| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/kvm_host.h> |
| |
| #include "irq.h" |
| #include "mmu.h" |
| #include "kvm_cache_regs.h" |
| #include "x86.h" |
| #include "smm.h" |
| #include "cpuid.h" |
| #include "pmu.h" |
| |
| #include <linux/module.h> |
| #include <linux/mod_devicetable.h> |
| #include <linux/kernel.h> |
| #include <linux/vmalloc.h> |
| #include <linux/highmem.h> |
| #include <linux/amd-iommu.h> |
| #include <linux/sched.h> |
| #include <linux/trace_events.h> |
| #include <linux/slab.h> |
| #include <linux/hashtable.h> |
| #include <linux/objtool.h> |
| #include <linux/psp-sev.h> |
| #include <linux/file.h> |
| #include <linux/pagemap.h> |
| #include <linux/swap.h> |
| #include <linux/rwsem.h> |
| #include <linux/cc_platform.h> |
| #include <linux/smp.h> |
| |
| #include <asm/apic.h> |
| #include <asm/perf_event.h> |
| #include <asm/tlbflush.h> |
| #include <asm/desc.h> |
| #include <asm/debugreg.h> |
| #include <asm/kvm_para.h> |
| #include <asm/irq_remapping.h> |
| #include <asm/spec-ctrl.h> |
| #include <asm/cpu_device_id.h> |
| #include <asm/traps.h> |
| #include <asm/reboot.h> |
| #include <asm/fpu/api.h> |
| |
| #include <trace/events/ipi.h> |
| |
| #include "trace.h" |
| |
| #include "svm.h" |
| #include "svm_ops.h" |
| |
| #include "kvm_onhyperv.h" |
| #include "svm_onhyperv.h" |
| |
| MODULE_AUTHOR("Qumranet"); |
| MODULE_LICENSE("GPL"); |
| |
| #ifdef MODULE |
| static const struct x86_cpu_id svm_cpu_id[] = { |
| X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL), |
| {} |
| }; |
| MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id); |
| #endif |
| |
| #define SEG_TYPE_LDT 2 |
| #define SEG_TYPE_BUSY_TSS16 3 |
| |
| static bool erratum_383_found __read_mostly; |
| |
| u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly; |
| |
| /* |
| * Set osvw_len to higher value when updated Revision Guides |
| * are published and we know what the new status bits are |
| */ |
| static uint64_t osvw_len = 4, osvw_status; |
| |
| static DEFINE_PER_CPU(u64, current_tsc_ratio); |
| |
| #define X2APIC_MSR(x) (APIC_BASE_MSR + (x >> 4)) |
| |
| static const struct svm_direct_access_msrs { |
| u32 index; /* Index of the MSR */ |
| bool always; /* True if intercept is initially cleared */ |
| } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = { |
| { .index = MSR_STAR, .always = true }, |
| { .index = MSR_IA32_SYSENTER_CS, .always = true }, |
| { .index = MSR_IA32_SYSENTER_EIP, .always = false }, |
| { .index = MSR_IA32_SYSENTER_ESP, .always = false }, |
| #ifdef CONFIG_X86_64 |
| { .index = MSR_GS_BASE, .always = true }, |
| { .index = MSR_FS_BASE, .always = true }, |
| { .index = MSR_KERNEL_GS_BASE, .always = true }, |
| { .index = MSR_LSTAR, .always = true }, |
| { .index = MSR_CSTAR, .always = true }, |
| { .index = MSR_SYSCALL_MASK, .always = true }, |
| #endif |
| { .index = MSR_IA32_SPEC_CTRL, .always = false }, |
| { .index = MSR_IA32_PRED_CMD, .always = false }, |
| { .index = MSR_IA32_FLUSH_CMD, .always = false }, |
| { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false }, |
| { .index = MSR_IA32_LASTBRANCHTOIP, .always = false }, |
| { .index = MSR_IA32_LASTINTFROMIP, .always = false }, |
| { .index = MSR_IA32_LASTINTTOIP, .always = false }, |
| { .index = MSR_IA32_XSS, .always = false }, |
| { .index = MSR_EFER, .always = false }, |
| { .index = MSR_IA32_CR_PAT, .always = false }, |
| { .index = MSR_AMD64_SEV_ES_GHCB, .always = true }, |
| { .index = MSR_TSC_AUX, .always = false }, |
| { .index = X2APIC_MSR(APIC_ID), .always = false }, |
| { .index = X2APIC_MSR(APIC_LVR), .always = false }, |
| { .index = X2APIC_MSR(APIC_TASKPRI), .always = false }, |
| { .index = X2APIC_MSR(APIC_ARBPRI), .always = false }, |
| { .index = X2APIC_MSR(APIC_PROCPRI), .always = false }, |
| { .index = X2APIC_MSR(APIC_EOI), .always = false }, |
| { .index = X2APIC_MSR(APIC_RRR), .always = false }, |
| { .index = X2APIC_MSR(APIC_LDR), .always = false }, |
| { .index = X2APIC_MSR(APIC_DFR), .always = false }, |
| { .index = X2APIC_MSR(APIC_SPIV), .always = false }, |
| { .index = X2APIC_MSR(APIC_ISR), .always = false }, |
| { .index = X2APIC_MSR(APIC_TMR), .always = false }, |
| { .index = X2APIC_MSR(APIC_IRR), .always = false }, |
| { .index = X2APIC_MSR(APIC_ESR), .always = false }, |
| { .index = X2APIC_MSR(APIC_ICR), .always = false }, |
| { .index = X2APIC_MSR(APIC_ICR2), .always = false }, |
| |
| /* |
| * Note: |
| * AMD does not virtualize APIC TSC-deadline timer mode, but it is |
| * emulated by KVM. When setting APIC LVTT (0x832) register bit 18, |
| * the AVIC hardware would generate GP fault. Therefore, always |
| * intercept the MSR 0x832, and do not setup direct_access_msr. |
| */ |
| { .index = X2APIC_MSR(APIC_LVTTHMR), .always = false }, |
| { .index = X2APIC_MSR(APIC_LVTPC), .always = false }, |
| { .index = X2APIC_MSR(APIC_LVT0), .always = false }, |
| { .index = X2APIC_MSR(APIC_LVT1), .always = false }, |
| { .index = X2APIC_MSR(APIC_LVTERR), .always = false }, |
| { .index = X2APIC_MSR(APIC_TMICT), .always = false }, |
| { .index = X2APIC_MSR(APIC_TMCCT), .always = false }, |
| { .index = X2APIC_MSR(APIC_TDCR), .always = false }, |
| { .index = MSR_INVALID, .always = false }, |
| }; |
| |
| /* |
| * These 2 parameters are used to config the controls for Pause-Loop Exiting: |
| * pause_filter_count: On processors that support Pause filtering(indicated |
| * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter |
| * count value. On VMRUN this value is loaded into an internal counter. |
| * Each time a pause instruction is executed, this counter is decremented |
| * until it reaches zero at which time a #VMEXIT is generated if pause |
| * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause |
| * Intercept Filtering for more details. |
| * This also indicate if ple logic enabled. |
| * |
| * pause_filter_thresh: In addition, some processor families support advanced |
| * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on |
| * the amount of time a guest is allowed to execute in a pause loop. |
| * In this mode, a 16-bit pause filter threshold field is added in the |
| * VMCB. The threshold value is a cycle count that is used to reset the |
| * pause counter. As with simple pause filtering, VMRUN loads the pause |
| * count value from VMCB into an internal counter. Then, on each pause |
| * instruction the hardware checks the elapsed number of cycles since |
| * the most recent pause instruction against the pause filter threshold. |
| * If the elapsed cycle count is greater than the pause filter threshold, |
| * then the internal pause count is reloaded from the VMCB and execution |
| * continues. If the elapsed cycle count is less than the pause filter |
| * threshold, then the internal pause count is decremented. If the count |
| * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is |
| * triggered. If advanced pause filtering is supported and pause filter |
| * threshold field is set to zero, the filter will operate in the simpler, |
| * count only mode. |
| */ |
| |
| static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP; |
| module_param(pause_filter_thresh, ushort, 0444); |
| |
| static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW; |
| module_param(pause_filter_count, ushort, 0444); |
| |
| /* Default doubles per-vcpu window every exit. */ |
| static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW; |
| module_param(pause_filter_count_grow, ushort, 0444); |
| |
| /* Default resets per-vcpu window every exit to pause_filter_count. */ |
| static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; |
| module_param(pause_filter_count_shrink, ushort, 0444); |
| |
| /* Default is to compute the maximum so we can never overflow. */ |
| static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX; |
| module_param(pause_filter_count_max, ushort, 0444); |
| |
| /* |
| * Use nested page tables by default. Note, NPT may get forced off by |
| * svm_hardware_setup() if it's unsupported by hardware or the host kernel. |
| */ |
| bool npt_enabled = true; |
| module_param_named(npt, npt_enabled, bool, 0444); |
| |
| /* allow nested virtualization in KVM/SVM */ |
| static int nested = true; |
| module_param(nested, int, 0444); |
| |
| /* enable/disable Next RIP Save */ |
| int nrips = true; |
| module_param(nrips, int, 0444); |
| |
| /* enable/disable Virtual VMLOAD VMSAVE */ |
| static int vls = true; |
| module_param(vls, int, 0444); |
| |
| /* enable/disable Virtual GIF */ |
| int vgif = true; |
| module_param(vgif, int, 0444); |
| |
| /* enable/disable LBR virtualization */ |
| static int lbrv = true; |
| module_param(lbrv, int, 0444); |
| |
| static int tsc_scaling = true; |
| module_param(tsc_scaling, int, 0444); |
| |
| /* |
| * enable / disable AVIC. Because the defaults differ for APICv |
| * support between VMX and SVM we cannot use module_param_named. |
| */ |
| static bool avic; |
| module_param(avic, bool, 0444); |
| |
| bool __read_mostly dump_invalid_vmcb; |
| module_param(dump_invalid_vmcb, bool, 0644); |
| |
| |
| bool intercept_smi = true; |
| module_param(intercept_smi, bool, 0444); |
| |
| bool vnmi = true; |
| module_param(vnmi, bool, 0444); |
| |
| static bool svm_gp_erratum_intercept = true; |
| |
| static u8 rsm_ins_bytes[] = "\x0f\xaa"; |
| |
| static unsigned long iopm_base; |
| |
| DEFINE_PER_CPU(struct svm_cpu_data, svm_data); |
| |
| /* |
| * Only MSR_TSC_AUX is switched via the user return hook. EFER is switched via |
| * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE. |
| * |
| * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to |
| * defer the restoration of TSC_AUX until the CPU returns to userspace. |
| */ |
| static int tsc_aux_uret_slot __read_mostly = -1; |
| |
| static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000}; |
| |
| #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges) |
| #define MSRS_RANGE_SIZE 2048 |
| #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2) |
| |
| u32 svm_msrpm_offset(u32 msr) |
| { |
| u32 offset; |
| int i; |
| |
| for (i = 0; i < NUM_MSR_MAPS; i++) { |
| if (msr < msrpm_ranges[i] || |
| msr >= msrpm_ranges[i] + MSRS_IN_RANGE) |
| continue; |
| |
| offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */ |
| offset += (i * MSRS_RANGE_SIZE); /* add range offset */ |
| |
| /* Now we have the u8 offset - but need the u32 offset */ |
| return offset / 4; |
| } |
| |
| /* MSR not in any range */ |
| return MSR_INVALID; |
| } |
| |
| static void svm_flush_tlb_current(struct kvm_vcpu *vcpu); |
| |
| static int get_npt_level(void) |
| { |
| #ifdef CONFIG_X86_64 |
| return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL; |
| #else |
| return PT32E_ROOT_LEVEL; |
| #endif |
| } |
| |
| int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| u64 old_efer = vcpu->arch.efer; |
| vcpu->arch.efer = efer; |
| |
| if (!npt_enabled) { |
| /* Shadow paging assumes NX to be available. */ |
| efer |= EFER_NX; |
| |
| if (!(efer & EFER_LMA)) |
| efer &= ~EFER_LME; |
| } |
| |
| if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) { |
| if (!(efer & EFER_SVME)) { |
| svm_leave_nested(vcpu); |
| svm_set_gif(svm, true); |
| /* #GP intercept is still needed for vmware backdoor */ |
| if (!enable_vmware_backdoor) |
| clr_exception_intercept(svm, GP_VECTOR); |
| |
| /* |
| * Free the nested guest state, unless we are in SMM. |
| * In this case we will return to the nested guest |
| * as soon as we leave SMM. |
| */ |
| if (!is_smm(vcpu)) |
| svm_free_nested(svm); |
| |
| } else { |
| int ret = svm_allocate_nested(svm); |
| |
| if (ret) { |
| vcpu->arch.efer = old_efer; |
| return ret; |
| } |
| |
| /* |
| * Never intercept #GP for SEV guests, KVM can't |
| * decrypt guest memory to workaround the erratum. |
| */ |
| if (svm_gp_erratum_intercept && !sev_guest(vcpu->kvm)) |
| set_exception_intercept(svm, GP_VECTOR); |
| } |
| } |
| |
| svm->vmcb->save.efer = efer | EFER_SVME; |
| vmcb_mark_dirty(svm->vmcb, VMCB_CR); |
| return 0; |
| } |
| |
| static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| u32 ret = 0; |
| |
| if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) |
| ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS; |
| return ret; |
| } |
| |
| static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| if (mask == 0) |
| svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK; |
| else |
| svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK; |
| |
| } |
| |
| static int __svm_skip_emulated_instruction(struct kvm_vcpu *vcpu, |
| bool commit_side_effects) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| unsigned long old_rflags; |
| |
| /* |
| * SEV-ES does not expose the next RIP. The RIP update is controlled by |
| * the type of exit and the #VC handler in the guest. |
| */ |
| if (sev_es_guest(vcpu->kvm)) |
| goto done; |
| |
| if (nrips && svm->vmcb->control.next_rip != 0) { |
| WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS)); |
| svm->next_rip = svm->vmcb->control.next_rip; |
| } |
| |
| if (!svm->next_rip) { |
| if (unlikely(!commit_side_effects)) |
| old_rflags = svm->vmcb->save.rflags; |
| |
| if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP)) |
| return 0; |
| |
| if (unlikely(!commit_side_effects)) |
| svm->vmcb->save.rflags = old_rflags; |
| } else { |
| kvm_rip_write(vcpu, svm->next_rip); |
| } |
| |
| done: |
| if (likely(commit_side_effects)) |
| svm_set_interrupt_shadow(vcpu, 0); |
| |
| return 1; |
| } |
| |
| static int svm_skip_emulated_instruction(struct kvm_vcpu *vcpu) |
| { |
| return __svm_skip_emulated_instruction(vcpu, true); |
| } |
| |
| static int svm_update_soft_interrupt_rip(struct kvm_vcpu *vcpu) |
| { |
| unsigned long rip, old_rip = kvm_rip_read(vcpu); |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| /* |
| * Due to architectural shortcomings, the CPU doesn't always provide |
| * NextRIP, e.g. if KVM intercepted an exception that occurred while |
| * the CPU was vectoring an INTO/INT3 in the guest. Temporarily skip |
| * the instruction even if NextRIP is supported to acquire the next |
| * RIP so that it can be shoved into the NextRIP field, otherwise |
| * hardware will fail to advance guest RIP during event injection. |
| * Drop the exception/interrupt if emulation fails and effectively |
| * retry the instruction, it's the least awful option. If NRIPS is |
| * in use, the skip must not commit any side effects such as clearing |
| * the interrupt shadow or RFLAGS.RF. |
| */ |
| if (!__svm_skip_emulated_instruction(vcpu, !nrips)) |
| return -EIO; |
| |
| rip = kvm_rip_read(vcpu); |
| |
| /* |
| * Save the injection information, even when using next_rip, as the |
| * VMCB's next_rip will be lost (cleared on VM-Exit) if the injection |
| * doesn't complete due to a VM-Exit occurring while the CPU is |
| * vectoring the event. Decoding the instruction isn't guaranteed to |
| * work as there may be no backing instruction, e.g. if the event is |
| * being injected by L1 for L2, or if the guest is patching INT3 into |
| * a different instruction. |
| */ |
| svm->soft_int_injected = true; |
| svm->soft_int_csbase = svm->vmcb->save.cs.base; |
| svm->soft_int_old_rip = old_rip; |
| svm->soft_int_next_rip = rip; |
| |
| if (nrips) |
| kvm_rip_write(vcpu, old_rip); |
| |
| if (static_cpu_has(X86_FEATURE_NRIPS)) |
| svm->vmcb->control.next_rip = rip; |
| |
| return 0; |
| } |
| |
| static void svm_inject_exception(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_queued_exception *ex = &vcpu->arch.exception; |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| kvm_deliver_exception_payload(vcpu, ex); |
| |
| if (kvm_exception_is_soft(ex->vector) && |
| svm_update_soft_interrupt_rip(vcpu)) |
| return; |
| |
| svm->vmcb->control.event_inj = ex->vector |
| | SVM_EVTINJ_VALID |
| | (ex->has_error_code ? SVM_EVTINJ_VALID_ERR : 0) |
| | SVM_EVTINJ_TYPE_EXEPT; |
| svm->vmcb->control.event_inj_err = ex->error_code; |
| } |
| |
| static void svm_init_erratum_383(void) |
| { |
| u32 low, high; |
| int err; |
| u64 val; |
| |
| if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH)) |
| return; |
| |
| /* Use _safe variants to not break nested virtualization */ |
| val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err); |
| if (err) |
| return; |
| |
| val |= (1ULL << 47); |
| |
| low = lower_32_bits(val); |
| high = upper_32_bits(val); |
| |
| native_write_msr_safe(MSR_AMD64_DC_CFG, low, high); |
| |
| erratum_383_found = true; |
| } |
| |
| static void svm_init_osvw(struct kvm_vcpu *vcpu) |
| { |
| /* |
| * Guests should see errata 400 and 415 as fixed (assuming that |
| * HLT and IO instructions are intercepted). |
| */ |
| vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3; |
| vcpu->arch.osvw.status = osvw_status & ~(6ULL); |
| |
| /* |
| * By increasing VCPU's osvw.length to 3 we are telling the guest that |
| * all osvw.status bits inside that length, including bit 0 (which is |
| * reserved for erratum 298), are valid. However, if host processor's |
| * osvw_len is 0 then osvw_status[0] carries no information. We need to |
| * be conservative here and therefore we tell the guest that erratum 298 |
| * is present (because we really don't know). |
| */ |
| if (osvw_len == 0 && boot_cpu_data.x86 == 0x10) |
| vcpu->arch.osvw.status |= 1; |
| } |
| |
| static bool __kvm_is_svm_supported(void) |
| { |
| int cpu = smp_processor_id(); |
| struct cpuinfo_x86 *c = &cpu_data(cpu); |
| |
| if (c->x86_vendor != X86_VENDOR_AMD && |
| c->x86_vendor != X86_VENDOR_HYGON) { |
| pr_err("CPU %d isn't AMD or Hygon\n", cpu); |
| return false; |
| } |
| |
| if (!cpu_has(c, X86_FEATURE_SVM)) { |
| pr_err("SVM not supported by CPU %d\n", cpu); |
| return false; |
| } |
| |
| if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) { |
| pr_info("KVM is unsupported when running as an SEV guest\n"); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool kvm_is_svm_supported(void) |
| { |
| bool supported; |
| |
| migrate_disable(); |
| supported = __kvm_is_svm_supported(); |
| migrate_enable(); |
| |
| return supported; |
| } |
| |
| static int svm_check_processor_compat(void) |
| { |
| if (!__kvm_is_svm_supported()) |
| return -EIO; |
| |
| return 0; |
| } |
| |
| static void __svm_write_tsc_multiplier(u64 multiplier) |
| { |
| if (multiplier == __this_cpu_read(current_tsc_ratio)) |
| return; |
| |
| wrmsrl(MSR_AMD64_TSC_RATIO, multiplier); |
| __this_cpu_write(current_tsc_ratio, multiplier); |
| } |
| |
| static inline void kvm_cpu_svm_disable(void) |
| { |
| uint64_t efer; |
| |
| wrmsrl(MSR_VM_HSAVE_PA, 0); |
| rdmsrl(MSR_EFER, efer); |
| if (efer & EFER_SVME) { |
| /* |
| * Force GIF=1 prior to disabling SVM, e.g. to ensure INIT and |
| * NMI aren't blocked. |
| */ |
| stgi(); |
| wrmsrl(MSR_EFER, efer & ~EFER_SVME); |
| } |
| } |
| |
| static void svm_emergency_disable(void) |
| { |
| kvm_rebooting = true; |
| |
| kvm_cpu_svm_disable(); |
| } |
| |
| static void svm_hardware_disable(void) |
| { |
| /* Make sure we clean up behind us */ |
| if (tsc_scaling) |
| __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT); |
| |
| kvm_cpu_svm_disable(); |
| |
| amd_pmu_disable_virt(); |
| } |
| |
| static int svm_hardware_enable(void) |
| { |
| |
| struct svm_cpu_data *sd; |
| uint64_t efer; |
| int me = raw_smp_processor_id(); |
| |
| rdmsrl(MSR_EFER, efer); |
| if (efer & EFER_SVME) |
| return -EBUSY; |
| |
| sd = per_cpu_ptr(&svm_data, me); |
| sd->asid_generation = 1; |
| sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1; |
| sd->next_asid = sd->max_asid + 1; |
| sd->min_asid = max_sev_asid + 1; |
| |
| wrmsrl(MSR_EFER, efer | EFER_SVME); |
| |
| wrmsrl(MSR_VM_HSAVE_PA, sd->save_area_pa); |
| |
| if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) { |
| /* |
| * Set the default value, even if we don't use TSC scaling |
| * to avoid having stale value in the msr |
| */ |
| __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT); |
| } |
| |
| |
| /* |
| * Get OSVW bits. |
| * |
| * Note that it is possible to have a system with mixed processor |
| * revisions and therefore different OSVW bits. If bits are not the same |
| * on different processors then choose the worst case (i.e. if erratum |
| * is present on one processor and not on another then assume that the |
| * erratum is present everywhere). |
| */ |
| if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) { |
| uint64_t len, status = 0; |
| int err; |
| |
| len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err); |
| if (!err) |
| status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS, |
| &err); |
| |
| if (err) |
| osvw_status = osvw_len = 0; |
| else { |
| if (len < osvw_len) |
| osvw_len = len; |
| osvw_status |= status; |
| osvw_status &= (1ULL << osvw_len) - 1; |
| } |
| } else |
| osvw_status = osvw_len = 0; |
| |
| svm_init_erratum_383(); |
| |
| amd_pmu_enable_virt(); |
| |
| /* |
| * If TSC_AUX virtualization is supported, TSC_AUX becomes a swap type |
| * "B" field (see sev_es_prepare_switch_to_guest()) for SEV-ES guests. |
| * Since Linux does not change the value of TSC_AUX once set, prime the |
| * TSC_AUX field now to avoid a RDMSR on every vCPU run. |
| */ |
| if (boot_cpu_has(X86_FEATURE_V_TSC_AUX)) { |
| struct sev_es_save_area *hostsa; |
| u32 __maybe_unused msr_hi; |
| |
| hostsa = (struct sev_es_save_area *)(page_address(sd->save_area) + 0x400); |
| |
| rdmsr(MSR_TSC_AUX, hostsa->tsc_aux, msr_hi); |
| } |
| |
| return 0; |
| } |
| |
| static void svm_cpu_uninit(int cpu) |
| { |
| struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); |
| |
| if (!sd->save_area) |
| return; |
| |
| kfree(sd->sev_vmcbs); |
| __free_page(sd->save_area); |
| sd->save_area_pa = 0; |
| sd->save_area = NULL; |
| } |
| |
| static int svm_cpu_init(int cpu) |
| { |
| struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); |
| int ret = -ENOMEM; |
| |
| memset(sd, 0, sizeof(struct svm_cpu_data)); |
| sd->save_area = snp_safe_alloc_page(NULL); |
| if (!sd->save_area) |
| return ret; |
| |
| ret = sev_cpu_init(sd); |
| if (ret) |
| goto free_save_area; |
| |
| sd->save_area_pa = __sme_page_pa(sd->save_area); |
| return 0; |
| |
| free_save_area: |
| __free_page(sd->save_area); |
| sd->save_area = NULL; |
| return ret; |
| |
| } |
| |
| static void set_dr_intercepts(struct vcpu_svm *svm) |
| { |
| struct vmcb *vmcb = svm->vmcb01.ptr; |
| |
| vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_READ); |
| vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_READ); |
| vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_READ); |
| vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_READ); |
| vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_READ); |
| vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_READ); |
| vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_READ); |
| vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_WRITE); |
| vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_WRITE); |
| vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_WRITE); |
| vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_WRITE); |
| vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_WRITE); |
| vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_WRITE); |
| vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_WRITE); |
| vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ); |
| vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE); |
| |
| recalc_intercepts(svm); |
| } |
| |
| static void clr_dr_intercepts(struct vcpu_svm *svm) |
| { |
| struct vmcb *vmcb = svm->vmcb01.ptr; |
| |
| vmcb->control.intercepts[INTERCEPT_DR] = 0; |
| |
| recalc_intercepts(svm); |
| } |
| |
| static int direct_access_msr_slot(u32 msr) |
| { |
| u32 i; |
| |
| for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) |
| if (direct_access_msrs[i].index == msr) |
| return i; |
| |
| return -ENOENT; |
| } |
| |
| static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read, |
| int write) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| int slot = direct_access_msr_slot(msr); |
| |
| if (slot == -ENOENT) |
| return; |
| |
| /* Set the shadow bitmaps to the desired intercept states */ |
| if (read) |
| set_bit(slot, svm->shadow_msr_intercept.read); |
| else |
| clear_bit(slot, svm->shadow_msr_intercept.read); |
| |
| if (write) |
| set_bit(slot, svm->shadow_msr_intercept.write); |
| else |
| clear_bit(slot, svm->shadow_msr_intercept.write); |
| } |
| |
| static bool valid_msr_intercept(u32 index) |
| { |
| return direct_access_msr_slot(index) != -ENOENT; |
| } |
| |
| static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr) |
| { |
| u8 bit_write; |
| unsigned long tmp; |
| u32 offset; |
| u32 *msrpm; |
| |
| /* |
| * For non-nested case: |
| * If the L01 MSR bitmap does not intercept the MSR, then we need to |
| * save it. |
| * |
| * For nested case: |
| * If the L02 MSR bitmap does not intercept the MSR, then we need to |
| * save it. |
| */ |
| msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm: |
| to_svm(vcpu)->msrpm; |
| |
| offset = svm_msrpm_offset(msr); |
| bit_write = 2 * (msr & 0x0f) + 1; |
| tmp = msrpm[offset]; |
| |
| BUG_ON(offset == MSR_INVALID); |
| |
| return test_bit(bit_write, &tmp); |
| } |
| |
| static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm, |
| u32 msr, int read, int write) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| u8 bit_read, bit_write; |
| unsigned long tmp; |
| u32 offset; |
| |
| /* |
| * If this warning triggers extend the direct_access_msrs list at the |
| * beginning of the file |
| */ |
| WARN_ON(!valid_msr_intercept(msr)); |
| |
| /* Enforce non allowed MSRs to trap */ |
| if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) |
| read = 0; |
| |
| if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) |
| write = 0; |
| |
| offset = svm_msrpm_offset(msr); |
| bit_read = 2 * (msr & 0x0f); |
| bit_write = 2 * (msr & 0x0f) + 1; |
| tmp = msrpm[offset]; |
| |
| BUG_ON(offset == MSR_INVALID); |
| |
| read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp); |
| write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp); |
| |
| msrpm[offset] = tmp; |
| |
| svm_hv_vmcb_dirty_nested_enlightenments(vcpu); |
| svm->nested.force_msr_bitmap_recalc = true; |
| } |
| |
| void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr, |
| int read, int write) |
| { |
| set_shadow_msr_intercept(vcpu, msr, read, write); |
| set_msr_interception_bitmap(vcpu, msrpm, msr, read, write); |
| } |
| |
| u32 *svm_vcpu_alloc_msrpm(void) |
| { |
| unsigned int order = get_order(MSRPM_SIZE); |
| struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, order); |
| u32 *msrpm; |
| |
| if (!pages) |
| return NULL; |
| |
| msrpm = page_address(pages); |
| memset(msrpm, 0xff, PAGE_SIZE * (1 << order)); |
| |
| return msrpm; |
| } |
| |
| void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm) |
| { |
| int i; |
| |
| for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { |
| if (!direct_access_msrs[i].always) |
| continue; |
| set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1); |
| } |
| } |
| |
| void svm_set_x2apic_msr_interception(struct vcpu_svm *svm, bool intercept) |
| { |
| int i; |
| |
| if (intercept == svm->x2avic_msrs_intercepted) |
| return; |
| |
| if (!x2avic_enabled) |
| return; |
| |
| for (i = 0; i < MAX_DIRECT_ACCESS_MSRS; i++) { |
| int index = direct_access_msrs[i].index; |
| |
| if ((index < APIC_BASE_MSR) || |
| (index > APIC_BASE_MSR + 0xff)) |
| continue; |
| set_msr_interception(&svm->vcpu, svm->msrpm, index, |
| !intercept, !intercept); |
| } |
| |
| svm->x2avic_msrs_intercepted = intercept; |
| } |
| |
| void svm_vcpu_free_msrpm(u32 *msrpm) |
| { |
| __free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE)); |
| } |
| |
| static void svm_msr_filter_changed(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| u32 i; |
| |
| /* |
| * Set intercept permissions for all direct access MSRs again. They |
| * will automatically get filtered through the MSR filter, so we are |
| * back in sync after this. |
| */ |
| for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { |
| u32 msr = direct_access_msrs[i].index; |
| u32 read = test_bit(i, svm->shadow_msr_intercept.read); |
| u32 write = test_bit(i, svm->shadow_msr_intercept.write); |
| |
| set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write); |
| } |
| } |
| |
| static void add_msr_offset(u32 offset) |
| { |
| int i; |
| |
| for (i = 0; i < MSRPM_OFFSETS; ++i) { |
| |
| /* Offset already in list? */ |
| if (msrpm_offsets[i] == offset) |
| return; |
| |
| /* Slot used by another offset? */ |
| if (msrpm_offsets[i] != MSR_INVALID) |
| continue; |
| |
| /* Add offset to list */ |
| msrpm_offsets[i] = offset; |
| |
| return; |
| } |
| |
| /* |
| * If this BUG triggers the msrpm_offsets table has an overflow. Just |
| * increase MSRPM_OFFSETS in this case. |
| */ |
| BUG(); |
| } |
| |
| static void init_msrpm_offsets(void) |
| { |
| int i; |
| |
| memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets)); |
| |
| for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { |
| u32 offset; |
| |
| offset = svm_msrpm_offset(direct_access_msrs[i].index); |
| BUG_ON(offset == MSR_INVALID); |
| |
| add_msr_offset(offset); |
| } |
| } |
| |
| void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb) |
| { |
| to_vmcb->save.dbgctl = from_vmcb->save.dbgctl; |
| to_vmcb->save.br_from = from_vmcb->save.br_from; |
| to_vmcb->save.br_to = from_vmcb->save.br_to; |
| to_vmcb->save.last_excp_from = from_vmcb->save.last_excp_from; |
| to_vmcb->save.last_excp_to = from_vmcb->save.last_excp_to; |
| |
| vmcb_mark_dirty(to_vmcb, VMCB_LBR); |
| } |
| |
| static void svm_enable_lbrv(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK; |
| set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1); |
| set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1); |
| set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1); |
| set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1); |
| |
| /* Move the LBR msrs to the vmcb02 so that the guest can see them. */ |
| if (is_guest_mode(vcpu)) |
| svm_copy_lbrs(svm->vmcb, svm->vmcb01.ptr); |
| } |
| |
| static void svm_disable_lbrv(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK; |
| set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0); |
| set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0); |
| set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0); |
| set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0); |
| |
| /* |
| * Move the LBR msrs back to the vmcb01 to avoid copying them |
| * on nested guest entries. |
| */ |
| if (is_guest_mode(vcpu)) |
| svm_copy_lbrs(svm->vmcb01.ptr, svm->vmcb); |
| } |
| |
| static struct vmcb *svm_get_lbr_vmcb(struct vcpu_svm *svm) |
| { |
| /* |
| * If LBR virtualization is disabled, the LBR MSRs are always kept in |
| * vmcb01. If LBR virtualization is enabled and L1 is running VMs of |
| * its own, the MSRs are moved between vmcb01 and vmcb02 as needed. |
| */ |
| return svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK ? svm->vmcb : |
| svm->vmcb01.ptr; |
| } |
| |
| void svm_update_lbrv(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| bool current_enable_lbrv = svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK; |
| bool enable_lbrv = (svm_get_lbr_vmcb(svm)->save.dbgctl & DEBUGCTLMSR_LBR) || |
| (is_guest_mode(vcpu) && guest_can_use(vcpu, X86_FEATURE_LBRV) && |
| (svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK)); |
| |
| if (enable_lbrv == current_enable_lbrv) |
| return; |
| |
| if (enable_lbrv) |
| svm_enable_lbrv(vcpu); |
| else |
| svm_disable_lbrv(vcpu); |
| } |
| |
| void disable_nmi_singlestep(struct vcpu_svm *svm) |
| { |
| svm->nmi_singlestep = false; |
| |
| if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) { |
| /* Clear our flags if they were not set by the guest */ |
| if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) |
| svm->vmcb->save.rflags &= ~X86_EFLAGS_TF; |
| if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) |
| svm->vmcb->save.rflags &= ~X86_EFLAGS_RF; |
| } |
| } |
| |
| static void grow_ple_window(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| struct vmcb_control_area *control = &svm->vmcb->control; |
| int old = control->pause_filter_count; |
| |
| if (kvm_pause_in_guest(vcpu->kvm)) |
| return; |
| |
| control->pause_filter_count = __grow_ple_window(old, |
| pause_filter_count, |
| pause_filter_count_grow, |
| pause_filter_count_max); |
| |
| if (control->pause_filter_count != old) { |
| vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); |
| trace_kvm_ple_window_update(vcpu->vcpu_id, |
| control->pause_filter_count, old); |
| } |
| } |
| |
| static void shrink_ple_window(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| struct vmcb_control_area *control = &svm->vmcb->control; |
| int old = control->pause_filter_count; |
| |
| if (kvm_pause_in_guest(vcpu->kvm)) |
| return; |
| |
| control->pause_filter_count = |
| __shrink_ple_window(old, |
| pause_filter_count, |
| pause_filter_count_shrink, |
| pause_filter_count); |
| if (control->pause_filter_count != old) { |
| vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); |
| trace_kvm_ple_window_update(vcpu->vcpu_id, |
| control->pause_filter_count, old); |
| } |
| } |
| |
| static void svm_hardware_unsetup(void) |
| { |
| int cpu; |
| |
| sev_hardware_unsetup(); |
| |
| for_each_possible_cpu(cpu) |
| svm_cpu_uninit(cpu); |
| |
| __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), |
| get_order(IOPM_SIZE)); |
| iopm_base = 0; |
| } |
| |
| static void init_seg(struct vmcb_seg *seg) |
| { |
| seg->selector = 0; |
| seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK | |
| SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */ |
| seg->limit = 0xffff; |
| seg->base = 0; |
| } |
| |
| static void init_sys_seg(struct vmcb_seg *seg, uint32_t type) |
| { |
| seg->selector = 0; |
| seg->attrib = SVM_SELECTOR_P_MASK | type; |
| seg->limit = 0xffff; |
| seg->base = 0; |
| } |
| |
| static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| return svm->nested.ctl.tsc_offset; |
| } |
| |
| static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| return svm->tsc_ratio_msr; |
| } |
| |
| static void svm_write_tsc_offset(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset; |
| svm->vmcb->control.tsc_offset = vcpu->arch.tsc_offset; |
| vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); |
| } |
| |
| void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu) |
| { |
| preempt_disable(); |
| if (to_svm(vcpu)->guest_state_loaded) |
| __svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio); |
| preempt_enable(); |
| } |
| |
| /* Evaluate instruction intercepts that depend on guest CPUID features. */ |
| static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu, |
| struct vcpu_svm *svm) |
| { |
| /* |
| * Intercept INVPCID if shadow paging is enabled to sync/free shadow |
| * roots, or if INVPCID is disabled in the guest to inject #UD. |
| */ |
| if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) { |
| if (!npt_enabled || |
| !guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID)) |
| svm_set_intercept(svm, INTERCEPT_INVPCID); |
| else |
| svm_clr_intercept(svm, INTERCEPT_INVPCID); |
| } |
| |
| if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) { |
| if (guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP)) |
| svm_clr_intercept(svm, INTERCEPT_RDTSCP); |
| else |
| svm_set_intercept(svm, INTERCEPT_RDTSCP); |
| } |
| } |
| |
| static inline void init_vmcb_after_set_cpuid(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| if (guest_cpuid_is_intel(vcpu)) { |
| /* |
| * We must intercept SYSENTER_EIP and SYSENTER_ESP |
| * accesses because the processor only stores 32 bits. |
| * For the same reason we cannot use virtual VMLOAD/VMSAVE. |
| */ |
| svm_set_intercept(svm, INTERCEPT_VMLOAD); |
| svm_set_intercept(svm, INTERCEPT_VMSAVE); |
| svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; |
| |
| set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 0, 0); |
| set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 0, 0); |
| } else { |
| /* |
| * If hardware supports Virtual VMLOAD VMSAVE then enable it |
| * in VMCB and clear intercepts to avoid #VMEXIT. |
| */ |
| if (vls) { |
| svm_clr_intercept(svm, INTERCEPT_VMLOAD); |
| svm_clr_intercept(svm, INTERCEPT_VMSAVE); |
| svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; |
| } |
| /* No need to intercept these MSRs */ |
| set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 1, 1); |
| set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 1, 1); |
| } |
| } |
| |
| static void init_vmcb(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| struct vmcb *vmcb = svm->vmcb01.ptr; |
| struct vmcb_control_area *control = &vmcb->control; |
| struct vmcb_save_area *save = &vmcb->save; |
| |
| svm_set_intercept(svm, INTERCEPT_CR0_READ); |
| svm_set_intercept(svm, INTERCEPT_CR3_READ); |
| svm_set_intercept(svm, INTERCEPT_CR4_READ); |
| svm_set_intercept(svm, INTERCEPT_CR0_WRITE); |
| svm_set_intercept(svm, INTERCEPT_CR3_WRITE); |
| svm_set_intercept(svm, INTERCEPT_CR4_WRITE); |
| if (!kvm_vcpu_apicv_active(vcpu)) |
| svm_set_intercept(svm, INTERCEPT_CR8_WRITE); |
| |
| set_dr_intercepts(svm); |
| |
| set_exception_intercept(svm, PF_VECTOR); |
| set_exception_intercept(svm, UD_VECTOR); |
| set_exception_intercept(svm, MC_VECTOR); |
| set_exception_intercept(svm, AC_VECTOR); |
| set_exception_intercept(svm, DB_VECTOR); |
| /* |
| * Guest access to VMware backdoor ports could legitimately |
| * trigger #GP because of TSS I/O permission bitmap. |
| * We intercept those #GP and allow access to them anyway |
| * as VMware does. |
| */ |
| if (enable_vmware_backdoor) |
| set_exception_intercept(svm, GP_VECTOR); |
| |
| svm_set_intercept(svm, INTERCEPT_INTR); |
| svm_set_intercept(svm, INTERCEPT_NMI); |
| |
| if (intercept_smi) |
| svm_set_intercept(svm, INTERCEPT_SMI); |
| |
| svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0); |
| svm_set_intercept(svm, INTERCEPT_RDPMC); |
| svm_set_intercept(svm, INTERCEPT_CPUID); |
| svm_set_intercept(svm, INTERCEPT_INVD); |
| svm_set_intercept(svm, INTERCEPT_INVLPG); |
| svm_set_intercept(svm, INTERCEPT_INVLPGA); |
| svm_set_intercept(svm, INTERCEPT_IOIO_PROT); |
| svm_set_intercept(svm, INTERCEPT_MSR_PROT); |
| svm_set_intercept(svm, INTERCEPT_TASK_SWITCH); |
| svm_set_intercept(svm, INTERCEPT_SHUTDOWN); |
| svm_set_intercept(svm, INTERCEPT_VMRUN); |
| svm_set_intercept(svm, INTERCEPT_VMMCALL); |
| svm_set_intercept(svm, INTERCEPT_VMLOAD); |
| svm_set_intercept(svm, INTERCEPT_VMSAVE); |
| svm_set_intercept(svm, INTERCEPT_STGI); |
| svm_set_intercept(svm, INTERCEPT_CLGI); |
| svm_set_intercept(svm, INTERCEPT_SKINIT); |
| svm_set_intercept(svm, INTERCEPT_WBINVD); |
| svm_set_intercept(svm, INTERCEPT_XSETBV); |
| svm_set_intercept(svm, INTERCEPT_RDPRU); |
| svm_set_intercept(svm, INTERCEPT_RSM); |
| |
| if (!kvm_mwait_in_guest(vcpu->kvm)) { |
| svm_set_intercept(svm, INTERCEPT_MONITOR); |
| svm_set_intercept(svm, INTERCEPT_MWAIT); |
| } |
| |
| if (!kvm_hlt_in_guest(vcpu->kvm)) |
| svm_set_intercept(svm, INTERCEPT_HLT); |
| |
| control->iopm_base_pa = __sme_set(iopm_base); |
| control->msrpm_base_pa = __sme_set(__pa(svm->msrpm)); |
| control->int_ctl = V_INTR_MASKING_MASK; |
| |
| init_seg(&save->es); |
| init_seg(&save->ss); |
| init_seg(&save->ds); |
| init_seg(&save->fs); |
| init_seg(&save->gs); |
| |
| save->cs.selector = 0xf000; |
| save->cs.base = 0xffff0000; |
| /* Executable/Readable Code Segment */ |
| save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK | |
| SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK; |
| save->cs.limit = 0xffff; |
| |
| save->gdtr.base = 0; |
| save->gdtr.limit = 0xffff; |
| save->idtr.base = 0; |
| save->idtr.limit = 0xffff; |
| |
| init_sys_seg(&save->ldtr, SEG_TYPE_LDT); |
| init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16); |
| |
| if (npt_enabled) { |
| /* Setup VMCB for Nested Paging */ |
| control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE; |
| svm_clr_intercept(svm, INTERCEPT_INVLPG); |
| clr_exception_intercept(svm, PF_VECTOR); |
| svm_clr_intercept(svm, INTERCEPT_CR3_READ); |
| svm_clr_intercept(svm, INTERCEPT_CR3_WRITE); |
| save->g_pat = vcpu->arch.pat; |
| save->cr3 = 0; |
| } |
| svm->current_vmcb->asid_generation = 0; |
| svm->asid = 0; |
| |
| svm->nested.vmcb12_gpa = INVALID_GPA; |
| svm->nested.last_vmcb12_gpa = INVALID_GPA; |
| |
| if (!kvm_pause_in_guest(vcpu->kvm)) { |
| control->pause_filter_count = pause_filter_count; |
| if (pause_filter_thresh) |
| control->pause_filter_thresh = pause_filter_thresh; |
| svm_set_intercept(svm, INTERCEPT_PAUSE); |
| } else { |
| svm_clr_intercept(svm, INTERCEPT_PAUSE); |
| } |
| |
| svm_recalc_instruction_intercepts(vcpu, svm); |
| |
| /* |
| * If the host supports V_SPEC_CTRL then disable the interception |
| * of MSR_IA32_SPEC_CTRL. |
| */ |
| if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) |
| set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1); |
| |
| if (kvm_vcpu_apicv_active(vcpu)) |
| avic_init_vmcb(svm, vmcb); |
| |
| if (vnmi) |
| svm->vmcb->control.int_ctl |= V_NMI_ENABLE_MASK; |
| |
| if (vgif) { |
| svm_clr_intercept(svm, INTERCEPT_STGI); |
| svm_clr_intercept(svm, INTERCEPT_CLGI); |
| svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK; |
| } |
| |
| if (sev_guest(vcpu->kvm)) |
| sev_init_vmcb(svm); |
| |
| svm_hv_init_vmcb(vmcb); |
| init_vmcb_after_set_cpuid(vcpu); |
| |
| vmcb_mark_all_dirty(vmcb); |
| |
| enable_gif(svm); |
| } |
| |
| static void __svm_vcpu_reset(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| svm_vcpu_init_msrpm(vcpu, svm->msrpm); |
| |
| svm_init_osvw(vcpu); |
| vcpu->arch.microcode_version = 0x01000065; |
| svm->tsc_ratio_msr = kvm_caps.default_tsc_scaling_ratio; |
| |
| svm->nmi_masked = false; |
| svm->awaiting_iret_completion = false; |
| |
| if (sev_es_guest(vcpu->kvm)) |
| sev_es_vcpu_reset(svm); |
| } |
| |
| static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| svm->spec_ctrl = 0; |
| svm->virt_spec_ctrl = 0; |
| |
| init_vmcb(vcpu); |
| |
| if (!init_event) |
| __svm_vcpu_reset(vcpu); |
| } |
| |
| void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb) |
| { |
| svm->current_vmcb = target_vmcb; |
| svm->vmcb = target_vmcb->ptr; |
| } |
| |
| static int svm_vcpu_create(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm; |
| struct page *vmcb01_page; |
| struct page *vmsa_page = NULL; |
| int err; |
| |
| BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0); |
| svm = to_svm(vcpu); |
| |
| err = -ENOMEM; |
| vmcb01_page = snp_safe_alloc_page(vcpu); |
| if (!vmcb01_page) |
| goto out; |
| |
| if (sev_es_guest(vcpu->kvm)) { |
| /* |
| * SEV-ES guests require a separate VMSA page used to contain |
| * the encrypted register state of the guest. |
| */ |
| vmsa_page = snp_safe_alloc_page(vcpu); |
| if (!vmsa_page) |
| goto error_free_vmcb_page; |
| |
| /* |
| * SEV-ES guests maintain an encrypted version of their FPU |
| * state which is restored and saved on VMRUN and VMEXIT. |
| * Mark vcpu->arch.guest_fpu->fpstate as scratch so it won't |
| * do xsave/xrstor on it. |
| */ |
| fpstate_set_confidential(&vcpu->arch.guest_fpu); |
| } |
| |
| err = avic_init_vcpu(svm); |
| if (err) |
| goto error_free_vmsa_page; |
| |
| svm->msrpm = svm_vcpu_alloc_msrpm(); |
| if (!svm->msrpm) { |
| err = -ENOMEM; |
| goto error_free_vmsa_page; |
| } |
| |
| svm->x2avic_msrs_intercepted = true; |
| |
| svm->vmcb01.ptr = page_address(vmcb01_page); |
| svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT); |
| svm_switch_vmcb(svm, &svm->vmcb01); |
| |
| if (vmsa_page) |
| svm->sev_es.vmsa = page_address(vmsa_page); |
| |
| svm->guest_state_loaded = false; |
| |
| return 0; |
| |
| error_free_vmsa_page: |
| if (vmsa_page) |
| __free_page(vmsa_page); |
| error_free_vmcb_page: |
| __free_page(vmcb01_page); |
| out: |
| return err; |
| } |
| |
| static void svm_clear_current_vmcb(struct vmcb *vmcb) |
| { |
| int i; |
| |
| for_each_online_cpu(i) |
| cmpxchg(per_cpu_ptr(&svm_data.current_vmcb, i), vmcb, NULL); |
| } |
| |
| static void svm_vcpu_free(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| /* |
| * The vmcb page can be recycled, causing a false negative in |
| * svm_vcpu_load(). So, ensure that no logical CPU has this |
| * vmcb page recorded as its current vmcb. |
| */ |
| svm_clear_current_vmcb(svm->vmcb); |
| |
| svm_leave_nested(vcpu); |
| svm_free_nested(svm); |
| |
| sev_free_vcpu(vcpu); |
| |
| __free_page(pfn_to_page(__sme_clr(svm->vmcb01.pa) >> PAGE_SHIFT)); |
| __free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE)); |
| } |
| |
| static struct sev_es_save_area *sev_es_host_save_area(struct svm_cpu_data *sd) |
| { |
| return page_address(sd->save_area) + 0x400; |
| } |
| |
| static void svm_prepare_switch_to_guest(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu); |
| |
| if (sev_es_guest(vcpu->kvm)) |
| sev_es_unmap_ghcb(svm); |
| |
| if (svm->guest_state_loaded) |
| return; |
| |
| /* |
| * Save additional host state that will be restored on VMEXIT (sev-es) |
| * or subsequent vmload of host save area. |
| */ |
| vmsave(sd->save_area_pa); |
| if (sev_es_guest(vcpu->kvm)) |
| sev_es_prepare_switch_to_guest(sev_es_host_save_area(sd)); |
| |
| if (tsc_scaling) |
| __svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio); |
| |
| /* |
| * TSC_AUX is always virtualized for SEV-ES guests when the feature is |
| * available. The user return MSR support is not required in this case |
| * because TSC_AUX is restored on #VMEXIT from the host save area |
| * (which has been initialized in svm_hardware_enable()). |
| */ |
| if (likely(tsc_aux_uret_slot >= 0) && |
| (!boot_cpu_has(X86_FEATURE_V_TSC_AUX) || !sev_es_guest(vcpu->kvm))) |
| kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull); |
| |
| svm->guest_state_loaded = true; |
| } |
| |
| static void svm_prepare_host_switch(struct kvm_vcpu *vcpu) |
| { |
| to_svm(vcpu)->guest_state_loaded = false; |
| } |
| |
| static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); |
| |
| if (sd->current_vmcb != svm->vmcb) { |
| sd->current_vmcb = svm->vmcb; |
| |
| if (!cpu_feature_enabled(X86_FEATURE_IBPB_ON_VMEXIT)) |
| indirect_branch_prediction_barrier(); |
| } |
| if (kvm_vcpu_apicv_active(vcpu)) |
| avic_vcpu_load(vcpu, cpu); |
| } |
| |
| static void svm_vcpu_put(struct kvm_vcpu *vcpu) |
| { |
| if (kvm_vcpu_apicv_active(vcpu)) |
| avic_vcpu_put(vcpu); |
| |
| svm_prepare_host_switch(vcpu); |
| |
| ++vcpu->stat.host_state_reload; |
| } |
| |
| static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| unsigned long rflags = svm->vmcb->save.rflags; |
| |
| if (svm->nmi_singlestep) { |
| /* Hide our flags if they were not set by the guest */ |
| if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) |
| rflags &= ~X86_EFLAGS_TF; |
| if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) |
| rflags &= ~X86_EFLAGS_RF; |
| } |
| return rflags; |
| } |
| |
| static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) |
| { |
| if (to_svm(vcpu)->nmi_singlestep) |
| rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); |
| |
| /* |
| * Any change of EFLAGS.VM is accompanied by a reload of SS |
| * (caused by either a task switch or an inter-privilege IRET), |
| * so we do not need to update the CPL here. |
| */ |
| to_svm(vcpu)->vmcb->save.rflags = rflags; |
| } |
| |
| static bool svm_get_if_flag(struct kvm_vcpu *vcpu) |
| { |
| struct vmcb *vmcb = to_svm(vcpu)->vmcb; |
| |
| return sev_es_guest(vcpu->kvm) |
| ? vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK |
| : kvm_get_rflags(vcpu) & X86_EFLAGS_IF; |
| } |
| |
| static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) |
| { |
| kvm_register_mark_available(vcpu, reg); |
| |
| switch (reg) { |
| case VCPU_EXREG_PDPTR: |
| /* |
| * When !npt_enabled, mmu->pdptrs[] is already available since |
| * it is always updated per SDM when moving to CRs. |
| */ |
| if (npt_enabled) |
| load_pdptrs(vcpu, kvm_read_cr3(vcpu)); |
| break; |
| default: |
| KVM_BUG_ON(1, vcpu->kvm); |
| } |
| } |
| |
| static void svm_set_vintr(struct vcpu_svm *svm) |
| { |
| struct vmcb_control_area *control; |
| |
| /* |
| * The following fields are ignored when AVIC is enabled |
| */ |
| WARN_ON(kvm_vcpu_apicv_activated(&svm->vcpu)); |
| |
| svm_set_intercept(svm, INTERCEPT_VINTR); |
| |
| /* |
| * Recalculating intercepts may have cleared the VINTR intercept. If |
| * V_INTR_MASKING is enabled in vmcb12, then the effective RFLAGS.IF |
| * for L1 physical interrupts is L1's RFLAGS.IF at the time of VMRUN. |
| * Requesting an interrupt window if save.RFLAGS.IF=0 is pointless as |
| * interrupts will never be unblocked while L2 is running. |
| */ |
| if (!svm_is_intercept(svm, INTERCEPT_VINTR)) |
| return; |
| |
| /* |
| * This is just a dummy VINTR to actually cause a vmexit to happen. |
| * Actual injection of virtual interrupts happens through EVENTINJ. |
| */ |
| control = &svm->vmcb->control; |
| control->int_vector = 0x0; |
| control->int_ctl &= ~V_INTR_PRIO_MASK; |
| control->int_ctl |= V_IRQ_MASK | |
| ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT); |
| vmcb_mark_dirty(svm->vmcb, VMCB_INTR); |
| } |
| |
| static void svm_clear_vintr(struct vcpu_svm *svm) |
| { |
| svm_clr_intercept(svm, INTERCEPT_VINTR); |
| |
| /* Drop int_ctl fields related to VINTR injection. */ |
| svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK; |
| if (is_guest_mode(&svm->vcpu)) { |
| svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK; |
| |
| WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) != |
| (svm->nested.ctl.int_ctl & V_TPR_MASK)); |
| |
| svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl & |
| V_IRQ_INJECTION_BITS_MASK; |
| |
| svm->vmcb->control.int_vector = svm->nested.ctl.int_vector; |
| } |
| |
| vmcb_mark_dirty(svm->vmcb, VMCB_INTR); |
| } |
| |
| static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg) |
| { |
| struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; |
| struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save; |
| |
| switch (seg) { |
| case VCPU_SREG_CS: return &save->cs; |
| case VCPU_SREG_DS: return &save->ds; |
| case VCPU_SREG_ES: return &save->es; |
| case VCPU_SREG_FS: return &save01->fs; |
| case VCPU_SREG_GS: return &save01->gs; |
| case VCPU_SREG_SS: return &save->ss; |
| case VCPU_SREG_TR: return &save01->tr; |
| case VCPU_SREG_LDTR: return &save01->ldtr; |
| } |
| BUG(); |
| return NULL; |
| } |
| |
| static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg) |
| { |
| struct vmcb_seg *s = svm_seg(vcpu, seg); |
| |
| return s->base; |
| } |
| |
| static void svm_get_segment(struct kvm_vcpu *vcpu, |
| struct kvm_segment *var, int seg) |
| { |
| struct vmcb_seg *s = svm_seg(vcpu, seg); |
| |
| var->base = s->base; |
| var->limit = s->limit; |
| var->selector = s->selector; |
| var->type = s->attrib & SVM_SELECTOR_TYPE_MASK; |
| var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1; |
| var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3; |
| var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1; |
| var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1; |
| var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1; |
| var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1; |
| |
| /* |
| * AMD CPUs circa 2014 track the G bit for all segments except CS. |
| * However, the SVM spec states that the G bit is not observed by the |
| * CPU, and some VMware virtual CPUs drop the G bit for all segments. |
| * So let's synthesize a legal G bit for all segments, this helps |
| * running KVM nested. It also helps cross-vendor migration, because |
| * Intel's vmentry has a check on the 'G' bit. |
| */ |
| var->g = s->limit > 0xfffff; |
| |
| /* |
| * AMD's VMCB does not have an explicit unusable field, so emulate it |
| * for cross vendor migration purposes by "not present" |
| */ |
| var->unusable = !var->present; |
| |
| switch (seg) { |
| case VCPU_SREG_TR: |
| /* |
| * Work around a bug where the busy flag in the tr selector |
| * isn't exposed |
| */ |
| var->type |= 0x2; |
| break; |
| case VCPU_SREG_DS: |
| case VCPU_SREG_ES: |
| case VCPU_SREG_FS: |
| case VCPU_SREG_GS: |
| /* |
| * The accessed bit must always be set in the segment |
| * descriptor cache, although it can be cleared in the |
| * descriptor, the cached bit always remains at 1. Since |
| * Intel has a check on this, set it here to support |
| * cross-vendor migration. |
| */ |
| if (!var->unusable) |
| var->type |= 0x1; |
| break; |
| case VCPU_SREG_SS: |
| /* |
| * On AMD CPUs sometimes the DB bit in the segment |
| * descriptor is left as 1, although the whole segment has |
| * been made unusable. Clear it here to pass an Intel VMX |
| * entry check when cross vendor migrating. |
| */ |
| if (var->unusable) |
| var->db = 0; |
| /* This is symmetric with svm_set_segment() */ |
| var->dpl = to_svm(vcpu)->vmcb->save.cpl; |
| break; |
| } |
| } |
| |
| static int svm_get_cpl(struct kvm_vcpu *vcpu) |
| { |
| struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; |
| |
| return save->cpl; |
| } |
| |
| static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) |
| { |
| struct kvm_segment cs; |
| |
| svm_get_segment(vcpu, &cs, VCPU_SREG_CS); |
| *db = cs.db; |
| *l = cs.l; |
| } |
| |
| static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| dt->size = svm->vmcb->save.idtr.limit; |
| dt->address = svm->vmcb->save.idtr.base; |
| } |
| |
| static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| svm->vmcb->save.idtr.limit = dt->size; |
| svm->vmcb->save.idtr.base = dt->address ; |
| vmcb_mark_dirty(svm->vmcb, VMCB_DT); |
| } |
| |
| static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| dt->size = svm->vmcb->save.gdtr.limit; |
| dt->address = svm->vmcb->save.gdtr.base; |
| } |
| |
| static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| svm->vmcb->save.gdtr.limit = dt->size; |
| svm->vmcb->save.gdtr.base = dt->address ; |
| vmcb_mark_dirty(svm->vmcb, VMCB_DT); |
| } |
| |
| static void sev_post_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| /* |
| * For guests that don't set guest_state_protected, the cr3 update is |
| * handled via kvm_mmu_load() while entering the guest. For guests |
| * that do (SEV-ES/SEV-SNP), the cr3 update needs to be written to |
| * VMCB save area now, since the save area will become the initial |
| * contents of the VMSA, and future VMCB save area updates won't be |
| * seen. |
| */ |
| if (sev_es_guest(vcpu->kvm)) { |
| svm->vmcb->save.cr3 = cr3; |
| vmcb_mark_dirty(svm->vmcb, VMCB_CR); |
| } |
| } |
| |
| static bool svm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) |
| { |
| return true; |
| } |
| |
| void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| u64 hcr0 = cr0; |
| bool old_paging = is_paging(vcpu); |
| |
| #ifdef CONFIG_X86_64 |
| if (vcpu->arch.efer & EFER_LME) { |
| if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { |
| vcpu->arch.efer |= EFER_LMA; |
| if (!vcpu->arch.guest_state_protected) |
| svm->vmcb->save.efer |= EFER_LMA | EFER_LME; |
| } |
| |
| if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) { |
| vcpu->arch.efer &= ~EFER_LMA; |
| if (!vcpu->arch.guest_state_protected) |
| svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME); |
| } |
| } |
| #endif |
| vcpu->arch.cr0 = cr0; |
| |
| if (!npt_enabled) { |
| hcr0 |= X86_CR0_PG | X86_CR0_WP; |
| if (old_paging != is_paging(vcpu)) |
| svm_set_cr4(vcpu, kvm_read_cr4(vcpu)); |
| } |
| |
| /* |
| * re-enable caching here because the QEMU bios |
| * does not do it - this results in some delay at |
| * reboot |
| */ |
| if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) |
| hcr0 &= ~(X86_CR0_CD | X86_CR0_NW); |
| |
| svm->vmcb->save.cr0 = hcr0; |
| vmcb_mark_dirty(svm->vmcb, VMCB_CR); |
| |
| /* |
| * SEV-ES guests must always keep the CR intercepts cleared. CR |
| * tracking is done using the CR write traps. |
| */ |
| if (sev_es_guest(vcpu->kvm)) |
| return; |
| |
| if (hcr0 == cr0) { |
| /* Selective CR0 write remains on. */ |
| svm_clr_intercept(svm, INTERCEPT_CR0_READ); |
| svm_clr_intercept(svm, INTERCEPT_CR0_WRITE); |
| } else { |
| svm_set_intercept(svm, INTERCEPT_CR0_READ); |
| svm_set_intercept(svm, INTERCEPT_CR0_WRITE); |
| } |
| } |
| |
| static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) |
| { |
| return true; |
| } |
| |
| void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) |
| { |
| unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE; |
| unsigned long old_cr4 = vcpu->arch.cr4; |
| |
| if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE)) |
| svm_flush_tlb_current(vcpu); |
| |
| vcpu->arch.cr4 = cr4; |
| if (!npt_enabled) { |
| cr4 |= X86_CR4_PAE; |
| |
| if (!is_paging(vcpu)) |
| cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE); |
| } |
| cr4 |= host_cr4_mce; |
| to_svm(vcpu)->vmcb->save.cr4 = cr4; |
| vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR); |
| |
| if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) |
| kvm_update_cpuid_runtime(vcpu); |
| } |
| |
| static void svm_set_segment(struct kvm_vcpu *vcpu, |
| struct kvm_segment *var, int seg) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| struct vmcb_seg *s = svm_seg(vcpu, seg); |
| |
| s->base = var->base; |
| s->limit = var->limit; |
| s->selector = var->selector; |
| s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK); |
| s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT; |
| s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT; |
| s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT; |
| s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT; |
| s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT; |
| s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT; |
| s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT; |
| |
| /* |
| * This is always accurate, except if SYSRET returned to a segment |
| * with SS.DPL != 3. Intel does not have this quirk, and always |
| * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it |
| * would entail passing the CPL to userspace and back. |
| */ |
| if (seg == VCPU_SREG_SS) |
| /* This is symmetric with svm_get_segment() */ |
| svm->vmcb->save.cpl = (var->dpl & 3); |
| |
| vmcb_mark_dirty(svm->vmcb, VMCB_SEG); |
| } |
| |
| static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| clr_exception_intercept(svm, BP_VECTOR); |
| |
| if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) { |
| if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) |
| set_exception_intercept(svm, BP_VECTOR); |
| } |
| } |
| |
| static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd) |
| { |
| if (sd->next_asid > sd->max_asid) { |
| ++sd->asid_generation; |
| sd->next_asid = sd->min_asid; |
| svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID; |
| vmcb_mark_dirty(svm->vmcb, VMCB_ASID); |
| } |
| |
| svm->current_vmcb->asid_generation = sd->asid_generation; |
| svm->asid = sd->next_asid++; |
| } |
| |
| static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value) |
| { |
| struct vmcb *vmcb = svm->vmcb; |
| |
| if (svm->vcpu.arch.guest_state_protected) |
| return; |
| |
| if (unlikely(value != vmcb->save.dr6)) { |
| vmcb->save.dr6 = value; |
| vmcb_mark_dirty(vmcb, VMCB_DR); |
| } |
| } |
| |
| static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| if (WARN_ON_ONCE(sev_es_guest(vcpu->kvm))) |
| return; |
| |
| get_debugreg(vcpu->arch.db[0], 0); |
| get_debugreg(vcpu->arch.db[1], 1); |
| get_debugreg(vcpu->arch.db[2], 2); |
| get_debugreg(vcpu->arch.db[3], 3); |
| /* |
| * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here, |
| * because db_interception might need it. We can do it before vmentry. |
| */ |
| vcpu->arch.dr6 = svm->vmcb->save.dr6; |
| vcpu->arch.dr7 = svm->vmcb->save.dr7; |
| vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; |
| set_dr_intercepts(svm); |
| } |
| |
| static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| if (vcpu->arch.guest_state_protected) |
| return; |
| |
| svm->vmcb->save.dr7 = value; |
| vmcb_mark_dirty(svm->vmcb, VMCB_DR); |
| } |
| |
| static int pf_interception(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| u64 fault_address = svm->vmcb->control.exit_info_2; |
| u64 error_code = svm->vmcb->control.exit_info_1; |
| |
| return kvm_handle_page_fault(vcpu, error_code, fault_address, |
| static_cpu_has(X86_FEATURE_DECODEASSISTS) ? |
| svm->vmcb->control.insn_bytes : NULL, |
| svm->vmcb->control.insn_len); |
| } |
| |
| static int npf_interception(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| u64 fault_address = svm->vmcb->control.exit_info_2; |
| u64 error_code = svm->vmcb->control.exit_info_1; |
| |
| trace_kvm_page_fault(vcpu, fault_address, error_code); |
| return kvm_mmu_page_fault(vcpu, fault_address, error_code, |
| static_cpu_has(X86_FEATURE_DECODEASSISTS) ? |
| svm->vmcb->control.insn_bytes : NULL, |
| svm->vmcb->control.insn_len); |
| } |
| |
| static int db_interception(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_run *kvm_run = vcpu->run; |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| if (!(vcpu->guest_debug & |
| (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) && |
| !svm->nmi_singlestep) { |
| u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW; |
| kvm_queue_exception_p(vcpu, DB_VECTOR, payload); |
| return 1; |
| } |
| |
| if (svm->nmi_singlestep) { |
| disable_nmi_singlestep(svm); |
| /* Make sure we check for pending NMIs upon entry */ |
| kvm_make_request(KVM_REQ_EVENT, vcpu); |
| } |
| |
| if (vcpu->guest_debug & |
| (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) { |
| kvm_run->exit_reason = KVM_EXIT_DEBUG; |
| kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6; |
| kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7; |
| kvm_run->debug.arch.pc = |
| svm->vmcb->save.cs.base + svm->vmcb->save.rip; |
| kvm_run->debug.arch.exception = DB_VECTOR; |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| static int bp_interception(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| struct kvm_run *kvm_run = vcpu->run; |
| |
| kvm_run->exit_reason = KVM_EXIT_DEBUG; |
| kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip; |
| kvm_run->debug.arch.exception = BP_VECTOR; |
| return 0; |
| } |
| |
| static int ud_interception(struct kvm_vcpu *vcpu) |
| { |
| return handle_ud(vcpu); |
| } |
| |
| static int ac_interception(struct kvm_vcpu *vcpu) |
| { |
| kvm_queue_exception_e(vcpu, AC_VECTOR, 0); |
| return 1; |
| } |
| |
| static bool is_erratum_383(void) |
| { |
| int err, i; |
| u64 value; |
| |
| if (!erratum_383_found) |
| return false; |
| |
| value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err); |
| if (err) |
| return false; |
| |
| /* Bit 62 may or may not be set for this mce */ |
| value &= ~(1ULL << 62); |
| |
| if (value != 0xb600000000010015ULL) |
| return false; |
| |
| /* Clear MCi_STATUS registers */ |
| for (i = 0; i < 6; ++i) |
| native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0); |
| |
| value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err); |
| if (!err) { |
| u32 low, high; |
| |
| value &= ~(1ULL << 2); |
| low = lower_32_bits(value); |
| high = upper_32_bits(value); |
| |
| native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high); |
| } |
| |
| /* Flush tlb to evict multi-match entries */ |
| __flush_tlb_all(); |
| |
| return true; |
| } |
| |
| static void svm_handle_mce(struct kvm_vcpu *vcpu) |
| { |
| if (is_erratum_383()) { |
| /* |
| * Erratum 383 triggered. Guest state is corrupt so kill the |
| * guest. |
| */ |
| pr_err("Guest triggered AMD Erratum 383\n"); |
| |
| kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); |
| |
| return; |
| } |
| |
| /* |
| * On an #MC intercept the MCE handler is not called automatically in |
| * the host. So do it by hand here. |
| */ |
| kvm_machine_check(); |
| } |
| |
| static int mc_interception(struct kvm_vcpu *vcpu) |
| { |
| return 1; |
| } |
| |
| static int shutdown_interception(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_run *kvm_run = vcpu->run; |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| |
| /* |
| * VMCB is undefined after a SHUTDOWN intercept. INIT the vCPU to put |
| * the VMCB in a known good state. Unfortuately, KVM doesn't have |
| * KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking |
| * userspace. At a platform view, INIT is acceptable behavior as |
| * there exist bare metal platforms that automatically INIT the CPU |
| * in response to shutdown. |
| * |
| * The VM save area for SEV-ES guests has already been encrypted so it |
| * cannot be reinitialized, i.e. synthesizing INIT is futile. |
| */ |
| if (!sev_es_guest(vcpu->kvm)) { |
| clear_page(svm->vmcb); |
| kvm_vcpu_reset(vcpu, true); |
| } |
| |
| kvm_run->exit_reason = KVM_EXIT_SHUTDOWN; |
| return 0; |
| } |
| |
| static int io_interception(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */ |
| int size, in, string; |
| unsigned port; |
| |
| ++vcpu->stat.io_exits; |
| string = (io_info & SVM_IOIO_STR_MASK) != 0; |
| in = (io_info & SVM_IOIO_TYPE_MASK) != 0; |
| port = io_info >> 16; |
| size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT; |
| |
| if (string) { |
| if (sev_es_guest(vcpu->kvm)) |
| return sev_es_string_io(svm, size, port, in); |
| else |
| return kvm_emulate_instruction(vcpu, 0); |
| } |
| |
| svm->next_rip = svm->vmcb->control.exit_info_2; |
| |
| return kvm_fast_pio(vcpu, size, port, in); |
| } |
| |
| static int nmi_interception(struct kvm_vcpu *vcpu) |
| { |
| return 1; |
| } |
| |
| static int smi_interception(struct kvm_vcpu *vcpu) |
| { |
| return 1; |
| } |
| |
| static int intr_interception(struct kvm_vcpu *vcpu) |
| { |
| ++vcpu->stat.irq_exits; |
| return 1; |
| } |
| |
| static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| struct vmcb *vmcb12; |
| struct kvm_host_map map; |
| int ret; |
| |
| if (nested_svm_check_permissions(vcpu)) |
| return 1; |
| |
| ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map); |
| if (ret) { |
| if (ret == -EINVAL) |
| kvm_inject_gp(vcpu, 0); |
| return 1; |
| } |
| |
| vmcb12 = map.hva; |
| |
| ret = kvm_skip_emulated_instruction(vcpu); |
| |
| if (vmload) { |
| svm_copy_vmloadsave_state(svm->vmcb, vmcb12); |
| svm->sysenter_eip_hi = 0; |
| svm->sysenter_esp_hi = 0; |
| } else { |
| svm_copy_vmloadsave_state(vmcb12, svm->vmcb); |
| } |
| |
| kvm_vcpu_unmap(vcpu, &map, true); |
| |
| return ret; |
| } |
| |
| static int vmload_interception(struct kvm_vcpu *vcpu) |
| { |
| return vmload_vmsave_interception(vcpu, true); |
| } |
| |
| static int vmsave_interception(struct kvm_vcpu *vcpu) |
| { |
| return vmload_vmsave_interception(vcpu, false); |
| } |
| |
| static int vmrun_interception(struct kvm_vcpu *vcpu) |
| { |
| if (nested_svm_check_permissions(vcpu)) |
| return 1; |
| |
| return nested_svm_vmrun(vcpu); |
| } |
| |
| enum { |
| NONE_SVM_INSTR, |
| SVM_INSTR_VMRUN, |
| SVM_INSTR_VMLOAD, |
| SVM_INSTR_VMSAVE, |
| }; |
| |
| /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */ |
| static int svm_instr_opcode(struct kvm_vcpu *vcpu) |
| { |
| struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; |
| |
| if (ctxt->b != 0x1 || ctxt->opcode_len != 2) |
| return NONE_SVM_INSTR; |
| |
| switch (ctxt->modrm) { |
| case 0xd8: /* VMRUN */ |
| return SVM_INSTR_VMRUN; |
| case 0xda: /* VMLOAD */ |
| return SVM_INSTR_VMLOAD; |
| case 0xdb: /* VMSAVE */ |
| return SVM_INSTR_VMSAVE; |
| default: |
| break; |
| } |
| |
| return NONE_SVM_INSTR; |
| } |
| |
| static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode) |
| { |
| const int guest_mode_exit_codes[] = { |
| [SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN, |
| [SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD, |
| [SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE, |
| }; |
| int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = { |
| [SVM_INSTR_VMRUN] = vmrun_interception, |
| [SVM_INSTR_VMLOAD] = vmload_interception, |
| [SVM_INSTR_VMSAVE] = vmsave_interception, |
| }; |
| struct vcpu_svm *svm = to_svm(vcpu); |
| int ret; |
| |
| if (is_guest_mode(vcpu)) { |
| /* Returns '1' or -errno on failure, '0' on success. */ |
| ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]); |
| if (ret) |
| return ret; |
| return 1; |
| } |
| return svm_instr_handlers[opcode](vcpu); |
| } |
| |
| /* |
| * #GP handling code. Note that #GP can be triggered under the following two |
| * cases: |
| * 1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on |
| * some AMD CPUs when EAX of these instructions are in the reserved memory |
| * regions (e.g. SMM memory on host). |
| * 2) VMware backdoor |
| */ |
| static int gp_interception(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| u32 error_code = svm->vmcb->control.exit_info_1; |
| int opcode; |
| |
| /* Both #GP cases have zero error_code */ |
| if (error_code) |
| goto reinject; |
| |
| /* Decode the instruction for usage later */ |
| if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK) |
| goto reinject; |
| |
| opcode = svm_instr_opcode(vcpu); |
| |
| if (opcode == NONE_SVM_INSTR) { |
| if (!enable_vmware_backdoor) |
| goto reinject; |
| |
| /* |
| * VMware backdoor emulation on #GP interception only handles |
| * IN{S}, OUT{S}, and RDPMC. |
| */ |
| if (!is_guest_mode(vcpu)) |
| return kvm_emulate_instruction(vcpu, |
| EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE); |
| } else { |
| /* All SVM instructions expect page aligned RAX */ |
| if (svm->vmcb->save.rax & ~PAGE_MASK) |
| goto reinject; |
| |
| return emulate_svm_instr(vcpu, opcode); |
| } |
| |
| reinject: |
| kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); |
| return 1; |
| } |
| |
| void svm_set_gif(struct vcpu_svm *svm, bool value) |
| { |
| if (value) { |
| /* |
| * If VGIF is enabled, the STGI intercept is only added to |
| * detect the opening of the SMI/NMI window; remove it now. |
| * Likewise, clear the VINTR intercept, we will set it |
| * again while processing KVM_REQ_EVENT if needed. |
| */ |
| if (vgif) |
| svm_clr_intercept(svm, INTERCEPT_STGI); |
| if (svm_is_intercept(svm, INTERCEPT_VINTR)) |
| svm_clear_vintr(svm); |
| |
| enable_gif(svm); |
| if (svm->vcpu.arch.smi_pending || |
| svm->vcpu.arch.nmi_pending || |
| kvm_cpu_has_injectable_intr(&svm->vcpu) || |
| kvm_apic_has_pending_init_or_sipi(&svm->vcpu)) |
| kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); |
| } else { |
| disable_gif(svm); |
| |
| /* |
| * After a CLGI no interrupts should come. But if vGIF is |
| * in use, we still rely on the VINTR intercept (rather than |
| * STGI) to detect an open interrupt window. |
| */ |
| if (!vgif) |
| svm_clear_vintr(svm); |
| } |
| } |
| |
| static int stgi_interception(struct kvm_vcpu *vcpu) |
| { |
| int ret; |
| |
| if (nested_svm_check_permissions(vcpu)) |
| return 1; |
| |
| ret = kvm_skip_emulated_instruction(vcpu); |
| svm_set_gif(to_svm(vcpu), true); |
| return ret; |
| } |
| |
| static int clgi_interception(struct kvm_vcpu *vcpu) |
| { |
| int ret; |
| |
| if (nested_svm_check_permissions(vcpu)) |
| return 1; |
| |
| ret = kvm_skip_emulated_instruction(vcpu); |
| svm_set_gif(to_svm(vcpu), false); |
| return ret; |
| } |
| |
| static int invlpga_interception(struct kvm_vcpu *vcpu) |
| { |
| gva_t gva = kvm_rax_read(vcpu); |
| u32 asid = kvm_rcx_read(vcpu); |
| |
| /* FIXME: Handle an address size prefix. */ |
| if (!is_long_mode(vcpu)) |
| gva = (u32)gva; |
| |
| trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva); |
| |
| /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */ |
| kvm_mmu_invlpg(vcpu, gva); |
| |
| return kvm_skip_emulated_instruction(vcpu); |
| } |
| |
| static int skinit_interception(struct kvm_vcpu *vcpu) |
| { |
| trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu)); |
| |
| kvm_queue_exception(vcpu, UD_VECTOR); |
| return 1; |
| } |
| |
| static int task_switch_interception(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| u16 tss_selector; |
| int reason; |
| int int_type = svm->vmcb->control.exit_int_info & |
| SVM_EXITINTINFO_TYPE_MASK; |
| int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK; |
| uint32_t type = |
| svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK; |
| uint32_t idt_v = |
| svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID; |
| bool has_error_code = false; |
| u32 error_code = 0; |
| |
| tss_selector = (u16)svm->vmcb->control.exit_info_1; |
| |
| if (svm->vmcb->control.exit_info_2 & |
| (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET)) |
| reason = TASK_SWITCH_IRET; |
| else if (svm->vmcb->control.exit_info_2 & |
| (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP)) |
| reason = TASK_SWITCH_JMP; |
| else if (idt_v) |
| reason = TASK_SWITCH_GATE; |
| else |
| reason = TASK_SWITCH_CALL; |
| |
| if (reason == TASK_SWITCH_GATE) { |
| switch (type) { |
| case SVM_EXITINTINFO_TYPE_NMI: |
| vcpu->arch.nmi_injected = false; |
| break; |
| case SVM_EXITINTINFO_TYPE_EXEPT: |
| if (svm->vmcb->control.exit_info_2 & |
| (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) { |
| has_error_code = true; |
| error_code = |
| (u32)svm->vmcb->control.exit_info_2; |
| } |
| kvm_clear_exception_queue(vcpu); |
| break; |
| case SVM_EXITINTINFO_TYPE_INTR: |
| case SVM_EXITINTINFO_TYPE_SOFT: |
| kvm_clear_interrupt_queue(vcpu); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| if (reason != TASK_SWITCH_GATE || |
| int_type == SVM_EXITINTINFO_TYPE_SOFT || |
| (int_type == SVM_EXITINTINFO_TYPE_EXEPT && |
| (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) { |
| if (!svm_skip_emulated_instruction(vcpu)) |
| return 0; |
| } |
| |
| if (int_type != SVM_EXITINTINFO_TYPE_SOFT) |
| int_vec = -1; |
| |
| return kvm_task_switch(vcpu, tss_selector, int_vec, reason, |
| has_error_code, error_code); |
| } |
| |
| static void svm_clr_iret_intercept(struct vcpu_svm *svm) |
| { |
| if (!sev_es_guest(svm->vcpu.kvm)) |
| svm_clr_intercept(svm, INTERCEPT_IRET); |
| } |
| |
| static void svm_set_iret_intercept(struct vcpu_svm *svm) |
| { |
| if (!sev_es_guest(svm->vcpu.kvm)) |
| svm_set_intercept(svm, INTERCEPT_IRET); |
| } |
| |
| static int iret_interception(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| WARN_ON_ONCE(sev_es_guest(vcpu->kvm)); |
| |
| ++vcpu->stat.nmi_window_exits; |
| svm->awaiting_iret_completion = true; |
| |
| svm_clr_iret_intercept(svm); |
| svm->nmi_iret_rip = kvm_rip_read(vcpu); |
| |
| kvm_make_request(KVM_REQ_EVENT, vcpu); |
| return 1; |
| } |
| |
| static int invlpg_interception(struct kvm_vcpu *vcpu) |
| { |
| if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) |
| return kvm_emulate_instruction(vcpu, 0); |
| |
| kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1); |
| return kvm_skip_emulated_instruction(vcpu); |
| } |
| |
| static int emulate_on_interception(struct kvm_vcpu *vcpu) |
| { |
| return kvm_emulate_instruction(vcpu, 0); |
| } |
| |
| static int rsm_interception(struct kvm_vcpu *vcpu) |
| { |
| return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2); |
| } |
| |
| static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu, |
| unsigned long val) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| unsigned long cr0 = vcpu->arch.cr0; |
| bool ret = false; |
| |
| if (!is_guest_mode(vcpu) || |
| (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0)))) |
| return false; |
| |
| cr0 &= ~SVM_CR0_SELECTIVE_MASK; |
| val &= ~SVM_CR0_SELECTIVE_MASK; |
| |
| if (cr0 ^ val) { |
| svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE; |
| ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE); |
| } |
| |
| return ret; |
| } |
| |
| #define CR_VALID (1ULL << 63) |
| |
| static int cr_interception(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| int reg, cr; |
| unsigned long val; |
| int err; |
| |
| if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) |
| return emulate_on_interception(vcpu); |
| |
| if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0)) |
| return emulate_on_interception(vcpu); |
| |
| reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; |
| if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE) |
| cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0; |
| else |
| cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0; |
| |
| err = 0; |
| if (cr >= 16) { /* mov to cr */ |
| cr -= 16; |
| val = kvm_register_read(vcpu, reg); |
| trace_kvm_cr_write(cr, val); |
| switch (cr) { |
| case 0: |
| if (!check_selective_cr0_intercepted(vcpu, val)) |
| err = kvm_set_cr0(vcpu, val); |
| else |
| return 1; |
| |
| break; |
| case 3: |
| err = kvm_set_cr3(vcpu, val); |
| break; |
| case 4: |
| err = kvm_set_cr4(vcpu, val); |
| break; |
| case 8: |
| err = kvm_set_cr8(vcpu, val); |
| break; |
| default: |
| WARN(1, "unhandled write to CR%d", cr); |
| kvm_queue_exception(vcpu, UD_VECTOR); |
| return 1; |
| } |
| } else { /* mov from cr */ |
| switch (cr) { |
| case 0: |
| val = kvm_read_cr0(vcpu); |
| break; |
| case 2: |
| val = vcpu->arch.cr2; |
| break; |
| case 3: |
| val = kvm_read_cr3(vcpu); |
| break; |
| case 4: |
| val = kvm_read_cr4(vcpu); |
| break; |
| case 8: |
| val = kvm_get_cr8(vcpu); |
| break; |
| default: |
| WARN(1, "unhandled read from CR%d", cr); |
| kvm_queue_exception(vcpu, UD_VECTOR); |
| return 1; |
| } |
| kvm_register_write(vcpu, reg, val); |
| trace_kvm_cr_read(cr, val); |
| } |
| return kvm_complete_insn_gp(vcpu, err); |
| } |
| |
| static int cr_trap(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| unsigned long old_value, new_value; |
| unsigned int cr; |
| int ret = 0; |
| |
| new_value = (unsigned long)svm->vmcb->control.exit_info_1; |
| |
| cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP; |
| switch (cr) { |
| case 0: |
| old_value = kvm_read_cr0(vcpu); |
| svm_set_cr0(vcpu, new_value); |
| |
| kvm_post_set_cr0(vcpu, old_value, new_value); |
| break; |
| case 4: |
| old_value = kvm_read_cr4(vcpu); |
| svm_set_cr4(vcpu, new_value); |
| |
| kvm_post_set_cr4(vcpu, old_value, new_value); |
| break; |
| case 8: |
| ret = kvm_set_cr8(vcpu, new_value); |
| break; |
| default: |
| WARN(1, "unhandled CR%d write trap", cr); |
| kvm_queue_exception(vcpu, UD_VECTOR); |
| return 1; |
| } |
| |
| return kvm_complete_insn_gp(vcpu, ret); |
| } |
| |
| static int dr_interception(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| int reg, dr; |
| int err = 0; |
| |
| /* |
| * SEV-ES intercepts DR7 only to disable guest debugging and the guest issues a VMGEXIT |
| * for DR7 write only. KVM cannot change DR7 (always swapped as type 'A') so return early. |
| */ |
| if (sev_es_guest(vcpu->kvm)) |
| return 1; |
| |
| if (vcpu->guest_debug == 0) { |
| /* |
| * No more DR vmexits; force a reload of the debug registers |
| * and reenter on this instruction. The next vmexit will |
| * retrieve the full state of the debug registers. |
| */ |
| clr_dr_intercepts(svm); |
| vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; |
| return 1; |
| } |
| |
| if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) |
| return emulate_on_interception(vcpu); |
| |
| reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; |
| dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0; |
| if (dr >= 16) { /* mov to DRn */ |
| dr -= 16; |
| err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg)); |
| } else { |
| kvm_register_write(vcpu, reg, kvm_get_dr(vcpu, dr)); |
| } |
| |
| return kvm_complete_insn_gp(vcpu, err); |
| } |
| |
| static int cr8_write_interception(struct kvm_vcpu *vcpu) |
| { |
| int r; |
| |
| u8 cr8_prev = kvm_get_cr8(vcpu); |
| /* instruction emulation calls kvm_set_cr8() */ |
| r = cr_interception(vcpu); |
| if (lapic_in_kernel(vcpu)) |
| return r; |
| if (cr8_prev <= kvm_get_cr8(vcpu)) |
| return r; |
| vcpu->run->exit_reason = KVM_EXIT_SET_TPR; |
| return 0; |
| } |
| |
| static int efer_trap(struct kvm_vcpu *vcpu) |
| { |
| struct msr_data msr_info; |
| int ret; |
| |
| /* |
| * Clear the EFER_SVME bit from EFER. The SVM code always sets this |
| * bit in svm_set_efer(), but __kvm_valid_efer() checks it against |
| * whether the guest has X86_FEATURE_SVM - this avoids a failure if |
| * the guest doesn't have X86_FEATURE_SVM. |
| */ |
| msr_info.host_initiated = false; |
| msr_info.index = MSR_EFER; |
| msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME; |
| ret = kvm_set_msr_common(vcpu, &msr_info); |
| |
| return kvm_complete_insn_gp(vcpu, ret); |
| } |
| |
| static int svm_get_msr_feature(struct kvm_msr_entry *msr) |
| { |
| msr->data = 0; |
| |
| switch (msr->index) { |
| case MSR_AMD64_DE_CFG: |
| if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC)) |
| msr->data |= MSR_AMD64_DE_CFG_LFENCE_SERIALIZE; |
| break; |
| default: |
| return KVM_MSR_RET_INVALID; |
| } |
| |
| return 0; |
| } |
| |
| static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| switch (msr_info->index) { |
| case MSR_AMD64_TSC_RATIO: |
| if (!msr_info->host_initiated && |
| !guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR)) |
| return 1; |
| msr_info->data = svm->tsc_ratio_msr; |
| break; |
| case MSR_STAR: |
| msr_info->data = svm->vmcb01.ptr->save.star; |
| break; |
| #ifdef CONFIG_X86_64 |
| case MSR_LSTAR: |
| msr_info->data = svm->vmcb01.ptr->save.lstar; |
| break; |
| case MSR_CSTAR: |
| msr_info->data = svm->vmcb01.ptr->save.cstar; |
| break; |
| case MSR_KERNEL_GS_BASE: |
| msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base; |
| break; |
| case MSR_SYSCALL_MASK: |
| msr_info->data = svm->vmcb01.ptr->save.sfmask; |
| break; |
| #endif |
| case MSR_IA32_SYSENTER_CS: |
| msr_info->data = svm->vmcb01.ptr->save.sysenter_cs; |
| break; |
| case MSR_IA32_SYSENTER_EIP: |
| msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip; |
| if (guest_cpuid_is_intel(vcpu)) |
| msr_info->data |= (u64)svm->sysenter_eip_hi << 32; |
| break; |
| case MSR_IA32_SYSENTER_ESP: |
| msr_info->data = svm->vmcb01.ptr->save.sysenter_esp; |
| if (guest_cpuid_is_intel(vcpu)) |
| msr_info->data |= (u64)svm->sysenter_esp_hi << 32; |
| break; |
| case MSR_TSC_AUX: |
| msr_info->data = svm->tsc_aux; |
| break; |
| case MSR_IA32_DEBUGCTLMSR: |
| msr_info->data = svm_get_lbr_vmcb(svm)->save.dbgctl; |
| break; |
| case MSR_IA32_LASTBRANCHFROMIP: |
| msr_info->data = svm_get_lbr_vmcb(svm)->save.br_from; |
| break; |
| case MSR_IA32_LASTBRANCHTOIP: |
| msr_info->data = svm_get_lbr_vmcb(svm)->save.br_to; |
| break; |
| case MSR_IA32_LASTINTFROMIP: |
| msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_from; |
| break; |
| case MSR_IA32_LASTINTTOIP: |
| msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_to; |
| break; |
| case MSR_VM_HSAVE_PA: |
| msr_info->data = svm->nested.hsave_msr; |
| break; |
| case MSR_VM_CR: |
| msr_info->data = svm->nested.vm_cr_msr; |
| break; |
| case MSR_IA32_SPEC_CTRL: |
| if (!msr_info->host_initiated && |
| !guest_has_spec_ctrl_msr(vcpu)) |
| return 1; |
| |
| if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) |
| msr_info->data = svm->vmcb->save.spec_ctrl; |
| else |
| msr_info->data = svm->spec_ctrl; |
| break; |
| case MSR_AMD64_VIRT_SPEC_CTRL: |
| if (!msr_info->host_initiated && |
| !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) |
| return 1; |
| |
| msr_info->data = svm->virt_spec_ctrl; |
| break; |
| case MSR_F15H_IC_CFG: { |
| |
| int family, model; |
| |
| family = guest_cpuid_family(vcpu); |
| model = guest_cpuid_model(vcpu); |
| |
| if (family < 0 || model < 0) |
| return kvm_get_msr_common(vcpu, msr_info); |
| |
| msr_info->data = 0; |
| |
| if (family == 0x15 && |
| (model >= 0x2 && model < 0x20)) |
| msr_info->data = 0x1E; |
| } |
| break; |
| case MSR_AMD64_DE_CFG: |
| msr_info->data = svm->msr_decfg; |
| break; |
| default: |
| return kvm_get_msr_common(vcpu, msr_info); |
| } |
| return 0; |
| } |
| |
| static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->sev_es.ghcb)) |
| return kvm_complete_insn_gp(vcpu, err); |
| |
| ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 1); |
| ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, |
| X86_TRAP_GP | |
| SVM_EVTINJ_TYPE_EXEPT | |
| SVM_EVTINJ_VALID); |
| return 1; |
| } |
| |
| static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| int svm_dis, chg_mask; |
| |
| if (data & ~SVM_VM_CR_VALID_MASK) |
| return 1; |
| |
| chg_mask = SVM_VM_CR_VALID_MASK; |
| |
| if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK) |
| chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK); |
| |
| svm->nested.vm_cr_msr &= ~chg_mask; |
| svm->nested.vm_cr_msr |= (data & chg_mask); |
| |
| svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK; |
| |
| /* check for svm_disable while efer.svme is set */ |
| if (svm_dis && (vcpu->arch.efer & EFER_SVME)) |
| return 1; |
| |
| return 0; |
| } |
| |
| static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| int ret = 0; |
| |
| u32 ecx = msr->index; |
| u64 data = msr->data; |
| switch (ecx) { |
| case MSR_AMD64_TSC_RATIO: |
| |
| if (!guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR)) { |
| |
| if (!msr->host_initiated) |
| return 1; |
| /* |
| * In case TSC scaling is not enabled, always |
| * leave this MSR at the default value. |
| * |
| * Due to bug in qemu 6.2.0, it would try to set |
| * this msr to 0 if tsc scaling is not enabled. |
| * Ignore this value as well. |
| */ |
| if (data != 0 && data != svm->tsc_ratio_msr) |
| return 1; |
| break; |
| } |
| |
| if (data & SVM_TSC_RATIO_RSVD) |
| return 1; |
| |
| svm->tsc_ratio_msr = data; |
| |
| if (guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR) && |
| is_guest_mode(vcpu)) |
| nested_svm_update_tsc_ratio_msr(vcpu); |
| |
| break; |
| case MSR_IA32_CR_PAT: |
| ret = kvm_set_msr_common(vcpu, msr); |
| if (ret) |
| break; |
| |
| svm->vmcb01.ptr->save.g_pat = data; |
| if (is_guest_mode(vcpu)) |
| nested_vmcb02_compute_g_pat(svm); |
| vmcb_mark_dirty(svm->vmcb, VMCB_NPT); |
| break; |
| case MSR_IA32_SPEC_CTRL: |
| if (!msr->host_initiated && |
| !guest_has_spec_ctrl_msr(vcpu)) |
| return 1; |
| |
| if (kvm_spec_ctrl_test_value(data)) |
| return 1; |
| |
| if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) |
| svm->vmcb->save.spec_ctrl = data; |
| else |
| svm->spec_ctrl = data; |
| if (!data) |
| break; |
| |
| /* |
| * For non-nested: |
| * When it's written (to non-zero) for the first time, pass |
| * it through. |
| * |
| * For nested: |
| * The handling of the MSR bitmap for L2 guests is done in |
| * nested_svm_vmrun_msrpm. |
| * We update the L1 MSR bit as well since it will end up |
| * touching the MSR anyway now. |
| */ |
| set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1); |
| break; |
| case MSR_AMD64_VIRT_SPEC_CTRL: |
| if (!msr->host_initiated && |
| !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) |
| return 1; |
| |
| if (data & ~SPEC_CTRL_SSBD) |
| return 1; |
| |
| svm->virt_spec_ctrl = data; |
| break; |
| case MSR_STAR: |
| svm->vmcb01.ptr->save.star = data; |
| break; |
| #ifdef CONFIG_X86_64 |
| case MSR_LSTAR: |
| svm->vmcb01.ptr->save.lstar = data; |
| break; |
| case MSR_CSTAR: |
| svm->vmcb01.ptr->save.cstar = data; |
| break; |
| case MSR_KERNEL_GS_BASE: |
| svm->vmcb01.ptr->save.kernel_gs_base = data; |
| break; |
| case MSR_SYSCALL_MASK: |
| svm->vmcb01.ptr->save.sfmask = data; |
| break; |
| #endif |
| case MSR_IA32_SYSENTER_CS: |
| svm->vmcb01.ptr->save.sysenter_cs = data; |
| break; |
| case MSR_IA32_SYSENTER_EIP: |
| svm->vmcb01.ptr->save.sysenter_eip = (u32)data; |
| /* |
| * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs |
| * when we spoof an Intel vendor ID (for cross vendor migration). |
| * In this case we use this intercept to track the high |
| * 32 bit part of these msrs to support Intel's |
| * implementation of SYSENTER/SYSEXIT. |
| */ |
| svm->sysenter_eip_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0; |
| break; |
| case MSR_IA32_SYSENTER_ESP: |
| svm->vmcb01.ptr->save.sysenter_esp = (u32)data; |
| svm->sysenter_esp_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0; |
| break; |
| case MSR_TSC_AUX: |
| /* |
| * TSC_AUX is always virtualized for SEV-ES guests when the |
| * feature is available. The user return MSR support is not |
| * required in this case because TSC_AUX is restored on #VMEXIT |
| * from the host save area (which has been initialized in |
| * svm_hardware_enable()). |
| */ |
| if (boot_cpu_has(X86_FEATURE_V_TSC_AUX) && sev_es_guest(vcpu->kvm)) |
| break; |
| |
| /* |
| * TSC_AUX is usually changed only during boot and never read |
| * directly. Intercept TSC_AUX instead of exposing it to the |
| * guest via direct_access_msrs, and switch it via user return. |
| */ |
| preempt_disable(); |
| ret = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull); |
| preempt_enable(); |
| if (ret) |
| break; |
| |
| svm->tsc_aux = data; |
| break; |
| case MSR_IA32_DEBUGCTLMSR: |
| if (!lbrv) { |
| kvm_pr_unimpl_wrmsr(vcpu, ecx, data); |
| break; |
| } |
| if (data & DEBUGCTL_RESERVED_BITS) |
| return 1; |
| |
| svm_get_lbr_vmcb(svm)->save.dbgctl = data; |
| svm_update_lbrv(vcpu); |
| break; |
| case MSR_VM_HSAVE_PA: |
| /* |
| * Old kernels did not validate the value written to |
| * MSR_VM_HSAVE_PA. Allow KVM_SET_MSR to set an invalid |
| * value to allow live migrating buggy or malicious guests |
| * originating from those kernels. |
| */ |
| if (!msr->host_initiated && !page_address_valid(vcpu, data)) |
| return 1; |
| |
| svm->nested.hsave_msr = data & PAGE_MASK; |
| break; |
| case MSR_VM_CR: |
| return svm_set_vm_cr(vcpu, data); |
| case MSR_VM_IGNNE: |
| kvm_pr_unimpl_wrmsr(vcpu, ecx, data); |
| break; |
| case MSR_AMD64_DE_CFG: { |
| struct kvm_msr_entry msr_entry; |
| |
| msr_entry.index = msr->index; |
| if (svm_get_msr_feature(&msr_entry)) |
| return 1; |
| |
| /* Check the supported bits */ |
| if (data & ~msr_entry.data) |
| return 1; |
| |
| /* Don't allow the guest to change a bit, #GP */ |
| if (!msr->host_initiated && (data ^ msr_entry.data)) |
| return 1; |
| |
| svm->msr_decfg = data; |
| break; |
| } |
| default: |
| return kvm_set_msr_common(vcpu, msr); |
| } |
| return ret; |
| } |
| |
| static int msr_interception(struct kvm_vcpu *vcpu) |
| { |
| if (to_svm(vcpu)->vmcb->control.exit_info_1) |
| return kvm_emulate_wrmsr(vcpu); |
| else |
| return kvm_emulate_rdmsr(vcpu); |
| } |
| |
| static int interrupt_window_interception(struct kvm_vcpu *vcpu) |
| { |
| kvm_make_request(KVM_REQ_EVENT, vcpu); |
| svm_clear_vintr(to_svm(vcpu)); |
| |
| /* |
| * If not running nested, for AVIC, the only reason to end up here is ExtINTs. |
| * In this case AVIC was temporarily disabled for |
| * requesting the IRQ window and we have to re-enable it. |
| * |
| * If running nested, still remove the VM wide AVIC inhibit to |
| * support case in which the interrupt window was requested when the |
| * vCPU was not running nested. |
| |
| * All vCPUs which run still run nested, will remain to have their |
| * AVIC still inhibited due to per-cpu AVIC inhibition. |
| */ |
| kvm_clear_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN); |
| |
| ++vcpu->stat.irq_window_exits; |
| return 1; |
| } |
| |
| static int pause_interception(struct kvm_vcpu *vcpu) |
| { |
| bool in_kernel; |
| /* |
| * CPL is not made available for an SEV-ES guest, therefore |
| * vcpu->arch.preempted_in_kernel can never be true. Just |
| * set in_kernel to false as well. |
| */ |
| in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0; |
| |
| grow_ple_window(vcpu); |
| |
| kvm_vcpu_on_spin(vcpu, in_kernel); |
| return kvm_skip_emulated_instruction(vcpu); |
| } |
| |
| static int invpcid_interception(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| unsigned long type; |
| gva_t gva; |
| |
| if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) { |
| kvm_queue_exception(vcpu, UD_VECTOR); |
| return 1; |
| } |
| |
| /* |
| * For an INVPCID intercept: |
| * EXITINFO1 provides the linear address of the memory operand. |
| * EXITINFO2 provides the contents of the register operand. |
| */ |
| type = svm->vmcb->control.exit_info_2; |
| gva = svm->vmcb->control.exit_info_1; |
| |
| return kvm_handle_invpcid(vcpu, type, gva); |
| } |
| |
| static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = { |
| [SVM_EXIT_READ_CR0] = cr_interception, |
| [SVM_EXIT_READ_CR3] = cr_interception, |
| [SVM_EXIT_READ_CR4] = cr_interception, |
| [SVM_EXIT_READ_CR8] = cr_interception, |
| [SVM_EXIT_CR0_SEL_WRITE] = cr_interception, |
| [SVM_EXIT_WRITE_CR0] = cr_interception, |
| [SVM_EXIT_WRITE_CR3] = cr_interception, |
| [SVM_EXIT_WRITE_CR4] = cr_interception, |
| [SVM_EXIT_WRITE_CR8] = cr8_write_interception, |
| [SVM_EXIT_READ_DR0] = dr_interception, |
| [SVM_EXIT_READ_DR1] = dr_interception, |
| [SVM_EXIT_READ_DR2] = dr_interception, |
| [SVM_EXIT_READ_DR3] = dr_interception, |
| [SVM_EXIT_READ_DR4] = dr_interception, |
| [SVM_EXIT_READ_DR5] = dr_interception, |
| [SVM_EXIT_READ_DR6] = dr_interception, |
| [SVM_EXIT_READ_DR7] = dr_interception, |
| [SVM_EXIT_WRITE_DR0] = dr_interception, |
| [SVM_EXIT_WRITE_DR1] = dr_interception, |
| [SVM_EXIT_WRITE_DR2] = dr_interception, |
| [SVM_EXIT_WRITE_DR3] = dr_interception, |
| [SVM_EXIT_WRITE_DR4] = dr_interception, |
| [SVM_EXIT_WRITE_DR5] = dr_interception, |
| [SVM_EXIT_WRITE_DR6] = dr_interception, |
| [SVM_EXIT_WRITE_DR7] = dr_interception, |
| [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception, |
| [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception, |
| [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception, |
| [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception, |
| [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception, |
| [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception, |
| [SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception, |
| [SVM_EXIT_INTR] = intr_interception, |
| [SVM_EXIT_NMI] = nmi_interception, |
| [SVM_EXIT_SMI] = smi_interception, |
| [SVM_EXIT_VINTR] = interrupt_window_interception, |
| [SVM_EXIT_RDPMC] = kvm_emulate_rdpmc, |
| [SVM_EXIT_CPUID] = kvm_emulate_cpuid, |
| [SVM_EXIT_IRET] = iret_interception, |
| [SVM_EXIT_INVD] = kvm_emulate_invd, |
| [SVM_EXIT_PAUSE] = pause_interception, |
| [SVM_EXIT_HLT] = kvm_emulate_halt, |
| [SVM_EXIT_INVLPG] = invlpg_interception, |
| [SVM_EXIT_INVLPGA] = invlpga_interception, |
| [SVM_EXIT_IOIO] = io_interception, |
| [SVM_EXIT_MSR] = msr_interception, |
| [SVM_EXIT_TASK_SWITCH] = task_switch_interception, |
| [SVM_EXIT_SHUTDOWN] = shutdown_interception, |
| [SVM_EXIT_VMRUN] = vmrun_interception, |
| [SVM_EXIT_VMMCALL] = kvm_emulate_hypercall, |
| [SVM_EXIT_VMLOAD] = vmload_interception, |
| [SVM_EXIT_VMSAVE] = vmsave_interception, |
| [SVM_EXIT_STGI] = stgi_interception, |
| [SVM_EXIT_CLGI] = clgi_interception, |
| [SVM_EXIT_SKINIT] = skinit_interception, |
| [SVM_EXIT_RDTSCP] = kvm_handle_invalid_op, |
| [SVM_EXIT_WBINVD] = kvm_emulate_wbinvd, |
| [SVM_EXIT_MONITOR] = kvm_emulate_monitor, |
| [SVM_EXIT_MWAIT] = kvm_emulate_mwait, |
| [SVM_EXIT_XSETBV] = kvm_emulate_xsetbv, |
| [SVM_EXIT_RDPRU] = kvm_handle_invalid_op, |
| [SVM_EXIT_EFER_WRITE_TRAP] = efer_trap, |
| [SVM_EXIT_CR0_WRITE_TRAP] = cr_trap, |
| [SVM_EXIT_CR4_WRITE_TRAP] = cr_trap, |
| [SVM_EXIT_CR8_WRITE_TRAP] = cr_trap, |
| [SVM_EXIT_INVPCID] = invpcid_interception, |
| [SVM_EXIT_NPF] = npf_interception, |
| [SVM_EXIT_RSM] = rsm_interception, |
| [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception, |
| [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception, |
| [SVM_EXIT_VMGEXIT] = sev_handle_vmgexit, |
| }; |
| |
| static void dump_vmcb(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| struct vmcb_control_area *control = &svm->vmcb->control; |
| struct vmcb_save_area *save = &svm->vmcb->save; |
| struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save; |
| |
| if (!dump_invalid_vmcb) { |
| pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n"); |
| return; |
| } |
| |
| pr_err("VMCB %p, last attempted VMRUN on CPU %d\n", |
| svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu); |
| pr_err("VMCB Control Area:\n"); |
| pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff); |
| pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16); |
| pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff); |
| pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16); |
| pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]); |
| pr_err("%-20s%08x %08x\n", "intercepts:", |
| control->intercepts[INTERCEPT_WORD3], |
| control->intercepts[INTERCEPT_WORD4]); |
| pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count); |
| pr_err("%-20s%d\n", "pause filter threshold:", |
| control->pause_filter_thresh); |
| pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa); |
| pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa); |
| pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset); |
| pr_err("%-20s%d\n", "asid:", control->asid); |
| pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl); |
| pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl); |
| pr_err("%-20s%08x\n", "int_vector:", control->int_vector); |
| pr_err("%-20s%08x\n", "int_state:", control->int_state); |
| pr_err("%-20s%08x\n", "exit_code:", control->exit_code); |
| pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1); |
| pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2); |
| pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info); |
| pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err); |
| pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl); |
| pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3); |
| pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar); |
| pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa); |
| pr_err("%-20s%08x\n", "event_inj:", control->event_inj); |
| pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err); |
| pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext); |
| pr_err("%-20s%016llx\n", "next_rip:", control->next_rip); |
| pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page); |
| pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id); |
| pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id); |
| pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa); |
| pr_err("VMCB State Save Area:\n"); |
| pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", |
| "es:", |
| save->es.selector, save->es.attrib, |
| save->es.limit, save->es.base); |
| pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", |
| "cs:", |
| save->cs.selector, save->cs.attrib, |
| save->cs.limit, save->cs.base); |
| pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", |
| "ss:", |
| save->ss.selector, save->ss.attrib, |
| save->ss.limit, save->ss.base); |
| pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", |
| "ds:", |
| save->ds.selector, save->ds.attrib, |
| save->ds.limit, save->ds.base); |
| pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", |
| "fs:", |
| save01->fs.selector, save01->fs.attrib, |
| save01->fs.limit, save01->fs.base); |
| pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", |
| "gs:", |
| save01->gs.selector, save01->gs.attrib, |
| save01->gs.limit, save01->gs.base); |
| pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", |
| "gdtr:", |
| save->gdtr.selector, save->gdtr.attrib, |
| save->gdtr.limit, save->gdtr.base); |
| pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", |
| "ldtr:", |
| save01->ldtr.selector, save01->ldtr.attrib, |
| save01->ldtr.limit, save01->ldtr.base); |
| pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", |
| "idtr:", |
| save->idtr.selector, save->idtr.attrib, |
| save->idtr.limit, save->idtr.base); |
| pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", |
| "tr:", |
| save01->tr.selector, save01->tr.attrib, |
| save01->tr.limit, save01->tr.base); |
| pr_err("vmpl: %d cpl: %d efer: %016llx\n", |
| save->vmpl, save->cpl, save->efer); |
| pr_err("%-15s %016llx %-13s %016llx\n", |
| "cr0:", save->cr0, "cr2:", save->cr2); |
| pr_err("%-15s %016llx %-13s %016llx\n", |
| "cr3:", save->cr3, "cr4:", save->cr4); |
| pr_err("%-15s %016llx %-13s %016llx\n", |
| "dr6:", save->dr6, "dr7:", save->dr7); |
| pr_err("%-15s %016llx %-13s %016llx\n", |
| "rip:", save->rip, "rflags:", save->rflags); |
| pr_err("%-15s %016llx %-13s %016llx\n", |
| "rsp:", save->rsp, "rax:", save->rax); |
| pr_err("%-15s %016llx %-13s %016llx\n", |
| "star:", save01->star, "lstar:", save01->lstar); |
| pr_err("%-15s %016llx %-13s %016llx\n", |
| "cstar:", save01->cstar, "sfmask:", save01->sfmask); |
| pr_err("%-15s %016llx %-13s %016llx\n", |
| "kernel_gs_base:", save01->kernel_gs_base, |
| "sysenter_cs:", save01->sysenter_cs); |
| pr_err("%-15s %016llx %-13s %016llx\n", |
| "sysenter_esp:", save01->sysenter_esp, |
| "sysenter_eip:", save01->sysenter_eip); |
| pr_err("%-15s %016llx %-13s %016llx\n", |
| "gpat:", save->g_pat, "dbgctl:", save->dbgctl); |
| pr_err("%-15s %016llx %-13s %016llx\n", |
| "br_from:", save->br_from, "br_to:", save->br_to); |
| pr_err("%-15s %016llx %-13s %016llx\n", |
| "excp_from:", save->last_excp_from, |
| "excp_to:", save->last_excp_to); |
| } |
| |
| static bool svm_check_exit_valid(u64 exit_code) |
| { |
| return (exit_code < ARRAY_SIZE(svm_exit_handlers) && |
| svm_exit_handlers[exit_code]); |
| } |
| |
| static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code) |
| { |
| vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code); |
| dump_vmcb(vcpu); |
| vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
| vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; |
| vcpu->run->internal.ndata = 2; |
| vcpu->run->internal.data[0] = exit_code; |
| vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; |
| return 0; |
| } |
| |
| int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code) |
| { |
| if (!svm_check_exit_valid(exit_code)) |
| return svm_handle_invalid_exit(vcpu, exit_code); |
| |
| #ifdef CONFIG_MITIGATION_RETPOLINE |
| if (exit_code == SVM_EXIT_MSR) |
| return msr_interception(vcpu); |
| else if (exit_code == SVM_EXIT_VINTR) |
| return interrupt_window_interception(vcpu); |
| else if (exit_code == SVM_EXIT_INTR) |
| return intr_interception(vcpu); |
| else if (exit_code == SVM_EXIT_HLT) |
| return kvm_emulate_halt(vcpu); |
| else if (exit_code == SVM_EXIT_NPF) |
| return npf_interception(vcpu); |
| #endif |
| return svm_exit_handlers[exit_code](vcpu); |
| } |
| |
| static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason, |
| u64 *info1, u64 *info2, |
| u32 *intr_info, u32 *error_code) |
| { |
| struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control; |
| |
| *reason = control->exit_code; |
| *info1 = control->exit_info_1; |
| *info2 = control->exit_info_2; |
| *intr_info = control->exit_int_info; |
| if ((*intr_info & SVM_EXITINTINFO_VALID) && |
| (*intr_info & SVM_EXITINTINFO_VALID_ERR)) |
| *error_code = control->exit_int_info_err; |
| else |
| *error_code = 0; |
| } |
| |
| static int svm_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| struct kvm_run *kvm_run = vcpu->run; |
| u32 exit_code = svm->vmcb->control.exit_code; |
| |
| /* SEV-ES guests must use the CR write traps to track CR registers. */ |
| if (!sev_es_guest(vcpu->kvm)) { |
| if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE)) |
| vcpu->arch.cr0 = svm->vmcb->save.cr0; |
| if (npt_enabled) |
| vcpu->arch.cr3 = svm->vmcb->save.cr3; |
| } |
| |
| if (is_guest_mode(vcpu)) { |
| int vmexit; |
| |
| trace_kvm_nested_vmexit(vcpu, KVM_ISA_SVM); |
| |
| vmexit = nested_svm_exit_special(svm); |
| |
| if (vmexit == NESTED_EXIT_CONTINUE) |
| vmexit = nested_svm_exit_handled(svm); |
| |
| if (vmexit == NESTED_EXIT_DONE) |
| return 1; |
| } |
| |
| if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) { |
| kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY; |
| kvm_run->fail_entry.hardware_entry_failure_reason |
| = svm->vmcb->control.exit_code; |
| kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; |
| dump_vmcb(vcpu); |
| return 0; |
| } |
| |
| if (exit_fastpath != EXIT_FASTPATH_NONE) |
| return 1; |
| |
| return svm_invoke_exit_handler(vcpu, exit_code); |
| } |
| |
| static void pre_svm_run(struct kvm_vcpu *vcpu) |
| { |
| struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu); |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| /* |
| * If the previous vmrun of the vmcb occurred on a different physical |
| * cpu, then mark the vmcb dirty and assign a new asid. Hardware's |
| * vmcb clean bits are per logical CPU, as are KVM's asid assignments. |
| */ |
| if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) { |
| svm->current_vmcb->asid_generation = 0; |
| vmcb_mark_all_dirty(svm->vmcb); |
| svm->current_vmcb->cpu = vcpu->cpu; |
| } |
| |
| if (sev_guest(vcpu->kvm)) |
| return pre_sev_run(svm, vcpu->cpu); |
| |
| /* FIXME: handle wraparound of asid_generation */ |
| if (svm->current_vmcb->asid_generation != sd->asid_generation) |
| new_asid(svm, sd); |
| } |
| |
| static void svm_inject_nmi(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI; |
| |
| if (svm->nmi_l1_to_l2) |
| return; |
| |
| /* |
| * No need to manually track NMI masking when vNMI is enabled, hardware |
| * automatically sets V_NMI_BLOCKING_MASK as appropriate, including the |
| * case where software directly injects an NMI. |
| */ |
| if (!is_vnmi_enabled(svm)) { |
| svm->nmi_masked = true; |
| svm_set_iret_intercept(svm); |
| } |
| ++vcpu->stat.nmi_injections; |
| } |
| |
| static bool svm_is_vnmi_pending(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| if (!is_vnmi_enabled(svm)) |
| return false; |
| |
| return !!(svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK); |
| } |
| |
| static bool svm_set_vnmi_pending(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| if (!is_vnmi_enabled(svm)) |
| return false; |
| |
| if (svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK) |
| return false; |
| |
| svm->vmcb->control.int_ctl |= V_NMI_PENDING_MASK; |
| vmcb_mark_dirty(svm->vmcb, VMCB_INTR); |
| |
| /* |
| * Because the pending NMI is serviced by hardware, KVM can't know when |
| * the NMI is "injected", but for all intents and purposes, passing the |
| * NMI off to hardware counts as injection. |
| */ |
| ++vcpu->stat.nmi_injections; |
| |
| return true; |
| } |
| |
| static void svm_inject_irq(struct kvm_vcpu *vcpu, bool reinjected) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| u32 type; |
| |
| if (vcpu->arch.interrupt.soft) { |
| if (svm_update_soft_interrupt_rip(vcpu)) |
| return; |
| |
| type = SVM_EVTINJ_TYPE_SOFT; |
| } else { |
| type = SVM_EVTINJ_TYPE_INTR; |
| } |
| |
| trace_kvm_inj_virq(vcpu->arch.interrupt.nr, |
| vcpu->arch.interrupt.soft, reinjected); |
| ++vcpu->stat.irq_injections; |
| |
| svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr | |
| SVM_EVTINJ_VALID | type; |
| } |
| |
| void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode, |
| int trig_mode, int vector) |
| { |
| /* |
| * apic->apicv_active must be read after vcpu->mode. |
| * Pairs with smp_store_release in vcpu_enter_guest. |
| */ |
| bool in_guest_mode = (smp_load_acquire(&vcpu->mode) == IN_GUEST_MODE); |
| |
| /* Note, this is called iff the local APIC is in-kernel. */ |
| if (!READ_ONCE(vcpu->arch.apic->apicv_active)) { |
| /* Process the interrupt via kvm_check_and_inject_events(). */ |
| kvm_make_request(KVM_REQ_EVENT, vcpu); |
| kvm_vcpu_kick(vcpu); |
| return; |
| } |
| |
| trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector); |
| if (in_guest_mode) { |
| /* |
| * Signal the doorbell to tell hardware to inject the IRQ. If |
| * the vCPU exits the guest before the doorbell chimes, hardware |
| * will automatically process AVIC interrupts at the next VMRUN. |
| */ |
| avic_ring_doorbell(vcpu); |
| } else { |
| /* |
| * Wake the vCPU if it was blocking. KVM will then detect the |
| * pending IRQ when checking if the vCPU has a wake event. |
| */ |
| kvm_vcpu_wake_up(vcpu); |
| } |
| } |
| |
| static void svm_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode, |
| int trig_mode, int vector) |
| { |
| kvm_lapic_set_irr(vector, apic); |
| |
| /* |
| * Pairs with the smp_mb_*() after setting vcpu->guest_mode in |
| * vcpu_enter_guest() to ensure the write to the vIRR is ordered before |
| * the read of guest_mode. This guarantees that either VMRUN will see |
| * and process the new vIRR entry, or that svm_complete_interrupt_delivery |
| * will signal the doorbell if the CPU has already entered the guest. |
| */ |
| smp_mb__after_atomic(); |
| svm_complete_interrupt_delivery(apic->vcpu, delivery_mode, trig_mode, vector); |
| } |
| |
| static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| /* |
| * SEV-ES guests must always keep the CR intercepts cleared. CR |
| * tracking is done using the CR write traps. |
| */ |
| if (sev_es_guest(vcpu->kvm)) |
| return; |
| |
| if (nested_svm_virtualize_tpr(vcpu)) |
| return; |
| |
| svm_clr_intercept(svm, INTERCEPT_CR8_WRITE); |
| |
| if (irr == -1) |
| return; |
| |
| if (tpr >= irr) |
| svm_set_intercept(svm, INTERCEPT_CR8_WRITE); |
| } |
| |
| static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| if (is_vnmi_enabled(svm)) |
| return svm->vmcb->control.int_ctl & V_NMI_BLOCKING_MASK; |
| else |
| return svm->nmi_masked; |
| } |
| |
| static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| if (is_vnmi_enabled(svm)) { |
| if (masked) |
| svm->vmcb->control.int_ctl |= V_NMI_BLOCKING_MASK; |
| else |
| svm->vmcb->control.int_ctl &= ~V_NMI_BLOCKING_MASK; |
| |
| } else { |
| svm->nmi_masked = masked; |
| if (masked) |
| svm_set_iret_intercept(svm); |
| else |
| svm_clr_iret_intercept(svm); |
| } |
| } |
| |
| bool svm_nmi_blocked(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| struct vmcb *vmcb = svm->vmcb; |
| |
| if (!gif_set(svm)) |
| return true; |
| |
| if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) |
| return false; |
| |
| if (svm_get_nmi_mask(vcpu)) |
| return true; |
| |
| return vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK; |
| } |
| |
| static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| if (svm->nested.nested_run_pending) |
| return -EBUSY; |
| |
| if (svm_nmi_blocked(vcpu)) |
| return 0; |
| |
| /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */ |
| if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) |
| return -EBUSY; |
| return 1; |
| } |
| |
| bool svm_interrupt_blocked(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| struct vmcb *vmcb = svm->vmcb; |
| |
| if (!gif_set(svm)) |
| return true; |
| |
| if (is_guest_mode(vcpu)) { |
| /* As long as interrupts are being delivered... */ |
| if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK) |
| ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF) |
| : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF)) |
| return true; |
| |
| /* ... vmexits aren't blocked by the interrupt shadow */ |
| if (nested_exit_on_intr(svm)) |
| return false; |
| } else { |
| if (!svm_get_if_flag(vcpu)) |
| return true; |
| } |
| |
| return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK); |
| } |
| |
| static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| if (svm->nested.nested_run_pending) |
| return -EBUSY; |
| |
| if (svm_interrupt_blocked(vcpu)) |
| return 0; |
| |
| /* |
| * An IRQ must not be injected into L2 if it's supposed to VM-Exit, |
| * e.g. if the IRQ arrived asynchronously after checking nested events. |
| */ |
| if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm)) |
| return -EBUSY; |
| |
| return 1; |
| } |
| |
| static void svm_enable_irq_window(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| /* |
| * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes |
| * 1, because that's a separate STGI/VMRUN intercept. The next time we |
| * get that intercept, this function will be called again though and |
| * we'll get the vintr intercept. However, if the vGIF feature is |
| * enabled, the STGI interception will not occur. Enable the irq |
| * window under the assumption that the hardware will set the GIF. |
| */ |
| if (vgif || gif_set(svm)) { |
| /* |
| * IRQ window is not needed when AVIC is enabled, |
| * unless we have pending ExtINT since it cannot be injected |
| * via AVIC. In such case, KVM needs to temporarily disable AVIC, |
| * and fallback to injecting IRQ via V_IRQ. |
| * |
| * If running nested, AVIC is already locally inhibited |
| * on this vCPU, therefore there is no need to request |
| * the VM wide AVIC inhibition. |
| */ |
| if (!is_guest_mode(vcpu)) |
| kvm_set_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN); |
| |
| svm_set_vintr(svm); |
| } |
| } |
| |
| static void svm_enable_nmi_window(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| /* |
| * KVM should never request an NMI window when vNMI is enabled, as KVM |
| * allows at most one to-be-injected NMI and one pending NMI, i.e. if |
| * two NMIs arrive simultaneously, KVM will inject one and set |
| * V_NMI_PENDING for the other. WARN, but continue with the standard |
| * single-step approach to try and salvage the pending NMI. |
| */ |
| WARN_ON_ONCE(is_vnmi_enabled(svm)); |
| |
| if (svm_get_nmi_mask(vcpu) && !svm->awaiting_iret_completion) |
| return; /* IRET will cause a vm exit */ |
| |
| /* |
| * SEV-ES guests are responsible for signaling when a vCPU is ready to |
| * receive a new NMI, as SEV-ES guests can't be single-stepped, i.e. |
| * KVM can't intercept and single-step IRET to detect when NMIs are |
| * unblocked (architecturally speaking). See SVM_VMGEXIT_NMI_COMPLETE. |
| * |
| * Note, GIF is guaranteed to be '1' for SEV-ES guests as hardware |
| * ignores SEV-ES guest writes to EFER.SVME *and* CLGI/STGI are not |
| * supported NAEs in the GHCB protocol. |
| */ |
| if (sev_es_guest(vcpu->kvm)) |
| return; |
| |
| if (!gif_set(svm)) { |
| if (vgif) |
| svm_set_intercept(svm, INTERCEPT_STGI); |
| return; /* STGI will cause a vm exit */ |
| } |
| |
| /* |
| * Something prevents NMI from been injected. Single step over possible |
| * problem (IRET or exception injection or interrupt shadow) |
| */ |
| svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu); |
| svm->nmi_singlestep = true; |
| svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); |
| } |
| |
| static void svm_flush_tlb_asid(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| /* |
| * Unlike VMX, SVM doesn't provide a way to flush only NPT TLB entries. |
| * A TLB flush for the current ASID flushes both "host" and "guest" TLB |
| * entries, and thus is a superset of Hyper-V's fine grained flushing. |
| */ |
| kvm_hv_vcpu_purge_flush_tlb(vcpu); |
| |
| /* |
| * Flush only the current ASID even if the TLB flush was invoked via |
| * kvm_flush_remote_tlbs(). Although flushing remote TLBs requires all |
| * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and |
| * unconditionally does a TLB flush on both nested VM-Enter and nested |
| * VM-Exit (via kvm_mmu_reset_context()). |
| */ |
| if (static_cpu_has(X86_FEATURE_FLUSHBYASID)) |
| svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; |
| else |
| svm->current_vmcb->asid_generation--; |
| } |
| |
| static void svm_flush_tlb_current(struct kvm_vcpu *vcpu) |
| { |
| hpa_t root_tdp = vcpu->arch.mmu->root.hpa; |
| |
| /* |
| * When running on Hyper-V with EnlightenedNptTlb enabled, explicitly |
| * flush the NPT mappings via hypercall as flushing the ASID only |
| * affects virtual to physical mappings, it does not invalidate guest |
| * physical to host physical mappings. |
| */ |
| if (svm_hv_is_enlightened_tlb_enabled(vcpu) && VALID_PAGE(root_tdp)) |
| hyperv_flush_guest_mapping(root_tdp); |
| |
| svm_flush_tlb_asid(vcpu); |
| } |
| |
| static void svm_flush_tlb_all(struct kvm_vcpu *vcpu) |
| { |
| /* |
| * When running on Hyper-V with EnlightenedNptTlb enabled, remote TLB |
| * flushes should be routed to hv_flush_remote_tlbs() without requesting |
| * a "regular" remote flush. Reaching this point means either there's |
| * a KVM bug or a prior hv_flush_remote_tlbs() call failed, both of |
| * which might be fatal to the guest. Yell, but try to recover. |
| */ |
| if (WARN_ON_ONCE(svm_hv_is_enlightened_tlb_enabled(vcpu))) |
| hv_flush_remote_tlbs(vcpu->kvm); |
| |
| svm_flush_tlb_asid(vcpu); |
| } |
| |
| static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| invlpga(gva, svm->vmcb->control.asid); |
| } |
| |
| static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| if (nested_svm_virtualize_tpr(vcpu)) |
| return; |
| |
| if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) { |
| int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK; |
| kvm_set_cr8(vcpu, cr8); |
| } |
| } |
| |
| static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| u64 cr8; |
| |
| if (nested_svm_virtualize_tpr(vcpu) || |
| kvm_vcpu_apicv_active(vcpu)) |
| return; |
| |
| cr8 = kvm_get_cr8(vcpu); |
| svm->vmcb->control.int_ctl &= ~V_TPR_MASK; |
| svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK; |
| } |
| |
| static void svm_complete_soft_interrupt(struct kvm_vcpu *vcpu, u8 vector, |
| int type) |
| { |
| bool is_exception = (type == SVM_EXITINTINFO_TYPE_EXEPT); |
| bool is_soft = (type == SVM_EXITINTINFO_TYPE_SOFT); |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| /* |
| * If NRIPS is enabled, KVM must snapshot the pre-VMRUN next_rip that's |
| * associated with the original soft exception/interrupt. next_rip is |
| * cleared on all exits that can occur while vectoring an event, so KVM |
| * needs to manually set next_rip for re-injection. Unlike the !nrips |
| * case below, this needs to be done if and only if KVM is re-injecting |
| * the same event, i.e. if the event is a soft exception/interrupt, |
| * otherwise next_rip is unused on VMRUN. |
| */ |
| if (nrips && (is_soft || (is_exception && kvm_exception_is_soft(vector))) && |
| kvm_is_linear_rip(vcpu, svm->soft_int_old_rip + svm->soft_int_csbase)) |
| svm->vmcb->control.next_rip = svm->soft_int_next_rip; |
| /* |
| * If NRIPS isn't enabled, KVM must manually advance RIP prior to |
| * injecting the soft exception/interrupt. That advancement needs to |
| * be unwound if vectoring didn't complete. Note, the new event may |
| * not be the injected event, e.g. if KVM injected an INTn, the INTn |
| * hit a #NP in the guest, and the #NP encountered a #PF, the #NP will |
| * be the reported vectored event, but RIP still needs to be unwound. |
| */ |
| else if (!nrips && (is_soft || is_exception) && |
| kvm_is_linear_rip(vcpu, svm->soft_int_next_rip + svm->soft_int_csbase)) |
| kvm_rip_write(vcpu, svm->soft_int_old_rip); |
| } |
| |
| static void svm_complete_interrupts(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| u8 vector; |
| int type; |
| u32 exitintinfo = svm->vmcb->control.exit_int_info; |
| bool nmi_l1_to_l2 = svm->nmi_l1_to_l2; |
| bool soft_int_injected = svm->soft_int_injected; |
| |
| svm->nmi_l1_to_l2 = false; |
| svm->soft_int_injected = false; |
| |
| /* |
| * If we've made progress since setting awaiting_iret_completion, we've |
| * executed an IRET and can allow NMI injection. |
| */ |
| if (svm->awaiting_iret_completion && |
| kvm_rip_read(vcpu) != svm->nmi_iret_rip) { |
| svm->awaiting_iret_completion = false; |
| svm->nmi_masked = false; |
| kvm_make_request(KVM_REQ_EVENT, vcpu); |
| } |
| |
| vcpu->arch.nmi_injected = false; |
| kvm_clear_exception_queue(vcpu); |
| kvm_clear_interrupt_queue(vcpu); |
| |
| if (!(exitintinfo & SVM_EXITINTINFO_VALID)) |
| return; |
| |
| kvm_make_request(KVM_REQ_EVENT, vcpu); |
| |
| vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK; |
| type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK; |
| |
| if (soft_int_injected) |
| svm_complete_soft_interrupt(vcpu, vector, type); |
| |
| switch (type) { |
| case SVM_EXITINTINFO_TYPE_NMI: |
| vcpu->arch.nmi_injected = true; |
| svm->nmi_l1_to_l2 = nmi_l1_to_l2; |
| break; |
| case SVM_EXITINTINFO_TYPE_EXEPT: |
| /* |
| * Never re-inject a #VC exception. |
| */ |
| if (vector == X86_TRAP_VC) |
| break; |
| |
| if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) { |
| u32 err = svm->vmcb->control.exit_int_info_err; |
| kvm_requeue_exception_e(vcpu, vector, err); |
| |
| } else |
| kvm_requeue_exception(vcpu, vector); |
| break; |
| case SVM_EXITINTINFO_TYPE_INTR: |
| kvm_queue_interrupt(vcpu, vector, false); |
| break; |
| case SVM_EXITINTINFO_TYPE_SOFT: |
| kvm_queue_interrupt(vcpu, vector, true); |
| break; |
| default: |
| break; |
| } |
| |
| } |
| |
| static void svm_cancel_injection(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| struct vmcb_control_area *control = &svm->vmcb->control; |
| |
| control->exit_int_info = control->event_inj; |
| control->exit_int_info_err = control->event_inj_err; |
| control->event_inj = 0; |
| svm_complete_interrupts(vcpu); |
| } |
| |
| static int svm_vcpu_pre_run(struct kvm_vcpu *vcpu) |
| { |
| return 1; |
| } |
| |
| static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu) |
| { |
| if (is_guest_mode(vcpu)) |
| return EXIT_FASTPATH_NONE; |
| |
| if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR && |
| to_svm(vcpu)->vmcb->control.exit_info_1) |
| return handle_fastpath_set_msr_irqoff(vcpu); |
| |
| return EXIT_FASTPATH_NONE; |
| } |
| |
| static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu, bool spec_ctrl_intercepted) |
| { |
| struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu); |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| guest_state_enter_irqoff(); |
| |
| amd_clear_divider(); |
| |
| if (sev_es_guest(vcpu->kvm)) |
| __svm_sev_es_vcpu_run(svm, spec_ctrl_intercepted, |
| sev_es_host_save_area(sd)); |
| else |
| __svm_vcpu_run(svm, spec_ctrl_intercepted); |
| |
| guest_state_exit_irqoff(); |
| } |
| |
| static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu, |
| bool force_immediate_exit) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| bool spec_ctrl_intercepted = msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL); |
| |
| trace_kvm_entry(vcpu, force_immediate_exit); |
| |
| svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; |
| svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; |
| svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; |
| |
| /* |
| * Disable singlestep if we're injecting an interrupt/exception. |
| * We don't want our modified rflags to be pushed on the stack where |
| * we might not be able to easily reset them if we disabled NMI |
| * singlestep later. |
| */ |
| if (svm->nmi_singlestep && svm->vmcb->control.event_inj) { |
| /* |
| * Event injection happens before external interrupts cause a |
| * vmexit and interrupts are disabled here, so smp_send_reschedule |
| * is enough to force an immediate vmexit. |
| */ |
| disable_nmi_singlestep(svm); |
| force_immediate_exit = true; |
| } |
| |
| if (force_immediate_exit) |
| smp_send_reschedule(vcpu->cpu); |
| |
| pre_svm_run(vcpu); |
| |
| sync_lapic_to_cr8(vcpu); |
| |
| if (unlikely(svm->asid != svm->vmcb->control.asid)) { |
| svm->vmcb->control.asid = svm->asid; |
| vmcb_mark_dirty(svm->vmcb, VMCB_ASID); |
| } |
| svm->vmcb->save.cr2 = vcpu->arch.cr2; |
| |
| svm_hv_update_vp_id(svm->vmcb, vcpu); |
| |
| /* |
| * Run with all-zero DR6 unless needed, so that we can get the exact cause |
| * of a #DB. |
| */ |
| if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) |
| svm_set_dr6(svm, vcpu->arch.dr6); |
| else |
| svm_set_dr6(svm, DR6_ACTIVE_LOW); |
| |
| clgi(); |
| kvm_load_guest_xsave_state(vcpu); |
| |
| kvm_wait_lapic_expire(vcpu); |
| |
| /* |
| * If this vCPU has touched SPEC_CTRL, restore the guest's value if |
| * it's non-zero. Since vmentry is serialising on affected CPUs, there |
| * is no need to worry about the conditional branch over the wrmsr |
| * being speculatively taken. |
| */ |
| if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL)) |
| x86_spec_ctrl_set_guest(svm->virt_spec_ctrl); |
| |
| svm_vcpu_enter_exit(vcpu, spec_ctrl_intercepted); |
| |
| if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL)) |
| x86_spec_ctrl_restore_host(svm->virt_spec_ctrl); |
| |
| if (!sev_es_guest(vcpu->kvm)) { |
| vcpu->arch.cr2 = svm->vmcb->save.cr2; |
| vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax; |
| vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp; |
| vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip; |
| } |
| vcpu->arch.regs_dirty = 0; |
| |
| if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) |
| kvm_before_interrupt(vcpu, KVM_HANDLING_NMI); |
| |
| kvm_load_host_xsave_state(vcpu); |
| stgi(); |
| |
| /* Any pending NMI will happen here */ |
| |
| if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) |
| kvm_after_interrupt(vcpu); |
| |
| sync_cr8_to_lapic(vcpu); |
| |
| svm->next_rip = 0; |
| if (is_guest_mode(vcpu)) { |
| nested_sync_control_from_vmcb02(svm); |
| |
| /* Track VMRUNs that have made past consistency checking */ |
| if (svm->nested.nested_run_pending && |
| svm->vmcb->control.exit_code != SVM_EXIT_ERR) |
| ++vcpu->stat.nested_run; |
| |
| svm->nested.nested_run_pending = 0; |
| } |
| |
| svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING; |
| vmcb_mark_all_clean(svm->vmcb); |
| |
| /* if exit due to PF check for async PF */ |
| if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) |
| vcpu->arch.apf.host_apf_flags = |
| kvm_read_and_reset_apf_flags(); |
| |
| vcpu->arch.regs_avail &= ~SVM_REGS_LAZY_LOAD_SET; |
| |
| /* |
| * We need to handle MC intercepts here before the vcpu has a chance to |
| * change the physical cpu |
| */ |
| if (unlikely(svm->vmcb->control.exit_code == |
| SVM_EXIT_EXCP_BASE + MC_VECTOR)) |
| svm_handle_mce(vcpu); |
| |
| trace_kvm_exit(vcpu, KVM_ISA_SVM); |
| |
| svm_complete_interrupts(vcpu); |
| |
| return svm_exit_handlers_fastpath(vcpu); |
| } |
| |
| static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, |
| int root_level) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| unsigned long cr3; |
| |
| if (npt_enabled) { |
| svm->vmcb->control.nested_cr3 = __sme_set(root_hpa); |
| vmcb_mark_dirty(svm->vmcb, VMCB_NPT); |
| |
| hv_track_root_tdp(vcpu, root_hpa); |
| |
| cr3 = vcpu->arch.cr3; |
| } else if (root_level >= PT64_ROOT_4LEVEL) { |
| cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu); |
| } else { |
| /* PCID in the guest should be impossible with a 32-bit MMU. */ |
| WARN_ON_ONCE(kvm_get_active_pcid(vcpu)); |
| cr3 = root_hpa; |
| } |
| |
| svm->vmcb->save.cr3 = cr3; |
| vmcb_mark_dirty(svm->vmcb, VMCB_CR); |
| } |
| |
| static void |
| svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) |
| { |
| /* |
| * Patch in the VMMCALL instruction: |
| */ |
| hypercall[0] = 0x0f; |
| hypercall[1] = 0x01; |
| hypercall[2] = 0xd9; |
| } |
| |
| /* |
| * The kvm parameter can be NULL (module initialization, or invocation before |
| * VM creation). Be sure to check the kvm parameter before using it. |
| */ |
| static bool svm_has_emulated_msr(struct kvm *kvm, u32 index) |
| { |
| switch (index) { |
| case MSR_IA32_MCG_EXT_CTL: |
| case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: |
| return false; |
| case MSR_IA32_SMBASE: |
| if (!IS_ENABLED(CONFIG_KVM_SMM)) |
| return false; |
| /* SEV-ES guests do not support SMM, so report false */ |
| if (kvm && sev_es_guest(kvm)) |
| return false; |
| break; |
| default: |
| break; |
| } |
| |
| return true; |
| } |
| |
| static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| /* |
| * SVM doesn't provide a way to disable just XSAVES in the guest, KVM |
| * can only disable all variants of by disallowing CR4.OSXSAVE from |
| * being set. As a result, if the host has XSAVE and XSAVES, and the |
| * guest has XSAVE enabled, the guest can execute XSAVES without |
| * faulting. Treat XSAVES as enabled in this case regardless of |
| * whether it's advertised to the guest so that KVM context switches |
| * XSS on VM-Enter/VM-Exit. Failure to do so would effectively give |
| * the guest read/write access to the host's XSS. |
| */ |
| if (boot_cpu_has(X86_FEATURE_XSAVE) && |
| boot_cpu_has(X86_FEATURE_XSAVES) && |
| guest_cpuid_has(vcpu, X86_FEATURE_XSAVE)) |
| kvm_governed_feature_set(vcpu, X86_FEATURE_XSAVES); |
| |
| kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_NRIPS); |
| kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_TSCRATEMSR); |
| kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_LBRV); |
| |
| /* |
| * Intercept VMLOAD if the vCPU mode is Intel in order to emulate that |
| * VMLOAD drops bits 63:32 of SYSENTER (ignoring the fact that exposing |
| * SVM on Intel is bonkers and extremely unlikely to work). |
| */ |
| if (!guest_cpuid_is_intel(vcpu)) |
| kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_V_VMSAVE_VMLOAD); |
| |
| kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_PAUSEFILTER); |
| kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_PFTHRESHOLD); |
| kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VGIF); |
| kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VNMI); |
| |
| svm_recalc_instruction_intercepts(vcpu, svm); |
| |
| if (boot_cpu_has(X86_FEATURE_IBPB)) |
| set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0, |
| !!guest_has_pred_cmd_msr(vcpu)); |
| |
| if (boot_cpu_has(X86_FEATURE_FLUSH_L1D)) |
| set_msr_interception(vcpu, svm->msrpm, MSR_IA32_FLUSH_CMD, 0, |
| !!guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D)); |
| |
| if (sev_guest(vcpu->kvm)) |
| sev_vcpu_after_set_cpuid(svm); |
| |
| init_vmcb_after_set_cpuid(vcpu); |
| } |
| |
| static bool svm_has_wbinvd_exit(void) |
| { |
| return true; |
| } |
| |
| #define PRE_EX(exit) { .exit_code = (exit), \ |
| .stage = X86_ICPT_PRE_EXCEPT, } |
| #define POST_EX(exit) { .exit_code = (exit), \ |
| .stage = X86_ICPT_POST_EXCEPT, } |
| #define POST_MEM(exit) { .exit_code = (exit), \ |
| .stage = X86_ICPT_POST_MEMACCESS, } |
| |
| static const struct __x86_intercept { |
| u32 exit_code; |
| enum x86_intercept_stage stage; |
| } x86_intercept_map[] = { |
| [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0), |
| [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0), |
| [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0), |
| [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0), |
| [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0), |
| [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0), |
| [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0), |
| [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ), |
| [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ), |
| [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE), |
| [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE), |
| [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ), |
| [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ), |
| [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE), |
| [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE), |
| [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN), |
| [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL), |
| [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD), |
| [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE), |
| [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI), |
| [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI), |
| [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT), |
| [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA), |
| [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP), |
| [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR), |
| [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT), |
| [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG), |
| [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD), |
| [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD), |
| [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR), |
| [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC), |
| [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR), |
| [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC), |
| [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID), |
| [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM), |
| [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE), |
| [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF), |
| [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF), |
| [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT), |
| [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET), |
| [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP), |
| [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT), |
| [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO), |
| [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO), |
| [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO), |
| [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO), |
| [x86_intercept_xsetbv] = PRE_EX(SVM_EXIT_XSETBV), |
| }; |
| |
| #undef PRE_EX |
| #undef POST_EX |
| #undef POST_MEM |
| |
| static int svm_check_intercept(struct kvm_vcpu *vcpu, |
| struct x86_instruction_info *info, |
| enum x86_intercept_stage stage, |
| struct x86_exception *exception) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| int vmexit, ret = X86EMUL_CONTINUE; |
| struct __x86_intercept icpt_info; |
| struct vmcb *vmcb = svm->vmcb; |
| |
| if (info->intercept >= ARRAY_SIZE(x86_intercept_map)) |
| goto out; |
| |
| icpt_info = x86_intercept_map[info->intercept]; |
| |
| if (stage != icpt_info.stage) |
| goto out; |
| |
| switch (icpt_info.exit_code) { |
| case SVM_EXIT_READ_CR0: |
| if (info->intercept == x86_intercept_cr_read) |
| icpt_info.exit_code += info->modrm_reg; |
| break; |
| case SVM_EXIT_WRITE_CR0: { |
| unsigned long cr0, val; |
| |
| if (info->intercept == x86_intercept_cr_write) |
| icpt_info.exit_code += info->modrm_reg; |
| |
| if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 || |
| info->intercept == x86_intercept_clts) |
| break; |
| |
| if (!(vmcb12_is_intercept(&svm->nested.ctl, |
| INTERCEPT_SELECTIVE_CR0))) |
| break; |
| |
| cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK; |
| val = info->src_val & ~SVM_CR0_SELECTIVE_MASK; |
| |
| if (info->intercept == x86_intercept_lmsw) { |
| cr0 &= 0xfUL; |
| val &= 0xfUL; |
| /* lmsw can't clear PE - catch this here */ |
| if (cr0 & X86_CR0_PE) |
| val |= X86_CR0_PE; |
| } |
| |
| if (cr0 ^ val) |
| icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE; |
| |
| break; |
| } |
| case SVM_EXIT_READ_DR0: |
| case SVM_EXIT_WRITE_DR0: |
| icpt_info.exit_code += info->modrm_reg; |
| break; |
| case SVM_EXIT_MSR: |
| if (info->intercept == x86_intercept_wrmsr) |
| vmcb->control.exit_info_1 = 1; |
| else |
| vmcb->control.exit_info_1 = 0; |
| break; |
| case SVM_EXIT_PAUSE: |
| /* |
| * We get this for NOP only, but pause |
| * is rep not, check this here |
| */ |
| if (info->rep_prefix != REPE_PREFIX) |
| goto out; |
| break; |
| case SVM_EXIT_IOIO: { |
| u64 exit_info; |
| u32 bytes; |
| |
| if (info->intercept == x86_intercept_in || |
| info->intercept == x86_intercept_ins) { |
| exit_info = ((info->src_val & 0xffff) << 16) | |
| SVM_IOIO_TYPE_MASK; |
| bytes = info->dst_bytes; |
| } else { |
| exit_info = (info->dst_val & 0xffff) << 16; |
| bytes = info->src_bytes; |
| } |
| |
| if (info->intercept == x86_intercept_outs || |
| info->intercept == x86_intercept_ins) |
| exit_info |= SVM_IOIO_STR_MASK; |
| |
| if (info->rep_prefix) |
| exit_info |= SVM_IOIO_REP_MASK; |
| |
| bytes = min(bytes, 4u); |
| |
| exit_info |= bytes << SVM_IOIO_SIZE_SHIFT; |
| |
| exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1); |
| |
| vmcb->control.exit_info_1 = exit_info; |
| vmcb->control.exit_info_2 = info->next_rip; |
| |
| break; |
| } |
| default: |
| break; |
| } |
| |
| /* TODO: Advertise NRIPS to guest hypervisor unconditionally */ |
| if (static_cpu_has(X86_FEATURE_NRIPS)) |
| vmcb->control.next_rip = info->next_rip; |
| vmcb->control.exit_code = icpt_info.exit_code; |
| vmexit = nested_svm_exit_handled(svm); |
| |
| ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED |
| : X86EMUL_CONTINUE; |
| |
| out: |
| return ret; |
| } |
| |
| static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu) |
| { |
| if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_INTR) |
| vcpu->arch.at_instruction_boundary = true; |
| } |
| |
| static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu) |
| { |
| if (!kvm_pause_in_guest(vcpu->kvm)) |
| shrink_ple_window(vcpu); |
| } |
| |
| static void svm_setup_mce(struct kvm_vcpu *vcpu) |
| { |
| /* [63:9] are reserved. */ |
| vcpu->arch.mcg_cap &= 0x1ff; |
| } |
| |
| #ifdef CONFIG_KVM_SMM |
| bool svm_smi_blocked(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| /* Per APM Vol.2 15.22.2 "Response to SMI" */ |
| if (!gif_set(svm)) |
| return true; |
| |
| return is_smm(vcpu); |
| } |
| |
| static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| if (svm->nested.nested_run_pending) |
| return -EBUSY; |
| |
| if (svm_smi_blocked(vcpu)) |
| return 0; |
| |
| /* An SMI must not be injected into L2 if it's supposed to VM-Exit. */ |
| if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm)) |
| return -EBUSY; |
| |
| return 1; |
| } |
| |
| static int svm_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| struct kvm_host_map map_save; |
| int ret; |
| |
| if (!is_guest_mode(vcpu)) |
| return 0; |
| |
| /* |
| * 32-bit SMRAM format doesn't preserve EFER and SVM state. Userspace is |
| * responsible for ensuring nested SVM and SMIs are mutually exclusive. |
| */ |
| |
| if (!guest_cpuid_has(vcpu, X86_FEATURE_LM)) |
| return 1; |
| |
| smram->smram64.svm_guest_flag = 1; |
| smram->smram64.svm_guest_vmcb_gpa = svm->nested.vmcb12_gpa; |
| |
| svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; |
| svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; |
| svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; |
| |
| ret = nested_svm_simple_vmexit(svm, SVM_EXIT_SW); |
| if (ret) |
| return ret; |
| |
| /* |
| * KVM uses VMCB01 to store L1 host state while L2 runs but |
| * VMCB01 is going to be used during SMM and thus the state will |
| * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save |
| * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the |
| * format of the area is identical to guest save area offsetted |
| * by 0x400 (matches the offset of 'struct vmcb_save_area' |
| * within 'struct vmcb'). Note: HSAVE area may also be used by |
| * L1 hypervisor to save additional host context (e.g. KVM does |
| * that, see svm_prepare_switch_to_guest()) which must be |
| * preserved. |
| */ |
| if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save)) |
| return 1; |
| |
| BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400); |
| |
| svm_copy_vmrun_state(map_save.hva + 0x400, |
| &svm->vmcb01.ptr->save); |
| |
| kvm_vcpu_unmap(vcpu, &map_save, true); |
| return 0; |
| } |
| |
| static int svm_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| struct kvm_host_map map, map_save; |
| struct vmcb *vmcb12; |
| int ret; |
| |
| const struct kvm_smram_state_64 *smram64 = &smram->smram64; |
| |
| if (!guest_cpuid_has(vcpu, X86_FEATURE_LM)) |
| return 0; |
| |
| /* Non-zero if SMI arrived while vCPU was in guest mode. */ |
| if (!smram64->svm_guest_flag) |
| return 0; |
| |
| if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM)) |
| return 1; |
| |
| if (!(smram64->efer & EFER_SVME)) |
| return 1; |
| |
| if (kvm_vcpu_map(vcpu, gpa_to_gfn(smram64->svm_guest_vmcb_gpa), &map)) |
| return 1; |
| |
| ret = 1; |
| if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save)) |
| goto unmap_map; |
| |
| if (svm_allocate_nested(svm)) |
| goto unmap_save; |
| |
| /* |
| * Restore L1 host state from L1 HSAVE area as VMCB01 was |
| * used during SMM (see svm_enter_smm()) |
| */ |
| |
| svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400); |
| |
| /* |
| * Enter the nested guest now |
| */ |
| |
| vmcb_mark_all_dirty(svm->vmcb01.ptr); |
| |
| vmcb12 = map.hva; |
| nested_copy_vmcb_control_to_cache(svm, &vmcb12->control); |
| nested_copy_vmcb_save_to_cache(svm, &vmcb12->save); |
| ret = enter_svm_guest_mode(vcpu, smram64->svm_guest_vmcb_gpa, vmcb12, false); |
| |
| if (ret) |
| goto unmap_save; |
| |
| svm->nested.nested_run_pending = 1; |
| |
| unmap_save: |
| kvm_vcpu_unmap(vcpu, &map_save, true); |
| unmap_map: |
| kvm_vcpu_unmap(vcpu, &map, true); |
| return ret; |
| } |
| |
| static void svm_enable_smi_window(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| if (!gif_set(svm)) { |
| if (vgif) |
| svm_set_intercept(svm, INTERCEPT_STGI); |
| /* STGI will cause a vm exit */ |
| } else { |
| /* We must be in SMM; RSM will cause a vmexit anyway. */ |
| } |
| } |
| #endif |
| |
| static int svm_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type, |
| void *insn, int insn_len) |
| { |
| bool smep, smap, is_user; |
| u64 error_code; |
| |
| /* Emulation is always possible when KVM has access to all guest state. */ |
| if (!sev_guest(vcpu->kvm)) |
| return X86EMUL_CONTINUE; |
| |
| /* #UD and #GP should never be intercepted for SEV guests. */ |
| WARN_ON_ONCE(emul_type & (EMULTYPE_TRAP_UD | |
| EMULTYPE_TRAP_UD_FORCED | |
| EMULTYPE_VMWARE_GP)); |
| |
| /* |
| * Emulation is impossible for SEV-ES guests as KVM doesn't have access |
| * to guest register state. |
| */ |
| if (sev_es_guest(vcpu->kvm)) |
| return X86EMUL_RETRY_INSTR; |
| |
| /* |
| * Emulation is possible if the instruction is already decoded, e.g. |
| * when completing I/O after returning from userspace. |
| */ |
| if (emul_type & EMULTYPE_NO_DECODE) |
| return X86EMUL_CONTINUE; |
| |
| /* |
| * Emulation is possible for SEV guests if and only if a prefilled |
| * buffer containing the bytes of the intercepted instruction is |
| * available. SEV guest memory is encrypted with a guest specific key |
| * and cannot be decrypted by KVM, i.e. KVM would read ciphertext and |
| * decode garbage. |
| * |
| * If KVM is NOT trying to simply skip an instruction, inject #UD if |
| * KVM reached this point without an instruction buffer. In practice, |
| * this path should never be hit by a well-behaved guest, e.g. KVM |
| * doesn't intercept #UD or #GP for SEV guests, but this path is still |
| * theoretically reachable, e.g. via unaccelerated fault-like AVIC |
| * access, and needs to be handled by KVM to avoid putting the guest |
| * into an infinite loop. Injecting #UD is somewhat arbitrary, but |
| * its the least awful option given lack of insight into the guest. |
| * |
| * If KVM is trying to skip an instruction, simply resume the guest. |
| * If a #NPF occurs while the guest is vectoring an INT3/INTO, then KVM |
| * will attempt to re-inject the INT3/INTO and skip the instruction. |
| * In that scenario, retrying the INT3/INTO and hoping the guest will |
| * make forward progress is the only option that has a chance of |
| * success (and in practice it will work the vast majority of the time). |
| */ |
| if (unlikely(!insn)) { |
| if (emul_type & EMULTYPE_SKIP) |
| return X86EMUL_UNHANDLEABLE; |
| |
| kvm_queue_exception(vcpu, UD_VECTOR); |
| return X86EMUL_PROPAGATE_FAULT; |
| } |
| |
| /* |
| * Emulate for SEV guests if the insn buffer is not empty. The buffer |
| * will be empty if the DecodeAssist microcode cannot fetch bytes for |
| * the faulting instruction because the code fetch itself faulted, e.g. |
| * the guest attempted to fetch from emulated MMIO or a guest page |
| * table used to translate CS:RIP resides in emulated MMIO. |
| */ |
| if (likely(insn_len)) |
| return X86EMUL_CONTINUE; |
| |
| /* |
| * Detect and workaround Errata 1096 Fam_17h_00_0Fh. |
| * |
| * Errata: |
| * When CPU raises #NPF on guest data access and vCPU CR4.SMAP=1, it is |
| * possible that CPU microcode implementing DecodeAssist will fail to |
| * read guest memory at CS:RIP and vmcb.GuestIntrBytes will incorrectly |
| * be '0'. This happens because microcode reads CS:RIP using a _data_ |
| * loap uop with CPL=0 privileges. If the load hits a SMAP #PF, ucode |
| * gives up and does not fill the instruction bytes buffer. |
| * |
| * As above, KVM reaches this point iff the VM is an SEV guest, the CPU |
| * supports DecodeAssist, a #NPF was raised, KVM's page fault handler |
| * triggered emulation (e.g. for MMIO), and the CPU returned 0 in the |
| * GuestIntrBytes field of the VMCB. |
| * |
| * This does _not_ mean that the erratum has been encountered, as the |
| * DecodeAssist will also fail if the load for CS:RIP hits a legitimate |
| * #PF, e.g. if the guest attempt to execute from emulated MMIO and |
| * encountered a reserved/not-present #PF. |
| * |
| * To hit the erratum, the following conditions must be true: |
| * 1. CR4.SMAP=1 (obviously). |
| * 2. CR4.SMEP=0 || CPL=3. If SMEP=1 and CPL<3, the erratum cannot |
| * have been hit as the guest would have encountered a SMEP |
| * violation #PF, not a #NPF. |
| * 3. The #NPF is not due to a code fetch, in which case failure to |
| * retrieve the instruction bytes is legitimate (see abvoe). |
| * |
| * In addition, don't apply the erratum workaround if the #NPF occurred |
| * while translating guest page tables (see below). |
| */ |
| error_code = to_svm(vcpu)->vmcb->control.exit_info_1; |
| if (error_code & (PFERR_GUEST_PAGE_MASK | PFERR_FETCH_MASK)) |
| goto resume_guest; |
| |
| smep = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMEP); |
| smap = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMAP); |
| is_user = svm_get_cpl(vcpu) == 3; |
| if (smap && (!smep || is_user)) { |
| pr_err_ratelimited("SEV Guest triggered AMD Erratum 1096\n"); |
| |
| /* |
| * If the fault occurred in userspace, arbitrarily inject #GP |
| * to avoid killing the guest and to hopefully avoid confusing |
| * the guest kernel too much, e.g. injecting #PF would not be |
| * coherent with respect to the guest's page tables. Request |
| * triple fault if the fault occurred in the kernel as there's |
| * no fault that KVM can inject without confusing the guest. |
| * In practice, the triple fault is moot as no sane SEV kernel |
| * will execute from user memory while also running with SMAP=1. |
| */ |
| if (is_user) |
| kvm_inject_gp(vcpu, 0); |
| else |
| kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); |
| return X86EMUL_PROPAGATE_FAULT; |
| } |
| |
| resume_guest: |
| /* |
| * If the erratum was not hit, simply resume the guest and let it fault |
| * again. While awful, e.g. the vCPU may get stuck in an infinite loop |
| * if the fault is at CPL=0, it's the lesser of all evils. Exiting to |
| * userspace will kill the guest, and letting the emulator read garbage |
| * will yield random behavior and potentially corrupt the guest. |
| * |
| * Simply resuming the guest is technically not a violation of the SEV |
| * architecture. AMD's APM states that all code fetches and page table |
| * accesses for SEV guest are encrypted, regardless of the C-Bit. The |
| * APM also states that encrypted accesses to MMIO are "ignored", but |
| * doesn't explicitly define "ignored", i.e. doing nothing and letting |
| * the guest spin is technically "ignoring" the access. |
| */ |
| return X86EMUL_RETRY_INSTR; |
| } |
| |
| static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| return !gif_set(svm); |
| } |
| |
| static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) |
| { |
| if (!sev_es_guest(vcpu->kvm)) |
| return kvm_vcpu_deliver_sipi_vector(vcpu, vector); |
| |
| sev_vcpu_deliver_sipi_vector(vcpu, vector); |
| } |
| |
| static void svm_vm_destroy(struct kvm *kvm) |
| { |
| avic_vm_destroy(kvm); |
| sev_vm_destroy(kvm); |
| } |
| |
| static int svm_vm_init(struct kvm *kvm) |
| { |
| if (!pause_filter_count || !pause_filter_thresh) |
| kvm->arch.pause_in_guest = true; |
| |
| if (enable_apicv) { |
| int ret = avic_vm_init(kvm); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static void *svm_alloc_apic_backing_page(struct kvm_vcpu *vcpu) |
| { |
| struct page *page = snp_safe_alloc_page(vcpu); |
| |
| if (!page) |
| return NULL; |
| |
| return page_address(page); |
| } |
| |
| static struct kvm_x86_ops svm_x86_ops __initdata = { |
| .name = KBUILD_MODNAME, |
| |
| .check_processor_compatibility = svm_check_processor_compat, |
| |
| .hardware_unsetup = svm_hardware_unsetup, |
| .hardware_enable = svm_hardware_enable, |
| .hardware_disable = svm_hardware_disable, |
| .has_emulated_msr = svm_has_emulated_msr, |
| |
| .vcpu_create = svm_vcpu_create, |
| .vcpu_free = svm_vcpu_free, |
| .vcpu_reset = svm_vcpu_reset, |
| |
| .vm_size = sizeof(struct kvm_svm), |
| .vm_init = svm_vm_init, |
| .vm_destroy = svm_vm_destroy, |
| |
| .prepare_switch_to_guest = svm_prepare_switch_to_guest, |
| .vcpu_load = svm_vcpu_load, |
| .vcpu_put = svm_vcpu_put, |
| .vcpu_blocking = avic_vcpu_blocking, |
| .vcpu_unblocking = avic_vcpu_unblocking, |
| |
| .update_exception_bitmap = svm_update_exception_bitmap, |
| .get_msr_feature = svm_get_msr_feature, |
| .get_msr = svm_get_msr, |
| .set_msr = svm_set_msr, |
| .get_segment_base = svm_get_segment_base, |
| .get_segment = svm_get_segment, |
| .set_segment = svm_set_segment, |
| .get_cpl = svm_get_cpl, |
| .get_cs_db_l_bits = svm_get_cs_db_l_bits, |
| .is_valid_cr0 = svm_is_valid_cr0, |
| .set_cr0 = svm_set_cr0, |
| .post_set_cr3 = sev_post_set_cr3, |
| .is_valid_cr4 = svm_is_valid_cr4, |
| .set_cr4 = svm_set_cr4, |
| .set_efer = svm_set_efer, |
| .get_idt = svm_get_idt, |
| .set_idt = svm_set_idt, |
| .get_gdt = svm_get_gdt, |
| .set_gdt = svm_set_gdt, |
| .set_dr7 = svm_set_dr7, |
| .sync_dirty_debug_regs = svm_sync_dirty_debug_regs, |
| .cache_reg = svm_cache_reg, |
| .get_rflags = svm_get_rflags, |
| .set_rflags = svm_set_rflags, |
| .get_if_flag = svm_get_if_flag, |
| |
| .flush_tlb_all = svm_flush_tlb_all, |
| .flush_tlb_current = svm_flush_tlb_current, |
| .flush_tlb_gva = svm_flush_tlb_gva, |
| .flush_tlb_guest = svm_flush_tlb_asid, |
| |
| .vcpu_pre_run = svm_vcpu_pre_run, |
| .vcpu_run = svm_vcpu_run, |
| .handle_exit = svm_handle_exit, |
| .skip_emulated_instruction = svm_skip_emulated_instruction, |
| .update_emulated_instruction = NULL, |
| .set_interrupt_shadow = svm_set_interrupt_shadow, |
| .get_interrupt_shadow = svm_get_interrupt_shadow, |
| .patch_hypercall = svm_patch_hypercall, |
| .inject_irq = svm_inject_irq, |
| .inject_nmi = svm_inject_nmi, |
| .is_vnmi_pending = svm_is_vnmi_pending, |
| .set_vnmi_pending = svm_set_vnmi_pending, |
| .inject_exception = svm_inject_exception, |
| .cancel_injection = svm_cancel_injection, |
| .interrupt_allowed = svm_interrupt_allowed, |
| .nmi_allowed = svm_nmi_allowed, |
| .get_nmi_mask = svm_get_nmi_mask, |
| .set_nmi_mask = svm_set_nmi_mask, |
| .enable_nmi_window = svm_enable_nmi_window, |
| .enable_irq_window = svm_enable_irq_window, |
| .update_cr8_intercept = svm_update_cr8_intercept, |
| .set_virtual_apic_mode = avic_refresh_virtual_apic_mode, |
| .refresh_apicv_exec_ctrl = avic_refresh_apicv_exec_ctrl, |
| .apicv_post_state_restore = avic_apicv_post_state_restore, |
| .required_apicv_inhibits = AVIC_REQUIRED_APICV_INHIBITS, |
| |
| .get_exit_info = svm_get_exit_info, |
| |
| .vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid, |
| |
| .has_wbinvd_exit = svm_has_wbinvd_exit, |
| |
| .get_l2_tsc_offset = svm_get_l2_tsc_offset, |
| .get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier, |
| .write_tsc_offset = svm_write_tsc_offset, |
| .write_tsc_multiplier = svm_write_tsc_multiplier, |
| |
| .load_mmu_pgd = svm_load_mmu_pgd, |
| |
| .check_intercept = svm_check_intercept, |
| .handle_exit_irqoff = svm_handle_exit_irqoff, |
| |
| .sched_in = svm_sched_in, |
| |
| .nested_ops = &svm_nested_ops, |
| |
| .deliver_interrupt = svm_deliver_interrupt, |
| .pi_update_irte = avic_pi_update_irte, |
| .setup_mce = svm_setup_mce, |
| |
| #ifdef CONFIG_KVM_SMM |
| .smi_allowed = svm_smi_allowed, |
| .enter_smm = svm_enter_smm, |
| .leave_smm = svm_leave_smm, |
| .enable_smi_window = svm_enable_smi_window, |
| #endif |
| |
| .mem_enc_ioctl = sev_mem_enc_ioctl, |
| .mem_enc_register_region = sev_mem_enc_register_region, |
| .mem_enc_unregister_region = sev_mem_enc_unregister_region, |
| .guest_memory_reclaimed = sev_guest_memory_reclaimed, |
| |
| .vm_copy_enc_context_from = sev_vm_copy_enc_context_from, |
| .vm_move_enc_context_from = sev_vm_move_enc_context_from, |
| |
| .check_emulate_instruction = svm_check_emulate_instruction, |
| |
| .apic_init_signal_blocked = svm_apic_init_signal_blocked, |
| |
| .msr_filter_changed = svm_msr_filter_changed, |
| .complete_emulated_msr = svm_complete_emulated_msr, |
| |
| .vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector, |
| .vcpu_get_apicv_inhibit_reasons = avic_vcpu_get_apicv_inhibit_reasons, |
| .alloc_apic_backing_page = svm_alloc_apic_backing_page, |
| }; |
| |
| /* |
| * The default MMIO mask is a single bit (excluding the present bit), |
| * which could conflict with the memory encryption bit. Check for |
| * memory encryption support and override the default MMIO mask if |
| * memory encryption is enabled. |
| */ |
| static __init void svm_adjust_mmio_mask(void) |
| { |
| unsigned int enc_bit, mask_bit; |
| u64 msr, mask; |
| |
| /* If there is no memory encryption support, use existing mask */ |
| if (cpuid_eax(0x80000000) < 0x8000001f) |
| return; |
| |
| /* If memory encryption is not enabled, use existing mask */ |
| rdmsrl(MSR_AMD64_SYSCFG, msr); |
| if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT)) |
| return; |
| |
| enc_bit = cpuid_ebx(0x8000001f) & 0x3f; |
| mask_bit = boot_cpu_data.x86_phys_bits; |
| |
| /* Increment the mask bit if it is the same as the encryption bit */ |
| if (enc_bit == mask_bit) |
| mask_bit++; |
| |
| /* |
| * If the mask bit location is below 52, then some bits above the |
| * physical addressing limit will always be reserved, so use the |
| * rsvd_bits() function to generate the mask. This mask, along with |
| * the present bit, will be used to generate a page fault with |
| * PFER.RSV = 1. |
| * |
| * If the mask bit location is 52 (or above), then clear the mask. |
| */ |
| mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0; |
| |
| kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK); |
| } |
| |
| static __init void svm_set_cpu_caps(void) |
| { |
| kvm_set_cpu_caps(); |
| |
| kvm_caps.supported_perf_cap = 0; |
| kvm_caps.supported_xss = 0; |
| |
| /* CPUID 0x80000001 and 0x8000000A (SVM features) */ |
| if (nested) { |
| kvm_cpu_cap_set(X86_FEATURE_SVM); |
| kvm_cpu_cap_set(X86_FEATURE_VMCBCLEAN); |
| |
| /* |
| * KVM currently flushes TLBs on *every* nested SVM transition, |
| * and so for all intents and purposes KVM supports flushing by |
| * ASID, i.e. KVM is guaranteed to honor every L1 ASID flush. |
| */ |
| kvm_cpu_cap_set(X86_FEATURE_FLUSHBYASID); |
| |
| if (nrips) |
| kvm_cpu_cap_set(X86_FEATURE_NRIPS); |
| |
| if (npt_enabled) |
| kvm_cpu_cap_set(X86_FEATURE_NPT); |
| |
| if (tsc_scaling) |
| kvm_cpu_cap_set(X86_FEATURE_TSCRATEMSR); |
| |
| if (vls) |
| kvm_cpu_cap_set(X86_FEATURE_V_VMSAVE_VMLOAD); |
| if (lbrv) |
| kvm_cpu_cap_set(X86_FEATURE_LBRV); |
| |
| if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) |
| kvm_cpu_cap_set(X86_FEATURE_PAUSEFILTER); |
| |
| if (boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) |
| kvm_cpu_cap_set(X86_FEATURE_PFTHRESHOLD); |
| |
| if (vgif) |
| kvm_cpu_cap_set(X86_FEATURE_VGIF); |
| |
| if (vnmi) |
| kvm_cpu_cap_set(X86_FEATURE_VNMI); |
| |
| /* Nested VM can receive #VMEXIT instead of triggering #GP */ |
| kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK); |
| } |
| |
| /* CPUID 0x80000008 */ |
| if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) || |
| boot_cpu_has(X86_FEATURE_AMD_SSBD)) |
| kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD); |
| |
| if (enable_pmu) { |
| /* |
| * Enumerate support for PERFCTR_CORE if and only if KVM has |
| * access to enough counters to virtualize "core" support, |
| * otherwise limit vPMU support to the legacy number of counters. |
| */ |
| if (kvm_pmu_cap.num_counters_gp < AMD64_NUM_COUNTERS_CORE) |
| kvm_pmu_cap.num_counters_gp = min(AMD64_NUM_COUNTERS, |
| kvm_pmu_cap.num_counters_gp); |
| else |
| kvm_cpu_cap_check_and_set(X86_FEATURE_PERFCTR_CORE); |
| |
| if (kvm_pmu_cap.version != 2 || |
| !kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE)) |
| kvm_cpu_cap_clear(X86_FEATURE_PERFMON_V2); |
| } |
| |
| /* CPUID 0x8000001F (SME/SEV features) */ |
| sev_set_cpu_caps(); |
| } |
| |
| static __init int svm_hardware_setup(void) |
| { |
| int cpu; |
| struct page *iopm_pages; |
| void *iopm_va; |
| int r; |
| unsigned int order = get_order(IOPM_SIZE); |
| |
| /* |
| * NX is required for shadow paging and for NPT if the NX huge pages |
| * mitigation is enabled. |
| */ |
| if (!boot_cpu_has(X86_FEATURE_NX)) { |
| pr_err_ratelimited("NX (Execute Disable) not supported\n"); |
| return -EOPNOTSUPP; |
| } |
| kvm_enable_efer_bits(EFER_NX); |
| |
| iopm_pages = alloc_pages(GFP_KERNEL, order); |
| |
| if (!iopm_pages) |
| return -ENOMEM; |
| |
| iopm_va = page_address(iopm_pages); |
| memset(iopm_va, 0xff, PAGE_SIZE * (1 << order)); |
| iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT; |
| |
| init_msrpm_offsets(); |
| |
| kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | |
| XFEATURE_MASK_BNDCSR); |
| |
| if (boot_cpu_has(X86_FEATURE_FXSR_OPT)) |
| kvm_enable_efer_bits(EFER_FFXSR); |
| |
| if (tsc_scaling) { |
| if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) { |
| tsc_scaling = false; |
| } else { |
| pr_info("TSC scaling supported\n"); |
| kvm_caps.has_tsc_control = true; |
| } |
| } |
| kvm_caps.max_tsc_scaling_ratio = SVM_TSC_RATIO_MAX; |
| kvm_caps.tsc_scaling_ratio_frac_bits = 32; |
| |
| tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX); |
| |
| if (boot_cpu_has(X86_FEATURE_AUTOIBRS)) |
| kvm_enable_efer_bits(EFER_AUTOIBRS); |
| |
| /* Check for pause filtering support */ |
| if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) { |
| pause_filter_count = 0; |
| pause_filter_thresh = 0; |
| } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) { |
| pause_filter_thresh = 0; |
| } |
| |
| if (nested) { |
| pr_info("Nested Virtualization enabled\n"); |
| kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE); |
| } |
| |
| /* |
| * KVM's MMU doesn't support using 2-level paging for itself, and thus |
| * NPT isn't supported if the host is using 2-level paging since host |
| * CR4 is unchanged on VMRUN. |
| */ |
| if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE)) |
| npt_enabled = false; |
| |
| if (!boot_cpu_has(X86_FEATURE_NPT)) |
| npt_enabled = false; |
| |
| /* Force VM NPT level equal to the host's paging level */ |
| kvm_configure_mmu(npt_enabled, get_npt_level(), |
| get_npt_level(), PG_LEVEL_1G); |
| pr_info("Nested Paging %sabled\n", npt_enabled ? "en" : "dis"); |
| |
| /* Setup shadow_me_value and shadow_me_mask */ |
| kvm_mmu_set_me_spte_mask(sme_me_mask, sme_me_mask); |
| |
| svm_adjust_mmio_mask(); |
| |
| nrips = nrips && boot_cpu_has(X86_FEATURE_NRIPS); |
| |
| /* |
| * Note, SEV setup consumes npt_enabled and enable_mmio_caching (which |
| * may be modified by svm_adjust_mmio_mask()), as well as nrips. |
| */ |
| sev_hardware_setup(); |
| |
| svm_hv_hardware_setup(); |
| |
| for_each_possible_cpu(cpu) { |
| r = svm_cpu_init(cpu); |
| if (r) |
| goto err; |
| } |
| |
| enable_apicv = avic = avic && avic_hardware_setup(); |
| |
| if (!enable_apicv) { |
| svm_x86_ops.vcpu_blocking = NULL; |
| svm_x86_ops.vcpu_unblocking = NULL; |
| svm_x86_ops.vcpu_get_apicv_inhibit_reasons = NULL; |
| } else if (!x2avic_enabled) { |
| svm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization = true; |
| } |
| |
| if (vls) { |
| if (!npt_enabled || |
| !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) || |
| !IS_ENABLED(CONFIG_X86_64)) { |
| vls = false; |
| } else { |
| pr_info("Virtual VMLOAD VMSAVE supported\n"); |
| } |
| } |
| |
| if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK)) |
| svm_gp_erratum_intercept = false; |
| |
| if (vgif) { |
| if (!boot_cpu_has(X86_FEATURE_VGIF)) |
| vgif = false; |
| else |
| pr_info("Virtual GIF supported\n"); |
| } |
| |
| vnmi = vgif && vnmi && boot_cpu_has(X86_FEATURE_VNMI); |
| if (vnmi) |
| pr_info("Virtual NMI enabled\n"); |
| |
| if (!vnmi) { |
| svm_x86_ops.is_vnmi_pending = NULL; |
| svm_x86_ops.set_vnmi_pending = NULL; |
| } |
| |
| |
| if (lbrv) { |
| if (!boot_cpu_has(X86_FEATURE_LBRV)) |
| lbrv = false; |
| else |
| pr_info("LBR virtualization supported\n"); |
| } |
| |
| if (!enable_pmu) |
| pr_info("PMU virtualization is disabled\n"); |
| |
| svm_set_cpu_caps(); |
| |
| /* |
| * It seems that on AMD processors PTE's accessed bit is |
| * being set by the CPU hardware before the NPF vmexit. |
| * This is not expected behaviour and our tests fail because |
| * of it. |
| * A workaround here is to disable support for |
| * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled. |
| * In this case userspace can know if there is support using |
| * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle |
| * it |
| * If future AMD CPU models change the behaviour described above, |
| * this variable can be changed accordingly |
| */ |
| allow_smaller_maxphyaddr = !npt_enabled; |
| |
| return 0; |
| |
| err: |
| svm_hardware_unsetup(); |
| return r; |
| } |
| |
| |
| static struct kvm_x86_init_ops svm_init_ops __initdata = { |
| .hardware_setup = svm_hardware_setup, |
| |
| .runtime_ops = &svm_x86_ops, |
| .pmu_ops = &amd_pmu_ops, |
| }; |
| |
| static void __svm_exit(void) |
| { |
| kvm_x86_vendor_exit(); |
| |
| cpu_emergency_unregister_virt_callback(svm_emergency_disable); |
| } |
| |
| static int __init svm_init(void) |
| { |
| int r; |
| |
| __unused_size_checks(); |
| |
| if (!kvm_is_svm_supported()) |
| return -EOPNOTSUPP; |
| |
| r = kvm_x86_vendor_init(&svm_init_ops); |
| if (r) |
| return r; |
| |
| cpu_emergency_register_virt_callback(svm_emergency_disable); |
| |
| /* |
| * Common KVM initialization _must_ come last, after this, /dev/kvm is |
| * exposed to userspace! |
| */ |
| r = kvm_init(sizeof(struct vcpu_svm), __alignof__(struct vcpu_svm), |
| THIS_MODULE); |
| if (r) |
| goto err_kvm_init; |
| |
| return 0; |
| |
| err_kvm_init: |
| __svm_exit(); |
| return r; |
| } |
| |
| static void __exit svm_exit(void) |
| { |
| kvm_exit(); |
| __svm_exit(); |
| } |
| |
| module_init(svm_init) |
| module_exit(svm_exit) |