| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * KVM PMU support for Intel CPUs |
| * |
| * Copyright 2011 Red Hat, Inc. and/or its affiliates. |
| * |
| * Authors: |
| * Avi Kivity <avi@redhat.com> |
| * Gleb Natapov <gleb@redhat.com> |
| */ |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/types.h> |
| #include <linux/kvm_host.h> |
| #include <linux/perf_event.h> |
| #include <asm/perf_event.h> |
| #include "x86.h" |
| #include "cpuid.h" |
| #include "lapic.h" |
| #include "nested.h" |
| #include "pmu.h" |
| |
| /* |
| * Perf's "BASE" is wildly misleading, architectural PMUs use bits 31:16 of ECX |
| * to encode the "type" of counter to read, i.e. this is not a "base". And to |
| * further confuse things, non-architectural PMUs use bit 31 as a flag for |
| * "fast" reads, whereas the "type" is an explicit value. |
| */ |
| #define INTEL_RDPMC_GP 0 |
| #define INTEL_RDPMC_FIXED INTEL_PMC_FIXED_RDPMC_BASE |
| |
| #define INTEL_RDPMC_TYPE_MASK GENMASK(31, 16) |
| #define INTEL_RDPMC_INDEX_MASK GENMASK(15, 0) |
| |
| #define MSR_PMC_FULL_WIDTH_BIT (MSR_IA32_PMC0 - MSR_IA32_PERFCTR0) |
| |
| static void reprogram_fixed_counters(struct kvm_pmu *pmu, u64 data) |
| { |
| struct kvm_pmc *pmc; |
| u64 old_fixed_ctr_ctrl = pmu->fixed_ctr_ctrl; |
| int i; |
| |
| pmu->fixed_ctr_ctrl = data; |
| for (i = 0; i < pmu->nr_arch_fixed_counters; i++) { |
| u8 new_ctrl = fixed_ctrl_field(data, i); |
| u8 old_ctrl = fixed_ctrl_field(old_fixed_ctr_ctrl, i); |
| |
| if (old_ctrl == new_ctrl) |
| continue; |
| |
| pmc = get_fixed_pmc(pmu, MSR_CORE_PERF_FIXED_CTR0 + i); |
| |
| __set_bit(KVM_FIXED_PMC_BASE_IDX + i, pmu->pmc_in_use); |
| kvm_pmu_request_counter_reprogram(pmc); |
| } |
| } |
| |
| static struct kvm_pmc *intel_rdpmc_ecx_to_pmc(struct kvm_vcpu *vcpu, |
| unsigned int idx, u64 *mask) |
| { |
| unsigned int type = idx & INTEL_RDPMC_TYPE_MASK; |
| struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); |
| struct kvm_pmc *counters; |
| unsigned int num_counters; |
| u64 bitmask; |
| |
| /* |
| * The encoding of ECX for RDPMC is different for architectural versus |
| * non-architecturals PMUs (PMUs with version '0'). For architectural |
| * PMUs, bits 31:16 specify the PMC type and bits 15:0 specify the PMC |
| * index. For non-architectural PMUs, bit 31 is a "fast" flag, and |
| * bits 30:0 specify the PMC index. |
| * |
| * Yell and reject attempts to read PMCs for a non-architectural PMU, |
| * as KVM doesn't support such PMUs. |
| */ |
| if (WARN_ON_ONCE(!pmu->version)) |
| return NULL; |
| |
| /* |
| * General Purpose (GP) PMCs are supported on all PMUs, and fixed PMCs |
| * are supported on all architectural PMUs, i.e. on all virtual PMUs |
| * supported by KVM. Note, KVM only emulates fixed PMCs for PMU v2+, |
| * but the type itself is still valid, i.e. let RDPMC fail due to |
| * accessing a non-existent counter. Reject attempts to read all other |
| * types, which are unknown/unsupported. |
| */ |
| switch (type) { |
| case INTEL_RDPMC_FIXED: |
| counters = pmu->fixed_counters; |
| num_counters = pmu->nr_arch_fixed_counters; |
| bitmask = pmu->counter_bitmask[KVM_PMC_FIXED]; |
| break; |
| case INTEL_RDPMC_GP: |
| counters = pmu->gp_counters; |
| num_counters = pmu->nr_arch_gp_counters; |
| bitmask = pmu->counter_bitmask[KVM_PMC_GP]; |
| break; |
| default: |
| return NULL; |
| } |
| |
| idx &= INTEL_RDPMC_INDEX_MASK; |
| if (idx >= num_counters) |
| return NULL; |
| |
| *mask &= bitmask; |
| return &counters[array_index_nospec(idx, num_counters)]; |
| } |
| |
| static inline u64 vcpu_get_perf_capabilities(struct kvm_vcpu *vcpu) |
| { |
| if (!guest_cpuid_has(vcpu, X86_FEATURE_PDCM)) |
| return 0; |
| |
| return vcpu->arch.perf_capabilities; |
| } |
| |
| static inline bool fw_writes_is_enabled(struct kvm_vcpu *vcpu) |
| { |
| return (vcpu_get_perf_capabilities(vcpu) & PMU_CAP_FW_WRITES) != 0; |
| } |
| |
| static inline struct kvm_pmc *get_fw_gp_pmc(struct kvm_pmu *pmu, u32 msr) |
| { |
| if (!fw_writes_is_enabled(pmu_to_vcpu(pmu))) |
| return NULL; |
| |
| return get_gp_pmc(pmu, msr, MSR_IA32_PMC0); |
| } |
| |
| static bool intel_pmu_is_valid_lbr_msr(struct kvm_vcpu *vcpu, u32 index) |
| { |
| struct x86_pmu_lbr *records = vcpu_to_lbr_records(vcpu); |
| bool ret = false; |
| |
| if (!intel_pmu_lbr_is_enabled(vcpu)) |
| return ret; |
| |
| ret = (index == MSR_LBR_SELECT) || (index == MSR_LBR_TOS) || |
| (index >= records->from && index < records->from + records->nr) || |
| (index >= records->to && index < records->to + records->nr); |
| |
| if (!ret && records->info) |
| ret = (index >= records->info && index < records->info + records->nr); |
| |
| return ret; |
| } |
| |
| static bool intel_is_valid_msr(struct kvm_vcpu *vcpu, u32 msr) |
| { |
| struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); |
| u64 perf_capabilities; |
| int ret; |
| |
| switch (msr) { |
| case MSR_CORE_PERF_FIXED_CTR_CTRL: |
| return kvm_pmu_has_perf_global_ctrl(pmu); |
| case MSR_IA32_PEBS_ENABLE: |
| ret = vcpu_get_perf_capabilities(vcpu) & PERF_CAP_PEBS_FORMAT; |
| break; |
| case MSR_IA32_DS_AREA: |
| ret = guest_cpuid_has(vcpu, X86_FEATURE_DS); |
| break; |
| case MSR_PEBS_DATA_CFG: |
| perf_capabilities = vcpu_get_perf_capabilities(vcpu); |
| ret = (perf_capabilities & PERF_CAP_PEBS_BASELINE) && |
| ((perf_capabilities & PERF_CAP_PEBS_FORMAT) > 3); |
| break; |
| default: |
| ret = get_gp_pmc(pmu, msr, MSR_IA32_PERFCTR0) || |
| get_gp_pmc(pmu, msr, MSR_P6_EVNTSEL0) || |
| get_fixed_pmc(pmu, msr) || get_fw_gp_pmc(pmu, msr) || |
| intel_pmu_is_valid_lbr_msr(vcpu, msr); |
| break; |
| } |
| |
| return ret; |
| } |
| |
| static struct kvm_pmc *intel_msr_idx_to_pmc(struct kvm_vcpu *vcpu, u32 msr) |
| { |
| struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); |
| struct kvm_pmc *pmc; |
| |
| pmc = get_fixed_pmc(pmu, msr); |
| pmc = pmc ? pmc : get_gp_pmc(pmu, msr, MSR_P6_EVNTSEL0); |
| pmc = pmc ? pmc : get_gp_pmc(pmu, msr, MSR_IA32_PERFCTR0); |
| |
| return pmc; |
| } |
| |
| static inline void intel_pmu_release_guest_lbr_event(struct kvm_vcpu *vcpu) |
| { |
| struct lbr_desc *lbr_desc = vcpu_to_lbr_desc(vcpu); |
| |
| if (lbr_desc->event) { |
| perf_event_release_kernel(lbr_desc->event); |
| lbr_desc->event = NULL; |
| vcpu_to_pmu(vcpu)->event_count--; |
| } |
| } |
| |
| int intel_pmu_create_guest_lbr_event(struct kvm_vcpu *vcpu) |
| { |
| struct lbr_desc *lbr_desc = vcpu_to_lbr_desc(vcpu); |
| struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); |
| struct perf_event *event; |
| |
| /* |
| * The perf_event_attr is constructed in the minimum efficient way: |
| * - set 'pinned = true' to make it task pinned so that if another |
| * cpu pinned event reclaims LBR, the event->oncpu will be set to -1; |
| * - set '.exclude_host = true' to record guest branches behavior; |
| * |
| * - set '.config = INTEL_FIXED_VLBR_EVENT' to indicates host perf |
| * schedule the event without a real HW counter but a fake one; |
| * check is_guest_lbr_event() and __intel_get_event_constraints(); |
| * |
| * - set 'sample_type = PERF_SAMPLE_BRANCH_STACK' and |
| * 'branch_sample_type = PERF_SAMPLE_BRANCH_CALL_STACK | |
| * PERF_SAMPLE_BRANCH_USER' to configure it as a LBR callstack |
| * event, which helps KVM to save/restore guest LBR records |
| * during host context switches and reduces quite a lot overhead, |
| * check branch_user_callstack() and intel_pmu_lbr_sched_task(); |
| */ |
| struct perf_event_attr attr = { |
| .type = PERF_TYPE_RAW, |
| .size = sizeof(attr), |
| .config = INTEL_FIXED_VLBR_EVENT, |
| .sample_type = PERF_SAMPLE_BRANCH_STACK, |
| .pinned = true, |
| .exclude_host = true, |
| .branch_sample_type = PERF_SAMPLE_BRANCH_CALL_STACK | |
| PERF_SAMPLE_BRANCH_USER, |
| }; |
| |
| if (unlikely(lbr_desc->event)) { |
| __set_bit(INTEL_PMC_IDX_FIXED_VLBR, pmu->pmc_in_use); |
| return 0; |
| } |
| |
| event = perf_event_create_kernel_counter(&attr, -1, |
| current, NULL, NULL); |
| if (IS_ERR(event)) { |
| pr_debug_ratelimited("%s: failed %ld\n", |
| __func__, PTR_ERR(event)); |
| return PTR_ERR(event); |
| } |
| lbr_desc->event = event; |
| pmu->event_count++; |
| __set_bit(INTEL_PMC_IDX_FIXED_VLBR, pmu->pmc_in_use); |
| return 0; |
| } |
| |
| /* |
| * It's safe to access LBR msrs from guest when they have not |
| * been passthrough since the host would help restore or reset |
| * the LBR msrs records when the guest LBR event is scheduled in. |
| */ |
| static bool intel_pmu_handle_lbr_msrs_access(struct kvm_vcpu *vcpu, |
| struct msr_data *msr_info, bool read) |
| { |
| struct lbr_desc *lbr_desc = vcpu_to_lbr_desc(vcpu); |
| u32 index = msr_info->index; |
| |
| if (!intel_pmu_is_valid_lbr_msr(vcpu, index)) |
| return false; |
| |
| if (!lbr_desc->event && intel_pmu_create_guest_lbr_event(vcpu) < 0) |
| goto dummy; |
| |
| /* |
| * Disable irq to ensure the LBR feature doesn't get reclaimed by the |
| * host at the time the value is read from the msr, and this avoids the |
| * host LBR value to be leaked to the guest. If LBR has been reclaimed, |
| * return 0 on guest reads. |
| */ |
| local_irq_disable(); |
| if (lbr_desc->event->state == PERF_EVENT_STATE_ACTIVE) { |
| if (read) |
| rdmsrl(index, msr_info->data); |
| else |
| wrmsrl(index, msr_info->data); |
| __set_bit(INTEL_PMC_IDX_FIXED_VLBR, vcpu_to_pmu(vcpu)->pmc_in_use); |
| local_irq_enable(); |
| return true; |
| } |
| clear_bit(INTEL_PMC_IDX_FIXED_VLBR, vcpu_to_pmu(vcpu)->pmc_in_use); |
| local_irq_enable(); |
| |
| dummy: |
| if (read) |
| msr_info->data = 0; |
| return true; |
| } |
| |
| static int intel_pmu_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) |
| { |
| struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); |
| struct kvm_pmc *pmc; |
| u32 msr = msr_info->index; |
| |
| switch (msr) { |
| case MSR_CORE_PERF_FIXED_CTR_CTRL: |
| msr_info->data = pmu->fixed_ctr_ctrl; |
| break; |
| case MSR_IA32_PEBS_ENABLE: |
| msr_info->data = pmu->pebs_enable; |
| break; |
| case MSR_IA32_DS_AREA: |
| msr_info->data = pmu->ds_area; |
| break; |
| case MSR_PEBS_DATA_CFG: |
| msr_info->data = pmu->pebs_data_cfg; |
| break; |
| default: |
| if ((pmc = get_gp_pmc(pmu, msr, MSR_IA32_PERFCTR0)) || |
| (pmc = get_gp_pmc(pmu, msr, MSR_IA32_PMC0))) { |
| u64 val = pmc_read_counter(pmc); |
| msr_info->data = |
| val & pmu->counter_bitmask[KVM_PMC_GP]; |
| break; |
| } else if ((pmc = get_fixed_pmc(pmu, msr))) { |
| u64 val = pmc_read_counter(pmc); |
| msr_info->data = |
| val & pmu->counter_bitmask[KVM_PMC_FIXED]; |
| break; |
| } else if ((pmc = get_gp_pmc(pmu, msr, MSR_P6_EVNTSEL0))) { |
| msr_info->data = pmc->eventsel; |
| break; |
| } else if (intel_pmu_handle_lbr_msrs_access(vcpu, msr_info, true)) { |
| break; |
| } |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| static int intel_pmu_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) |
| { |
| struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); |
| struct kvm_pmc *pmc; |
| u32 msr = msr_info->index; |
| u64 data = msr_info->data; |
| u64 reserved_bits, diff; |
| |
| switch (msr) { |
| case MSR_CORE_PERF_FIXED_CTR_CTRL: |
| if (data & pmu->fixed_ctr_ctrl_mask) |
| return 1; |
| |
| if (pmu->fixed_ctr_ctrl != data) |
| reprogram_fixed_counters(pmu, data); |
| break; |
| case MSR_IA32_PEBS_ENABLE: |
| if (data & pmu->pebs_enable_mask) |
| return 1; |
| |
| if (pmu->pebs_enable != data) { |
| diff = pmu->pebs_enable ^ data; |
| pmu->pebs_enable = data; |
| reprogram_counters(pmu, diff); |
| } |
| break; |
| case MSR_IA32_DS_AREA: |
| if (is_noncanonical_address(data, vcpu)) |
| return 1; |
| |
| pmu->ds_area = data; |
| break; |
| case MSR_PEBS_DATA_CFG: |
| if (data & pmu->pebs_data_cfg_mask) |
| return 1; |
| |
| pmu->pebs_data_cfg = data; |
| break; |
| default: |
| if ((pmc = get_gp_pmc(pmu, msr, MSR_IA32_PERFCTR0)) || |
| (pmc = get_gp_pmc(pmu, msr, MSR_IA32_PMC0))) { |
| if ((msr & MSR_PMC_FULL_WIDTH_BIT) && |
| (data & ~pmu->counter_bitmask[KVM_PMC_GP])) |
| return 1; |
| |
| if (!msr_info->host_initiated && |
| !(msr & MSR_PMC_FULL_WIDTH_BIT)) |
| data = (s64)(s32)data; |
| pmc_write_counter(pmc, data); |
| break; |
| } else if ((pmc = get_fixed_pmc(pmu, msr))) { |
| pmc_write_counter(pmc, data); |
| break; |
| } else if ((pmc = get_gp_pmc(pmu, msr, MSR_P6_EVNTSEL0))) { |
| reserved_bits = pmu->reserved_bits; |
| if ((pmc->idx == 2) && |
| (pmu->raw_event_mask & HSW_IN_TX_CHECKPOINTED)) |
| reserved_bits ^= HSW_IN_TX_CHECKPOINTED; |
| if (data & reserved_bits) |
| return 1; |
| |
| if (data != pmc->eventsel) { |
| pmc->eventsel = data; |
| kvm_pmu_request_counter_reprogram(pmc); |
| } |
| break; |
| } else if (intel_pmu_handle_lbr_msrs_access(vcpu, msr_info, false)) { |
| break; |
| } |
| /* Not a known PMU MSR. */ |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Map fixed counter events to architectural general purpose event encodings. |
| * Perf doesn't provide APIs to allow KVM to directly program a fixed counter, |
| * and so KVM instead programs the architectural event to effectively request |
| * the fixed counter. Perf isn't guaranteed to use a fixed counter and may |
| * instead program the encoding into a general purpose counter, e.g. if a |
| * different perf_event is already utilizing the requested counter, but the end |
| * result is the same (ignoring the fact that using a general purpose counter |
| * will likely exacerbate counter contention). |
| * |
| * Forcibly inlined to allow asserting on @index at build time, and there should |
| * never be more than one user. |
| */ |
| static __always_inline u64 intel_get_fixed_pmc_eventsel(unsigned int index) |
| { |
| const enum perf_hw_id fixed_pmc_perf_ids[] = { |
| [0] = PERF_COUNT_HW_INSTRUCTIONS, |
| [1] = PERF_COUNT_HW_CPU_CYCLES, |
| [2] = PERF_COUNT_HW_REF_CPU_CYCLES, |
| }; |
| u64 eventsel; |
| |
| BUILD_BUG_ON(ARRAY_SIZE(fixed_pmc_perf_ids) != KVM_PMC_MAX_FIXED); |
| BUILD_BUG_ON(index >= KVM_PMC_MAX_FIXED); |
| |
| /* |
| * Yell if perf reports support for a fixed counter but perf doesn't |
| * have a known encoding for the associated general purpose event. |
| */ |
| eventsel = perf_get_hw_event_config(fixed_pmc_perf_ids[index]); |
| WARN_ON_ONCE(!eventsel && index < kvm_pmu_cap.num_counters_fixed); |
| return eventsel; |
| } |
| |
| static void intel_pmu_refresh(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); |
| struct lbr_desc *lbr_desc = vcpu_to_lbr_desc(vcpu); |
| struct kvm_cpuid_entry2 *entry; |
| union cpuid10_eax eax; |
| union cpuid10_edx edx; |
| u64 perf_capabilities; |
| u64 counter_mask; |
| int i; |
| |
| memset(&lbr_desc->records, 0, sizeof(lbr_desc->records)); |
| |
| /* |
| * Setting passthrough of LBR MSRs is done only in the VM-Entry loop, |
| * and PMU refresh is disallowed after the vCPU has run, i.e. this code |
| * should never be reached while KVM is passing through MSRs. |
| */ |
| if (KVM_BUG_ON(lbr_desc->msr_passthrough, vcpu->kvm)) |
| return; |
| |
| entry = kvm_find_cpuid_entry(vcpu, 0xa); |
| if (!entry) |
| return; |
| |
| eax.full = entry->eax; |
| edx.full = entry->edx; |
| |
| pmu->version = eax.split.version_id; |
| if (!pmu->version) |
| return; |
| |
| pmu->nr_arch_gp_counters = min_t(int, eax.split.num_counters, |
| kvm_pmu_cap.num_counters_gp); |
| eax.split.bit_width = min_t(int, eax.split.bit_width, |
| kvm_pmu_cap.bit_width_gp); |
| pmu->counter_bitmask[KVM_PMC_GP] = ((u64)1 << eax.split.bit_width) - 1; |
| eax.split.mask_length = min_t(int, eax.split.mask_length, |
| kvm_pmu_cap.events_mask_len); |
| pmu->available_event_types = ~entry->ebx & |
| ((1ull << eax.split.mask_length) - 1); |
| |
| if (pmu->version == 1) { |
| pmu->nr_arch_fixed_counters = 0; |
| } else { |
| pmu->nr_arch_fixed_counters = min_t(int, edx.split.num_counters_fixed, |
| kvm_pmu_cap.num_counters_fixed); |
| edx.split.bit_width_fixed = min_t(int, edx.split.bit_width_fixed, |
| kvm_pmu_cap.bit_width_fixed); |
| pmu->counter_bitmask[KVM_PMC_FIXED] = |
| ((u64)1 << edx.split.bit_width_fixed) - 1; |
| } |
| |
| for (i = 0; i < pmu->nr_arch_fixed_counters; i++) |
| pmu->fixed_ctr_ctrl_mask &= ~(0xbull << (i * 4)); |
| counter_mask = ~(((1ull << pmu->nr_arch_gp_counters) - 1) | |
| (((1ull << pmu->nr_arch_fixed_counters) - 1) << KVM_FIXED_PMC_BASE_IDX)); |
| pmu->global_ctrl_mask = counter_mask; |
| |
| /* |
| * GLOBAL_STATUS and GLOBAL_OVF_CONTROL (a.k.a. GLOBAL_STATUS_RESET) |
| * share reserved bit definitions. The kernel just happens to use |
| * OVF_CTRL for the names. |
| */ |
| pmu->global_status_mask = pmu->global_ctrl_mask |
| & ~(MSR_CORE_PERF_GLOBAL_OVF_CTRL_OVF_BUF | |
| MSR_CORE_PERF_GLOBAL_OVF_CTRL_COND_CHGD); |
| if (vmx_pt_mode_is_host_guest()) |
| pmu->global_status_mask &= |
| ~MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI; |
| |
| entry = kvm_find_cpuid_entry_index(vcpu, 7, 0); |
| if (entry && |
| (boot_cpu_has(X86_FEATURE_HLE) || boot_cpu_has(X86_FEATURE_RTM)) && |
| (entry->ebx & (X86_FEATURE_HLE|X86_FEATURE_RTM))) { |
| pmu->reserved_bits ^= HSW_IN_TX; |
| pmu->raw_event_mask |= (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED); |
| } |
| |
| bitmap_set(pmu->all_valid_pmc_idx, |
| 0, pmu->nr_arch_gp_counters); |
| bitmap_set(pmu->all_valid_pmc_idx, |
| INTEL_PMC_MAX_GENERIC, pmu->nr_arch_fixed_counters); |
| |
| perf_capabilities = vcpu_get_perf_capabilities(vcpu); |
| if (cpuid_model_is_consistent(vcpu) && |
| (perf_capabilities & PMU_CAP_LBR_FMT)) |
| memcpy(&lbr_desc->records, &vmx_lbr_caps, sizeof(vmx_lbr_caps)); |
| else |
| lbr_desc->records.nr = 0; |
| |
| if (lbr_desc->records.nr) |
| bitmap_set(pmu->all_valid_pmc_idx, INTEL_PMC_IDX_FIXED_VLBR, 1); |
| |
| if (perf_capabilities & PERF_CAP_PEBS_FORMAT) { |
| if (perf_capabilities & PERF_CAP_PEBS_BASELINE) { |
| pmu->pebs_enable_mask = counter_mask; |
| pmu->reserved_bits &= ~ICL_EVENTSEL_ADAPTIVE; |
| for (i = 0; i < pmu->nr_arch_fixed_counters; i++) { |
| pmu->fixed_ctr_ctrl_mask &= |
| ~(1ULL << (KVM_FIXED_PMC_BASE_IDX + i * 4)); |
| } |
| pmu->pebs_data_cfg_mask = ~0xff00000full; |
| } else { |
| pmu->pebs_enable_mask = |
| ~((1ull << pmu->nr_arch_gp_counters) - 1); |
| } |
| } |
| } |
| |
| static void intel_pmu_init(struct kvm_vcpu *vcpu) |
| { |
| int i; |
| struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); |
| struct lbr_desc *lbr_desc = vcpu_to_lbr_desc(vcpu); |
| |
| for (i = 0; i < KVM_INTEL_PMC_MAX_GENERIC; i++) { |
| pmu->gp_counters[i].type = KVM_PMC_GP; |
| pmu->gp_counters[i].vcpu = vcpu; |
| pmu->gp_counters[i].idx = i; |
| pmu->gp_counters[i].current_config = 0; |
| } |
| |
| for (i = 0; i < KVM_PMC_MAX_FIXED; i++) { |
| pmu->fixed_counters[i].type = KVM_PMC_FIXED; |
| pmu->fixed_counters[i].vcpu = vcpu; |
| pmu->fixed_counters[i].idx = i + KVM_FIXED_PMC_BASE_IDX; |
| pmu->fixed_counters[i].current_config = 0; |
| pmu->fixed_counters[i].eventsel = intel_get_fixed_pmc_eventsel(i); |
| } |
| |
| lbr_desc->records.nr = 0; |
| lbr_desc->event = NULL; |
| lbr_desc->msr_passthrough = false; |
| } |
| |
| static void intel_pmu_reset(struct kvm_vcpu *vcpu) |
| { |
| intel_pmu_release_guest_lbr_event(vcpu); |
| } |
| |
| /* |
| * Emulate LBR_On_PMI behavior for 1 < pmu.version < 4. |
| * |
| * If Freeze_LBR_On_PMI = 1, the LBR is frozen on PMI and |
| * the KVM emulates to clear the LBR bit (bit 0) in IA32_DEBUGCTL. |
| * |
| * Guest needs to re-enable LBR to resume branches recording. |
| */ |
| static void intel_pmu_legacy_freezing_lbrs_on_pmi(struct kvm_vcpu *vcpu) |
| { |
| u64 data = vmcs_read64(GUEST_IA32_DEBUGCTL); |
| |
| if (data & DEBUGCTLMSR_FREEZE_LBRS_ON_PMI) { |
| data &= ~DEBUGCTLMSR_LBR; |
| vmcs_write64(GUEST_IA32_DEBUGCTL, data); |
| } |
| } |
| |
| static void intel_pmu_deliver_pmi(struct kvm_vcpu *vcpu) |
| { |
| u8 version = vcpu_to_pmu(vcpu)->version; |
| |
| if (!intel_pmu_lbr_is_enabled(vcpu)) |
| return; |
| |
| if (version > 1 && version < 4) |
| intel_pmu_legacy_freezing_lbrs_on_pmi(vcpu); |
| } |
| |
| static void vmx_update_intercept_for_lbr_msrs(struct kvm_vcpu *vcpu, bool set) |
| { |
| struct x86_pmu_lbr *lbr = vcpu_to_lbr_records(vcpu); |
| int i; |
| |
| for (i = 0; i < lbr->nr; i++) { |
| vmx_set_intercept_for_msr(vcpu, lbr->from + i, MSR_TYPE_RW, set); |
| vmx_set_intercept_for_msr(vcpu, lbr->to + i, MSR_TYPE_RW, set); |
| if (lbr->info) |
| vmx_set_intercept_for_msr(vcpu, lbr->info + i, MSR_TYPE_RW, set); |
| } |
| |
| vmx_set_intercept_for_msr(vcpu, MSR_LBR_SELECT, MSR_TYPE_RW, set); |
| vmx_set_intercept_for_msr(vcpu, MSR_LBR_TOS, MSR_TYPE_RW, set); |
| } |
| |
| static inline void vmx_disable_lbr_msrs_passthrough(struct kvm_vcpu *vcpu) |
| { |
| struct lbr_desc *lbr_desc = vcpu_to_lbr_desc(vcpu); |
| |
| if (!lbr_desc->msr_passthrough) |
| return; |
| |
| vmx_update_intercept_for_lbr_msrs(vcpu, true); |
| lbr_desc->msr_passthrough = false; |
| } |
| |
| static inline void vmx_enable_lbr_msrs_passthrough(struct kvm_vcpu *vcpu) |
| { |
| struct lbr_desc *lbr_desc = vcpu_to_lbr_desc(vcpu); |
| |
| if (lbr_desc->msr_passthrough) |
| return; |
| |
| vmx_update_intercept_for_lbr_msrs(vcpu, false); |
| lbr_desc->msr_passthrough = true; |
| } |
| |
| /* |
| * Higher priority host perf events (e.g. cpu pinned) could reclaim the |
| * pmu resources (e.g. LBR) that were assigned to the guest. This is |
| * usually done via ipi calls (more details in perf_install_in_context). |
| * |
| * Before entering the non-root mode (with irq disabled here), double |
| * confirm that the pmu features enabled to the guest are not reclaimed |
| * by higher priority host events. Otherwise, disallow vcpu's access to |
| * the reclaimed features. |
| */ |
| void vmx_passthrough_lbr_msrs(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); |
| struct lbr_desc *lbr_desc = vcpu_to_lbr_desc(vcpu); |
| |
| if (!lbr_desc->event) { |
| vmx_disable_lbr_msrs_passthrough(vcpu); |
| if (vmcs_read64(GUEST_IA32_DEBUGCTL) & DEBUGCTLMSR_LBR) |
| goto warn; |
| if (test_bit(INTEL_PMC_IDX_FIXED_VLBR, pmu->pmc_in_use)) |
| goto warn; |
| return; |
| } |
| |
| if (lbr_desc->event->state < PERF_EVENT_STATE_ACTIVE) { |
| vmx_disable_lbr_msrs_passthrough(vcpu); |
| __clear_bit(INTEL_PMC_IDX_FIXED_VLBR, pmu->pmc_in_use); |
| goto warn; |
| } else |
| vmx_enable_lbr_msrs_passthrough(vcpu); |
| |
| return; |
| |
| warn: |
| pr_warn_ratelimited("vcpu-%d: fail to passthrough LBR.\n", vcpu->vcpu_id); |
| } |
| |
| static void intel_pmu_cleanup(struct kvm_vcpu *vcpu) |
| { |
| if (!(vmcs_read64(GUEST_IA32_DEBUGCTL) & DEBUGCTLMSR_LBR)) |
| intel_pmu_release_guest_lbr_event(vcpu); |
| } |
| |
| void intel_pmu_cross_mapped_check(struct kvm_pmu *pmu) |
| { |
| struct kvm_pmc *pmc = NULL; |
| int bit, hw_idx; |
| |
| kvm_for_each_pmc(pmu, pmc, bit, (unsigned long *)&pmu->global_ctrl) { |
| if (!pmc_speculative_in_use(pmc) || |
| !pmc_is_globally_enabled(pmc) || !pmc->perf_event) |
| continue; |
| |
| /* |
| * A negative index indicates the event isn't mapped to a |
| * physical counter in the host, e.g. due to contention. |
| */ |
| hw_idx = pmc->perf_event->hw.idx; |
| if (hw_idx != pmc->idx && hw_idx > -1) |
| pmu->host_cross_mapped_mask |= BIT_ULL(hw_idx); |
| } |
| } |
| |
| struct kvm_pmu_ops intel_pmu_ops __initdata = { |
| .rdpmc_ecx_to_pmc = intel_rdpmc_ecx_to_pmc, |
| .msr_idx_to_pmc = intel_msr_idx_to_pmc, |
| .is_valid_msr = intel_is_valid_msr, |
| .get_msr = intel_pmu_get_msr, |
| .set_msr = intel_pmu_set_msr, |
| .refresh = intel_pmu_refresh, |
| .init = intel_pmu_init, |
| .reset = intel_pmu_reset, |
| .deliver_pmi = intel_pmu_deliver_pmi, |
| .cleanup = intel_pmu_cleanup, |
| .EVENTSEL_EVENT = ARCH_PERFMON_EVENTSEL_EVENT, |
| .MAX_NR_GP_COUNTERS = KVM_INTEL_PMC_MAX_GENERIC, |
| .MIN_NR_GP_COUNTERS = 1, |
| }; |