
}
static void svm_enable_nmi_window(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
/*
* KVM should never request an NMI window when vNMI is enabled, as KVM
* allows at most one to-be-injected NMI and one pending NMI, i.e. if
* two NMIs arrive simultaneously, KVM will inject one and set
* V_NMI_PENDING for the other. WARN, but continue with the standard
* single-step approach to try and salvage the pending NMI.
*/
WARN_ON_ONCE(is_vnmi_enabled(svm));
if (svm_get_nmi_mask(vcpu) && !svm->awaiting_iret_completion)
return; /* IRET will cause a vm exit */
/*
* SEV-ES guests are responsible for signaling when a vCPU is ready to
* receive a new NMI, as SEV-ES guests can't be single-stepped, i.e.
* KVM can't intercept and single-step IRET to detect when NMIs are
* unblocked (architecturally speaking). See SVM_VMGEXIT_NMI_COMPLETE.
*
* Note, GIF is guaranteed to be '1' for SEV-ES guests as hardware
* ignores SEV-ES guest writes to EFER.SVME *and* CLGI/STGI are not
* supported NAEs in the GHCB protocol.
*/
if (sev_es_guest(vcpu->kvm))
return;
if (!gif_set(svm)) {
if (vgif)
svm_set_intercept(svm, INTERCEPT_STGI);
return; /* STGI will cause a vm exit */
}
/*
* Something prevents NMI from been injected. Single step over possible
* problem (IRET or exception injection or interrupt shadow)
*/
svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
svm->nmi_singlestep = true;
svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
}
static void svm_flush_tlb_asid(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
/*
* Unlike VMX, SVM doesn't provide a way to flush only NPT TLB entries.
* A TLB flush for the current ASID flushes both "host" and "guest" TLB
* entries, and thus is a superset of Hyper-V's fine grained flushing.
*/
kvm_hv_vcpu_purge_flush_tlb(vcpu);
/*
* Flush only the current ASID even if the TLB flush was invoked via
* kvm_flush_remote_tlbs(). Although flushing remote TLBs requires all
* ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and
* unconditionally does a TLB flush on both nested VM-Enter and nested
* VM-Exit (via kvm_mmu_reset_context()).
*/
if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
else
svm->current_vmcb->asid_generation--;
}
static void svm_flush_tlb_current(struct kvm_vcpu *vcpu)
{
hpa_t root_tdp = vcpu->arch.mmu->root.hpa;
/*
* When running on Hyper-V with EnlightenedNptTlb enabled, explicitly
* flush the NPT mappings via hypercall as flushing the ASID only
* affects virtual to physical mappings, it does not invalidate guest
* physical to host physical mappings.
*/
if (svm_hv_is_enlightened_tlb_enabled(vcpu) && VALID_PAGE(root_tdp))
hyperv_flush_guest_mapping(root_tdp);
svm_flush_tlb_asid(vcpu);
}
static void svm_flush_tlb_all(struct kvm_vcpu *vcpu)
{
/*
* When running on Hyper-V with EnlightenedNptTlb enabled, remote TLB
* flushes should be routed to hv_flush_remote_tlbs() without requesting
* a "regular" remote flush. Reaching this point means either there's
* a KVM bug or a prior hv_flush_remote_tlbs() call failed, both of
* which might be fatal to the guest. Yell, but try to recover.
*/
if (WARN_ON_ONCE(svm_hv_is_enlightened_tlb_enabled(vcpu)))
hv_flush_remote_tlbs(vcpu->kvm);
svm_flush_tlb_asid(vcpu);
}
static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
{
struct vcpu_svm *svm = to_svm(vcpu);
invlpga(gva, svm->vmcb->control.asid);
}
static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
if (nested_svm_virtualize_tpr(vcpu))
return;
if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) {
int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
kvm_set_cr8(vcpu, cr8);
}
}
static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
u64 cr8;
if (nested_svm_virtualize_tpr(vcpu) ||
kvm_vcpu_apicv_active(vcpu))
return;
cr8 = kvm_get_cr8(vcpu);
svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
}
static void svm_complete_soft_interrupt(struct kvm_vcpu *vcpu, u8 vector,
int type)
{
bool is_exception = (type == SVM_EXITINTINFO_TYPE_EXEPT);
bool is_soft = (type == SVM_EXITINTINFO_TYPE_SOFT);
struct vcpu_svm *svm = to_svm(vcpu);
/*
* If NRIPS is enabled, KVM must snapshot the pre-VMRUN next_rip that's
* associated with the original soft exception/interrupt. next_rip is
* cleared on all exits that can occur while vectoring an event, so KVM
* needs to manually set next_rip for re-injection. Unlike the !nrips
* case below, this needs to be done if and only if KVM is re-injecting
* the same event, i.e. if the event is a soft exception/interrupt,
* otherwise next_rip is unused on VMRUN.
*/
if (nrips && (is_soft || (is_exception && kvm_exception_is_soft(vector))) &&
kvm_is_linear_rip(vcpu, svm->soft_int_old_rip + svm->soft_int_csbase))
svm->vmcb->control.next_rip = svm->soft_int_next_rip;
/*
* If NRIPS isn't enabled, KVM must manually advance RIP prior to
* injecting the soft exception/interrupt. That advancement needs to
* be unwound if vectoring didn't complete. Note, the new event may
* not be the injected event, e.g. if KVM injected an INTn, the INTn
* hit a #NP in the guest, and the #NP encountered a #PF, the #NP will
* be the reported vectored event, but RIP still needs to be unwound.
*/
else if (!nrips && (is_soft || is_exception) &&
kvm_is_linear_rip(vcpu, svm->soft_int_next_rip + svm->soft_int_csbase))
kvm_rip_write(vcpu, svm->soft_int_old_rip);
}
static void svm_complete_interrupts(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
u8 vector;
int type;
u32 exitintinfo = svm->vmcb->control.exit_int_info;
bool nmi_l1_to_l2 = svm->nmi_l1_to_l2;
bool soft_int_injected = svm->soft_int_injected;
svm->nmi_l1_to_l2 = false;
svm->soft_int_injected = false;
/*
* If we've made progress since setting awaiting_iret_completion, we've
* executed an IRET and can allow NMI injection.
*/
if (svm->awaiting_iret_completion &&
kvm_rip_read(vcpu) != svm->nmi_iret_rip) {
svm->awaiting_iret_completion = false;
svm->nmi_masked = false;
kvm_make_request(KVM_REQ_EVENT, vcpu);
}
vcpu->arch.nmi_injected = false;
kvm_clear_exception_queue(vcpu);
kvm_clear_interrupt_queue(vcpu);
if (!(exitintinfo & SVM_EXITINTINFO_VALID))
return;
kvm_make_request(KVM_REQ_EVENT, vcpu);
vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
if (soft_int_injected)
svm_complete_soft_interrupt(vcpu, vector, type);
switch (type) {
case SVM_EXITINTINFO_TYPE_NMI:
vcpu->arch.nmi_injected = true;
svm->nmi_l1_to_l2 = nmi_l1_to_l2;
break;
case SVM_EXITINTINFO_TYPE_EXEPT:
/*
* Never re-inject a #VC exception.
*/
if (vector == X86_TRAP_VC)
break;
if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
u32 err = svm->vmcb->control.exit_int_info_err;
kvm_requeue_exception_e(vcpu, vector, err);
} else
kvm_requeue_exception(vcpu, vector);
break;
case SVM_EXITINTINFO_TYPE_INTR:
kvm_queue_interrupt(vcpu, vector, false);
break;
case SVM_EXITINTINFO_TYPE_SOFT:
kvm_queue_interrupt(vcpu, vector, true);
break;
default:
break;
}
}
static void svm_cancel_injection(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
struct vmcb_control_area *control = &svm->vmcb->control;
control->exit_int_info = control->event_inj;
control->exit_int_info_err = control->event_inj_err;
control->event_inj = 0;
svm_complete_interrupts(vcpu);
}
static int svm_vcpu_pre_run(struct kvm_vcpu *vcpu)
{
return 1;
}
static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
{
if (is_guest_mode(vcpu))
return EXIT_FASTPATH_NONE;
if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR &&
to_svm(vcpu)->vmcb->control.exit_info_1)
return handle_fastpath_set_msr_irqoff(vcpu);
return EXIT_FASTPATH_NONE;
}
static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu, bool spec_ctrl_intercepted)
{
struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
struct vcpu_svm *svm = to_svm(vcpu);
guest_state_enter_irqoff();
amd_clear_divider();
if (sev_es_guest(vcpu->kvm))
__svm_sev_es_vcpu_run(svm, spec_ctrl_intercepted,
sev_es_host_save_area(sd));
else
__svm_vcpu_run(svm, spec_ctrl_intercepted);
guest_state_exit_irqoff();
}
static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu,
bool force_immediate_exit)
{
struct vcpu_svm *svm = to_svm(vcpu);
bool spec_ctrl_intercepted = msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL);
trace_kvm_entry(vcpu, force_immediate_exit);
svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
/*
* Disable singlestep if we're injecting an interrupt/exception.
* We don't want our modified rflags to be pushed on the stack where
* we might not be able to easily reset them if we disabled NMI
* singlestep later.
*/
if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
/*
* Event injection happens before external interrupts cause a
* vmexit and interrupts are disabled here, so smp_send_reschedule
* is enough to force an immediate vmexit.
*/
disable_nmi_singlestep(svm);
force_immediate_exit = true;
}
if (force_immediate_exit)
smp_send_reschedule(vcpu->cpu);
pre_svm_run(vcpu);
sync_lapic_to_cr8(vcpu);
if (unlikely(svm->asid != svm->vmcb->control.asid)) {
svm->vmcb->control.asid = svm->asid;
vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
}
svm->vmcb->save.cr2 = vcpu->arch.cr2;
svm_hv_update_vp_id(svm->vmcb, vcpu);
/*
* Run with all-zero DR6 unless needed, so that we can get the exact cause
* of a #DB.
*/
if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
svm_set_dr6(svm, vcpu->arch.dr6);
else
svm_set_dr6(svm, DR6_ACTIVE_LOW);
clgi();
kvm_load_guest_xsave_state(vcpu);
kvm_wait_lapic_expire(vcpu);
/*
* If this vCPU has touched SPEC_CTRL, restore the guest's value if
* it's non-zero. Since vmentry is serialising on affected CPUs, there
* is no need to worry about the conditional branch over the wrmsr
* being speculatively taken.
*/
if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
x86_spec_ctrl_set_guest(svm->virt_spec_ctrl);
svm_vcpu_enter_exit(vcpu, spec_ctrl_intercepted);
if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
x86_spec_ctrl_restore_host(svm->virt_spec_ctrl);
if (!sev_es_guest(vcpu->kvm)) {
vcpu->arch.cr2 = svm->vmcb->save.cr2;
vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
}
vcpu->arch.regs_dirty = 0;
if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
kvm_load_host_xsave_state(vcpu);
stgi();
/* Any pending NMI will happen here */
if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
kvm_after_interrupt(vcpu);
sync_cr8_to_lapic(vcpu);
svm->next_rip = 0;
if (is_guest_mode(vcpu)) {
nested_sync_control_from_vmcb02(svm);
/* Track VMRUNs that have made past consistency checking */
if (svm->nested.nested_run_pending &&
svm->vmcb->control.exit_code != SVM_EXIT_ERR)
++vcpu->stat.nested_run;
svm->nested.nested_run_pending = 0;
}
svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
vmcb_mark_all_clean(svm->vmcb);
/* if exit due to PF check for async PF */
if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
vcpu->arch.apf.host_apf_flags =
kvm_read_and_reset_apf_flags();
vcpu->arch.regs_avail &= ~SVM_REGS_LAZY_LOAD_SET;
/*
* We need to handle MC intercepts here before the vcpu has a chance to
* change the physical cpu
*/
if (unlikely(svm->vmcb->control.exit_code ==
SVM_EXIT_EXCP_BASE + MC_VECTOR))
svm_handle_mce(vcpu);
trace_kvm_exit(vcpu, KVM_ISA_SVM);
svm_complete_interrupts(vcpu);
return svm_exit_handlers_fastpath(vcpu);
}
static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
int root_level)
{
struct vcpu_svm *svm = to_svm(vcpu);
unsigned long cr3;
if (npt_enabled) {
svm->vmcb->control.nested_cr3 = __sme_set(root_hpa);
vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
hv_track_root_tdp(vcpu, root_hpa);
cr3 = vcpu->arch.cr3;
} else if (root_level >= PT64_ROOT_4LEVEL) {
cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu);
} else {
/* PCID in the guest should be impossible with a 32-bit MMU. */
WARN_ON_ONCE(kvm_get_active_pcid(vcpu));
cr3 = root_hpa;
}
svm->vmcb->save.cr3 = cr3;
vmcb_mark_dirty(svm->vmcb, VMCB_CR);
}
static void
svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
{
/*
* Patch in the VMMCALL instruction:
*/
hypercall[0] = 0x0f;
hypercall[1] = 0x01;
hypercall[2] = 0xd9;
}
/*
* The kvm parameter can be NULL (module initialization, or invocation before
* VM creation). Be sure to check the kvm parameter before using it.
*/
static bool svm_has_emulated_msr(struct kvm *kvm, u32 index)
{
switch (index) {
case MSR_IA32_MCG_EXT_CTL:
case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
return false;
case MSR_IA32_SMBASE:
if (!IS_ENABLED(CONFIG_KVM_SMM))
return false;
/* SEV-ES guests do not support SMM, so report false */
if (kvm && sev_es_guest(kvm))
return false;
break;
default:
break;
}
return true;
}
static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
/*
* SVM doesn't provide a way to disable just XSAVES in the guest, KVM
* can only disable all variants of by disallowing CR4.OSXSAVE from
* being set. As a result, if the host has XSAVE and XSAVES, and the
* guest has XSAVE enabled, the guest can execute XSAVES without
* faulting. Treat XSAVES as enabled in this case regardless of
* whether it's advertised to the guest so that KVM context switches
* XSS on VM-Enter/VM-Exit. Failure to do so would effectively give
* the guest read/write access to the host's XSS.
*/
if (boot_cpu_has(X86_FEATURE_XSAVE) &&
boot_cpu_has(X86_FEATURE_XSAVES) &&
guest_cpuid_has(vcpu, X86_FEATURE_XSAVE))
kvm_governed_feature_set(vcpu, X86_FEATURE_XSAVES);
kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_NRIPS);
kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_TSCRATEMSR);
kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_LBRV);
/*
* Intercept VMLOAD if the vCPU mode is Intel in order to emulate that
* VMLOAD drops bits 63:32 of SYSENTER (ignoring the fact that exposing
* SVM on Intel is bonkers and extremely unlikely to work).
*/
if (!guest_cpuid_is_intel(vcpu))
kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_V_VMSAVE_VMLOAD);
kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_PAUSEFILTER);
kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_PFTHRESHOLD);
kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VGIF);
kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VNMI);
svm_recalc_instruction_intercepts(vcpu, svm);
if (boot_cpu_has(X86_FEATURE_IBPB))
set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0,
!!guest_has_pred_cmd_msr(vcpu));
if (boot_cpu_has(X86_FEATURE_FLUSH_L1D))
set_msr_interception(vcpu, svm->msrpm, MSR_IA32_FLUSH_CMD, 0,
!!guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D));
if (sev_guest(vcpu->kvm))
sev_vcpu_after_set_cpuid(svm);
init_vmcb_after_set_cpuid(vcpu);
}
static bool svm_has_wbinvd_exit(void)
{
return true;
}
#define PRE_EX(exit) { .exit_code = (exit), \
.stage = X86_ICPT_PRE_EXCEPT, }
#define POST_EX(exit) { .exit_code = (exit), \
.stage = X86_ICPT_POST_EXCEPT, }
#define POST_MEM(exit) { .exit_code = (exit), \
.stage = X86_ICPT_POST_MEMACCESS, }
static const struct __x86_intercept {
u32 exit_code;
enum x86_intercept_stage stage;
} x86_intercept_map[] = {
[x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0),
[x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0),
[x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0),
[x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0),
[x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0),
[x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0),
[x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0),
[x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ),
[x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ),
[x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE),
[x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE),
[x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ),
[x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ),
[x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE),
[x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE),
[x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN),
[x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL),
[x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD),
[x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE),
[x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI),
[x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI),
[x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT),
[x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA),
[x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP),
[x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR),
[x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT),
[x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG),
[x86_intercept_invd] = POST_EX(SVM_EXIT_INVD),
[x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD),
[x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR),
[x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC),
[x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR),
[x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC),
[x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID),
[x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM),
[x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE),
[x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF),
[x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF),
[x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT),
[x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET),
[x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP),
[x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT),
[x86_intercept_in] = POST_EX(SVM_EXIT_IOIO),
[x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO),
[x86_intercept_out] = POST_EX(SVM_EXIT_IOIO),
[x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO),
[x86_intercept_xsetbv] = PRE_EX(SVM_EXIT_XSETBV),
};
#undef PRE_EX
#undef POST_EX
#undef POST_MEM
static int svm_check_intercept(struct kvm_vcpu *vcpu,
struct x86_instruction_info *info,
enum x86_intercept_stage stage,
struct x86_exception *exception)
{
struct vcpu_svm *svm = to_svm(vcpu);
int vmexit, ret = X86EMUL_CONTINUE;
struct __x86_intercept icpt_info;
struct vmcb *vmcb = svm->vmcb;
if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
goto out;
icpt_info = x86_intercept_map[info->intercept];
if (stage != icpt_info.stage)
goto out;
switch (icpt_info.exit_code) {
case SVM_EXIT_READ_CR0:
if (info->intercept == x86_intercept_cr_read)
icpt_info.exit_code += info->modrm_reg;
break;
case SVM_EXIT_WRITE_CR0: {
unsigned long cr0, val;
if (info->intercept == x86_intercept_cr_write)
icpt_info.exit_code += info->modrm_reg;
if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
info->intercept == x86_intercept_clts)
break;
if (!(vmcb12_is_intercept(&svm->nested.ctl,
INTERCEPT_SELECTIVE_CR0)))
break;
cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
val = info->src_val & ~SVM_CR0_SELECTIVE_MASK;
if (info->intercept == x86_intercept_lmsw) {
cr0 &= 0xfUL;
val &= 0xfUL;
/* lmsw can't clear PE - catch this here */
if (cr0 & X86_CR0_PE)
val |= X86_CR0_PE;
}
if (cr0 ^ val)
icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
break;
}
case SVM_EXIT_READ_DR0:
case SVM_EXIT_WRITE_DR0:
icpt_info.exit_code += info->modrm_reg;
break;
case SVM_EXIT_MSR:
if (info->intercept == x86_intercept_wrmsr)
vmcb->control.exit_info_1 = 1;
else
vmcb->control.exit_info_1 = 0;
break;
case SVM_EXIT_PAUSE:
/*
* We get this for NOP only, but pause
* is rep not, check this here
*/
if (info->rep_prefix != REPE_PREFIX)
goto out;
break;
case SVM_EXIT_IOIO: {
u64 exit_info;
u32 bytes;
if (info->intercept == x86_intercept_in ||
info->intercept == x86_intercept_ins) {
exit_info = ((info->src_val & 0xffff) << 16) |
SVM_IOIO_TYPE_MASK;
bytes = info->dst_bytes;
} else {
exit_info = (info->dst_val & 0xffff) << 16;
bytes = info->src_bytes;
}
if (info->intercept == x86_intercept_outs ||
info->intercept == x86_intercept_ins)
exit_info |= SVM_IOIO_STR_MASK;
if (info->rep_prefix)
exit_info |= SVM_IOIO_REP_MASK;
bytes = min(bytes, 4u);
exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
vmcb->control.exit_info_1 = exit_info;
vmcb->control.exit_info_2 = info->next_rip;
break;
}
default:
break;
}
/* TODO: Advertise NRIPS to guest hypervisor unconditionally */
if (static_cpu_has(X86_FEATURE_NRIPS))
vmcb->control.next_rip = info->next_rip;
vmcb->control.exit_code = icpt_info.exit_code;
vmexit = nested_svm_exit_handled(svm);
ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
: X86EMUL_CONTINUE;
out:
return ret;
}
static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
{
if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_INTR)
vcpu->arch.at_instruction_boundary = true;
}
static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
{
if (!kvm_pause_in_guest(vcpu->kvm))
shrink_ple_window(vcpu);
}
static void svm_setup_mce(struct kvm_vcpu *vcpu)
{
/* [63:9] are reserved. */
vcpu->arch.mcg_cap &= 0x1ff;
}
#ifdef CONFIG_KVM_SMM
bool svm_smi_blocked(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
/* Per APM Vol.2 15.22.2 "Response to SMI" */
if (!gif_set(svm))
return true;
return is_smm(vcpu);
}
static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
{
struct vcpu_svm *svm = to_svm(vcpu);
if (svm->nested.nested_run_pending)
return -EBUSY;
if (svm_smi_blocked(vcpu))
return 0;
/* An SMI must not be injected into L2 if it's supposed to VM-Exit. */
if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm))
return -EBUSY;
return 1;
}
static int svm_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
{
struct vcpu_svm *svm = to_svm(vcpu);
struct kvm_host_map map_save;
int ret;
if (!is_guest_mode(vcpu))
return 0;
/*
* 32-bit SMRAM format doesn't preserve EFER and SVM state. Userspace is
* responsible for ensuring nested SVM and SMIs are mutually exclusive.
*/
if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
return 1;
smram->smram64.svm_guest_flag = 1;
smram->smram64.svm_guest_vmcb_gpa = svm->nested.vmcb12_gpa;
svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
ret = nested_svm_simple_vmexit(svm, SVM_EXIT_SW);
if (ret)
return ret;
/*
* KVM uses VMCB01 to store L1 host state while L2 runs but
* VMCB01 is going to be used during SMM and thus the state will
* be lost. Temporary save non-VMLOAD/VMSAVE state to the host save
* area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the
* format of the area is identical to guest save area offsetted
* by 0x400 (matches the offset of 'struct vmcb_save_area'
* within 'struct vmcb'). Note: HSAVE area may also be used by
* L1 hypervisor to save additional host context (e.g. KVM does
* that, see svm_prepare_switch_to_guest()) which must be
* preserved.
*/
if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save))
return 1;
BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400);
svm_copy_vmrun_state(map_save.hva + 0x400,
&svm->vmcb01.ptr->save);
kvm_vcpu_unmap(vcpu, &map_save, true);
return 0;
}
static int svm_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
{
struct vcpu_svm *svm = to_svm(vcpu);
struct kvm_host_map map, map_save;
struct vmcb *vmcb12;
int ret;
const struct kvm_smram_state_64 *smram64 = &smram->smram64;
if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
return 0;
/* Non-zero if SMI arrived while vCPU was in guest mode. */
if (!smram64->svm_guest_flag)
return 0;
if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM))
return 1;
if (!(smram64->efer & EFER_SVME))
return 1;
if (kvm_vcpu_map(vcpu, gpa_to_gfn(smram64->svm_guest_vmcb_gpa), &map))
return 1;
ret = 1;
if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save))
goto unmap_map;
if (svm_allocate_nested(svm))
goto unmap_save;
/*
* Restore L1 host state from L1 HSAVE area as VMCB01 was
* used during SMM (see svm_enter_smm())
*/
svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400);
/*
* Enter the nested guest now
*/
vmcb_mark_all_dirty(svm->vmcb01.ptr);
vmcb12 = map.hva;
nested_copy_vmcb_control_to_cache(svm, &vmcb12->control);
nested_copy_vmcb_save_to_cache(svm, &vmcb12->save);
ret = enter_svm_guest_mode(vcpu, smram64->svm_guest_vmcb_gpa, vmcb12, false);
if (ret)
goto unmap_save;
svm->nested.nested_run_pending = 1;
unmap_save:
kvm_vcpu_unmap(vcpu, &map_save, true);
unmap_map:
kvm_vcpu_unmap(vcpu, &map, true);
return ret;
}
static void svm_enable_smi_window(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
if (!gif_set(svm)) {
if (vgif)
svm_set_intercept(svm, INTERCEPT_STGI);
/* STGI will cause a vm exit */
} else {
/* We must be in SMM; RSM will cause a vmexit anyway. */
}
}
#endif
static int svm_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
void *insn, int insn_len)
{
bool smep, smap, is_user;
u64 error_code;
/* Emulation is always possible when KVM has access to all guest state. */
if (!sev_guest(vcpu->kvm))
return X86EMUL_CONTINUE;
/* #UD and #GP should never be intercepted for SEV guests. */
WARN_ON_ONCE(emul_type & (EMULTYPE_TRAP_UD |
EMULTYPE_TRAP_UD_FORCED |
EMULTYPE_VMWARE_GP));
/*
* Emulation is impossible for SEV-ES guests as KVM doesn't have access
* to guest register state.
*/
if (sev_es_guest(vcpu->kvm))
return X86EMUL_RETRY_INSTR;
/*
* Emulation is possible if the instruction is already decoded, e.g.
* when completing I/O after returning from userspace.
*/
if (emul_type & EMULTYPE_NO_DECODE)
return X86EMUL_CONTINUE;
/*
* Emulation is possible for SEV guests if and only if a prefilled
* buffer containing the bytes of the intercepted instruction is
* available. SEV guest memory is encrypted with a guest specific key
* and cannot be decrypted by KVM, i.e. KVM would read ciphertext and
* decode garbage.
*
* If KVM is NOT trying to simply skip an instruction, inject #UD if
* KVM reached this point without an instruction buffer. In practice,
* this path should never be hit by a well-behaved guest, e.g. KVM
* doesn't intercept #UD or #GP for SEV guests, but this path is still
* theoretically reachable, e.g. via unaccelerated fault-like AVIC
* access, and needs to be handled by KVM to avoid putting the guest
* into an infinite loop. Injecting #UD is somewhat arbitrary, but
* its the least awful option given lack of insight into the guest.
*
* If KVM is trying to skip an instruction, simply resume the guest.
* If a #NPF occurs while the guest is vectoring an INT3/INTO, then KVM
* will attempt to re-inject the INT3/INTO and skip the instruction.
* In that scenario, retrying the INT3/INTO and hoping the guest will
* make forward progress is the only option that has a chance of
* success (and in practice it will work the vast majority of the time).
*/
if (unlikely(!insn)) {
if (emul_type & EMULTYPE_SKIP)
return X86EMUL_UNHANDLEABLE;
kvm_queue_exception(vcpu, UD_VECTOR);
return X86EMUL_PROPAGATE_FAULT;
}
/*
* Emulate for SEV guests if the insn buffer is not empty. The buffer
* will be empty if the DecodeAssist microcode cannot fetch bytes for
* the faulting instruction because the code fetch itself faulted, e.g.
* the guest attempted to fetch from emulated MMIO or a guest page
* table used to translate CS:RIP resides in emulated MMIO.
*/
if (likely(insn_len))
return X86EMUL_CONTINUE;
/*
* Detect and workaround Errata 1096 Fam_17h_00_0Fh.
*
* Errata:
* When CPU raises #NPF on guest data access and vCPU CR4.SMAP=1, it is
* possible that CPU microcode implementing DecodeAssist will fail to
* read guest memory at CS:RIP and vmcb.GuestIntrBytes will incorrectly
* be '0'. This happens because microcode reads CS:RIP using a _data_
* loap uop with CPL=0 privileges. If the load hits a SMAP #PF, ucode
* gives up and does not fill the instruction bytes buffer.
*
* As above, KVM reaches this point iff the VM is an SEV guest, the CPU
* supports DecodeAssist, a #NPF was raised, KVM's page fault handler
* triggered emulation (e.g. for MMIO), and the CPU returned 0 in the
* GuestIntrBytes field of the VMCB.
*
* This does _not_ mean that the erratum has been encountered, as the
* DecodeAssist will also fail if the load for CS:RIP hits a legitimate
* #PF, e.g. if the guest attempt to execute from emulated MMIO and
* encountered a reserved/not-present #PF.
*
* To hit the erratum, the following conditions must be true:
* 1. CR4.SMAP=1 (obviously).
* 2. CR4.SMEP=0 || CPL=3. If SMEP=1 and CPL<3, the erratum cannot
* have been hit as the guest would have encountered a SMEP
* violation #PF, not a #NPF.
* 3. The #NPF is not due to a code fetch, in which case failure to
* retrieve the instruction bytes is legitimate (see abvoe).
*
* In addition, don't apply the erratum workaround if the #NPF occurred
* while translating guest page tables (see below).
*/
error_code = to_svm(vcpu)->vmcb->control.exit_info_1;
if (error_code & (PFERR_GUEST_PAGE_MASK | PFERR_FETCH_MASK))
goto resume_guest;
smep = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMEP);
smap = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMAP);
is_user = svm_get_cpl(vcpu) == 3;
if (smap && (!smep || is_user)) {
pr_err_ratelimited("SEV Guest triggered AMD Erratum 1096\n");
/*
* If the fault occurred in userspace, arbitrarily inject #GP
* to avoid killing the guest and to hopefully avoid confusing
* the guest kernel too much, e.g. injecting #PF would not be
* coherent with respect to the guest's page tables. Request
* triple fault if the fault occurred in the kernel as there's
* no fault that KVM can inject without confusing the guest.
* In practice, the triple fault is moot as no sane SEV kernel
* will execute from user memory while also running with SMAP=1.
*/
if (is_user)
kvm_inject_gp(vcpu, 0);
else
kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
return X86EMUL_PROPAGATE_FAULT;
}
resume_guest:
/*
* If the erratum was not hit, simply resume the guest and let it fault
* again. While awful, e.g. the vCPU may get stuck in an infinite loop
* if the fault is at CPL=0, it's the lesser of all evils. Exiting to
* userspace will kill the guest, and letting the emulator read garbage
* will yield random behavior and potentially corrupt the guest.
*
* Simply resuming the guest is technically not a violation of the SEV
* architecture. AMD's APM states that all code fetches and page table
* accesses for SEV guest are encrypted, regardless of the C-Bit. The
* APM also states that encrypted accesses to MMIO are "ignored", but
* doesn't explicitly define "ignored", i.e. doing nothing and letting
* the guest spin is technically "ignoring" the access.
*/
return X86EMUL_RETRY_INSTR;
}
static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
return !gif_set(svm);
}
static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
{
if (!sev_es_guest(vcpu->kvm))
return kvm_vcpu_deliver_sipi_vector(vcpu, vector);
sev_vcpu_deliver_sipi_vector(vcpu, vector);
}
static void svm_vm_destroy(struct kvm *kvm)
{
avic_vm_destroy(kvm);
sev_vm_destroy(kvm);
}
static int svm_vm_init(struct kvm *kvm)
{
if (!pause_filter_count || !pause_filter_thresh)
kvm->arch.pause_in_guest = true;
if (enable_apicv) {
int ret = avic_vm_init(kvm);
if (ret)
return ret;
}
return 0;
}
static void *svm_alloc_apic_backing_page(struct kvm_vcpu *vcpu)
{
struct page *page = snp_safe_alloc_page(vcpu);
if (!page)
return NULL;
return page_address(page);
}
static struct kvm_x86_ops svm_x86_ops __initdata = {
.name = KBUILD_MODNAME,
.check_processor_compatibility = svm_check_processor_compat,
.hardware_unsetup = svm_hardware_unsetup,
.hardware_enable = svm_hardware_enable,
.hardware_disable = svm_hardware_disable,
.has_emulated_msr = svm_has_emulated_msr,
.vcpu_create = svm_vcpu_create,
.vcpu_free = svm_vcpu_free,
.vcpu_reset = svm_vcpu_reset,
.vm_size = sizeof(struct kvm_svm),
.vm_init = svm_vm_init,
.vm_destroy = svm_vm_destroy,
.prepare_switch_to_guest = svm_prepare_switch_to_guest,
.vcpu_load = svm_vcpu_load,
.vcpu_put = svm_vcpu_put,
.vcpu_blocking = avic_vcpu_blocking,
.vcpu_unblocking = avic_vcpu_unblocking,
.update_exception_bitmap = svm_update_exception_bitmap,
.get_msr_feature = svm_get_msr_feature,
.get_msr = svm_get_msr,
.set_msr = svm_set_msr,
.get_segment_base = svm_get_segment_base,
.get_segment = svm_get_segment,
.set_segment = svm_set_segment,
.get_cpl = svm_get_cpl,
.get_cs_db_l_bits = svm_get_cs_db_l_bits,
.is_valid_cr0 = svm_is_valid_cr0,
.set_cr0 = svm_set_cr0,
.post_set_cr3 = sev_post_set_cr3,
.is_valid_cr4 = svm_is_valid_cr4,
.set_cr4 = svm_set_cr4,
.set_efer = svm_set_efer,
.get_idt = svm_get_idt,
.set_idt = svm_set_idt,
.get_gdt = svm_get_gdt,
.set_gdt = svm_set_gdt,
.set_dr7 = svm_set_dr7,
.sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
.cache_reg = svm_cache_reg,
.get_rflags = svm_get_rflags,
.set_rflags = svm_set_rflags,
.get_if_flag = svm_get_if_flag,
.flush_tlb_all = svm_flush_tlb_all,
.flush_tlb_current = svm_flush_tlb_current,
.flush_tlb_gva = svm_flush_tlb_gva,
.flush_tlb_guest = svm_flush_tlb_asid,
.vcpu_pre_run = svm_vcpu_pre_run,
.vcpu_run = svm_vcpu_run,
.handle_exit = svm_handle_exit,
.skip_emulated_instruction = svm_skip_emulated_instruction,
.update_emulated_instruction = NULL,
.set_interrupt_shadow = svm_set_interrupt_shadow,
.get_interrupt_shadow = svm_get_interrupt_shadow,
.patch_hypercall = svm_patch_hypercall,
.inject_irq = svm_inject_irq,
.inject_nmi = svm_inject_nmi,
.is_vnmi_pending = svm_is_vnmi_pending,
.set_vnmi_pending = svm_set_vnmi_pending,
.inject_exception = svm_inject_exception,
.cancel_injection = svm_cancel_injection,
.interrupt_allowed = svm_interrupt_allowed,
.nmi_allowed = svm_nmi_allowed,
.get_nmi_mask = svm_get_nmi_mask,
.set_nmi_mask = svm_set_nmi_mask,
.enable_nmi_window = svm_enable_nmi_window,
.enable_irq_window = svm_enable_irq_window,
.update_cr8_intercept = svm_update_cr8_intercept,
.set_virtual_apic_mode = avic_refresh_virtual_apic_mode,
.refresh_apicv_exec_ctrl = avic_refresh_apicv_exec_ctrl,
.apicv_post_state_restore = avic_apicv_post_state_restore,
.required_apicv_inhibits = AVIC_REQUIRED_APICV_INHIBITS,
.get_exit_info = svm_get_exit_info,
.vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid,
.has_wbinvd_exit = svm_has_wbinvd_exit,
.get_l2_tsc_offset = svm_get_l2_tsc_offset,
.get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier,
.write_tsc_offset = svm_write_tsc_offset,
.write_tsc_multiplier = svm_write_tsc_multiplier,
.load_mmu_pgd = svm_load_mmu_pgd,
.check_intercept = svm_check_intercept,
.handle_exit_irqoff = svm_handle_exit_irqoff,
.sched_in = svm_sched_in,
.nested_ops = &svm_nested_ops,
.deliver_interrupt = svm_deliver_interrupt,
.pi_update_irte = avic_pi_update_irte,
.setup_mce = svm_setup_mce,
#ifdef CONFIG_KVM_SMM
.smi_allowed = svm_smi_allowed,
.enter_smm = svm_enter_smm,
.leave_smm = svm_leave_smm,
.enable_smi_window = svm_enable_smi_window,
#endif
.mem_enc_ioctl = sev_mem_enc_ioctl,
.mem_enc_register_region = sev_mem_enc_register_region,
.mem_enc_unregister_region = sev_mem_enc_unregister_region,
.guest_memory_reclaimed = sev_guest_memory_reclaimed,
.vm_copy_enc_context_from = sev_vm_copy_enc_context_from,
.vm_move_enc_context_from = sev_vm_move_enc_context_from,
.check_emulate_instruction = svm_check_emulate_instruction,
.apic_init_signal_blocked = svm_apic_init_signal_blocked,
.msr_filter_changed = svm_msr_filter_changed,
.complete_emulated_msr = svm_complete_emulated_msr,
.vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector,
.vcpu_get_apicv_inhibit_reasons = avic_vcpu_get_apicv_inhibit_reasons,
.alloc_apic_backing_page = svm_alloc_apic_backing_page,
};
/*
* The default MMIO mask is a single bit (excluding the present bit),
* which could conflict with the memory encryption bit. Check for
* memory encryption support and override the default MMIO mask if
* memory encryption is enabled.
*/
static __init void svm_adjust_mmio_mask(void)
{
unsigned int enc_bit, mask_bit;
u64 msr, mask;
/* If there is no memory encryption support, use existing mask */
if (cpuid_eax(0x80000000) < 0x8000001f)
return;
/* If memory encryption is not enabled, use existing mask */
rdmsrl(MSR_AMD64_SYSCFG, msr);
if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT))
return;
enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
mask_bit = boot_cpu_data.x86_phys_bits;
/* Increment the mask bit if it is the same as the encryption bit */
if (enc_bit == mask_bit)
mask_bit++;
/*
* If the mask bit location is below 52, then some bits above the
* physical addressing limit will always be reserved, so use the
* rsvd_bits() function to generate the mask. This mask, along with
* the present bit, will be used to generate a page fault with
* PFER.RSV = 1.
*
* If the mask bit location is 52 (or above), then clear the mask.
*/
mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK);
}
static __init void svm_set_cpu_caps(void)
{
kvm_set_cpu_caps();
kvm_caps.supported_perf_cap = 0;
kvm_caps.supported_xss = 0;
/* CPUID 0x80000001 and 0x8000000A (SVM features) */
if (nested) {
kvm_cpu_cap_set(X86_FEATURE_SVM);
kvm_cpu_cap_set(X86_FEATURE_VMCBCLEAN);
/*
* KVM currently flushes TLBs on *every* nested SVM transition,
* and so for all intents and purposes KVM supports flushing by
* ASID, i.e. KVM is guaranteed to honor every L1 ASID flush.
*/
kvm_cpu_cap_set(X86_FEATURE_FLUSHBYASID);
if (nrips)
kvm_cpu_cap_set(X86_FEATURE_NRIPS);
if (npt_enabled)
kvm_cpu_cap_set(X86_FEATURE_NPT);
if (tsc_scaling)
kvm_cpu_cap_set(X86_FEATURE_TSCRATEMSR);
if (vls)
kvm_cpu_cap_set(X86_FEATURE_V_VMSAVE_VMLOAD);
if (lbrv)
kvm_cpu_cap_set(X86_FEATURE_LBRV);
if (boot_cpu_has(X86_FEATURE_PAUSEFILTER))
kvm_cpu_cap_set(X86_FEATURE_PAUSEFILTER);
if (boot_cpu_has(X86_FEATURE_PFTHRESHOLD))
kvm_cpu_cap_set(X86_FEATURE_PFTHRESHOLD);
if (vgif)
kvm_cpu_cap_set(X86_FEATURE_VGIF);
if (vnmi)
kvm_cpu_cap_set(X86_FEATURE_VNMI);
/* Nested VM can receive #VMEXIT instead of triggering #GP */
kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK);
}
/* CPUID 0x80000008 */
if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
boot_cpu_has(X86_FEATURE_AMD_SSBD))
kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
if (enable_pmu) {
/*
* Enumerate support for PERFCTR_CORE if and only if KVM has
* access to enough counters to virtualize "core" support,
* otherwise limit vPMU support to the legacy number of counters.
*/
if (kvm_pmu_cap.num_counters_gp < AMD64_NUM_COUNTERS_CORE)
kvm_pmu_cap.num_counters_gp = min(AMD64_NUM_COUNTERS,
kvm_pmu_cap.num_counters_gp);
else
kvm_cpu_cap_check_and_set(X86_FEATURE_PERFCTR_CORE);
if (kvm_pmu_cap.version != 2 ||
!kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE))
kvm_cpu_cap_clear(X86_FEATURE_PERFMON_V2);
}
/* CPUID 0x8000001F (SME/SEV features) */
sev_set_cpu_caps();
}
static __init int svm_hardware_setup(void)
{
int cpu;
struct page *iopm_pages;
void *iopm_va;
int r;
unsigned int order = get_order(IOPM_SIZE);
/*
* NX is required for shadow paging and for NPT if the NX huge pages
* mitigation is enabled.
*/
if (!boot_cpu_has(X86_FEATURE_NX)) {
pr_err_ratelimited("NX (Execute Disable) not supported\n");
return -EOPNOTSUPP;
}
kvm_enable_efer_bits(EFER_NX);
iopm_pages = alloc_pages(GFP_KERNEL, order);
if (!iopm_pages)
return -ENOMEM;
iopm_va = page_address(iopm_pages);
memset(iopm_va, 0xff, PAGE_SIZE * (1 << order));
iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
init_msrpm_offsets();
kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
XFEATURE_MASK_BNDCSR);
if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
kvm_enable_efer_bits(EFER_FFXSR);
if (tsc_scaling) {
if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
tsc_scaling = false;
} else {
pr_info("TSC scaling supported\n");
kvm_caps.has_tsc_control = true;
}
}
kvm_caps.max_tsc_scaling_ratio = SVM_TSC_RATIO_MAX;
kvm_caps.tsc_scaling_ratio_frac_bits = 32;
tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX);
if (boot_cpu_has(X86_FEATURE_AUTOIBRS))
kvm_enable_efer_bits(EFER_AUTOIBRS);
/* Check for pause filtering support */
if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
pause_filter_count = 0;
pause_filter_thresh = 0;
} else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
pause_filter_thresh = 0;
}
if (nested) {
pr_info("Nested Virtualization enabled\n");
kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
}
/*
* KVM's MMU doesn't support using 2-level paging for itself, and thus
* NPT isn't supported if the host is using 2-level paging since host
* CR4 is unchanged on VMRUN.
*/
if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE))
npt_enabled = false;
if (!boot_cpu_has(X86_FEATURE_NPT))
npt_enabled = false;
/* Force VM NPT level equal to the host's paging level */
kvm_configure_mmu(npt_enabled, get_npt_level(),
get_npt_level(), PG_LEVEL_1G);
pr_info("Nested Paging %sabled\n", npt_enabled ? "en" : "dis");
/* Setup shadow_me_value and shadow_me_mask */
kvm_mmu_set_me_spte_mask(sme_me_mask, sme_me_mask);
svm_adjust_mmio_mask();
nrips = nrips && boot_cpu_has(X86_FEATURE_NRIPS);
/*
* Note, SEV setup consumes npt_enabled and enable_mmio_caching (which
* may be modified by svm_adjust_mmio_mask()), as well as nrips.
*/
sev_hardware_setup();
svm_hv_hardware_setup();
for_each_possible_cpu(cpu) {
r = svm_cpu_init(cpu);
if (r)
goto err;
}
enable_apicv = avic = avic && avic_hardware_setup();
if (!enable_apicv) {
svm_x86_ops.vcpu_blocking = NULL;
svm_x86_ops.vcpu_unblocking = NULL;
svm_x86_ops.vcpu_get_apicv_inhibit_reasons = NULL;
} else if (!x2avic_enabled) {
svm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization = true;
}
if (vls) {
if (!npt_enabled ||
!boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
!IS_ENABLED(CONFIG_X86_64)) {
vls = false;
} else {
pr_info("Virtual VMLOAD VMSAVE supported\n");
}
}
if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK))
svm_gp_erratum_intercept = false;
if (vgif) {
if (!boot_cpu_has(X86_FEATURE_VGIF))
vgif = false;
else
pr_info("Virtual GIF supported\n");
}
vnmi = vgif && vnmi && boot_cpu_has(X86_FEATURE_VNMI);
if (vnmi)
pr_info("Virtual NMI enabled\n");
if (!vnmi) {
svm_x86_ops.is_vnmi_pending = NULL;
svm_x86_ops.set_vnmi_pending = NULL;
}
if (lbrv) {
if (!boot_cpu_has(X86_FEATURE_LBRV))
lbrv = false;
else
pr_info("LBR virtualization supported\n");
}
if (!enable_pmu)
pr_info("PMU virtualization is disabled\n");
svm_set_cpu_caps();
/*
* It seems that on AMD processors PTE's accessed bit is
* being set by the CPU hardware before the NPF vmexit.
* This is not expected behaviour and our tests fail because
* of it.
* A workaround here is to disable support for
* GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled.
* In this case userspace can know if there is support using
* KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle
* it
* If future AMD CPU models change the behaviour described above,
* this variable can be changed accordingly
*/
allow_smaller_maxphyaddr = !npt_enabled;
return 0;
err:
svm_hardware_unsetup();
return r;
}
static struct kvm_x86_init_ops svm_init_ops __initdata = {
.hardware_setup = svm_hardware_setup,
.runtime_ops = &svm_x86_ops,
.pmu_ops = &amd_pmu_ops,
};
static void __svm_exit(void)
{
kvm_x86_vendor_exit();
cpu_emergency_unregister_virt_callback(svm_emergency_disable);
}
static int __init svm_init(void)
{
int r;
__unused_size_checks();
if (!kvm_is_svm_supported())
return -EOPNOTSUPP;
r = kvm_x86_vendor_init(&svm_init_ops);
if (r)
return r;
cpu_emergency_register_virt_callback(svm_emergency_disable);
/*
* Common KVM initialization _must_ come last, after this, /dev/kvm is
* exposed to userspace!
*/
r = kvm_init(sizeof(struct vcpu_svm), __alignof__(struct vcpu_svm),
THIS_MODULE);
if (r)
goto err_kvm_init;
return 0;
err_kvm_init:
__svm_exit();
return r;
}
static void __exit svm_exit(void)
{
kvm_exit();
__svm_exit();
}
module_init(svm_init)
module_exit(svm_exit)