| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Kernel-based Virtual Machine driver for Linux |
| * |
| * This module enables machines with Intel VT-x extensions to run virtual |
| * machines without emulation or binary translation. |
| * |
| * Copyright (C) 2006 Qumranet, Inc. |
| * Copyright 2010 Red Hat, Inc. and/or its affiliates. |
| * |
| * Authors: |
| * Avi Kivity <avi@qumranet.com> |
| * Yaniv Kamay <yaniv@qumranet.com> |
| */ |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/highmem.h> |
| #include <linux/hrtimer.h> |
| #include <linux/kernel.h> |
| #include <linux/kvm_host.h> |
| #include <linux/module.h> |
| #include <linux/moduleparam.h> |
| #include <linux/mod_devicetable.h> |
| #include <linux/mm.h> |
| #include <linux/objtool.h> |
| #include <linux/sched.h> |
| #include <linux/sched/smt.h> |
| #include <linux/slab.h> |
| #include <linux/tboot.h> |
| #include <linux/trace_events.h> |
| #include <linux/entry-kvm.h> |
| |
| #include <asm/apic.h> |
| #include <asm/asm.h> |
| #include <asm/cpu.h> |
| #include <asm/cpu_device_id.h> |
| #include <asm/debugreg.h> |
| #include <asm/desc.h> |
| #include <asm/fpu/api.h> |
| #include <asm/fpu/xstate.h> |
| #include <asm/fred.h> |
| #include <asm/idtentry.h> |
| #include <asm/io.h> |
| #include <asm/irq_remapping.h> |
| #include <asm/reboot.h> |
| #include <asm/perf_event.h> |
| #include <asm/mmu_context.h> |
| #include <asm/mshyperv.h> |
| #include <asm/mwait.h> |
| #include <asm/spec-ctrl.h> |
| #include <asm/vmx.h> |
| |
| #include <trace/events/ipi.h> |
| |
| #include "capabilities.h" |
| #include "cpuid.h" |
| #include "hyperv.h" |
| #include "kvm_onhyperv.h" |
| #include "irq.h" |
| #include "kvm_cache_regs.h" |
| #include "lapic.h" |
| #include "mmu.h" |
| #include "nested.h" |
| #include "pmu.h" |
| #include "sgx.h" |
| #include "trace.h" |
| #include "vmcs.h" |
| #include "vmcs12.h" |
| #include "vmx.h" |
| #include "x86.h" |
| #include "smm.h" |
| #include "vmx_onhyperv.h" |
| |
| MODULE_AUTHOR("Qumranet"); |
| MODULE_LICENSE("GPL"); |
| |
| #ifdef MODULE |
| static const struct x86_cpu_id vmx_cpu_id[] = { |
| X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL), |
| {} |
| }; |
| MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id); |
| #endif |
| |
| bool __read_mostly enable_vpid = 1; |
| module_param_named(vpid, enable_vpid, bool, 0444); |
| |
| static bool __read_mostly enable_vnmi = 1; |
| module_param_named(vnmi, enable_vnmi, bool, 0444); |
| |
| bool __read_mostly flexpriority_enabled = 1; |
| module_param_named(flexpriority, flexpriority_enabled, bool, 0444); |
| |
| bool __read_mostly enable_ept = 1; |
| module_param_named(ept, enable_ept, bool, 0444); |
| |
| bool __read_mostly enable_unrestricted_guest = 1; |
| module_param_named(unrestricted_guest, |
| enable_unrestricted_guest, bool, 0444); |
| |
| bool __read_mostly enable_ept_ad_bits = 1; |
| module_param_named(eptad, enable_ept_ad_bits, bool, 0444); |
| |
| static bool __read_mostly emulate_invalid_guest_state = true; |
| module_param(emulate_invalid_guest_state, bool, 0444); |
| |
| static bool __read_mostly fasteoi = 1; |
| module_param(fasteoi, bool, 0444); |
| |
| module_param(enable_apicv, bool, 0444); |
| |
| bool __read_mostly enable_ipiv = true; |
| module_param(enable_ipiv, bool, 0444); |
| |
| /* |
| * If nested=1, nested virtualization is supported, i.e., guests may use |
| * VMX and be a hypervisor for its own guests. If nested=0, guests may not |
| * use VMX instructions. |
| */ |
| static bool __read_mostly nested = 1; |
| module_param(nested, bool, 0444); |
| |
| bool __read_mostly enable_pml = 1; |
| module_param_named(pml, enable_pml, bool, 0444); |
| |
| static bool __read_mostly error_on_inconsistent_vmcs_config = true; |
| module_param(error_on_inconsistent_vmcs_config, bool, 0444); |
| |
| static bool __read_mostly dump_invalid_vmcs = 0; |
| module_param(dump_invalid_vmcs, bool, 0644); |
| |
| #define MSR_BITMAP_MODE_X2APIC 1 |
| #define MSR_BITMAP_MODE_X2APIC_APICV 2 |
| |
| #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL |
| |
| /* Guest_tsc -> host_tsc conversion requires 64-bit division. */ |
| static int __read_mostly cpu_preemption_timer_multi; |
| static bool __read_mostly enable_preemption_timer = 1; |
| #ifdef CONFIG_X86_64 |
| module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO); |
| #endif |
| |
| extern bool __read_mostly allow_smaller_maxphyaddr; |
| module_param(allow_smaller_maxphyaddr, bool, S_IRUGO); |
| |
| #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD) |
| #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE |
| #define KVM_VM_CR0_ALWAYS_ON \ |
| (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE) |
| |
| #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE |
| #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE) |
| #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE) |
| |
| #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM)) |
| |
| #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \ |
| RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \ |
| RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \ |
| RTIT_STATUS_BYTECNT)) |
| |
| /* |
| * List of MSRs that can be directly passed to the guest. |
| * In addition to these x2apic, PT and LBR MSRs are handled specially. |
| */ |
| static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = { |
| MSR_IA32_SPEC_CTRL, |
| MSR_IA32_PRED_CMD, |
| MSR_IA32_FLUSH_CMD, |
| MSR_IA32_TSC, |
| #ifdef CONFIG_X86_64 |
| MSR_FS_BASE, |
| MSR_GS_BASE, |
| MSR_KERNEL_GS_BASE, |
| MSR_IA32_XFD, |
| MSR_IA32_XFD_ERR, |
| #endif |
| MSR_IA32_SYSENTER_CS, |
| MSR_IA32_SYSENTER_ESP, |
| MSR_IA32_SYSENTER_EIP, |
| MSR_CORE_C1_RES, |
| MSR_CORE_C3_RESIDENCY, |
| MSR_CORE_C6_RESIDENCY, |
| MSR_CORE_C7_RESIDENCY, |
| }; |
| |
| /* |
| * These 2 parameters are used to config the controls for Pause-Loop Exiting: |
| * ple_gap: upper bound on the amount of time between two successive |
| * executions of PAUSE in a loop. Also indicate if ple enabled. |
| * According to test, this time is usually smaller than 128 cycles. |
| * ple_window: upper bound on the amount of time a guest is allowed to execute |
| * in a PAUSE loop. Tests indicate that most spinlocks are held for |
| * less than 2^12 cycles |
| * Time is measured based on a counter that runs at the same rate as the TSC, |
| * refer SDM volume 3b section 21.6.13 & 22.1.3. |
| */ |
| static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP; |
| module_param(ple_gap, uint, 0444); |
| |
| static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW; |
| module_param(ple_window, uint, 0444); |
| |
| /* Default doubles per-vcpu window every exit. */ |
| static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW; |
| module_param(ple_window_grow, uint, 0444); |
| |
| /* Default resets per-vcpu window every exit to ple_window. */ |
| static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; |
| module_param(ple_window_shrink, uint, 0444); |
| |
| /* Default is to compute the maximum so we can never overflow. */ |
| static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX; |
| module_param(ple_window_max, uint, 0444); |
| |
| /* Default is SYSTEM mode, 1 for host-guest mode */ |
| int __read_mostly pt_mode = PT_MODE_SYSTEM; |
| module_param(pt_mode, int, S_IRUGO); |
| |
| struct x86_pmu_lbr __ro_after_init vmx_lbr_caps; |
| |
| static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush); |
| static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond); |
| static DEFINE_MUTEX(vmx_l1d_flush_mutex); |
| |
| /* Storage for pre module init parameter parsing */ |
| static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO; |
| |
| static const struct { |
| const char *option; |
| bool for_parse; |
| } vmentry_l1d_param[] = { |
| [VMENTER_L1D_FLUSH_AUTO] = {"auto", true}, |
| [VMENTER_L1D_FLUSH_NEVER] = {"never", true}, |
| [VMENTER_L1D_FLUSH_COND] = {"cond", true}, |
| [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true}, |
| [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false}, |
| [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false}, |
| }; |
| |
| #define L1D_CACHE_ORDER 4 |
| static void *vmx_l1d_flush_pages; |
| |
| static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf) |
| { |
| struct page *page; |
| unsigned int i; |
| |
| if (!boot_cpu_has_bug(X86_BUG_L1TF)) { |
| l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; |
| return 0; |
| } |
| |
| if (!enable_ept) { |
| l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED; |
| return 0; |
| } |
| |
| if (host_arch_capabilities & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) { |
| l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; |
| return 0; |
| } |
| |
| /* If set to auto use the default l1tf mitigation method */ |
| if (l1tf == VMENTER_L1D_FLUSH_AUTO) { |
| switch (l1tf_mitigation) { |
| case L1TF_MITIGATION_OFF: |
| l1tf = VMENTER_L1D_FLUSH_NEVER; |
| break; |
| case L1TF_MITIGATION_FLUSH_NOWARN: |
| case L1TF_MITIGATION_FLUSH: |
| case L1TF_MITIGATION_FLUSH_NOSMT: |
| l1tf = VMENTER_L1D_FLUSH_COND; |
| break; |
| case L1TF_MITIGATION_FULL: |
| case L1TF_MITIGATION_FULL_FORCE: |
| l1tf = VMENTER_L1D_FLUSH_ALWAYS; |
| break; |
| } |
| } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) { |
| l1tf = VMENTER_L1D_FLUSH_ALWAYS; |
| } |
| |
| if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages && |
| !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) { |
| /* |
| * This allocation for vmx_l1d_flush_pages is not tied to a VM |
| * lifetime and so should not be charged to a memcg. |
| */ |
| page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER); |
| if (!page) |
| return -ENOMEM; |
| vmx_l1d_flush_pages = page_address(page); |
| |
| /* |
| * Initialize each page with a different pattern in |
| * order to protect against KSM in the nested |
| * virtualization case. |
| */ |
| for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) { |
| memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1, |
| PAGE_SIZE); |
| } |
| } |
| |
| l1tf_vmx_mitigation = l1tf; |
| |
| if (l1tf != VMENTER_L1D_FLUSH_NEVER) |
| static_branch_enable(&vmx_l1d_should_flush); |
| else |
| static_branch_disable(&vmx_l1d_should_flush); |
| |
| if (l1tf == VMENTER_L1D_FLUSH_COND) |
| static_branch_enable(&vmx_l1d_flush_cond); |
| else |
| static_branch_disable(&vmx_l1d_flush_cond); |
| return 0; |
| } |
| |
| static int vmentry_l1d_flush_parse(const char *s) |
| { |
| unsigned int i; |
| |
| if (s) { |
| for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) { |
| if (vmentry_l1d_param[i].for_parse && |
| sysfs_streq(s, vmentry_l1d_param[i].option)) |
| return i; |
| } |
| } |
| return -EINVAL; |
| } |
| |
| static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp) |
| { |
| int l1tf, ret; |
| |
| l1tf = vmentry_l1d_flush_parse(s); |
| if (l1tf < 0) |
| return l1tf; |
| |
| if (!boot_cpu_has(X86_BUG_L1TF)) |
| return 0; |
| |
| /* |
| * Has vmx_init() run already? If not then this is the pre init |
| * parameter parsing. In that case just store the value and let |
| * vmx_init() do the proper setup after enable_ept has been |
| * established. |
| */ |
| if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) { |
| vmentry_l1d_flush_param = l1tf; |
| return 0; |
| } |
| |
| mutex_lock(&vmx_l1d_flush_mutex); |
| ret = vmx_setup_l1d_flush(l1tf); |
| mutex_unlock(&vmx_l1d_flush_mutex); |
| return ret; |
| } |
| |
| static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp) |
| { |
| if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param))) |
| return sysfs_emit(s, "???\n"); |
| |
| return sysfs_emit(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option); |
| } |
| |
| static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx) |
| { |
| u64 msr; |
| |
| if (!vmx->disable_fb_clear) |
| return; |
| |
| msr = __rdmsr(MSR_IA32_MCU_OPT_CTRL); |
| msr |= FB_CLEAR_DIS; |
| native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, msr); |
| /* Cache the MSR value to avoid reading it later */ |
| vmx->msr_ia32_mcu_opt_ctrl = msr; |
| } |
| |
| static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx) |
| { |
| if (!vmx->disable_fb_clear) |
| return; |
| |
| vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS; |
| native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl); |
| } |
| |
| static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx) |
| { |
| /* |
| * Disable VERW's behavior of clearing CPU buffers for the guest if the |
| * CPU isn't affected by MDS/TAA, and the host hasn't forcefully enabled |
| * the mitigation. Disabling the clearing behavior provides a |
| * performance boost for guests that aren't aware that manually clearing |
| * CPU buffers is unnecessary, at the cost of MSR accesses on VM-Entry |
| * and VM-Exit. |
| */ |
| vmx->disable_fb_clear = !cpu_feature_enabled(X86_FEATURE_CLEAR_CPU_BUF) && |
| (host_arch_capabilities & ARCH_CAP_FB_CLEAR_CTRL) && |
| !boot_cpu_has_bug(X86_BUG_MDS) && |
| !boot_cpu_has_bug(X86_BUG_TAA); |
| |
| /* |
| * If guest will not execute VERW, there is no need to set FB_CLEAR_DIS |
| * at VMEntry. Skip the MSR read/write when a guest has no use case to |
| * execute VERW. |
| */ |
| if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) || |
| ((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) && |
| (vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) && |
| (vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) && |
| (vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) && |
| (vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO))) |
| vmx->disable_fb_clear = false; |
| } |
| |
| static const struct kernel_param_ops vmentry_l1d_flush_ops = { |
| .set = vmentry_l1d_flush_set, |
| .get = vmentry_l1d_flush_get, |
| }; |
| module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644); |
| |
| static u32 vmx_segment_access_rights(struct kvm_segment *var); |
| |
| void vmx_vmexit(void); |
| |
| #define vmx_insn_failed(fmt...) \ |
| do { \ |
| WARN_ONCE(1, fmt); \ |
| pr_warn_ratelimited(fmt); \ |
| } while (0) |
| |
| noinline void vmread_error(unsigned long field) |
| { |
| vmx_insn_failed("vmread failed: field=%lx\n", field); |
| } |
| |
| #ifndef CONFIG_CC_HAS_ASM_GOTO_OUTPUT |
| noinstr void vmread_error_trampoline2(unsigned long field, bool fault) |
| { |
| if (fault) { |
| kvm_spurious_fault(); |
| } else { |
| instrumentation_begin(); |
| vmread_error(field); |
| instrumentation_end(); |
| } |
| } |
| #endif |
| |
| noinline void vmwrite_error(unsigned long field, unsigned long value) |
| { |
| vmx_insn_failed("vmwrite failed: field=%lx val=%lx err=%u\n", |
| field, value, vmcs_read32(VM_INSTRUCTION_ERROR)); |
| } |
| |
| noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr) |
| { |
| vmx_insn_failed("vmclear failed: %p/%llx err=%u\n", |
| vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR)); |
| } |
| |
| noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr) |
| { |
| vmx_insn_failed("vmptrld failed: %p/%llx err=%u\n", |
| vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR)); |
| } |
| |
| noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva) |
| { |
| vmx_insn_failed("invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n", |
| ext, vpid, gva); |
| } |
| |
| noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa) |
| { |
| vmx_insn_failed("invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n", |
| ext, eptp, gpa); |
| } |
| |
| static DEFINE_PER_CPU(struct vmcs *, vmxarea); |
| DEFINE_PER_CPU(struct vmcs *, current_vmcs); |
| /* |
| * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed |
| * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it. |
| */ |
| static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu); |
| |
| static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS); |
| static DEFINE_SPINLOCK(vmx_vpid_lock); |
| |
| struct vmcs_config vmcs_config __ro_after_init; |
| struct vmx_capability vmx_capability __ro_after_init; |
| |
| #define VMX_SEGMENT_FIELD(seg) \ |
| [VCPU_SREG_##seg] = { \ |
| .selector = GUEST_##seg##_SELECTOR, \ |
| .base = GUEST_##seg##_BASE, \ |
| .limit = GUEST_##seg##_LIMIT, \ |
| .ar_bytes = GUEST_##seg##_AR_BYTES, \ |
| } |
| |
| static const struct kvm_vmx_segment_field { |
| unsigned selector; |
| unsigned base; |
| unsigned limit; |
| unsigned ar_bytes; |
| } kvm_vmx_segment_fields[] = { |
| VMX_SEGMENT_FIELD(CS), |
| VMX_SEGMENT_FIELD(DS), |
| VMX_SEGMENT_FIELD(ES), |
| VMX_SEGMENT_FIELD(FS), |
| VMX_SEGMENT_FIELD(GS), |
| VMX_SEGMENT_FIELD(SS), |
| VMX_SEGMENT_FIELD(TR), |
| VMX_SEGMENT_FIELD(LDTR), |
| }; |
| |
| static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx) |
| { |
| vmx->segment_cache.bitmask = 0; |
| } |
| |
| static unsigned long host_idt_base; |
| |
| #if IS_ENABLED(CONFIG_HYPERV) |
| static struct kvm_x86_ops vmx_x86_ops __initdata; |
| |
| static bool __read_mostly enlightened_vmcs = true; |
| module_param(enlightened_vmcs, bool, 0444); |
| |
| static int hv_enable_l2_tlb_flush(struct kvm_vcpu *vcpu) |
| { |
| struct hv_enlightened_vmcs *evmcs; |
| hpa_t partition_assist_page = hv_get_partition_assist_page(vcpu); |
| |
| if (partition_assist_page == INVALID_PAGE) |
| return -ENOMEM; |
| |
| evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs; |
| |
| evmcs->partition_assist_page = partition_assist_page; |
| evmcs->hv_vm_id = (unsigned long)vcpu->kvm; |
| evmcs->hv_enlightenments_control.nested_flush_hypercall = 1; |
| |
| return 0; |
| } |
| |
| static __init void hv_init_evmcs(void) |
| { |
| int cpu; |
| |
| if (!enlightened_vmcs) |
| return; |
| |
| /* |
| * Enlightened VMCS usage should be recommended and the host needs |
| * to support eVMCS v1 or above. |
| */ |
| if (ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED && |
| (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >= |
| KVM_EVMCS_VERSION) { |
| |
| /* Check that we have assist pages on all online CPUs */ |
| for_each_online_cpu(cpu) { |
| if (!hv_get_vp_assist_page(cpu)) { |
| enlightened_vmcs = false; |
| break; |
| } |
| } |
| |
| if (enlightened_vmcs) { |
| pr_info("Using Hyper-V Enlightened VMCS\n"); |
| static_branch_enable(&__kvm_is_using_evmcs); |
| } |
| |
| if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH) |
| vmx_x86_ops.enable_l2_tlb_flush |
| = hv_enable_l2_tlb_flush; |
| |
| } else { |
| enlightened_vmcs = false; |
| } |
| } |
| |
| static void hv_reset_evmcs(void) |
| { |
| struct hv_vp_assist_page *vp_ap; |
| |
| if (!kvm_is_using_evmcs()) |
| return; |
| |
| /* |
| * KVM should enable eVMCS if and only if all CPUs have a VP assist |
| * page, and should reject CPU onlining if eVMCS is enabled the CPU |
| * doesn't have a VP assist page allocated. |
| */ |
| vp_ap = hv_get_vp_assist_page(smp_processor_id()); |
| if (WARN_ON_ONCE(!vp_ap)) |
| return; |
| |
| /* |
| * Reset everything to support using non-enlightened VMCS access later |
| * (e.g. when we reload the module with enlightened_vmcs=0) |
| */ |
| vp_ap->nested_control.features.directhypercall = 0; |
| vp_ap->current_nested_vmcs = 0; |
| vp_ap->enlighten_vmentry = 0; |
| } |
| |
| #else /* IS_ENABLED(CONFIG_HYPERV) */ |
| static void hv_init_evmcs(void) {} |
| static void hv_reset_evmcs(void) {} |
| #endif /* IS_ENABLED(CONFIG_HYPERV) */ |
| |
| /* |
| * Comment's format: document - errata name - stepping - processor name. |
| * Refer from |
| * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp |
| */ |
| static u32 vmx_preemption_cpu_tfms[] = { |
| /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */ |
| 0x000206E6, |
| /* 323056.pdf - AAX65 - C2 - Xeon L3406 */ |
| /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */ |
| /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */ |
| 0x00020652, |
| /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */ |
| 0x00020655, |
| /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */ |
| /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */ |
| /* |
| * 320767.pdf - AAP86 - B1 - |
| * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile |
| */ |
| 0x000106E5, |
| /* 321333.pdf - AAM126 - C0 - Xeon 3500 */ |
| 0x000106A0, |
| /* 321333.pdf - AAM126 - C1 - Xeon 3500 */ |
| 0x000106A1, |
| /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */ |
| 0x000106A4, |
| /* 321333.pdf - AAM126 - D0 - Xeon 3500 */ |
| /* 321324.pdf - AAK139 - D0 - Xeon 5500 */ |
| /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */ |
| 0x000106A5, |
| /* Xeon E3-1220 V2 */ |
| 0x000306A8, |
| }; |
| |
| static inline bool cpu_has_broken_vmx_preemption_timer(void) |
| { |
| u32 eax = cpuid_eax(0x00000001), i; |
| |
| /* Clear the reserved bits */ |
| eax &= ~(0x3U << 14 | 0xfU << 28); |
| for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++) |
| if (eax == vmx_preemption_cpu_tfms[i]) |
| return true; |
| |
| return false; |
| } |
| |
| static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu) |
| { |
| return flexpriority_enabled && lapic_in_kernel(vcpu); |
| } |
| |
| static int vmx_get_passthrough_msr_slot(u32 msr) |
| { |
| int i; |
| |
| switch (msr) { |
| case 0x800 ... 0x8ff: |
| /* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */ |
| return -ENOENT; |
| case MSR_IA32_RTIT_STATUS: |
| case MSR_IA32_RTIT_OUTPUT_BASE: |
| case MSR_IA32_RTIT_OUTPUT_MASK: |
| case MSR_IA32_RTIT_CR3_MATCH: |
| case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: |
| /* PT MSRs. These are handled in pt_update_intercept_for_msr() */ |
| case MSR_LBR_SELECT: |
| case MSR_LBR_TOS: |
| case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31: |
| case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31: |
| case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31: |
| case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8: |
| case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8: |
| /* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */ |
| return -ENOENT; |
| } |
| |
| for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) { |
| if (vmx_possible_passthrough_msrs[i] == msr) |
| return i; |
| } |
| |
| WARN(1, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr); |
| return -ENOENT; |
| } |
| |
| struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr) |
| { |
| int i; |
| |
| i = kvm_find_user_return_msr(msr); |
| if (i >= 0) |
| return &vmx->guest_uret_msrs[i]; |
| return NULL; |
| } |
| |
| static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx, |
| struct vmx_uret_msr *msr, u64 data) |
| { |
| unsigned int slot = msr - vmx->guest_uret_msrs; |
| int ret = 0; |
| |
| if (msr->load_into_hardware) { |
| preempt_disable(); |
| ret = kvm_set_user_return_msr(slot, data, msr->mask); |
| preempt_enable(); |
| } |
| if (!ret) |
| msr->data = data; |
| return ret; |
| } |
| |
| /* |
| * Disable VMX and clear CR4.VMXE (even if VMXOFF faults) |
| * |
| * Note, VMXOFF causes a #UD if the CPU is !post-VMXON, but it's impossible to |
| * atomically track post-VMXON state, e.g. this may be called in NMI context. |
| * Eat all faults as all other faults on VMXOFF faults are mode related, i.e. |
| * faults are guaranteed to be due to the !post-VMXON check unless the CPU is |
| * magically in RM, VM86, compat mode, or at CPL>0. |
| */ |
| static int kvm_cpu_vmxoff(void) |
| { |
| asm goto("1: vmxoff\n\t" |
| _ASM_EXTABLE(1b, %l[fault]) |
| ::: "cc", "memory" : fault); |
| |
| cr4_clear_bits(X86_CR4_VMXE); |
| return 0; |
| |
| fault: |
| cr4_clear_bits(X86_CR4_VMXE); |
| return -EIO; |
| } |
| |
| static void vmx_emergency_disable(void) |
| { |
| int cpu = raw_smp_processor_id(); |
| struct loaded_vmcs *v; |
| |
| kvm_rebooting = true; |
| |
| /* |
| * Note, CR4.VMXE can be _cleared_ in NMI context, but it can only be |
| * set in task context. If this races with VMX is disabled by an NMI, |
| * VMCLEAR and VMXOFF may #UD, but KVM will eat those faults due to |
| * kvm_rebooting set. |
| */ |
| if (!(__read_cr4() & X86_CR4_VMXE)) |
| return; |
| |
| list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu), |
| loaded_vmcss_on_cpu_link) |
| vmcs_clear(v->vmcs); |
| |
| kvm_cpu_vmxoff(); |
| } |
| |
| static void __loaded_vmcs_clear(void *arg) |
| { |
| struct loaded_vmcs *loaded_vmcs = arg; |
| int cpu = raw_smp_processor_id(); |
| |
| if (loaded_vmcs->cpu != cpu) |
| return; /* vcpu migration can race with cpu offline */ |
| if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs) |
| per_cpu(current_vmcs, cpu) = NULL; |
| |
| vmcs_clear(loaded_vmcs->vmcs); |
| if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched) |
| vmcs_clear(loaded_vmcs->shadow_vmcs); |
| |
| list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link); |
| |
| /* |
| * Ensure all writes to loaded_vmcs, including deleting it from its |
| * current percpu list, complete before setting loaded_vmcs->cpu to |
| * -1, otherwise a different cpu can see loaded_vmcs->cpu == -1 first |
| * and add loaded_vmcs to its percpu list before it's deleted from this |
| * cpu's list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs(). |
| */ |
| smp_wmb(); |
| |
| loaded_vmcs->cpu = -1; |
| loaded_vmcs->launched = 0; |
| } |
| |
| void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs) |
| { |
| int cpu = loaded_vmcs->cpu; |
| |
| if (cpu != -1) |
| smp_call_function_single(cpu, |
| __loaded_vmcs_clear, loaded_vmcs, 1); |
| } |
| |
| static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg, |
| unsigned field) |
| { |
| bool ret; |
| u32 mask = 1 << (seg * SEG_FIELD_NR + field); |
| |
| if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) { |
| kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS); |
| vmx->segment_cache.bitmask = 0; |
| } |
| ret = vmx->segment_cache.bitmask & mask; |
| vmx->segment_cache.bitmask |= mask; |
| return ret; |
| } |
| |
| static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg) |
| { |
| u16 *p = &vmx->segment_cache.seg[seg].selector; |
| |
| if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL)) |
| *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector); |
| return *p; |
| } |
| |
| static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg) |
| { |
| ulong *p = &vmx->segment_cache.seg[seg].base; |
| |
| if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE)) |
| *p = vmcs_readl(kvm_vmx_segment_fields[seg].base); |
| return *p; |
| } |
| |
| static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg) |
| { |
| u32 *p = &vmx->segment_cache.seg[seg].limit; |
| |
| if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT)) |
| *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit); |
| return *p; |
| } |
| |
| static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg) |
| { |
| u32 *p = &vmx->segment_cache.seg[seg].ar; |
| |
| if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR)) |
| *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes); |
| return *p; |
| } |
| |
| void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu) |
| { |
| u32 eb; |
| |
| eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) | |
| (1u << DB_VECTOR) | (1u << AC_VECTOR); |
| /* |
| * Guest access to VMware backdoor ports could legitimately |
| * trigger #GP because of TSS I/O permission bitmap. |
| * We intercept those #GP and allow access to them anyway |
| * as VMware does. |
| */ |
| if (enable_vmware_backdoor) |
| eb |= (1u << GP_VECTOR); |
| if ((vcpu->guest_debug & |
| (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) == |
| (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) |
| eb |= 1u << BP_VECTOR; |
| if (to_vmx(vcpu)->rmode.vm86_active) |
| eb = ~0; |
| if (!vmx_need_pf_intercept(vcpu)) |
| eb &= ~(1u << PF_VECTOR); |
| |
| /* When we are running a nested L2 guest and L1 specified for it a |
| * certain exception bitmap, we must trap the same exceptions and pass |
| * them to L1. When running L2, we will only handle the exceptions |
| * specified above if L1 did not want them. |
| */ |
| if (is_guest_mode(vcpu)) |
| eb |= get_vmcs12(vcpu)->exception_bitmap; |
| else { |
| int mask = 0, match = 0; |
| |
| if (enable_ept && (eb & (1u << PF_VECTOR))) { |
| /* |
| * If EPT is enabled, #PF is currently only intercepted |
| * if MAXPHYADDR is smaller on the guest than on the |
| * host. In that case we only care about present, |
| * non-reserved faults. For vmcs02, however, PFEC_MASK |
| * and PFEC_MATCH are set in prepare_vmcs02_rare. |
| */ |
| mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK; |
| match = PFERR_PRESENT_MASK; |
| } |
| vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask); |
| vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match); |
| } |
| |
| /* |
| * Disabling xfd interception indicates that dynamic xfeatures |
| * might be used in the guest. Always trap #NM in this case |
| * to save guest xfd_err timely. |
| */ |
| if (vcpu->arch.xfd_no_write_intercept) |
| eb |= (1u << NM_VECTOR); |
| |
| vmcs_write32(EXCEPTION_BITMAP, eb); |
| } |
| |
| /* |
| * Check if MSR is intercepted for currently loaded MSR bitmap. |
| */ |
| static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr) |
| { |
| if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS)) |
| return true; |
| |
| return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap, msr); |
| } |
| |
| unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx) |
| { |
| unsigned int flags = 0; |
| |
| if (vmx->loaded_vmcs->launched) |
| flags |= VMX_RUN_VMRESUME; |
| |
| /* |
| * If writes to the SPEC_CTRL MSR aren't intercepted, the guest is free |
| * to change it directly without causing a vmexit. In that case read |
| * it after vmexit and store it in vmx->spec_ctrl. |
| */ |
| if (!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL)) |
| flags |= VMX_RUN_SAVE_SPEC_CTRL; |
| |
| return flags; |
| } |
| |
| static __always_inline void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx, |
| unsigned long entry, unsigned long exit) |
| { |
| vm_entry_controls_clearbit(vmx, entry); |
| vm_exit_controls_clearbit(vmx, exit); |
| } |
| |
| int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < m->nr; ++i) { |
| if (m->val[i].index == msr) |
| return i; |
| } |
| return -ENOENT; |
| } |
| |
| static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr) |
| { |
| int i; |
| struct msr_autoload *m = &vmx->msr_autoload; |
| |
| switch (msr) { |
| case MSR_EFER: |
| if (cpu_has_load_ia32_efer()) { |
| clear_atomic_switch_msr_special(vmx, |
| VM_ENTRY_LOAD_IA32_EFER, |
| VM_EXIT_LOAD_IA32_EFER); |
| return; |
| } |
| break; |
| case MSR_CORE_PERF_GLOBAL_CTRL: |
| if (cpu_has_load_perf_global_ctrl()) { |
| clear_atomic_switch_msr_special(vmx, |
| VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, |
| VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL); |
| return; |
| } |
| break; |
| } |
| i = vmx_find_loadstore_msr_slot(&m->guest, msr); |
| if (i < 0) |
| goto skip_guest; |
| --m->guest.nr; |
| m->guest.val[i] = m->guest.val[m->guest.nr]; |
| vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); |
| |
| skip_guest: |
| i = vmx_find_loadstore_msr_slot(&m->host, msr); |
| if (i < 0) |
| return; |
| |
| --m->host.nr; |
| m->host.val[i] = m->host.val[m->host.nr]; |
| vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); |
| } |
| |
| static __always_inline void add_atomic_switch_msr_special(struct vcpu_vmx *vmx, |
| unsigned long entry, unsigned long exit, |
| unsigned long guest_val_vmcs, unsigned long host_val_vmcs, |
| u64 guest_val, u64 host_val) |
| { |
| vmcs_write64(guest_val_vmcs, guest_val); |
| if (host_val_vmcs != HOST_IA32_EFER) |
| vmcs_write64(host_val_vmcs, host_val); |
| vm_entry_controls_setbit(vmx, entry); |
| vm_exit_controls_setbit(vmx, exit); |
| } |
| |
| static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr, |
| u64 guest_val, u64 host_val, bool entry_only) |
| { |
| int i, j = 0; |
| struct msr_autoload *m = &vmx->msr_autoload; |
| |
| switch (msr) { |
| case MSR_EFER: |
| if (cpu_has_load_ia32_efer()) { |
| add_atomic_switch_msr_special(vmx, |
| VM_ENTRY_LOAD_IA32_EFER, |
| VM_EXIT_LOAD_IA32_EFER, |
| GUEST_IA32_EFER, |
| HOST_IA32_EFER, |
| guest_val, host_val); |
| return; |
| } |
| break; |
| case MSR_CORE_PERF_GLOBAL_CTRL: |
| if (cpu_has_load_perf_global_ctrl()) { |
| add_atomic_switch_msr_special(vmx, |
| VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, |
| VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL, |
| GUEST_IA32_PERF_GLOBAL_CTRL, |
| HOST_IA32_PERF_GLOBAL_CTRL, |
| guest_val, host_val); |
| return; |
| } |
| break; |
| case MSR_IA32_PEBS_ENABLE: |
| /* PEBS needs a quiescent period after being disabled (to write |
| * a record). Disabling PEBS through VMX MSR swapping doesn't |
| * provide that period, so a CPU could write host's record into |
| * guest's memory. |
| */ |
| wrmsrl(MSR_IA32_PEBS_ENABLE, 0); |
| } |
| |
| i = vmx_find_loadstore_msr_slot(&m->guest, msr); |
| if (!entry_only) |
| j = vmx_find_loadstore_msr_slot(&m->host, msr); |
| |
| if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) || |
| (j < 0 && m->host.nr == MAX_NR_LOADSTORE_MSRS)) { |
| printk_once(KERN_WARNING "Not enough msr switch entries. " |
| "Can't add msr %x\n", msr); |
| return; |
| } |
| if (i < 0) { |
| i = m->guest.nr++; |
| vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); |
| } |
| m->guest.val[i].index = msr; |
| m->guest.val[i].value = guest_val; |
| |
| if (entry_only) |
| return; |
| |
| if (j < 0) { |
| j = m->host.nr++; |
| vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); |
| } |
| m->host.val[j].index = msr; |
| m->host.val[j].value = host_val; |
| } |
| |
| static bool update_transition_efer(struct vcpu_vmx *vmx) |
| { |
| u64 guest_efer = vmx->vcpu.arch.efer; |
| u64 ignore_bits = 0; |
| int i; |
| |
| /* Shadow paging assumes NX to be available. */ |
| if (!enable_ept) |
| guest_efer |= EFER_NX; |
| |
| /* |
| * LMA and LME handled by hardware; SCE meaningless outside long mode. |
| */ |
| ignore_bits |= EFER_SCE; |
| #ifdef CONFIG_X86_64 |
| ignore_bits |= EFER_LMA | EFER_LME; |
| /* SCE is meaningful only in long mode on Intel */ |
| if (guest_efer & EFER_LMA) |
| ignore_bits &= ~(u64)EFER_SCE; |
| #endif |
| |
| /* |
| * On EPT, we can't emulate NX, so we must switch EFER atomically. |
| * On CPUs that support "load IA32_EFER", always switch EFER |
| * atomically, since it's faster than switching it manually. |
| */ |
| if (cpu_has_load_ia32_efer() || |
| (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) { |
| if (!(guest_efer & EFER_LMA)) |
| guest_efer &= ~EFER_LME; |
| if (guest_efer != host_efer) |
| add_atomic_switch_msr(vmx, MSR_EFER, |
| guest_efer, host_efer, false); |
| else |
| clear_atomic_switch_msr(vmx, MSR_EFER); |
| return false; |
| } |
| |
| i = kvm_find_user_return_msr(MSR_EFER); |
| if (i < 0) |
| return false; |
| |
| clear_atomic_switch_msr(vmx, MSR_EFER); |
| |
| guest_efer &= ~ignore_bits; |
| guest_efer |= host_efer & ignore_bits; |
| |
| vmx->guest_uret_msrs[i].data = guest_efer; |
| vmx->guest_uret_msrs[i].mask = ~ignore_bits; |
| |
| return true; |
| } |
| |
| #ifdef CONFIG_X86_32 |
| /* |
| * On 32-bit kernels, VM exits still load the FS and GS bases from the |
| * VMCS rather than the segment table. KVM uses this helper to figure |
| * out the current bases to poke them into the VMCS before entry. |
| */ |
| static unsigned long segment_base(u16 selector) |
| { |
| struct desc_struct *table; |
| unsigned long v; |
| |
| if (!(selector & ~SEGMENT_RPL_MASK)) |
| return 0; |
| |
| table = get_current_gdt_ro(); |
| |
| if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) { |
| u16 ldt_selector = kvm_read_ldt(); |
| |
| if (!(ldt_selector & ~SEGMENT_RPL_MASK)) |
| return 0; |
| |
| table = (struct desc_struct *)segment_base(ldt_selector); |
| } |
| v = get_desc_base(&table[selector >> 3]); |
| return v; |
| } |
| #endif |
| |
| static inline bool pt_can_write_msr(struct vcpu_vmx *vmx) |
| { |
| return vmx_pt_mode_is_host_guest() && |
| !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN); |
| } |
| |
| static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base) |
| { |
| /* The base must be 128-byte aligned and a legal physical address. */ |
| return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128); |
| } |
| |
| static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range) |
| { |
| u32 i; |
| |
| wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status); |
| wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); |
| wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); |
| wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); |
| for (i = 0; i < addr_range; i++) { |
| wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); |
| wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); |
| } |
| } |
| |
| static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range) |
| { |
| u32 i; |
| |
| rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status); |
| rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); |
| rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); |
| rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); |
| for (i = 0; i < addr_range; i++) { |
| rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); |
| rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); |
| } |
| } |
| |
| static void pt_guest_enter(struct vcpu_vmx *vmx) |
| { |
| if (vmx_pt_mode_is_system()) |
| return; |
| |
| /* |
| * GUEST_IA32_RTIT_CTL is already set in the VMCS. |
| * Save host state before VM entry. |
| */ |
| rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); |
| if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { |
| wrmsrl(MSR_IA32_RTIT_CTL, 0); |
| pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges); |
| pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges); |
| } |
| } |
| |
| static void pt_guest_exit(struct vcpu_vmx *vmx) |
| { |
| if (vmx_pt_mode_is_system()) |
| return; |
| |
| if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { |
| pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges); |
| pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges); |
| } |
| |
| /* |
| * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest, |
| * i.e. RTIT_CTL is always cleared on VM-Exit. Restore it if necessary. |
| */ |
| if (vmx->pt_desc.host.ctl) |
| wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); |
| } |
| |
| void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel, |
| unsigned long fs_base, unsigned long gs_base) |
| { |
| if (unlikely(fs_sel != host->fs_sel)) { |
| if (!(fs_sel & 7)) |
| vmcs_write16(HOST_FS_SELECTOR, fs_sel); |
| else |
| vmcs_write16(HOST_FS_SELECTOR, 0); |
| host->fs_sel = fs_sel; |
| } |
| if (unlikely(gs_sel != host->gs_sel)) { |
| if (!(gs_sel & 7)) |
| vmcs_write16(HOST_GS_SELECTOR, gs_sel); |
| else |
| vmcs_write16(HOST_GS_SELECTOR, 0); |
| host->gs_sel = gs_sel; |
| } |
| if (unlikely(fs_base != host->fs_base)) { |
| vmcs_writel(HOST_FS_BASE, fs_base); |
| host->fs_base = fs_base; |
| } |
| if (unlikely(gs_base != host->gs_base)) { |
| vmcs_writel(HOST_GS_BASE, gs_base); |
| host->gs_base = gs_base; |
| } |
| } |
| |
| void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| struct vmcs_host_state *host_state; |
| #ifdef CONFIG_X86_64 |
| int cpu = raw_smp_processor_id(); |
| #endif |
| unsigned long fs_base, gs_base; |
| u16 fs_sel, gs_sel; |
| int i; |
| |
| /* |
| * Note that guest MSRs to be saved/restored can also be changed |
| * when guest state is loaded. This happens when guest transitions |
| * to/from long-mode by setting MSR_EFER.LMA. |
| */ |
| if (!vmx->guest_uret_msrs_loaded) { |
| vmx->guest_uret_msrs_loaded = true; |
| for (i = 0; i < kvm_nr_uret_msrs; ++i) { |
| if (!vmx->guest_uret_msrs[i].load_into_hardware) |
| continue; |
| |
| kvm_set_user_return_msr(i, |
| vmx->guest_uret_msrs[i].data, |
| vmx->guest_uret_msrs[i].mask); |
| } |
| } |
| |
| if (vmx->nested.need_vmcs12_to_shadow_sync) |
| nested_sync_vmcs12_to_shadow(vcpu); |
| |
| if (vmx->guest_state_loaded) |
| return; |
| |
| host_state = &vmx->loaded_vmcs->host_state; |
| |
| /* |
| * Set host fs and gs selectors. Unfortunately, 22.2.3 does not |
| * allow segment selectors with cpl > 0 or ti == 1. |
| */ |
| host_state->ldt_sel = kvm_read_ldt(); |
| |
| #ifdef CONFIG_X86_64 |
| savesegment(ds, host_state->ds_sel); |
| savesegment(es, host_state->es_sel); |
| |
| gs_base = cpu_kernelmode_gs_base(cpu); |
| if (likely(is_64bit_mm(current->mm))) { |
| current_save_fsgs(); |
| fs_sel = current->thread.fsindex; |
| gs_sel = current->thread.gsindex; |
| fs_base = current->thread.fsbase; |
| vmx->msr_host_kernel_gs_base = current->thread.gsbase; |
| } else { |
| savesegment(fs, fs_sel); |
| savesegment(gs, gs_sel); |
| fs_base = read_msr(MSR_FS_BASE); |
| vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE); |
| } |
| |
| wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); |
| #else |
| savesegment(fs, fs_sel); |
| savesegment(gs, gs_sel); |
| fs_base = segment_base(fs_sel); |
| gs_base = segment_base(gs_sel); |
| #endif |
| |
| vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base); |
| vmx->guest_state_loaded = true; |
| } |
| |
| static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx) |
| { |
| struct vmcs_host_state *host_state; |
| |
| if (!vmx->guest_state_loaded) |
| return; |
| |
| host_state = &vmx->loaded_vmcs->host_state; |
| |
| ++vmx->vcpu.stat.host_state_reload; |
| |
| #ifdef CONFIG_X86_64 |
| rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); |
| #endif |
| if (host_state->ldt_sel || (host_state->gs_sel & 7)) { |
| kvm_load_ldt(host_state->ldt_sel); |
| #ifdef CONFIG_X86_64 |
| load_gs_index(host_state->gs_sel); |
| #else |
| loadsegment(gs, host_state->gs_sel); |
| #endif |
| } |
| if (host_state->fs_sel & 7) |
| loadsegment(fs, host_state->fs_sel); |
| #ifdef CONFIG_X86_64 |
| if (unlikely(host_state->ds_sel | host_state->es_sel)) { |
| loadsegment(ds, host_state->ds_sel); |
| loadsegment(es, host_state->es_sel); |
| } |
| #endif |
| invalidate_tss_limit(); |
| #ifdef CONFIG_X86_64 |
| wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base); |
| #endif |
| load_fixmap_gdt(raw_smp_processor_id()); |
| vmx->guest_state_loaded = false; |
| vmx->guest_uret_msrs_loaded = false; |
| } |
| |
| #ifdef CONFIG_X86_64 |
| static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx) |
| { |
| preempt_disable(); |
| if (vmx->guest_state_loaded) |
| rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); |
| preempt_enable(); |
| return vmx->msr_guest_kernel_gs_base; |
| } |
| |
| static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data) |
| { |
| preempt_disable(); |
| if (vmx->guest_state_loaded) |
| wrmsrl(MSR_KERNEL_GS_BASE, data); |
| preempt_enable(); |
| vmx->msr_guest_kernel_gs_base = data; |
| } |
| #endif |
| |
| void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu, |
| struct loaded_vmcs *buddy) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| bool already_loaded = vmx->loaded_vmcs->cpu == cpu; |
| struct vmcs *prev; |
| |
| if (!already_loaded) { |
| loaded_vmcs_clear(vmx->loaded_vmcs); |
| local_irq_disable(); |
| |
| /* |
| * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to |
| * this cpu's percpu list, otherwise it may not yet be deleted |
| * from its previous cpu's percpu list. Pairs with the |
| * smb_wmb() in __loaded_vmcs_clear(). |
| */ |
| smp_rmb(); |
| |
| list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link, |
| &per_cpu(loaded_vmcss_on_cpu, cpu)); |
| local_irq_enable(); |
| } |
| |
| prev = per_cpu(current_vmcs, cpu); |
| if (prev != vmx->loaded_vmcs->vmcs) { |
| per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs; |
| vmcs_load(vmx->loaded_vmcs->vmcs); |
| |
| /* |
| * No indirect branch prediction barrier needed when switching |
| * the active VMCS within a vCPU, unless IBRS is advertised to |
| * the vCPU. To minimize the number of IBPBs executed, KVM |
| * performs IBPB on nested VM-Exit (a single nested transition |
| * may switch the active VMCS multiple times). |
| */ |
| if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev)) |
| indirect_branch_prediction_barrier(); |
| } |
| |
| if (!already_loaded) { |
| void *gdt = get_current_gdt_ro(); |
| |
| /* |
| * Flush all EPTP/VPID contexts, the new pCPU may have stale |
| * TLB entries from its previous association with the vCPU. |
| */ |
| kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); |
| |
| /* |
| * Linux uses per-cpu TSS and GDT, so set these when switching |
| * processors. See 22.2.4. |
| */ |
| vmcs_writel(HOST_TR_BASE, |
| (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss); |
| vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */ |
| |
| if (IS_ENABLED(CONFIG_IA32_EMULATION) || IS_ENABLED(CONFIG_X86_32)) { |
| /* 22.2.3 */ |
| vmcs_writel(HOST_IA32_SYSENTER_ESP, |
| (unsigned long)(cpu_entry_stack(cpu) + 1)); |
| } |
| |
| vmx->loaded_vmcs->cpu = cpu; |
| } |
| } |
| |
| /* |
| * Switches to specified vcpu, until a matching vcpu_put(), but assumes |
| * vcpu mutex is already taken. |
| */ |
| static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| |
| vmx_vcpu_load_vmcs(vcpu, cpu, NULL); |
| |
| vmx_vcpu_pi_load(vcpu, cpu); |
| |
| vmx->host_debugctlmsr = get_debugctlmsr(); |
| } |
| |
| static void vmx_vcpu_put(struct kvm_vcpu *vcpu) |
| { |
| vmx_vcpu_pi_put(vcpu); |
| |
| vmx_prepare_switch_to_host(to_vmx(vcpu)); |
| } |
| |
| bool vmx_emulation_required(struct kvm_vcpu *vcpu) |
| { |
| return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu); |
| } |
| |
| unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| unsigned long rflags, save_rflags; |
| |
| if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) { |
| kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS); |
| rflags = vmcs_readl(GUEST_RFLAGS); |
| if (vmx->rmode.vm86_active) { |
| rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS; |
| save_rflags = vmx->rmode.save_rflags; |
| rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; |
| } |
| vmx->rflags = rflags; |
| } |
| return vmx->rflags; |
| } |
| |
| void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| unsigned long old_rflags; |
| |
| /* |
| * Unlike CR0 and CR4, RFLAGS handling requires checking if the vCPU |
| * is an unrestricted guest in order to mark L2 as needing emulation |
| * if L1 runs L2 as a restricted guest. |
| */ |
| if (is_unrestricted_guest(vcpu)) { |
| kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS); |
| vmx->rflags = rflags; |
| vmcs_writel(GUEST_RFLAGS, rflags); |
| return; |
| } |
| |
| old_rflags = vmx_get_rflags(vcpu); |
| vmx->rflags = rflags; |
| if (vmx->rmode.vm86_active) { |
| vmx->rmode.save_rflags = rflags; |
| rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; |
| } |
| vmcs_writel(GUEST_RFLAGS, rflags); |
| |
| if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM) |
| vmx->emulation_required = vmx_emulation_required(vcpu); |
| } |
| |
| static bool vmx_get_if_flag(struct kvm_vcpu *vcpu) |
| { |
| return vmx_get_rflags(vcpu) & X86_EFLAGS_IF; |
| } |
| |
| u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu) |
| { |
| u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); |
| int ret = 0; |
| |
| if (interruptibility & GUEST_INTR_STATE_STI) |
| ret |= KVM_X86_SHADOW_INT_STI; |
| if (interruptibility & GUEST_INTR_STATE_MOV_SS) |
| ret |= KVM_X86_SHADOW_INT_MOV_SS; |
| |
| return ret; |
| } |
| |
| void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) |
| { |
| u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); |
| u32 interruptibility = interruptibility_old; |
| |
| interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS); |
| |
| if (mask & KVM_X86_SHADOW_INT_MOV_SS) |
| interruptibility |= GUEST_INTR_STATE_MOV_SS; |
| else if (mask & KVM_X86_SHADOW_INT_STI) |
| interruptibility |= GUEST_INTR_STATE_STI; |
| |
| if ((interruptibility != interruptibility_old)) |
| vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility); |
| } |
| |
| static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| unsigned long value; |
| |
| /* |
| * Any MSR write that attempts to change bits marked reserved will |
| * case a #GP fault. |
| */ |
| if (data & vmx->pt_desc.ctl_bitmask) |
| return 1; |
| |
| /* |
| * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will |
| * result in a #GP unless the same write also clears TraceEn. |
| */ |
| if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) && |
| ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN)) |
| return 1; |
| |
| /* |
| * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit |
| * and FabricEn would cause #GP, if |
| * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0 |
| */ |
| if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) && |
| !(data & RTIT_CTL_FABRIC_EN) && |
| !intel_pt_validate_cap(vmx->pt_desc.caps, |
| PT_CAP_single_range_output)) |
| return 1; |
| |
| /* |
| * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that |
| * utilize encodings marked reserved will cause a #GP fault. |
| */ |
| value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods); |
| if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) && |
| !test_bit((data & RTIT_CTL_MTC_RANGE) >> |
| RTIT_CTL_MTC_RANGE_OFFSET, &value)) |
| return 1; |
| value = intel_pt_validate_cap(vmx->pt_desc.caps, |
| PT_CAP_cycle_thresholds); |
| if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && |
| !test_bit((data & RTIT_CTL_CYC_THRESH) >> |
| RTIT_CTL_CYC_THRESH_OFFSET, &value)) |
| return 1; |
| value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods); |
| if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && |
| !test_bit((data & RTIT_CTL_PSB_FREQ) >> |
| RTIT_CTL_PSB_FREQ_OFFSET, &value)) |
| return 1; |
| |
| /* |
| * If ADDRx_CFG is reserved or the encodings is >2 will |
| * cause a #GP fault. |
| */ |
| value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET; |
| if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2)) |
| return 1; |
| value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET; |
| if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2)) |
| return 1; |
| value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET; |
| if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2)) |
| return 1; |
| value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET; |
| if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2)) |
| return 1; |
| |
| return 0; |
| } |
| |
| static int vmx_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type, |
| void *insn, int insn_len) |
| { |
| /* |
| * Emulation of instructions in SGX enclaves is impossible as RIP does |
| * not point at the failing instruction, and even if it did, the code |
| * stream is inaccessible. Inject #UD instead of exiting to userspace |
| * so that guest userspace can't DoS the guest simply by triggering |
| * emulation (enclaves are CPL3 only). |
| */ |
| if (to_vmx(vcpu)->exit_reason.enclave_mode) { |
| kvm_queue_exception(vcpu, UD_VECTOR); |
| return X86EMUL_PROPAGATE_FAULT; |
| } |
| return X86EMUL_CONTINUE; |
| } |
| |
| static int skip_emulated_instruction(struct kvm_vcpu *vcpu) |
| { |
| union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason; |
| unsigned long rip, orig_rip; |
| u32 instr_len; |
| |
| /* |
| * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on |
| * undefined behavior: Intel's SDM doesn't mandate the VMCS field be |
| * set when EPT misconfig occurs. In practice, real hardware updates |
| * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors |
| * (namely Hyper-V) don't set it due to it being undefined behavior, |
| * i.e. we end up advancing IP with some random value. |
| */ |
| if (!static_cpu_has(X86_FEATURE_HYPERVISOR) || |
| exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) { |
| instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN); |
| |
| /* |
| * Emulating an enclave's instructions isn't supported as KVM |
| * cannot access the enclave's memory or its true RIP, e.g. the |
| * vmcs.GUEST_RIP points at the exit point of the enclave, not |
| * the RIP that actually triggered the VM-Exit. But, because |
| * most instructions that cause VM-Exit will #UD in an enclave, |
| * most instruction-based VM-Exits simply do not occur. |
| * |
| * There are a few exceptions, notably the debug instructions |
| * INT1ICEBRK and INT3, as they are allowed in debug enclaves |
| * and generate #DB/#BP as expected, which KVM might intercept. |
| * But again, the CPU does the dirty work and saves an instr |
| * length of zero so VMMs don't shoot themselves in the foot. |
| * WARN if KVM tries to skip a non-zero length instruction on |
| * a VM-Exit from an enclave. |
| */ |
| if (!instr_len) |
| goto rip_updated; |
| |
| WARN_ONCE(exit_reason.enclave_mode, |
| "skipping instruction after SGX enclave VM-Exit"); |
| |
| orig_rip = kvm_rip_read(vcpu); |
| rip = orig_rip + instr_len; |
| #ifdef CONFIG_X86_64 |
| /* |
| * We need to mask out the high 32 bits of RIP if not in 64-bit |
| * mode, but just finding out that we are in 64-bit mode is |
| * quite expensive. Only do it if there was a carry. |
| */ |
| if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu)) |
| rip = (u32)rip; |
| #endif |
| kvm_rip_write(vcpu, rip); |
| } else { |
| if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP)) |
| return 0; |
| } |
| |
| rip_updated: |
| /* skipping an emulated instruction also counts */ |
| vmx_set_interrupt_shadow(vcpu, 0); |
| |
| return 1; |
| } |
| |
| /* |
| * Recognizes a pending MTF VM-exit and records the nested state for later |
| * delivery. |
| */ |
| static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu) |
| { |
| struct vmcs12 *vmcs12 = get_vmcs12(vcpu); |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| |
| if (!is_guest_mode(vcpu)) |
| return; |
| |
| /* |
| * Per the SDM, MTF takes priority over debug-trap exceptions besides |
| * TSS T-bit traps and ICEBP (INT1). KVM doesn't emulate T-bit traps |
| * or ICEBP (in the emulator proper), and skipping of ICEBP after an |
| * intercepted #DB deliberately avoids single-step #DB and MTF updates |
| * as ICEBP is higher priority than both. As instruction emulation is |
| * completed at this point (i.e. KVM is at the instruction boundary), |
| * any #DB exception pending delivery must be a debug-trap of lower |
| * priority than MTF. Record the pending MTF state to be delivered in |
| * vmx_check_nested_events(). |
| */ |
| if (nested_cpu_has_mtf(vmcs12) && |
| (!vcpu->arch.exception.pending || |
| vcpu->arch.exception.vector == DB_VECTOR) && |
| (!vcpu->arch.exception_vmexit.pending || |
| vcpu->arch.exception_vmexit.vector == DB_VECTOR)) { |
| vmx->nested.mtf_pending = true; |
| kvm_make_request(KVM_REQ_EVENT, vcpu); |
| } else { |
| vmx->nested.mtf_pending = false; |
| } |
| } |
| |
| static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu) |
| { |
| vmx_update_emulated_instruction(vcpu); |
| return skip_emulated_instruction(vcpu); |
| } |
| |
| static void vmx_clear_hlt(struct kvm_vcpu *vcpu) |
| { |
| /* |
| * Ensure that we clear the HLT state in the VMCS. We don't need to |
| * explicitly skip the instruction because if the HLT state is set, |
| * then the instruction is already executing and RIP has already been |
| * advanced. |
| */ |
| if (kvm_hlt_in_guest(vcpu->kvm) && |
| vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT) |
| vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); |
| } |
| |
| static void vmx_inject_exception(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_queued_exception *ex = &vcpu->arch.exception; |
| u32 intr_info = ex->vector | INTR_INFO_VALID_MASK; |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| |
| kvm_deliver_exception_payload(vcpu, ex); |
| |
| if (ex->has_error_code) { |
| /* |
| * Despite the error code being architecturally defined as 32 |
| * bits, and the VMCS field being 32 bits, Intel CPUs and thus |
| * VMX don't actually supporting setting bits 31:16. Hardware |
| * will (should) never provide a bogus error code, but AMD CPUs |
| * do generate error codes with bits 31:16 set, and so KVM's |
| * ABI lets userspace shove in arbitrary 32-bit values. Drop |
| * the upper bits to avoid VM-Fail, losing information that |
| * doesn't really exist is preferable to killing the VM. |
| */ |
| vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, (u16)ex->error_code); |
| intr_info |= INTR_INFO_DELIVER_CODE_MASK; |
| } |
| |
| if (vmx->rmode.vm86_active) { |
| int inc_eip = 0; |
| if (kvm_exception_is_soft(ex->vector)) |
| inc_eip = vcpu->arch.event_exit_inst_len; |
| kvm_inject_realmode_interrupt(vcpu, ex->vector, inc_eip); |
| return; |
| } |
| |
| WARN_ON_ONCE(vmx->emulation_required); |
| |
| if (kvm_exception_is_soft(ex->vector)) { |
| vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, |
| vmx->vcpu.arch.event_exit_inst_len); |
| intr_info |= INTR_TYPE_SOFT_EXCEPTION; |
| } else |
| intr_info |= INTR_TYPE_HARD_EXCEPTION; |
| |
| vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info); |
| |
| vmx_clear_hlt(vcpu); |
| } |
| |
| static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr, |
| bool load_into_hardware) |
| { |
| struct vmx_uret_msr *uret_msr; |
| |
| uret_msr = vmx_find_uret_msr(vmx, msr); |
| if (!uret_msr) |
| return; |
| |
| uret_msr->load_into_hardware = load_into_hardware; |
| } |
| |
| /* |
| * Configuring user return MSRs to automatically save, load, and restore MSRs |
| * that need to be shoved into hardware when running the guest. Note, omitting |
| * an MSR here does _NOT_ mean it's not emulated, only that it will not be |
| * loaded into hardware when running the guest. |
| */ |
| static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx) |
| { |
| #ifdef CONFIG_X86_64 |
| bool load_syscall_msrs; |
| |
| /* |
| * The SYSCALL MSRs are only needed on long mode guests, and only |
| * when EFER.SCE is set. |
| */ |
| load_syscall_msrs = is_long_mode(&vmx->vcpu) && |
| (vmx->vcpu.arch.efer & EFER_SCE); |
| |
| vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs); |
| vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs); |
| vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs); |
| #endif |
| vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx)); |
| |
| vmx_setup_uret_msr(vmx, MSR_TSC_AUX, |
| guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) || |
| guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID)); |
| |
| /* |
| * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new |
| * kernel and old userspace. If those guests run on a tsx=off host, do |
| * allow guests to use TSX_CTRL, but don't change the value in hardware |
| * so that TSX remains always disabled. |
| */ |
| vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM)); |
| |
| /* |
| * The set of MSRs to load may have changed, reload MSRs before the |
| * next VM-Enter. |
| */ |
| vmx->guest_uret_msrs_loaded = false; |
| } |
| |
| u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu) |
| { |
| struct vmcs12 *vmcs12 = get_vmcs12(vcpu); |
| |
| if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING)) |
| return vmcs12->tsc_offset; |
| |
| return 0; |
| } |
| |
| u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu) |
| { |
| struct vmcs12 *vmcs12 = get_vmcs12(vcpu); |
| |
| if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) && |
| nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING)) |
| return vmcs12->tsc_multiplier; |
| |
| return kvm_caps.default_tsc_scaling_ratio; |
| } |
| |
| static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu) |
| { |
| vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset); |
| } |
| |
| static void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu) |
| { |
| vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio); |
| } |
| |
| /* |
| * Userspace is allowed to set any supported IA32_FEATURE_CONTROL regardless of |
| * guest CPUID. Note, KVM allows userspace to set "VMX in SMX" to maintain |
| * backwards compatibility even though KVM doesn't support emulating SMX. And |
| * because userspace set "VMX in SMX", the guest must also be allowed to set it, |
| * e.g. if the MSR is left unlocked and the guest does a RMW operation. |
| */ |
| #define KVM_SUPPORTED_FEATURE_CONTROL (FEAT_CTL_LOCKED | \ |
| FEAT_CTL_VMX_ENABLED_INSIDE_SMX | \ |
| FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX | \ |
| FEAT_CTL_SGX_LC_ENABLED | \ |
| FEAT_CTL_SGX_ENABLED | \ |
| FEAT_CTL_LMCE_ENABLED) |
| |
| static inline bool is_vmx_feature_control_msr_valid(struct vcpu_vmx *vmx, |
| struct msr_data *msr) |
| { |
| uint64_t valid_bits; |
| |
| /* |
| * Ensure KVM_SUPPORTED_FEATURE_CONTROL is updated when new bits are |
| * exposed to the guest. |
| */ |
| WARN_ON_ONCE(vmx->msr_ia32_feature_control_valid_bits & |
| ~KVM_SUPPORTED_FEATURE_CONTROL); |
| |
| if (!msr->host_initiated && |
| (vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED)) |
| return false; |
| |
| if (msr->host_initiated) |
| valid_bits = KVM_SUPPORTED_FEATURE_CONTROL; |
| else |
| valid_bits = vmx->msr_ia32_feature_control_valid_bits; |
| |
| return !(msr->data & ~valid_bits); |
| } |
| |
| static int vmx_get_msr_feature(struct kvm_msr_entry *msr) |
| { |
| switch (msr->index) { |
| case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: |
| if (!nested) |
| return 1; |
| return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data); |
| default: |
| return KVM_MSR_RET_INVALID; |
| } |
| } |
| |
| /* |
| * Reads an msr value (of 'msr_info->index') into 'msr_info->data'. |
| * Returns 0 on success, non-0 otherwise. |
| * Assumes vcpu_load() was already called. |
| */ |
| static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| struct vmx_uret_msr *msr; |
| u32 index; |
| |
| switch (msr_info->index) { |
| #ifdef CONFIG_X86_64 |
| case MSR_FS_BASE: |
| msr_info->data = vmcs_readl(GUEST_FS_BASE); |
| break; |
| case MSR_GS_BASE: |
| msr_info->data = vmcs_readl(GUEST_GS_BASE); |
| break; |
| case MSR_KERNEL_GS_BASE: |
| msr_info->data = vmx_read_guest_kernel_gs_base(vmx); |
| break; |
| #endif |
| case MSR_EFER: |
| return kvm_get_msr_common(vcpu, msr_info); |
| case MSR_IA32_TSX_CTRL: |
| if (!msr_info->host_initiated && |
| !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR)) |
| return 1; |
| goto find_uret_msr; |
| case MSR_IA32_UMWAIT_CONTROL: |
| if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx)) |
| return 1; |
| |
| msr_info->data = vmx->msr_ia32_umwait_control; |
| break; |
| case MSR_IA32_SPEC_CTRL: |
| if (!msr_info->host_initiated && |
| !guest_has_spec_ctrl_msr(vcpu)) |
| return 1; |
| |
| msr_info->data = to_vmx(vcpu)->spec_ctrl; |
| break; |
| case MSR_IA32_SYSENTER_CS: |
| msr_info->data = vmcs_read32(GUEST_SYSENTER_CS); |
| break; |
| case MSR_IA32_SYSENTER_EIP: |
| msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP); |
| break; |
| case MSR_IA32_SYSENTER_ESP: |
| msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP); |
| break; |
| case MSR_IA32_BNDCFGS: |
| if (!kvm_mpx_supported() || |
| (!msr_info->host_initiated && |
| !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) |
| return 1; |
| msr_info->data = vmcs_read64(GUEST_BNDCFGS); |
| break; |
| case MSR_IA32_MCG_EXT_CTL: |
| if (!msr_info->host_initiated && |
| !(vmx->msr_ia32_feature_control & |
| FEAT_CTL_LMCE_ENABLED)) |
| return 1; |
| msr_info->data = vcpu->arch.mcg_ext_ctl; |
| break; |
| case MSR_IA32_FEAT_CTL: |
| msr_info->data = vmx->msr_ia32_feature_control; |
| break; |
| case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3: |
| if (!msr_info->host_initiated && |
| !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC)) |
| return 1; |
| msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash |
| [msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0]; |
| break; |
| case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: |
| if (!guest_can_use(vcpu, X86_FEATURE_VMX)) |
| return 1; |
| if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index, |
| &msr_info->data)) |
| return 1; |
| #ifdef CONFIG_KVM_HYPERV |
| /* |
| * Enlightened VMCS v1 doesn't have certain VMCS fields but |
| * instead of just ignoring the features, different Hyper-V |
| * versions are either trying to use them and fail or do some |
| * sanity checking and refuse to boot. Filter all unsupported |
| * features out. |
| */ |
| if (!msr_info->host_initiated && guest_cpuid_has_evmcs(vcpu)) |
| nested_evmcs_filter_control_msr(vcpu, msr_info->index, |
| &msr_info->data); |
| #endif |
| break; |
| case MSR_IA32_RTIT_CTL: |
| if (!vmx_pt_mode_is_host_guest()) |
| return 1; |
| msr_info->data = vmx->pt_desc.guest.ctl; |
| break; |
| case MSR_IA32_RTIT_STATUS: |
| if (!vmx_pt_mode_is_host_guest()) |
| return 1; |
| msr_info->data = vmx->pt_desc.guest.status; |
| break; |
| case MSR_IA32_RTIT_CR3_MATCH: |
| if (!vmx_pt_mode_is_host_guest() || |
| !intel_pt_validate_cap(vmx->pt_desc.caps, |
| PT_CAP_cr3_filtering)) |
| return 1; |
| msr_info->data = vmx->pt_desc.guest.cr3_match; |
| break; |
| case MSR_IA32_RTIT_OUTPUT_BASE: |
| if (!vmx_pt_mode_is_host_guest() || |
| (!intel_pt_validate_cap(vmx->pt_desc.caps, |
| PT_CAP_topa_output) && |
| !intel_pt_validate_cap(vmx->pt_desc.caps, |
| PT_CAP_single_range_output))) |
| return 1; |
| msr_info->data = vmx->pt_desc.guest.output_base; |
| break; |
| case MSR_IA32_RTIT_OUTPUT_MASK: |
| if (!vmx_pt_mode_is_host_guest() || |
| (!intel_pt_validate_cap(vmx->pt_desc.caps, |
| PT_CAP_topa_output) && |
| !intel_pt_validate_cap(vmx->pt_desc.caps, |
| PT_CAP_single_range_output))) |
| return 1; |
| msr_info->data = vmx->pt_desc.guest.output_mask; |
| break; |
| case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: |
| index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; |
| if (!vmx_pt_mode_is_host_guest() || |
| (index >= 2 * vmx->pt_desc.num_address_ranges)) |
| return 1; |
| if (index % 2) |
| msr_info->data = vmx->pt_desc.guest.addr_b[index / 2]; |
| else |
| msr_info->data = vmx->pt_desc.guest.addr_a[index / 2]; |
| break; |
| case MSR_IA32_DEBUGCTLMSR: |
| msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL); |
| break; |
| default: |
| find_uret_msr: |
| msr = vmx_find_uret_msr(vmx, msr_info->index); |
| if (msr) { |
| msr_info->data = msr->data; |
| break; |
| } |
| return kvm_get_msr_common(vcpu, msr_info); |
| } |
| |
| return 0; |
| } |
| |
| static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu, |
| u64 data) |
| { |
| #ifdef CONFIG_X86_64 |
| if (!guest_cpuid_has(vcpu, X86_FEATURE_LM)) |
| return (u32)data; |
| #endif |
| return (unsigned long)data; |
| } |
| |
| static u64 vmx_get_supported_debugctl(struct kvm_vcpu *vcpu, bool host_initiated) |
| { |
| u64 debugctl = 0; |
| |
| if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) && |
| (host_initiated || guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))) |
| debugctl |= DEBUGCTLMSR_BUS_LOCK_DETECT; |
| |
| if ((kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT) && |
| (host_initiated || intel_pmu_lbr_is_enabled(vcpu))) |
| debugctl |= DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI; |
| |
| return debugctl; |
| } |
| |
| /* |
| * Writes msr value into the appropriate "register". |
| * Returns 0 on success, non-0 otherwise. |
| * Assumes vcpu_load() was already called. |
| */ |
| static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| struct vmx_uret_msr *msr; |
| int ret = 0; |
| u32 msr_index = msr_info->index; |
| u64 data = msr_info->data; |
| u32 index; |
| |
| switch (msr_index) { |
| case MSR_EFER: |
| ret = kvm_set_msr_common(vcpu, msr_info); |
| break; |
| #ifdef CONFIG_X86_64 |
| case MSR_FS_BASE: |
| vmx_segment_cache_clear(vmx); |
| vmcs_writel(GUEST_FS_BASE, data); |
| break; |
| case MSR_GS_BASE: |
| vmx_segment_cache_clear(vmx); |
| vmcs_writel(GUEST_GS_BASE, data); |
| break; |
| case MSR_KERNEL_GS_BASE: |
| vmx_write_guest_kernel_gs_base(vmx, data); |
| break; |
| case MSR_IA32_XFD: |
| ret = kvm_set_msr_common(vcpu, msr_info); |
| /* |
| * Always intercepting WRMSR could incur non-negligible |
| * overhead given xfd might be changed frequently in |
| * guest context switch. Disable write interception |
| * upon the first write with a non-zero value (indicating |
| * potential usage on dynamic xfeatures). Also update |
| * exception bitmap to trap #NM for proper virtualization |
| * of guest xfd_err. |
| */ |
| if (!ret && data) { |
| vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD, |
| MSR_TYPE_RW); |
| vcpu->arch.xfd_no_write_intercept = true; |
| vmx_update_exception_bitmap(vcpu); |
| } |
| break; |
| #endif |
| case MSR_IA32_SYSENTER_CS: |
| if (is_guest_mode(vcpu)) |
| get_vmcs12(vcpu)->guest_sysenter_cs = data; |
| vmcs_write32(GUEST_SYSENTER_CS, data); |
| break; |
| case MSR_IA32_SYSENTER_EIP: |
| if (is_guest_mode(vcpu)) { |
| data = nested_vmx_truncate_sysenter_addr(vcpu, data); |
| get_vmcs12(vcpu)->guest_sysenter_eip = data; |
| } |
| vmcs_writel(GUEST_SYSENTER_EIP, data); |
| break; |
| case MSR_IA32_SYSENTER_ESP: |
| if (is_guest_mode(vcpu)) { |
| data = nested_vmx_truncate_sysenter_addr(vcpu, data); |
| get_vmcs12(vcpu)->guest_sysenter_esp = data; |
| } |
| vmcs_writel(GUEST_SYSENTER_ESP, data); |
| break; |
| case MSR_IA32_DEBUGCTLMSR: { |
| u64 invalid; |
| |
| invalid = data & ~vmx_get_supported_debugctl(vcpu, msr_info->host_initiated); |
| if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) { |
| kvm_pr_unimpl_wrmsr(vcpu, msr_index, data); |
| data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR); |
| invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR); |
| } |
| |
| if (invalid) |
| return 1; |
| |
| if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls & |
| VM_EXIT_SAVE_DEBUG_CONTROLS) |
| get_vmcs12(vcpu)->guest_ia32_debugctl = data; |
| |
| vmcs_write64(GUEST_IA32_DEBUGCTL, data); |
| if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event && |
| (data & DEBUGCTLMSR_LBR)) |
| intel_pmu_create_guest_lbr_event(vcpu); |
| return 0; |
| } |
| case MSR_IA32_BNDCFGS: |
| if (!kvm_mpx_supported() || |
| (!msr_info->host_initiated && |
| !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) |
| return 1; |
| if (is_noncanonical_address(data & PAGE_MASK, vcpu) || |
| (data & MSR_IA32_BNDCFGS_RSVD)) |
| return 1; |
| |
| if (is_guest_mode(vcpu) && |
| ((vmx->nested.msrs.entry_ctls_high & VM_ENTRY_LOAD_BNDCFGS) || |
| (vmx->nested.msrs.exit_ctls_high & VM_EXIT_CLEAR_BNDCFGS))) |
| get_vmcs12(vcpu)->guest_bndcfgs = data; |
| |
| vmcs_write64(GUEST_BNDCFGS, data); |
| break; |
| case MSR_IA32_UMWAIT_CONTROL: |
| if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx)) |
| return 1; |
| |
| /* The reserved bit 1 and non-32 bit [63:32] should be zero */ |
| if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32))) |
| return 1; |
| |
| vmx->msr_ia32_umwait_control = data; |
| break; |
| case MSR_IA32_SPEC_CTRL: |
| if (!msr_info->host_initiated && |
| !guest_has_spec_ctrl_msr(vcpu)) |
| return 1; |
| |
| if (kvm_spec_ctrl_test_value(data)) |
| return 1; |
| |
| vmx->spec_ctrl = data; |
| if (!data) |
| break; |
| |
| /* |
| * For non-nested: |
| * When it's written (to non-zero) for the first time, pass |
| * it through. |
| * |
| * For nested: |
| * The handling of the MSR bitmap for L2 guests is done in |
| * nested_vmx_prepare_msr_bitmap. We should not touch the |
| * vmcs02.msr_bitmap here since it gets completely overwritten |
| * in the merging. We update the vmcs01 here for L1 as well |
| * since it will end up touching the MSR anyway now. |
| */ |
| vmx_disable_intercept_for_msr(vcpu, |
| MSR_IA32_SPEC_CTRL, |
| MSR_TYPE_RW); |
| break; |
| case MSR_IA32_TSX_CTRL: |
| if (!msr_info->host_initiated && |
| !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR)) |
| return 1; |
| if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR)) |
| return 1; |
| goto find_uret_msr; |
| case MSR_IA32_CR_PAT: |
| ret = kvm_set_msr_common(vcpu, msr_info); |
| if (ret) |
| break; |
| |
| if (is_guest_mode(vcpu) && |
| get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT) |
| get_vmcs12(vcpu)->guest_ia32_pat = data; |
| |
| if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) |
| vmcs_write64(GUEST_IA32_PAT, data); |
| break; |
| case MSR_IA32_MCG_EXT_CTL: |
| if ((!msr_info->host_initiated && |
| !(to_vmx(vcpu)->msr_ia32_feature_control & |
| FEAT_CTL_LMCE_ENABLED)) || |
| (data & ~MCG_EXT_CTL_LMCE_EN)) |
| return 1; |
| vcpu->arch.mcg_ext_ctl = data; |
| break; |
| case MSR_IA32_FEAT_CTL: |
| if (!is_vmx_feature_control_msr_valid(vmx, msr_info)) |
| return 1; |
| |
| vmx->msr_ia32_feature_control = data; |
| if (msr_info->host_initiated && data == 0) |
| vmx_leave_nested(vcpu); |
| |
| /* SGX may be enabled/disabled by guest's firmware */ |
| vmx_write_encls_bitmap(vcpu, NULL); |
| break; |
| case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3: |
| /* |
| * On real hardware, the LE hash MSRs are writable before |
| * the firmware sets bit 0 in MSR 0x7a ("activating" SGX), |
| * at which point SGX related bits in IA32_FEATURE_CONTROL |
| * become writable. |
| * |
| * KVM does not emulate SGX activation for simplicity, so |
| * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL |
| * is unlocked. This is technically not architectural |
| * behavior, but it's close enough. |
| */ |
| if (!msr_info->host_initiated && |
| (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) || |
| ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) && |
| !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED)))) |
| return 1; |
| vmx->msr_ia32_sgxlepubkeyhash |
| [msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data; |
| break; |
| case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: |
| if (!msr_info->host_initiated) |
| return 1; /* they are read-only */ |
| if (!guest_can_use(vcpu, X86_FEATURE_VMX)) |
| return 1; |
| return vmx_set_vmx_msr(vcpu, msr_index, data); |
| case MSR_IA32_RTIT_CTL: |
| if (!vmx_pt_mode_is_host_guest() || |
| vmx_rtit_ctl_check(vcpu, data) || |
| vmx->nested.vmxon) |
| return 1; |
| vmcs_write64(GUEST_IA32_RTIT_CTL, data); |
| vmx->pt_desc.guest.ctl = data; |
| pt_update_intercept_for_msr(vcpu); |
| break; |
| case MSR_IA32_RTIT_STATUS: |
| if (!pt_can_write_msr(vmx)) |
| return 1; |
| if (data & MSR_IA32_RTIT_STATUS_MASK) |
| return 1; |
| vmx->pt_desc.guest.status = data; |
| break; |
| case MSR_IA32_RTIT_CR3_MATCH: |
| if (!pt_can_write_msr(vmx)) |
| return 1; |
| if (!intel_pt_validate_cap(vmx->pt_desc.caps, |
| PT_CAP_cr3_filtering)) |
| return 1; |
| vmx->pt_desc.guest.cr3_match = data; |
| break; |
| case MSR_IA32_RTIT_OUTPUT_BASE: |
| if (!pt_can_write_msr(vmx)) |
| return 1; |
| if (!intel_pt_validate_cap(vmx->pt_desc.caps, |
| PT_CAP_topa_output) && |
| !intel_pt_validate_cap(vmx->pt_desc.caps, |
| PT_CAP_single_range_output)) |
| return 1; |
| if (!pt_output_base_valid(vcpu, data)) |
| return 1; |
| vmx->pt_desc.guest.output_base = data; |
| break; |
| case MSR_IA32_RTIT_OUTPUT_MASK: |
| if (!pt_can_write_msr(vmx)) |
| return 1; |
| if (!intel_pt_validate_cap(vmx->pt_desc.caps, |
| PT_CAP_topa_output) && |
| !intel_pt_validate_cap(vmx->pt_desc.caps, |
| PT_CAP_single_range_output)) |
| return 1; |
| vmx->pt_desc.guest.output_mask = data; |
| break; |
| case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: |
| if (!pt_can_write_msr(vmx)) |
| return 1; |
| index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; |
| if (index >= 2 * vmx->pt_desc.num_address_ranges) |
| return 1; |
| if (is_noncanonical_address(data, vcpu)) |
| return 1; |
| if (index % 2) |
| vmx->pt_desc.guest.addr_b[index / 2] = data; |
| else |
| vmx->pt_desc.guest.addr_a[index / 2] = data; |
| break; |
| case MSR_IA32_PERF_CAPABILITIES: |
| if (data && !vcpu_to_pmu(vcpu)->version) |
| return 1; |
| if (data & PMU_CAP_LBR_FMT) { |
| if ((data & PMU_CAP_LBR_FMT) != |
| (kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT)) |
| return 1; |
| if (!cpuid_model_is_consistent(vcpu)) |
| return 1; |
| } |
| if (data & PERF_CAP_PEBS_FORMAT) { |
| if ((data & PERF_CAP_PEBS_MASK) != |
| (kvm_caps.supported_perf_cap & PERF_CAP_PEBS_MASK)) |
| return 1; |
| if (!guest_cpuid_has(vcpu, X86_FEATURE_DS)) |
| return 1; |
| if (!guest_cpuid_has(vcpu, X86_FEATURE_DTES64)) |
| return 1; |
| if (!cpuid_model_is_consistent(vcpu)) |
| return 1; |
| } |
| ret = kvm_set_msr_common(vcpu, msr_info); |
| break; |
| |
| default: |
| find_uret_msr: |
| msr = vmx_find_uret_msr(vmx, msr_index); |
| if (msr) |
| ret = vmx_set_guest_uret_msr(vmx, msr, data); |
| else |
| ret = kvm_set_msr_common(vcpu, msr_info); |
| } |
| |
| /* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */ |
| if (msr_index == MSR_IA32_ARCH_CAPABILITIES) |
| vmx_update_fb_clear_dis(vcpu, vmx); |
| |
| return ret; |
| } |
| |
| static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) |
| { |
| unsigned long guest_owned_bits; |
| |
| kvm_register_mark_available(vcpu, reg); |
| |
| switch (reg) { |
| case VCPU_REGS_RSP: |
| vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP); |
| break; |
| case VCPU_REGS_RIP: |
| vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP); |
| break; |
| case VCPU_EXREG_PDPTR: |
| if (enable_ept) |
| ept_save_pdptrs(vcpu); |
| break; |
| case VCPU_EXREG_CR0: |
| guest_owned_bits = vcpu->arch.cr0_guest_owned_bits; |
| |
| vcpu->arch.cr0 &= ~guest_owned_bits; |
| vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits; |
| break; |
| case VCPU_EXREG_CR3: |
| /* |
| * When intercepting CR3 loads, e.g. for shadowing paging, KVM's |
| * CR3 is loaded into hardware, not the guest's CR3. |
| */ |
| if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING)) |
| vcpu->arch.cr3 = vmcs_readl(GUEST_CR3); |
| break; |
| case VCPU_EXREG_CR4: |
| guest_owned_bits = vcpu->arch.cr4_guest_owned_bits; |
| |
| vcpu->arch.cr4 &= ~guest_owned_bits; |
| vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits; |
| break; |
| default: |
| KVM_BUG_ON(1, vcpu->kvm); |
| break; |
| } |
| } |
| |
| /* |
| * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID |
| * directly instead of going through cpu_has(), to ensure KVM is trapping |
| * ENCLS whenever it's supported in hardware. It does not matter whether |
| * the host OS supports or has enabled SGX. |
| */ |
| static bool cpu_has_sgx(void) |
| { |
| return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0)); |
| } |
| |
| /* |
| * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they |
| * can't be used due to errata where VM Exit may incorrectly clear |
| * IA32_PERF_GLOBAL_CTRL[34:32]. Work around the errata by using the |
| * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL. |
| */ |
| static bool cpu_has_perf_global_ctrl_bug(void) |
| { |
| if (boot_cpu_data.x86 == 0x6) { |
| switch (boot_cpu_data.x86_model) { |
| case INTEL_FAM6_NEHALEM_EP: /* AAK155 */ |
| case INTEL_FAM6_NEHALEM: /* AAP115 */ |
| case INTEL_FAM6_WESTMERE: /* AAT100 */ |
| case INTEL_FAM6_WESTMERE_EP: /* BC86,AAY89,BD102 */ |
| case INTEL_FAM6_NEHALEM_EX: /* BA97 */ |
| return true; |
| default: |
| break; |
| } |
| } |
| |
| return false; |
| } |
| |
| static int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, u32 msr, u32 *result) |
| { |
| u32 vmx_msr_low, vmx_msr_high; |
| u32 ctl = ctl_min | ctl_opt; |
| |
| rdmsr(msr, vmx_msr_low, vmx_msr_high); |
| |
| ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */ |
| ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */ |
| |
| /* Ensure minimum (required) set of control bits are supported. */ |
| if (ctl_min & ~ctl) |
| return -EIO; |
| |
| *result = ctl; |
| return 0; |
| } |
| |
| static u64 adjust_vmx_controls64(u64 ctl_opt, u32 msr) |
| { |
| u64 allowed; |
| |
| rdmsrl(msr, allowed); |
| |
| return ctl_opt & allowed; |
| } |
| |
| static int setup_vmcs_config(struct vmcs_config *vmcs_conf, |
| struct vmx_capability *vmx_cap) |
| { |
| u32 vmx_msr_low, vmx_msr_high; |
| u32 _pin_based_exec_control = 0; |
| u32 _cpu_based_exec_control = 0; |
| u32 _cpu_based_2nd_exec_control = 0; |
| u64 _cpu_based_3rd_exec_control = 0; |
| u32 _vmexit_control = 0; |
| u32 _vmentry_control = 0; |
| u64 misc_msr; |
| int i; |
| |
| /* |
| * LOAD/SAVE_DEBUG_CONTROLS are absent because both are mandatory. |
| * SAVE_IA32_PAT and SAVE_IA32_EFER are absent because KVM always |
| * intercepts writes to PAT and EFER, i.e. never enables those controls. |
| */ |
| struct { |
| u32 entry_control; |
| u32 exit_control; |
| } const vmcs_entry_exit_pairs[] = { |
| { VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL }, |
| { VM_ENTRY_LOAD_IA32_PAT, VM_EXIT_LOAD_IA32_PAT }, |
| { VM_ENTRY_LOAD_IA32_EFER, VM_EXIT_LOAD_IA32_EFER }, |
| { VM_ENTRY_LOAD_BNDCFGS, VM_EXIT_CLEAR_BNDCFGS }, |
| { VM_ENTRY_LOAD_IA32_RTIT_CTL, VM_EXIT_CLEAR_IA32_RTIT_CTL }, |
| }; |
| |
| memset(vmcs_conf, 0, sizeof(*vmcs_conf)); |
| |
| if (adjust_vmx_controls(KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL, |
| KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL, |
| MSR_IA32_VMX_PROCBASED_CTLS, |
| &_cpu_based_exec_control)) |
| return -EIO; |
| if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) { |
| if (adjust_vmx_controls(KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL, |
| KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL, |
| MSR_IA32_VMX_PROCBASED_CTLS2, |
| &_cpu_based_2nd_exec_control)) |
| return -EIO; |
| } |
| #ifndef CONFIG_X86_64 |
| if (!(_cpu_based_2nd_exec_control & |
| SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) |
| _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW; |
| #endif |
| |
| if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) |
| _cpu_based_2nd_exec_control &= ~( |
| SECONDARY_EXEC_APIC_REGISTER_VIRT | |
| SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | |
| SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); |
| |
| rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP, |
| &vmx_cap->ept, &vmx_cap->vpid); |
| |
| if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) && |
| vmx_cap->ept) { |
| pr_warn_once("EPT CAP should not exist if not support " |
| "1-setting enable EPT VM-execution control\n"); |
| |
| if (error_on_inconsistent_vmcs_config) |
| return -EIO; |
| |
| vmx_cap->ept = 0; |
| } |
| if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) && |
| vmx_cap->vpid) { |
| pr_warn_once("VPID CAP should not exist if not support " |
| "1-setting enable VPID VM-execution control\n"); |
| |
| if (error_on_inconsistent_vmcs_config) |
| return -EIO; |
| |
| vmx_cap->vpid = 0; |
| } |
| |
| if (!cpu_has_sgx()) |
| _cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_ENCLS_EXITING; |
| |
| if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_TERTIARY_CONTROLS) |
| _cpu_based_3rd_exec_control = |
| adjust_vmx_controls64(KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL, |
| MSR_IA32_VMX_PROCBASED_CTLS3); |
| |
| if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_EXIT_CONTROLS, |
| KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS, |
| MSR_IA32_VMX_EXIT_CTLS, |
| &_vmexit_control)) |
| return -EIO; |
| |
| if (adjust_vmx_controls(KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL, |
| KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL, |
| MSR_IA32_VMX_PINBASED_CTLS, |
| &_pin_based_exec_control)) |
| return -EIO; |
| |
| if (cpu_has_broken_vmx_preemption_timer()) |
| _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER; |
| if (!(_cpu_based_2nd_exec_control & |
| SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)) |
| _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR; |
| |
| if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS, |
| KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS, |
| MSR_IA32_VMX_ENTRY_CTLS, |
| &_vmentry_control)) |
| return -EIO; |
| |
| for (i = 0; i < ARRAY_SIZE(vmcs_entry_exit_pairs); i++) { |
| u32 n_ctrl = vmcs_entry_exit_pairs[i].entry_control; |
| u32 x_ctrl = vmcs_entry_exit_pairs[i].exit_control; |
| |
| if (!(_vmentry_control & n_ctrl) == !(_vmexit_control & x_ctrl)) |
| continue; |
| |
| pr_warn_once("Inconsistent VM-Entry/VM-Exit pair, entry = %x, exit = %x\n", |
| _vmentry_control & n_ctrl, _vmexit_control & x_ctrl); |
| |
| if (error_on_inconsistent_vmcs_config) |
| return -EIO; |
| |
| _vmentry_control &= ~n_ctrl; |
| _vmexit_control &= ~x_ctrl; |
| } |
| |
| rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high); |
| |
| /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */ |
| if ((vmx_msr_high & 0x1fff) > PAGE_SIZE) |
| return -EIO; |
| |
| #ifdef CONFIG_X86_64 |
| /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */ |
| if (vmx_msr_high & (1u<<16)) |
| return -EIO; |
| #endif |
| |
| /* Require Write-Back (WB) memory type for VMCS accesses. */ |
| if (((vmx_msr_high >> 18) & 15) != 6) |
| return -EIO; |
| |
| rdmsrl(MSR_IA32_VMX_MISC, misc_msr); |
| |
| vmcs_conf->size = vmx_msr_high & 0x1fff; |
| vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff; |
| |
| vmcs_conf->revision_id = vmx_msr_low; |
| |
| vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control; |
| vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control; |
| vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control; |
| vmcs_conf->cpu_based_3rd_exec_ctrl = _cpu_based_3rd_exec_control; |
| vmcs_conf->vmexit_ctrl = _vmexit_control; |
| vmcs_conf->vmentry_ctrl = _vmentry_control; |
| vmcs_conf->misc = misc_msr; |
| |
| #if IS_ENABLED(CONFIG_HYPERV) |
| if (enlightened_vmcs) |
| evmcs_sanitize_exec_ctrls(vmcs_conf); |
| #endif |
| |
| return 0; |
| } |
| |
| static bool __kvm_is_vmx_supported(void) |
| { |
| int cpu = smp_processor_id(); |
| |
| if (!(cpuid_ecx(1) & feature_bit(VMX))) { |
| pr_err("VMX not supported by CPU %d\n", cpu); |
| return false; |
| } |
| |
| if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) || |
| !this_cpu_has(X86_FEATURE_VMX)) { |
| pr_err("VMX not enabled (by BIOS) in MSR_IA32_FEAT_CTL on CPU %d\n", cpu); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool kvm_is_vmx_supported(void) |
| { |
| bool supported; |
| |
| migrate_disable(); |
| supported = __kvm_is_vmx_supported(); |
| migrate_enable(); |
| |
| return supported; |
| } |
| |
| static int vmx_check_processor_compat(void) |
| { |
| int cpu = raw_smp_processor_id(); |
| struct vmcs_config vmcs_conf; |
| struct vmx_capability vmx_cap; |
| |
| if (!__kvm_is_vmx_supported()) |
| return -EIO; |
| |
| if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) { |
| pr_err("Failed to setup VMCS config on CPU %d\n", cpu); |
| return -EIO; |
| } |
| if (nested) |
| nested_vmx_setup_ctls_msrs(&vmcs_conf, vmx_cap.ept); |
| if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config))) { |
| pr_err("Inconsistent VMCS config on CPU %d\n", cpu); |
| return -EIO; |
| } |
| return 0; |
| } |
| |
| static int kvm_cpu_vmxon(u64 vmxon_pointer) |
| { |
| u64 msr; |
| |
| cr4_set_bits(X86_CR4_VMXE); |
| |
| asm goto("1: vmxon %[vmxon_pointer]\n\t" |
| _ASM_EXTABLE(1b, %l[fault]) |
| : : [vmxon_pointer] "m"(vmxon_pointer) |
| : : fault); |
| return 0; |
| |
| fault: |
| WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n", |
| rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr); |
| cr4_clear_bits(X86_CR4_VMXE); |
| |
| return -EFAULT; |
| } |
| |
| static int vmx_hardware_enable(void) |
| { |
| int cpu = raw_smp_processor_id(); |
| u64 phys_addr = __pa(per_cpu(vmxarea, cpu)); |
| int r; |
| |
| if (cr4_read_shadow() & X86_CR4_VMXE) |
| return -EBUSY; |
| |
| /* |
| * This can happen if we hot-added a CPU but failed to allocate |
| * VP assist page for it. |
| */ |
| if (kvm_is_using_evmcs() && !hv_get_vp_assist_page(cpu)) |
| return -EFAULT; |
| |
| intel_pt_handle_vmx(1); |
| |
| r = kvm_cpu_vmxon(phys_addr); |
| if (r) { |
| intel_pt_handle_vmx(0); |
| return r; |
| } |
| |
| if (enable_ept) |
| ept_sync_global(); |
| |
| return 0; |
| } |
| |
| static void vmclear_local_loaded_vmcss(void) |
| { |
| int cpu = raw_smp_processor_id(); |
| struct loaded_vmcs *v, *n; |
| |
| list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu), |
| loaded_vmcss_on_cpu_link) |
| __loaded_vmcs_clear(v); |
| } |
| |
| static void vmx_hardware_disable(void) |
| { |
| vmclear_local_loaded_vmcss(); |
| |
| if (kvm_cpu_vmxoff()) |
| kvm_spurious_fault(); |
| |
| hv_reset_evmcs(); |
| |
| intel_pt_handle_vmx(0); |
| } |
| |
| struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags) |
| { |
| int node = cpu_to_node(cpu); |
| struct page *pages; |
| struct vmcs *vmcs; |
| |
| pages = __alloc_pages_node(node, flags, 0); |
| if (!pages) |
| return NULL; |
| vmcs = page_address(pages); |
| memset(vmcs, 0, vmcs_config.size); |
| |
| /* KVM supports Enlightened VMCS v1 only */ |
| if (kvm_is_using_evmcs()) |
| vmcs->hdr.revision_id = KVM_EVMCS_VERSION; |
| else |
| vmcs->hdr.revision_id = vmcs_config.revision_id; |
| |
| if (shadow) |
| vmcs->hdr.shadow_vmcs = 1; |
| return vmcs; |
| } |
| |
| void free_vmcs(struct vmcs *vmcs) |
| { |
| free_page((unsigned long)vmcs); |
| } |
| |
| /* |
| * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded |
| */ |
| void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) |
| { |
| if (!loaded_vmcs->vmcs) |
| return; |
| loaded_vmcs_clear(loaded_vmcs); |
| free_vmcs(loaded_vmcs->vmcs); |
| loaded_vmcs->vmcs = NULL; |
| if (loaded_vmcs->msr_bitmap) |
| free_page((unsigned long)loaded_vmcs->msr_bitmap); |
| WARN_ON(loaded_vmcs->shadow_vmcs != NULL); |
| } |
| |
| int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) |
| { |
| loaded_vmcs->vmcs = alloc_vmcs(false); |
| if (!loaded_vmcs->vmcs) |
| return -ENOMEM; |
| |
| vmcs_clear(loaded_vmcs->vmcs); |
| |
| loaded_vmcs->shadow_vmcs = NULL; |
| loaded_vmcs->hv_timer_soft_disabled = false; |
| loaded_vmcs->cpu = -1; |
| loaded_vmcs->launched = 0; |
| |
| if (cpu_has_vmx_msr_bitmap()) { |
| loaded_vmcs->msr_bitmap = (unsigned long *) |
| __get_free_page(GFP_KERNEL_ACCOUNT); |
| if (!loaded_vmcs->msr_bitmap) |
| goto out_vmcs; |
| memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE); |
| } |
| |
| memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state)); |
| memset(&loaded_vmcs->controls_shadow, 0, |
| sizeof(struct vmcs_controls_shadow)); |
| |
| return 0; |
| |
| out_vmcs: |
| free_loaded_vmcs(loaded_vmcs); |
| return -ENOMEM; |
| } |
| |
| static void free_kvm_area(void) |
| { |
| int cpu; |
| |
| for_each_possible_cpu(cpu) { |
| free_vmcs(per_cpu(vmxarea, cpu)); |
| per_cpu(vmxarea, cpu) = NULL; |
| } |
| } |
| |
| static __init int alloc_kvm_area(void) |
| { |
| int cpu; |
| |
| for_each_possible_cpu(cpu) { |
| struct vmcs *vmcs; |
| |
| vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL); |
| if (!vmcs) { |
| free_kvm_area(); |
| return -ENOMEM; |
| } |
| |
| /* |
| * When eVMCS is enabled, alloc_vmcs_cpu() sets |
| * vmcs->revision_id to KVM_EVMCS_VERSION instead of |
| * revision_id reported by MSR_IA32_VMX_BASIC. |
| * |
| * However, even though not explicitly documented by |
| * TLFS, VMXArea passed as VMXON argument should |
| * still be marked with revision_id reported by |
| * physical CPU. |
| */ |
| if (kvm_is_using_evmcs()) |
| vmcs->hdr.revision_id = vmcs_config.revision_id; |
| |
| per_cpu(vmxarea, cpu) = vmcs; |
| } |
| return 0; |
| } |
| |
| static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg, |
| struct kvm_segment *save) |
| { |
| if (!emulate_invalid_guest_state) { |
| /* |
| * CS and SS RPL should be equal during guest entry according |
| * to VMX spec, but in reality it is not always so. Since vcpu |
| * is in the middle of the transition from real mode to |
| * protected mode it is safe to assume that RPL 0 is a good |
| * default value. |
| */ |
| if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS) |
| save->selector &= ~SEGMENT_RPL_MASK; |
| save->dpl = save->selector & SEGMENT_RPL_MASK; |
| save->s = 1; |
| } |
| __vmx_set_segment(vcpu, save, seg); |
| } |
| |
| static void enter_pmode(struct kvm_vcpu *vcpu) |
| { |
| unsigned long flags; |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| |
| /* |
| * Update real mode segment cache. It may be not up-to-date if segment |
| * register was written while vcpu was in a guest mode. |
| */ |
| vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); |
| vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); |
| vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); |
| vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); |
| vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); |
| vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); |
| |
| vmx->rmode.vm86_active = 0; |
| |
| __vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); |
| |
| flags = vmcs_readl(GUEST_RFLAGS); |
| flags &= RMODE_GUEST_OWNED_EFLAGS_BITS; |
| flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; |
| vmcs_writel(GUEST_RFLAGS, flags); |
| |
| vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) | |
| (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME)); |
| |
| vmx_update_exception_bitmap(vcpu); |
| |
| fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); |
| fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); |
| fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); |
| fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); |
| fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); |
| fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); |
| } |
| |
| static void fix_rmode_seg(int seg, struct kvm_segment *save) |
| { |
| const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; |
| struct kvm_segment var = *save; |
| |
| var.dpl = 0x3; |
| if (seg == VCPU_SREG_CS) |
| var.type = 0x3; |
| |
| if (!emulate_invalid_guest_state) { |
| var.selector = var.base >> 4; |
| var.base = var.base & 0xffff0; |
| var.limit = 0xffff; |
| var.g = 0; |
| var.db = 0; |
| var.present = 1; |
| var.s = 1; |
| var.l = 0; |
| var.unusable = 0; |
| var.type = 0x3; |
| var.avl = 0; |
| if (save->base & 0xf) |
| pr_warn_once("segment base is not paragraph aligned " |
| "when entering protected mode (seg=%d)", seg); |
| } |
| |
| vmcs_write16(sf->selector, var.selector); |
| vmcs_writel(sf->base, var.base); |
| vmcs_write32(sf->limit, var.limit); |
| vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var)); |
| } |
| |
| static void enter_rmode(struct kvm_vcpu *vcpu) |
| { |
| unsigned long flags; |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm); |
| |
| /* |
| * KVM should never use VM86 to virtualize Real Mode when L2 is active, |
| * as using VM86 is unnecessary if unrestricted guest is enabled, and |
| * if unrestricted guest is disabled, VM-Enter (from L1) with CR0.PG=0 |
| * should VM-Fail and KVM should reject userspace attempts to stuff |
| * CR0.PG=0 when L2 is active. |
| */ |
| WARN_ON_ONCE(is_guest_mode(vcpu)); |
| |
| vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); |
| vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); |
| vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); |
| vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); |
| vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); |
| vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); |
| vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); |
| |
| vmx->rmode.vm86_active = 1; |
| |
| vmx_segment_cache_clear(vmx); |
| |
| vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr); |
| vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1); |
| vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); |
| |
| flags = vmcs_readl(GUEST_RFLAGS); |
| vmx->rmode.save_rflags = flags; |
| |
| flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; |
| |
| vmcs_writel(GUEST_RFLAGS, flags); |
| vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME); |
| vmx_update_exception_bitmap(vcpu); |
| |
| fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); |
| fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); |
| fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); |
| fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); |
| fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); |
| fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); |
| } |
| |
| int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| |
| /* Nothing to do if hardware doesn't support EFER. */ |
| if (!vmx_find_uret_msr(vmx, MSR_EFER)) |
| return 0; |
| |
| vcpu->arch.efer = efer; |
| #ifdef CONFIG_X86_64 |
| if (efer & EFER_LMA) |
| vm_entry_controls_setbit(vmx, VM_ENTRY_IA32E_MODE); |
| else |
| vm_entry_controls_clearbit(vmx, VM_ENTRY_IA32E_MODE); |
| #else |
| if (KVM_BUG_ON(efer & EFER_LMA, vcpu->kvm)) |
| return 1; |
| #endif |
| |
| vmx_setup_uret_msrs(vmx); |
| return 0; |
| } |
| |
| #ifdef CONFIG_X86_64 |
| |
| static void enter_lmode(struct kvm_vcpu *vcpu) |
| { |
| u32 guest_tr_ar; |
| |
| vmx_segment_cache_clear(to_vmx(vcpu)); |
| |
| guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES); |
| if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) { |
| pr_debug_ratelimited("%s: tss fixup for long mode. \n", |
| __func__); |
| vmcs_write32(GUEST_TR_AR_BYTES, |
| (guest_tr_ar & ~VMX_AR_TYPE_MASK) |
| | VMX_AR_TYPE_BUSY_64_TSS); |
| } |
| vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA); |
| } |
| |
| static void exit_lmode(struct kvm_vcpu *vcpu) |
| { |
| vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA); |
| } |
| |
| #endif |
| |
| static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| |
| /* |
| * INVEPT must be issued when EPT is enabled, irrespective of VPID, as |
| * the CPU is not required to invalidate guest-physical mappings on |
| * VM-Entry, even if VPID is disabled. Guest-physical mappings are |
| * associated with the root EPT structure and not any particular VPID |
| * (INVVPID also isn't required to invalidate guest-physical mappings). |
| */ |
| if (enable_ept) { |
| ept_sync_global(); |
| } else if (enable_vpid) { |
| if (cpu_has_vmx_invvpid_global()) { |
| vpid_sync_vcpu_global(); |
| } else { |
| vpid_sync_vcpu_single(vmx->vpid); |
| vpid_sync_vcpu_single(vmx->nested.vpid02); |
| } |
| } |
| } |
| |
| static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu) |
| { |
| if (is_guest_mode(vcpu)) |
| return nested_get_vpid02(vcpu); |
| return to_vmx(vcpu)->vpid; |
| } |
| |
| static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_mmu *mmu = vcpu->arch.mmu; |
| u64 root_hpa = mmu->root.hpa; |
| |
| /* No flush required if the current context is invalid. */ |
| if (!VALID_PAGE(root_hpa)) |
| return; |
| |
| if (enable_ept) |
| ept_sync_context(construct_eptp(vcpu, root_hpa, |
| mmu->root_role.level)); |
| else |
| vpid_sync_context(vmx_get_current_vpid(vcpu)); |
| } |
| |
| static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr) |
| { |
| /* |
| * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in |
| * vmx_flush_tlb_guest() for an explanation of why this is ok. |
| */ |
| vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr); |
| } |
| |
| static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu) |
| { |
| /* |
| * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a |
| * vpid couldn't be allocated for this vCPU. VM-Enter and VM-Exit are |
| * required to flush GVA->{G,H}PA mappings from the TLB if vpid is |
| * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed), |
| * i.e. no explicit INVVPID is necessary. |
| */ |
| vpid_sync_context(vmx_get_current_vpid(vcpu)); |
| } |
| |
| void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_mmu *mmu = vcpu->arch.walk_mmu; |
| |
| if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR)) |
| return; |
| |
| if (is_pae_paging(vcpu)) { |
| vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]); |
| vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]); |
| vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]); |
| vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]); |
| } |
| } |
| |
| void ept_save_pdptrs(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_mmu *mmu = vcpu->arch.walk_mmu; |
| |
| if (WARN_ON_ONCE(!is_pae_paging(vcpu))) |
| return; |
| |
| mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0); |
| mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1); |
| mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2); |
| mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3); |
| |
| kvm_register_mark_available(vcpu, VCPU_EXREG_PDPTR); |
| } |
| |
| #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \ |
| CPU_BASED_CR3_STORE_EXITING) |
| |
| static bool vmx_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) |
| { |
| if (is_guest_mode(vcpu)) |
| return nested_guest_cr0_valid(vcpu, cr0); |
| |
| if (to_vmx(vcpu)->nested.vmxon) |
| return nested_host_cr0_valid(vcpu, cr0); |
| |
| return true; |
| } |
| |
| void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| unsigned long hw_cr0, old_cr0_pg; |
| u32 tmp; |
| |
| old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG); |
| |
| hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF); |
| if (enable_unrestricted_guest) |
| hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST; |
| else { |
| hw_cr0 |= KVM_VM_CR0_ALWAYS_ON; |
| if (!enable_ept) |
| hw_cr0 |= X86_CR0_WP; |
| |
| if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE)) |
| enter_pmode(vcpu); |
| |
| if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE)) |
| enter_rmode(vcpu); |
| } |
| |
| vmcs_writel(CR0_READ_SHADOW, cr0); |
| vmcs_writel(GUEST_CR0, hw_cr0); |
| vcpu->arch.cr0 = cr0; |
| kvm_register_mark_available(vcpu, VCPU_EXREG_CR0); |
| |
| #ifdef CONFIG_X86_64 |
| if (vcpu->arch.efer & EFER_LME) { |
| if (!old_cr0_pg && (cr0 & X86_CR0_PG)) |
| enter_lmode(vcpu); |
| else if (old_cr0_pg && !(cr0 & X86_CR0_PG)) |
| exit_lmode(vcpu); |
| } |
| #endif |
| |
| if (enable_ept && !enable_unrestricted_guest) { |
| /* |
| * Ensure KVM has an up-to-date snapshot of the guest's CR3. If |
| * the below code _enables_ CR3 exiting, vmx_cache_reg() will |
| * (correctly) stop reading vmcs.GUEST_CR3 because it thinks |
| * KVM's CR3 is installed. |
| */ |
| if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3)) |
| vmx_cache_reg(vcpu, VCPU_EXREG_CR3); |
| |
| /* |
| * When running with EPT but not unrestricted guest, KVM must |
| * intercept CR3 accesses when paging is _disabled_. This is |
| * necessary because restricted guests can't actually run with |
| * paging disabled, and so KVM stuffs its own CR3 in order to |
| * run the guest when identity mapped page tables. |
| * |
| * Do _NOT_ check the old CR0.PG, e.g. to optimize away the |
| * update, it may be stale with respect to CR3 interception, |
| * e.g. after nested VM-Enter. |
| * |
| * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or |
| * stores to forward them to L1, even if KVM does not need to |
| * intercept them to preserve its identity mapped page tables. |
| */ |
| if (!(cr0 & X86_CR0_PG)) { |
| exec_controls_setbit(vmx, CR3_EXITING_BITS); |
| } else if (!is_guest_mode(vcpu)) { |
| exec_controls_clearbit(vmx, CR3_EXITING_BITS); |
| } else { |
| tmp = exec_controls_get(vmx); |
| tmp &= ~CR3_EXITING_BITS; |
| tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS; |
| exec_controls_set(vmx, tmp); |
| } |
| |
| /* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */ |
| if ((old_cr0_pg ^ cr0) & X86_CR0_PG) |
| vmx_set_cr4(vcpu, kvm_read_cr4(vcpu)); |
| |
| /* |
| * When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but |
| * GUEST_CR3 is still vmx->ept_identity_map_addr if EPT + !URG. |
| */ |
| if (!(old_cr0_pg & X86_CR0_PG) && (cr0 & X86_CR0_PG)) |
| kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); |
| } |
| |
| /* depends on vcpu->arch.cr0 to be set to a new value */ |
| vmx->emulation_required = vmx_emulation_required(vcpu); |
| } |
| |
| static int vmx_get_max_ept_level(void) |
| { |
| if (cpu_has_vmx_ept_5levels()) |
| return 5; |
| return 4; |
| } |
| |
| u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level) |
| { |
| u64 eptp = VMX_EPTP_MT_WB; |
| |
| eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4; |
| |
| if (enable_ept_ad_bits && |
| (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu))) |
| eptp |= VMX_EPTP_AD_ENABLE_BIT; |
| eptp |= root_hpa; |
| |
| return eptp; |
| } |
| |
| static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, |
| int root_level) |
| { |
| struct kvm *kvm = vcpu->kvm; |
| bool update_guest_cr3 = true; |
| unsigned long guest_cr3; |
| u64 eptp; |
| |
| if (enable_ept) { |
| eptp = construct_eptp(vcpu, root_hpa, root_level); |
| vmcs_write64(EPT_POINTER, eptp); |
| |
| hv_track_root_tdp(vcpu, root_hpa); |
| |
| if (!enable_unrestricted_guest && !is_paging(vcpu)) |
| guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr; |
| else if (kvm_register_is_dirty(vcpu, VCPU_EXREG_CR3)) |
| guest_cr3 = vcpu->arch.cr3; |
| else /* vmcs.GUEST_CR3 is already up-to-date. */ |
| update_guest_cr3 = false; |
| vmx_ept_load_pdptrs(vcpu); |
| } else { |
| guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu) | |
| kvm_get_active_cr3_lam_bits(vcpu); |
| } |
| |
| if (update_guest_cr3) |
| vmcs_writel(GUEST_CR3, guest_cr3); |
| } |
| |
| |
| static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) |
| { |
| /* |
| * We operate under the default treatment of SMM, so VMX cannot be |
| * enabled under SMM. Note, whether or not VMXE is allowed at all, |
| * i.e. is a reserved bit, is handled by common x86 code. |
| */ |
| if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu)) |
| return false; |
| |
| if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4)) |
| return false; |
| |
| return true; |
| } |
| |
| void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) |
| { |
| unsigned long old_cr4 = kvm_read_cr4(vcpu); |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| unsigned long hw_cr4; |
| |
| /* |
| * Pass through host's Machine Check Enable value to hw_cr4, which |
| * is in force while we are in guest mode. Do not let guests control |
| * this bit, even if host CR4.MCE == 0. |
| */ |
| hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE); |
| if (enable_unrestricted_guest) |
| hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST; |
| else if (vmx->rmode.vm86_active) |
| hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON; |
| else |
| hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON; |
| |
| if (vmx_umip_emulated()) { |
| if (cr4 & X86_CR4_UMIP) { |
| secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC); |
| hw_cr4 &= ~X86_CR4_UMIP; |
| } else if (!is_guest_mode(vcpu) || |
| !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) { |
| secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC); |
| } |
| } |
| |
| vcpu->arch.cr4 = cr4; |
| kvm_register_mark_available(vcpu, VCPU_EXREG_CR4); |
| |
| if (!enable_unrestricted_guest) { |
| if (enable_ept) { |
| if (!is_paging(vcpu)) { |
| hw_cr4 &= ~X86_CR4_PAE; |
| hw_cr4 |= X86_CR4_PSE; |
| } else if (!(cr4 & X86_CR4_PAE)) { |
| hw_cr4 &= ~X86_CR4_PAE; |
| } |
| } |
| |
| /* |
| * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in |
| * hardware. To emulate this behavior, SMEP/SMAP/PKU needs |
| * to be manually disabled when guest switches to non-paging |
| * mode. |
| * |
| * If !enable_unrestricted_guest, the CPU is always running |
| * with CR0.PG=1 and CR4 needs to be modified. |
| * If enable_unrestricted_guest, the CPU automatically |
| * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0. |
| */ |
| if (!is_paging(vcpu)) |
| hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE); |
| } |
| |
| vmcs_writel(CR4_READ_SHADOW, cr4); |
| vmcs_writel(GUEST_CR4, hw_cr4); |
| |
| if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) |
| kvm_update_cpuid_runtime(vcpu); |
| } |
| |
| void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| u32 ar; |
| |
| if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { |
| *var = vmx->rmode.segs[seg]; |
| if (seg == VCPU_SREG_TR |
| || var->selector == vmx_read_guest_seg_selector(vmx, seg)) |
| return; |
| var->base = vmx_read_guest_seg_base(vmx, seg); |
| var->selector = vmx_read_guest_seg_selector(vmx, seg); |
| return; |
| } |
| var->base = vmx_read_guest_seg_base(vmx, seg); |
| var->limit = vmx_read_guest_seg_limit(vmx, seg); |
| var->selector = vmx_read_guest_seg_selector(vmx, seg); |
| ar = vmx_read_guest_seg_ar(vmx, seg); |
| var->unusable = (ar >> 16) & 1; |
| var->type = ar & 15; |
| var->s = (ar >> 4) & 1; |
| var->dpl = (ar >> 5) & 3; |
| /* |
| * Some userspaces do not preserve unusable property. Since usable |
| * segment has to be present according to VMX spec we can use present |
| * property to amend userspace bug by making unusable segment always |
| * nonpresent. vmx_segment_access_rights() already marks nonpresent |
| * segment as unusable. |
| */ |
| var->present = !var->unusable; |
| var->avl = (ar >> 12) & 1; |
| var->l = (ar >> 13) & 1; |
| var->db = (ar >> 14) & 1; |
| var->g = (ar >> 15) & 1; |
| } |
| |
| static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg) |
| { |
| struct kvm_segment s; |
| |
| if (to_vmx(vcpu)->rmode.vm86_active) { |
| vmx_get_segment(vcpu, &s, seg); |
| return s.base; |
| } |
| return vmx_read_guest_seg_base(to_vmx(vcpu), seg); |
| } |
| |
| int vmx_get_cpl(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| |
| if (unlikely(vmx->rmode.vm86_active)) |
| return 0; |
| else { |
| int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS); |
| return VMX_AR_DPL(ar); |
| } |
| } |
| |
| static u32 vmx_segment_access_rights(struct kvm_segment *var) |
| { |
| u32 ar; |
| |
| ar = var->type & 15; |
| ar |= (var->s & 1) << 4; |
| ar |= (var->dpl & 3) << 5; |
| ar |= (var->present & 1) << 7; |
| ar |= (var->avl & 1) << 12; |
| ar |= (var->l & 1) << 13; |
| ar |= (var->db & 1) << 14; |
| ar |= (var->g & 1) << 15; |
| ar |= (var->unusable || !var->present) << 16; |
| |
| return ar; |
| } |
| |
| void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; |
| |
| vmx_segment_cache_clear(vmx); |
| |
| if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { |
| vmx->rmode.segs[seg] = *var; |
| if (seg == VCPU_SREG_TR) |
| vmcs_write16(sf->selector, var->selector); |
| else if (var->s) |
| fix_rmode_seg(seg, &vmx->rmode.segs[seg]); |
| return; |
| } |
| |
| vmcs_writel(sf->base, var->base); |
| vmcs_write32(sf->limit, var->limit); |
| vmcs_write16(sf->selector, var->selector); |
| |
| /* |
| * Fix the "Accessed" bit in AR field of segment registers for older |
| * qemu binaries. |
| * IA32 arch specifies that at the time of processor reset the |
| * "Accessed" bit in the AR field of segment registers is 1. And qemu |
| * is setting it to 0 in the userland code. This causes invalid guest |
| * state vmexit when "unrestricted guest" mode is turned on. |
| * Fix for this setup issue in cpu_reset is being pushed in the qemu |
| * tree. Newer qemu binaries with that qemu fix would not need this |
| * kvm hack. |
| */ |
| if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR)) |
| var->type |= 0x1; /* Accessed */ |
| |
| vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var)); |
| } |
| |
| static void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) |
| { |
| __vmx_set_segment(vcpu, var, seg); |
| |
| to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu); |
| } |
| |
| static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) |
| { |
| u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS); |
| |
| *db = (ar >> 14) & 1; |
| *l = (ar >> 13) & 1; |
| } |
| |
| static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) |
| { |
| dt->size = vmcs_read32(GUEST_IDTR_LIMIT); |
| dt->address = vmcs_readl(GUEST_IDTR_BASE); |
| } |
| |
| static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) |
| { |
| vmcs_write32(GUEST_IDTR_LIMIT, dt->size); |
| vmcs_writel(GUEST_IDTR_BASE, dt->address); |
| } |
| |
| static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) |
| { |
| dt->size = vmcs_read32(GUEST_GDTR_LIMIT); |
| dt->address = vmcs_readl(GUEST_GDTR_BASE); |
| } |
| |
| static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) |
| { |
| vmcs_write32(GUEST_GDTR_LIMIT, dt->size); |
| vmcs_writel(GUEST_GDTR_BASE, dt->address); |
| } |
| |
| static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg) |
| { |
| struct kvm_segment var; |
| u32 ar; |
| |
| vmx_get_segment(vcpu, &var, seg); |
| var.dpl = 0x3; |
| if (seg == VCPU_SREG_CS) |
| var.type = 0x3; |
| ar = vmx_segment_access_rights(&var); |
| |
| if (var.base != (var.selector << 4)) |
| return false; |
| if (var.limit != 0xffff) |
| return false; |
| if (ar != 0xf3) |
| return false; |
| |
| return true; |
| } |
| |
| static bool code_segment_valid(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_segment cs; |
| unsigned int cs_rpl; |
| |
| vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); |
| cs_rpl = cs.selector & SEGMENT_RPL_MASK; |
| |
| if (cs.unusable) |
| return false; |
| if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK)) |
| return false; |
| if (!cs.s) |
| return false; |
| if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) { |
| if (cs.dpl > cs_rpl) |
| return false; |
| } else { |
| if (cs.dpl != cs_rpl) |
| return false; |
| } |
| if (!cs.present) |
| return false; |
| |
| /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */ |
| return true; |
| } |
| |
| static bool stack_segment_valid(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_segment ss; |
| unsigned int ss_rpl; |
| |
| vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); |
| ss_rpl = ss.selector & SEGMENT_RPL_MASK; |
| |
| if (ss.unusable) |
| return true; |
| if (ss.type != 3 && ss.type != 7) |
| return false; |
| if (!ss.s) |
| return false; |
| if (ss.dpl != ss_rpl) /* DPL != RPL */ |
| return false; |
| if (!ss.present) |
| return false; |
| |
| return true; |
| } |
| |
| static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg) |
| { |
| struct kvm_segment var; |
| unsigned int rpl; |
| |
| vmx_get_segment(vcpu, &var, seg); |
| rpl = var.selector & SEGMENT_RPL_MASK; |
| |
| if (var.unusable) |
| return true; |
| if (!var.s) |
| return false; |
| if (!var.present) |
| return false; |
| if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) { |
| if (var.dpl < rpl) /* DPL < RPL */ |
| return false; |
| } |
| |
| /* TODO: Add other members to kvm_segment_field to allow checking for other access |
| * rights flags |
| */ |
| return true; |
| } |
| |
| static bool tr_valid(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_segment tr; |
| |
| vmx_get_segment(vcpu, &tr, VCPU_SREG_TR); |
| |
| if (tr.unusable) |
| return false; |
| if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */ |
| return false; |
| if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */ |
| return false; |
| if (!tr.present) |
| return false; |
| |
| return true; |
| } |
| |
| static bool ldtr_valid(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_segment ldtr; |
| |
| vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR); |
| |
| if (ldtr.unusable) |
| return true; |
| if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */ |
| return false; |
| if (ldtr.type != 2) |
| return false; |
| if (!ldtr.present) |
| return false; |
| |
| return true; |
| } |
| |
| static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_segment cs, ss; |
| |
| vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); |
| vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); |
| |
| return ((cs.selector & SEGMENT_RPL_MASK) == |
| (ss.selector & SEGMENT_RPL_MASK)); |
| } |
| |
| /* |
| * Check if guest state is valid. Returns true if valid, false if |
| * not. |
| * We assume that registers are always usable |
| */ |
| bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu) |
| { |
| /* real mode guest state checks */ |
| if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) { |
| if (!rmode_segment_valid(vcpu, VCPU_SREG_CS)) |
| return false; |
| if (!rmode_segment_valid(vcpu, VCPU_SREG_SS)) |
| return false; |
| if (!rmode_segment_valid(vcpu, VCPU_SREG_DS)) |
| return false; |
| if (!rmode_segment_valid(vcpu, VCPU_SREG_ES)) |
| return false; |
| if (!rmode_segment_valid(vcpu, VCPU_SREG_FS)) |
| return false; |
| if (!rmode_segment_valid(vcpu, VCPU_SREG_GS)) |
| return false; |
| } else { |
| /* protected mode guest state checks */ |
| if (!cs_ss_rpl_check(vcpu)) |
| return false; |
| if (!code_segment_valid(vcpu)) |
| return false; |
| if (!stack_segment_valid(vcpu)) |
| return false; |
| if (!data_segment_valid(vcpu, VCPU_SREG_DS)) |
| return false; |
| if (!data_segment_valid(vcpu, VCPU_SREG_ES)) |
| return false; |
| if (!data_segment_valid(vcpu, VCPU_SREG_FS)) |
| return false; |
| if (!data_segment_valid(vcpu, VCPU_SREG_GS)) |
| return false; |
| if (!tr_valid(vcpu)) |
| return false; |
| if (!ldtr_valid(vcpu)) |
| return false; |
| } |
| /* TODO: |
| * - Add checks on RIP |
| * - Add checks on RFLAGS |
| */ |
| |
| return true; |
| } |
| |
| static int init_rmode_tss(struct kvm *kvm, void __user *ua) |
| { |
| const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); |
| u16 data; |
| int i; |
| |
| for (i = 0; i < 3; i++) { |
| if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE)) |
| return -EFAULT; |
| } |
| |
| data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE; |
| if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16))) |
| return -EFAULT; |
| |
| data = ~0; |
| if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8))) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| static int init_rmode_identity_map(struct kvm *kvm) |
| { |
| struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); |
| int i, r = 0; |
| void __user *uaddr; |
| u32 tmp; |
| |
| /* Protect kvm_vmx->ept_identity_pagetable_done. */ |
| mutex_lock(&kvm->slots_lock); |
| |
| if (likely(kvm_vmx->ept_identity_pagetable_done)) |
| goto out; |
| |
| if (!kvm_vmx->ept_identity_map_addr) |
| kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR; |
| |
| uaddr = __x86_set_memory_region(kvm, |
| IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, |
| kvm_vmx->ept_identity_map_addr, |
| PAGE_SIZE); |
| if (IS_ERR(uaddr)) { |
| r = PTR_ERR(uaddr); |
| goto out; |
| } |
| |
| /* Set up identity-mapping pagetable for EPT in real mode */ |
| for (i = 0; i < (PAGE_SIZE / sizeof(tmp)); i++) { |
| tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | |
| _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE); |
| if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) { |
| r = -EFAULT; |
| goto out; |
| } |
| } |
| kvm_vmx->ept_identity_pagetable_done = true; |
| |
| out: |
| mutex_unlock(&kvm->slots_lock); |
| return r; |
| } |
| |
| static void seg_setup(int seg) |
| { |
| const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; |
| unsigned int ar; |
| |
| vmcs_write16(sf->selector, 0); |
| vmcs_writel(sf->base, 0); |
| vmcs_write32(sf->limit, 0xffff); |
| ar = 0x93; |
| if (seg == VCPU_SREG_CS) |
| ar |= 0x08; /* code segment */ |
| |
| vmcs_write32(sf->ar_bytes, ar); |
| } |
| |
| int allocate_vpid(void) |
| { |
| int vpid; |
| |
| if (!enable_vpid) |
| return 0; |
| spin_lock(&vmx_vpid_lock); |
| vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS); |
| if (vpid < VMX_NR_VPIDS) |
| __set_bit(vpid, vmx_vpid_bitmap); |
| else |
| vpid = 0; |
| spin_unlock(&vmx_vpid_lock); |
| return vpid; |
| } |
| |
| void free_vpid(int vpid) |
| { |
| if (!enable_vpid || vpid == 0) |
| return; |
| spin_lock(&vmx_vpid_lock); |
| __clear_bit(vpid, vmx_vpid_bitmap); |
| spin_unlock(&vmx_vpid_lock); |
| } |
| |
| static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx) |
| { |
| /* |
| * When KVM is a nested hypervisor on top of Hyper-V and uses |
| * 'Enlightened MSR Bitmap' feature L0 needs to know that MSR |
| * bitmap has changed. |
| */ |
| if (kvm_is_using_evmcs()) { |
| struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs; |
| |
| if (evmcs->hv_enlightenments_control.msr_bitmap) |
| evmcs->hv_clean_fields &= |
| ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP; |
| } |
| |
| vmx->nested.force_msr_bitmap_recalc = true; |
| } |
| |
| void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; |
| int idx; |
| |
| if (!cpu_has_vmx_msr_bitmap()) |
| return; |
| |
| vmx_msr_bitmap_l01_changed(vmx); |
| |
| /* |
| * Mark the desired intercept state in shadow bitmap, this is needed |
| * for resync when the MSR filters change. |
| */ |
| idx = vmx_get_passthrough_msr_slot(msr); |
| if (idx >= 0) { |
| if (type & MSR_TYPE_R) |
| clear_bit(idx, vmx->shadow_msr_intercept.read); |
| if (type & MSR_TYPE_W) |
| clear_bit(idx, vmx->shadow_msr_intercept.write); |
| } |
| |
| if ((type & MSR_TYPE_R) && |
| !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) { |
| vmx_set_msr_bitmap_read(msr_bitmap, msr); |
| type &= ~MSR_TYPE_R; |
| } |
| |
| if ((type & MSR_TYPE_W) && |
| !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) { |
| vmx_set_msr_bitmap_write(msr_bitmap, msr); |
| type &= ~MSR_TYPE_W; |
| } |
| |
| if (type & MSR_TYPE_R) |
| vmx_clear_msr_bitmap_read(msr_bitmap, msr); |
| |
| if (type & MSR_TYPE_W) |
| vmx_clear_msr_bitmap_write(msr_bitmap, msr); |
| } |
| |
| void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; |
| int idx; |
| |
| if (!cpu_has_vmx_msr_bitmap()) |
| return; |
| |
| vmx_msr_bitmap_l01_changed(vmx); |
| |
| /* |
| * Mark the desired intercept state in shadow bitmap, this is needed |
| * for resync when the MSR filter changes. |
| */ |
| idx = vmx_get_passthrough_msr_slot(msr); |
| if (idx >= 0) { |
| if (type & MSR_TYPE_R) |
| set_bit(idx, vmx->shadow_msr_intercept.read); |
| if (type & MSR_TYPE_W) |
| set_bit(idx, vmx->shadow_msr_intercept.write); |
| } |
| |
| if (type & MSR_TYPE_R) |
| vmx_set_msr_bitmap_read(msr_bitmap, msr); |
| |
| if (type & MSR_TYPE_W) |
| vmx_set_msr_bitmap_write(msr_bitmap, msr); |
| } |
| |
| static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu) |
| { |
| /* |
| * x2APIC indices for 64-bit accesses into the RDMSR and WRMSR halves |
| * of the MSR bitmap. KVM emulates APIC registers up through 0x3f0, |
| * i.e. MSR 0x83f, and so only needs to dynamically manipulate 64 bits. |
| */ |
| const int read_idx = APIC_BASE_MSR / BITS_PER_LONG_LONG; |
| const int write_idx = read_idx + (0x800 / sizeof(u64)); |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| u64 *msr_bitmap = (u64 *)vmx->vmcs01.msr_bitmap; |
| u8 mode; |
| |
| if (!cpu_has_vmx_msr_bitmap() || WARN_ON_ONCE(!lapic_in_kernel(vcpu))) |
| return; |
| |
| if (cpu_has_secondary_exec_ctrls() && |
| (secondary_exec_controls_get(vmx) & |
| SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) { |
| mode = MSR_BITMAP_MODE_X2APIC; |
| if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) |
| mode |= MSR_BITMAP_MODE_X2APIC_APICV; |
| } else { |
| mode = 0; |
| } |
| |
| if (mode == vmx->x2apic_msr_bitmap_mode) |
| return; |
| |
| vmx->x2apic_msr_bitmap_mode = mode; |
| |
| /* |
| * Reset the bitmap for MSRs 0x800 - 0x83f. Leave AMD's uber-extended |
| * registers (0x840 and above) intercepted, KVM doesn't support them. |
| * Intercept all writes by default and poke holes as needed. Pass |
| * through reads for all valid registers by default in x2APIC+APICv |
| * mode, only the current timer count needs on-demand emulation by KVM. |
| */ |
| if (mode & MSR_BITMAP_MODE_X2APIC_APICV) |
| msr_bitmap[read_idx] = ~kvm_lapic_readable_reg_mask(vcpu->arch.apic); |
| else |
| msr_bitmap[read_idx] = ~0ull; |
| msr_bitmap[write_idx] = ~0ull; |
| |
| /* |
| * TPR reads and writes can be virtualized even if virtual interrupt |
| * delivery is not in use. |
| */ |
| vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW, |
| !(mode & MSR_BITMAP_MODE_X2APIC)); |
| |
| if (mode & MSR_BITMAP_MODE_X2APIC_APICV) { |
| vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW); |
| vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W); |
| vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W); |
| if (enable_ipiv) |
| vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_ICR), MSR_TYPE_RW); |
| } |
| } |
| |
| void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN); |
| u32 i; |
| |
| vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag); |
| vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag); |
| vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag); |
| vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag); |
| for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) { |
| vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag); |
| vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag); |
| } |
| } |
| |
| static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| void *vapic_page; |
| u32 vppr; |
| int rvi; |
| |
| if (WARN_ON_ONCE(!is_guest_mode(vcpu)) || |
| !nested_cpu_has_vid(get_vmcs12(vcpu)) || |
| WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn)) |
| return false; |
| |
| rvi = vmx_get_rvi(); |
| |
| vapic_page = vmx->nested.virtual_apic_map.hva; |
| vppr = *((u32 *)(vapic_page + APIC_PROCPRI)); |
| |
| return ((rvi & 0xf0) > (vppr & 0xf0)); |
| } |
| |
| static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| u32 i; |
| |
| if (!cpu_has_vmx_msr_bitmap()) |
| return; |
| |
| /* |
| * Redo intercept permissions for MSRs that KVM is passing through to |
| * the guest. Disabling interception will check the new MSR filter and |
| * ensure that KVM enables interception if usersepace wants to filter |
| * the MSR. MSRs that KVM is already intercepting don't need to be |
| * refreshed since KVM is going to intercept them regardless of what |
| * userspace wants. |
| */ |
| for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) { |
| u32 msr = vmx_possible_passthrough_msrs[i]; |
| |
| if (!test_bit(i, vmx->shadow_msr_intercept.read)) |
| vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_R); |
| |
| if (!test_bit(i, vmx->shadow_msr_intercept.write)) |
| vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_W); |
| } |
| |
| /* PT MSRs can be passed through iff PT is exposed to the guest. */ |
| if (vmx_pt_mode_is_host_guest()) |
| pt_update_intercept_for_msr(vcpu); |
| } |
| |
| static inline void kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu, |
| int pi_vec) |
| { |
| #ifdef CONFIG_SMP |
| if (vcpu->mode == IN_GUEST_MODE) { |
| /* |
| * The vector of the virtual has already been set in the PIR. |
| * Send a notification event to deliver the virtual interrupt |
| * unless the vCPU is the currently running vCPU, i.e. the |
| * event is being sent from a fastpath VM-Exit handler, in |
| * which case the PIR will be synced to the vIRR before |
| * re-entering the guest. |
| * |
| * When the target is not the running vCPU, the following |
| * possibilities emerge: |
| * |
| * Case 1: vCPU stays in non-root mode. Sending a notification |
| * event posts the interrupt to the vCPU. |
| * |
| * Case 2: vCPU exits to root mode and is still runnable. The |
| * PIR will be synced to the vIRR before re-entering the guest. |
| * Sending a notification event is ok as the host IRQ handler |
| * will ignore the spurious event. |
| * |
| * Case 3: vCPU exits to root mode and is blocked. vcpu_block() |
| * has already synced PIR to vIRR and never blocks the vCPU if |
| * the vIRR is not empty. Therefore, a blocked vCPU here does |
| * not wait for any requested interrupts in PIR, and sending a |
| * notification event also results in a benign, spurious event. |
| */ |
| |
| if (vcpu != kvm_get_running_vcpu()) |
| __apic_send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec); |
| return; |
| } |
| #endif |
| /* |
| * The vCPU isn't in the guest; wake the vCPU in case it is blocking, |
| * otherwise do nothing as KVM will grab the highest priority pending |
| * IRQ via ->sync_pir_to_irr() in vcpu_enter_guest(). |
| */ |
| kvm_vcpu_wake_up(vcpu); |
| } |
| |
| static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu, |
| int vector) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| |
| if (is_guest_mode(vcpu) && |
| vector == vmx->nested.posted_intr_nv) { |
| /* |
| * If a posted intr is not recognized by hardware, |
| * we will accomplish it in the next vmentry. |
| */ |
| vmx->nested.pi_pending = true; |
| kvm_make_request(KVM_REQ_EVENT, vcpu); |
| |
| /* |
| * This pairs with the smp_mb_*() after setting vcpu->mode in |
| * vcpu_enter_guest() to guarantee the vCPU sees the event |
| * request if triggering a posted interrupt "fails" because |
| * vcpu->mode != IN_GUEST_MODE. The extra barrier is needed as |
| * the smb_wmb() in kvm_make_request() only ensures everything |
| * done before making the request is visible when the request |
| * is visible, it doesn't ensure ordering between the store to |
| * vcpu->requests and the load from vcpu->mode. |
| */ |
| smp_mb__after_atomic(); |
| |
| /* the PIR and ON have been set by L1. */ |
| kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_NESTED_VECTOR); |
| return 0; |
| } |
| return -1; |
| } |
| /* |
| * Send interrupt to vcpu via posted interrupt way. |
| * 1. If target vcpu is running(non-root mode), send posted interrupt |
| * notification to vcpu and hardware will sync PIR to vIRR atomically. |
| * 2. If target vcpu isn't running(root mode), kick it to pick up the |
| * interrupt from PIR in next vmentry. |
| */ |
| static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| int r; |
| |
| r = vmx_deliver_nested_posted_interrupt(vcpu, vector); |
| if (!r) |
| return 0; |
| |
| /* Note, this is called iff the local APIC is in-kernel. */ |
| if (!vcpu->arch.apic->apicv_active) |
| return -1; |
| |
| if (pi_test_and_set_pir(vector, &vmx->pi_desc)) |
| return 0; |
| |
| /* If a previous notification has sent the IPI, nothing to do. */ |
| if (pi_test_and_set_on(&vmx->pi_desc)) |
| return 0; |
| |
| /* |
| * The implied barrier in pi_test_and_set_on() pairs with the smp_mb_*() |
| * after setting vcpu->mode in vcpu_enter_guest(), thus the vCPU is |
| * guaranteed to see PID.ON=1 and sync the PIR to IRR if triggering a |
| * posted interrupt "fails" because vcpu->mode != IN_GUEST_MODE. |
| */ |
| kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_VECTOR); |
| return 0; |
| } |
| |
| static void vmx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode, |
| int trig_mode, int vector) |
| { |
| struct kvm_vcpu *vcpu = apic->vcpu; |
| |
| if (vmx_deliver_posted_interrupt(vcpu, vector)) { |
| kvm_lapic_set_irr(vector, apic); |
| kvm_make_request(KVM_REQ_EVENT, vcpu); |
| kvm_vcpu_kick(vcpu); |
| } else { |
| trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, |
| trig_mode, vector); |
| } |
| } |
| |
| /* |
| * Set up the vmcs's constant host-state fields, i.e., host-state fields that |
| * will not change in the lifetime of the guest. |
| * Note that host-state that does change is set elsewhere. E.g., host-state |
| * that is set differently for each CPU is set in vmx_vcpu_load(), not here. |
| */ |
| void vmx_set_constant_host_state(struct vcpu_vmx *vmx) |
| { |
| u32 low32, high32; |
| unsigned long tmpl; |
| unsigned long cr0, cr3, cr4; |
| |
| cr0 = read_cr0(); |
| WARN_ON(cr0 & X86_CR0_TS); |
| vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */ |
| |
| /* |
| * Save the most likely value for this task's CR3 in the VMCS. |
| * We can't use __get_current_cr3_fast() because we're not atomic. |
| */ |
| cr3 = __read_cr3(); |
| vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */ |
| vmx->loaded_vmcs->host_state.cr3 = cr3; |
| |
| /* Save the most likely value for this task's CR4 in the VMCS. */ |
| cr4 = cr4_read_shadow(); |
| vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */ |
| vmx->loaded_vmcs->host_state.cr4 = cr4; |
| |
| vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */ |
| #ifdef CONFIG_X86_64 |
| /* |
| * Load null selectors, so we can avoid reloading them in |
| * vmx_prepare_switch_to_host(), in case userspace uses |
| * the null selectors too (the expected case). |
| */ |
| vmcs_write16(HOST_DS_SELECTOR, 0); |
| vmcs_write16(HOST_ES_SELECTOR, 0); |
| #else |
| vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ |
| vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */ |
| #endif |
| vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ |
| vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */ |
| |
| vmcs_writel(HOST_IDTR_BASE, host_idt_base); /* 22.2.4 */ |
| |
| vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */ |
| |
| rdmsr(MSR_IA32_SYSENTER_CS, low32, high32); |
| vmcs_write32(HOST_IA32_SYSENTER_CS, low32); |
| |
| /* |
| * SYSENTER is used for 32-bit system calls on either 32-bit or |
| * 64-bit kernels. It is always zero If neither is allowed, otherwise |
| * vmx_vcpu_load_vmcs loads it with the per-CPU entry stack (and may |
| * have already done so!). |
| */ |
| if (!IS_ENABLED(CONFIG_IA32_EMULATION) && !IS_ENABLED(CONFIG_X86_32)) |
| vmcs_writel(HOST_IA32_SYSENTER_ESP, 0); |
| |
| rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl); |
| vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */ |
| |
| if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) { |
| rdmsr(MSR_IA32_CR_PAT, low32, high32); |
| vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32)); |
| } |
| |
| if (cpu_has_load_ia32_efer()) |
| vmcs_write64(HOST_IA32_EFER, host_efer); |
| } |
| |
| void set_cr4_guest_host_mask(struct vcpu_vmx *vmx) |
| { |
| struct kvm_vcpu *vcpu = &vmx->vcpu; |
| |
| vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS & |
| ~vcpu->arch.cr4_guest_rsvd_bits; |
| if (!enable_ept) { |
| vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_TLBFLUSH_BITS; |
| vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PDPTR_BITS; |
| } |
| if (is_guest_mode(&vmx->vcpu)) |
| vcpu->arch.cr4_guest_owned_bits &= |
| ~get_vmcs12(vcpu)->cr4_guest_host_mask; |
| vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits); |
| } |
| |
| static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx) |
| { |
| u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl; |
| |
| if (!kvm_vcpu_apicv_active(&vmx->vcpu)) |
| pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR; |
| |
| if (!enable_vnmi) |
| pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS; |
| |
| if (!enable_preemption_timer) |
| pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER; |
| |
| return pin_based_exec_ctrl; |
| } |
| |
| static u32 vmx_vmentry_ctrl(void) |
| { |
| u32 vmentry_ctrl = vmcs_config.vmentry_ctrl; |
| |
| if (vmx_pt_mode_is_system()) |
| vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP | |
| VM_ENTRY_LOAD_IA32_RTIT_CTL); |
| /* |
| * IA32e mode, and loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically. |
| */ |
| vmentry_ctrl &= ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | |
| VM_ENTRY_LOAD_IA32_EFER | |
| VM_ENTRY_IA32E_MODE); |
| |
| if (cpu_has_perf_global_ctrl_bug()) |
| vmentry_ctrl &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL; |
| |
| return vmentry_ctrl; |
| } |
| |
| static u32 vmx_vmexit_ctrl(void) |
| { |
| u32 vmexit_ctrl = vmcs_config.vmexit_ctrl; |
| |
| /* |
| * Not used by KVM and never set in vmcs01 or vmcs02, but emulated for |
| * nested virtualization and thus allowed to be set in vmcs12. |
| */ |
| vmexit_ctrl &= ~(VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER | |
| VM_EXIT_SAVE_VMX_PREEMPTION_TIMER); |
| |
| if (vmx_pt_mode_is_system()) |
| vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP | |
| VM_EXIT_CLEAR_IA32_RTIT_CTL); |
| |
| if (cpu_has_perf_global_ctrl_bug()) |
| vmexit_ctrl &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL; |
| |
| /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */ |
| return vmexit_ctrl & |
| ~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER); |
| } |
| |
| static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| |
| if (is_guest_mode(vcpu)) { |
| vmx->nested.update_vmcs01_apicv_status = true; |
| return; |
| } |
| |
| pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx)); |
| |
| if (kvm_vcpu_apicv_active(vcpu)) { |
| secondary_exec_controls_setbit(vmx, |
| SECONDARY_EXEC_APIC_REGISTER_VIRT | |
| SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); |
| if (enable_ipiv) |
| tertiary_exec_controls_setbit(vmx, TERTIARY_EXEC_IPI_VIRT); |
| } else { |
| secondary_exec_controls_clearbit(vmx, |
| SECONDARY_EXEC_APIC_REGISTER_VIRT | |
| SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); |
| if (enable_ipiv) |
| tertiary_exec_controls_clearbit(vmx, TERTIARY_EXEC_IPI_VIRT); |
| } |
| |
| vmx_update_msr_bitmap_x2apic(vcpu); |
| } |
| |
| static u32 vmx_exec_control(struct vcpu_vmx *vmx) |
| { |
| u32 exec_control = vmcs_config.cpu_based_exec_ctrl; |
| |
| /* |
| * Not used by KVM, but fully supported for nesting, i.e. are allowed in |
| * vmcs12 and propagated to vmcs02 when set in vmcs12. |
| */ |
| exec_control &= ~(CPU_BASED_RDTSC_EXITING | |
| CPU_BASED_USE_IO_BITMAPS | |
| CPU_BASED_MONITOR_TRAP_FLAG | |
| CPU_BASED_PAUSE_EXITING); |
| |
| /* INTR_WINDOW_EXITING and NMI_WINDOW_EXITING are toggled dynamically */ |
| exec_control &= ~(CPU_BASED_INTR_WINDOW_EXITING | |
| CPU_BASED_NMI_WINDOW_EXITING); |
| |
| if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT) |
| exec_control &= ~CPU_BASED_MOV_DR_EXITING; |
| |
| if (!cpu_need_tpr_shadow(&vmx->vcpu)) |
| exec_control &= ~CPU_BASED_TPR_SHADOW; |
| |
| #ifdef CONFIG_X86_64 |
| if (exec_control & CPU_BASED_TPR_SHADOW) |
| exec_control &= ~(CPU_BASED_CR8_LOAD_EXITING | |
| CPU_BASED_CR8_STORE_EXITING); |
| else |
| exec_control |= CPU_BASED_CR8_STORE_EXITING | |
| CPU_BASED_CR8_LOAD_EXITING; |
| #endif |
| /* No need to intercept CR3 access or INVPLG when using EPT. */ |
| if (enable_ept) |
| exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING | |
| CPU_BASED_CR3_STORE_EXITING | |
| CPU_BASED_INVLPG_EXITING); |
| if (kvm_mwait_in_guest(vmx->vcpu.kvm)) |
| exec_control &= ~(CPU_BASED_MWAIT_EXITING | |
| CPU_BASED_MONITOR_EXITING); |
| if (kvm_hlt_in_guest(vmx->vcpu.kvm)) |
| exec_control &= ~CPU_BASED_HLT_EXITING; |
| return exec_control; |
| } |
| |
| static u64 vmx_tertiary_exec_control(struct vcpu_vmx *vmx) |
| { |
| u64 exec_control = vmcs_config.cpu_based_3rd_exec_ctrl; |
| |
| /* |
| * IPI virtualization relies on APICv. Disable IPI virtualization if |
| * APICv is inhibited. |
| */ |
| if (!enable_ipiv || !kvm_vcpu_apicv_active(&vmx->vcpu)) |
| exec_control &= ~TERTIARY_EXEC_IPI_VIRT; |
| |
| return exec_control; |
| } |
| |
| /* |
| * Adjust a single secondary execution control bit to intercept/allow an |
| * instruction in the guest. This is usually done based on whether or not a |
| * feature has been exposed to the guest in order to correctly emulate faults. |
| */ |
| static inline void |
| vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control, |
| u32 control, bool enabled, bool exiting) |
| { |
| /* |
| * If the control is for an opt-in feature, clear the control if the |
| * feature is not exposed to the guest, i.e. not enabled. If the |
| * control is opt-out, i.e. an exiting control, clear the control if |
| * the feature _is_ exposed to the guest, i.e. exiting/interception is |
| * disabled for the associated instruction. Note, the caller is |
| * responsible presetting exec_control to set all supported bits. |
| */ |
| if (enabled == exiting) |
| *exec_control &= ~control; |
| |
| /* |
| * Update the nested MSR settings so that a nested VMM can/can't set |
| * controls for features that are/aren't exposed to the guest. |
| */ |
| if (nested) { |
| /* |
| * All features that can be added or removed to VMX MSRs must |
| * be supported in the first place for nested virtualization. |
| */ |
| if (WARN_ON_ONCE(!(vmcs_config.nested.secondary_ctls_high & control))) |
| enabled = false; |
| |
| if (enabled) |
| vmx->nested.msrs.secondary_ctls_high |= control; |
| else |
| vmx->nested.msrs.secondary_ctls_high &= ~control; |
| } |
| } |
| |
| /* |
| * Wrapper macro for the common case of adjusting a secondary execution control |
| * based on a single guest CPUID bit, with a dedicated feature bit. This also |
| * verifies that the control is actually supported by KVM and hardware. |
| */ |
| #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \ |
| ({ \ |
| struct kvm_vcpu *__vcpu = &(vmx)->vcpu; \ |
| bool __enabled; \ |
| \ |
| if (cpu_has_vmx_##name()) { \ |
| if (kvm_is_governed_feature(X86_FEATURE_##feat_name)) \ |
| __enabled = guest_can_use(__vcpu, X86_FEATURE_##feat_name); \ |
| else \ |
| __enabled = guest_cpuid_has(__vcpu, X86_FEATURE_##feat_name); \ |
| vmx_adjust_secondary_exec_control(vmx, exec_control, SECONDARY_EXEC_##ctrl_name,\ |
| __enabled, exiting); \ |
| } \ |
| }) |
| |
| /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */ |
| #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \ |
| vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false) |
| |
| #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \ |
| vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true) |
| |
| static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx) |
| { |
| struct kvm_vcpu *vcpu = &vmx->vcpu; |
| |
| u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl; |
| |
| if (vmx_pt_mode_is_system()) |
| exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX); |
| if (!cpu_need_virtualize_apic_accesses(vcpu)) |
| exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; |
| if (vmx->vpid == 0) |
| exec_control &= ~SECONDARY_EXEC_ENABLE_VPID; |
| if (!enable_ept) { |
| exec_control &= ~SECONDARY_EXEC_ENABLE_EPT; |
| enable_unrestricted_guest = 0; |
| } |
| if (!enable_unrestricted_guest) |
| exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST; |
| if (kvm_pause_in_guest(vmx->vcpu.kvm)) |
| exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING; |
| if (!kvm_vcpu_apicv_active(vcpu)) |
| exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT | |
| SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); |
| exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; |
| |
| /* |
| * KVM doesn't support VMFUNC for L1, but the control is set in KVM's |
| * base configuration as KVM emulates VMFUNC[EPTP_SWITCHING] for L2. |
| */ |
| exec_control &= ~SECONDARY_EXEC_ENABLE_VMFUNC; |
| |
| /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP, |
| * in vmx_set_cr4. */ |
| exec_control &= ~SECONDARY_EXEC_DESC; |
| |
| /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD |
| (handle_vmptrld). |
| We can NOT enable shadow_vmcs here because we don't have yet |
| a current VMCS12 |
| */ |
| exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS; |
| |
| /* |
| * PML is enabled/disabled when dirty logging of memsmlots changes, but |
| * it needs to be set here when dirty logging is already active, e.g. |
| * if this vCPU was created after dirty logging was enabled. |
| */ |
| if (!enable_pml || !atomic_read(&vcpu->kvm->nr_memslots_dirty_logging)) |
| exec_control &= ~SECONDARY_EXEC_ENABLE_PML; |
| |
| vmx_adjust_sec_exec_feature(vmx, &exec_control, xsaves, XSAVES); |
| |
| /* |
| * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either |
| * feature is exposed to the guest. This creates a virtualization hole |
| * if both are supported in hardware but only one is exposed to the |
| * guest, but letting the guest execute RDTSCP or RDPID when either one |
| * is advertised is preferable to emulating the advertised instruction |
| * in KVM on #UD, and obviously better than incorrectly injecting #UD. |
| */ |
| if (cpu_has_vmx_rdtscp()) { |
| bool rdpid_or_rdtscp_enabled = |
| guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) || |
| guest_cpuid_has(vcpu, X86_FEATURE_RDPID); |
| |
| vmx_adjust_secondary_exec_control(vmx, &exec_control, |
| SECONDARY_EXEC_ENABLE_RDTSCP, |
| rdpid_or_rdtscp_enabled, false); |
| } |
| |
| vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID); |
| |
| vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND); |
| vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED); |
| |
| vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG, |
| ENABLE_USR_WAIT_PAUSE, false); |
| |
| if (!vcpu->kvm->arch.bus_lock_detection_enabled) |
| exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION; |
| |
| if (!kvm_notify_vmexit_enabled(vcpu->kvm)) |
| exec_control &= ~SECONDARY_EXEC_NOTIFY_VM_EXITING; |
| |
| return exec_control; |
| } |
| |
| static inline int vmx_get_pid_table_order(struct kvm *kvm) |
| { |
| return get_order(kvm->arch.max_vcpu_ids * sizeof(*to_kvm_vmx(kvm)->pid_table)); |
| } |
| |
| static int vmx_alloc_ipiv_pid_table(struct kvm *kvm) |
| { |
| struct page *pages; |
| struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); |
| |
| if (!irqchip_in_kernel(kvm) || !enable_ipiv) |
| return 0; |
| |
| if (kvm_vmx->pid_table) |
| return 0; |
| |
| pages = alloc_pages(GFP_KERNEL_ACCOUNT | __GFP_ZERO, |
| vmx_get_pid_table_order(kvm)); |
| if (!pages) |
| return -ENOMEM; |
| |
| kvm_vmx->pid_table = (void *)page_address(pages); |
| return 0; |
| } |
| |
| static int vmx_vcpu_precreate(struct kvm *kvm) |
| { |
| return vmx_alloc_ipiv_pid_table(kvm); |
| } |
| |
| #define VMX_XSS_EXIT_BITMAP 0 |
| |
| static void init_vmcs(struct vcpu_vmx *vmx) |
| { |
| struct kvm *kvm = vmx->vcpu.kvm; |
| struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); |
| |
| if (nested) |
| nested_vmx_set_vmcs_shadowing_bitmap(); |
| |
| if (cpu_has_vmx_msr_bitmap()) |
| vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap)); |
| |
| vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */ |
| |
| /* Control */ |
| pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx)); |
| |
| exec_controls_set(vmx, vmx_exec_control(vmx)); |
| |
| if (cpu_has_secondary_exec_ctrls()) |
| secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx)); |
| |
| if (cpu_has_tertiary_exec_ctrls()) |
| tertiary_exec_controls_set(vmx, vmx_tertiary_exec_control(vmx)); |
| |
| if (enable_apicv && lapic_in_kernel(&vmx->vcpu)) { |
| vmcs_write64(EOI_EXIT_BITMAP0, 0); |
| vmcs_write64(EOI_EXIT_BITMAP1, 0); |
| vmcs_write64(EOI_EXIT_BITMAP2, 0); |
| vmcs_write64(EOI_EXIT_BITMAP3, 0); |
| |
| vmcs_write16(GUEST_INTR_STATUS, 0); |
| |
| vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR); |
| vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc))); |
| } |
| |
| if (vmx_can_use_ipiv(&vmx->vcpu)) { |
| vmcs_write64(PID_POINTER_TABLE, __pa(kvm_vmx->pid_table)); |
| vmcs_write16(LAST_PID_POINTER_INDEX, kvm->arch.max_vcpu_ids - 1); |
| } |
| |
| if (!kvm_pause_in_guest(kvm)) { |
| vmcs_write32(PLE_GAP, ple_gap); |
| vmx->ple_window = ple_window; |
| vmx->ple_window_dirty = true; |
| } |
| |
| if (kvm_notify_vmexit_enabled(kvm)) |
| vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window); |
| |
| vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0); |
| vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0); |
| vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */ |
| |
| vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */ |
| vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */ |
| vmx_set_constant_host_state(vmx); |
| vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */ |
| vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */ |
| |
| if (cpu_has_vmx_vmfunc()) |
| vmcs_write64(VM_FUNCTION_CONTROL, 0); |
| |
| vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0); |
| vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0); |
| vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val)); |
| vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0); |
| vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val)); |
| |
| if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) |
| vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat); |
| |
| vm_exit_controls_set(vmx, vmx_vmexit_ctrl()); |
| |
| /* 22.2.1, 20.8.1 */ |
| vm_entry_controls_set(vmx, vmx_vmentry_ctrl()); |
| |
| vmx->vcpu.arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits(); |
| vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits); |
| |
| set_cr4_guest_host_mask(vmx); |
| |
| if (vmx->vpid != 0) |
| vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid); |
| |
| if (cpu_has_vmx_xsaves()) |
| vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP); |
| |
| if (enable_pml) { |
| vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg)); |
| vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); |
| } |
| |
| vmx_write_encls_bitmap(&vmx->vcpu, NULL); |
| |
| if (vmx_pt_mode_is_host_guest()) { |
| memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc)); |
| /* Bit[6~0] are forced to 1, writes are ignored. */ |
| vmx->pt_desc.guest.output_mask = 0x7F; |
| vmcs_write64(GUEST_IA32_RTIT_CTL, 0); |
| } |
| |
| vmcs_write32(GUEST_SYSENTER_CS, 0); |
| vmcs_writel(GUEST_SYSENTER_ESP, 0); |
| vmcs_writel(GUEST_SYSENTER_EIP, 0); |
| vmcs_write64(GUEST_IA32_DEBUGCTL, 0); |
| |
| if (cpu_has_vmx_tpr_shadow()) { |
| vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0); |
| if (cpu_need_tpr_shadow(&vmx->vcpu)) |
| vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, |
| __pa(vmx->vcpu.arch.apic->regs)); |
| vmcs_write32(TPR_THRESHOLD, 0); |
| } |
| |
| vmx_setup_uret_msrs(vmx); |
| } |
| |
| static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| |
| init_vmcs(vmx); |
| |
| if (nested) |
| memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs)); |
| |
| vcpu_setup_sgx_lepubkeyhash(vcpu); |
| |
| vmx->nested.posted_intr_nv = -1; |
| vmx->nested.vmxon_ptr = INVALID_GPA; |
| vmx->nested.current_vmptr = INVALID_GPA; |
| |
| #ifdef CONFIG_KVM_HYPERV |
| vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID; |
| #endif |
| |
| vcpu->arch.microcode_version = 0x100000000ULL; |
| vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED; |
| |
| /* |
| * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR |
| * or POSTED_INTR_WAKEUP_VECTOR. |
| */ |
| vmx->pi_desc.nv = POSTED_INTR_VECTOR; |
| vmx->pi_desc.sn = 1; |
| } |
| |
| static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| |
| if (!init_event) |
| __vmx_vcpu_reset(vcpu); |
| |
| vmx->rmode.vm86_active = 0; |
| vmx->spec_ctrl = 0; |
| |
| vmx->msr_ia32_umwait_control = 0; |
| |
| vmx->hv_deadline_tsc = -1; |
| kvm_set_cr8(vcpu, 0); |
| |
| vmx_segment_cache_clear(vmx); |
| kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS); |
| |
| seg_setup(VCPU_SREG_CS); |
| vmcs_write16(GUEST_CS_SELECTOR, 0xf000); |
| vmcs_writel(GUEST_CS_BASE, 0xffff0000ul); |
| |
| seg_setup(VCPU_SREG_DS); |
| seg_setup(VCPU_SREG_ES); |
| seg_setup(VCPU_SREG_FS); |
| seg_setup(VCPU_SREG_GS); |
| seg_setup(VCPU_SREG_SS); |
| |
| vmcs_write16(GUEST_TR_SELECTOR, 0); |
| vmcs_writel(GUEST_TR_BASE, 0); |
| vmcs_write32(GUEST_TR_LIMIT, 0xffff); |
| vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); |
| |
| vmcs_write16(GUEST_LDTR_SELECTOR, 0); |
| vmcs_writel(GUEST_LDTR_BASE, 0); |
| vmcs_write32(GUEST_LDTR_LIMIT, 0xffff); |
| vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082); |
| |
| vmcs_writel(GUEST_GDTR_BASE, 0); |
| vmcs_write32(GUEST_GDTR_LIMIT, 0xffff); |
| |
| vmcs_writel(GUEST_IDTR_BASE, 0); |
| vmcs_write32(GUEST_IDTR_LIMIT, 0xffff); |
| |
| vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); |
| vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0); |
| vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0); |
| if (kvm_mpx_supported()) |
| vmcs_write64(GUEST_BNDCFGS, 0); |
| |
| vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */ |
| |
| kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); |
| |
| vpid_sync_context(vmx->vpid); |
| |
| vmx_update_fb_clear_dis(vcpu, vmx); |
| } |
| |
| static void vmx_enable_irq_window(struct kvm_vcpu *vcpu) |
| { |
| exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING); |
| } |
| |
| static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu) |
| { |
| if (!enable_vnmi || |
| vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) { |
| vmx_enable_irq_window(vcpu); |
| return; |
| } |
| |
| exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING); |
| } |
| |
| static void vmx_inject_irq(struct kvm_vcpu *vcpu, bool reinjected) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| uint32_t intr; |
| int irq = vcpu->arch.interrupt.nr; |
| |
| trace_kvm_inj_virq(irq, vcpu->arch.interrupt.soft, reinjected); |
| |
| ++vcpu->stat.irq_injections; |
| if (vmx->rmode.vm86_active) { |
| int inc_eip = 0; |
| if (vcpu->arch.interrupt.soft) |
| inc_eip = vcpu->arch.event_exit_inst_len; |
| kvm_inject_realmode_interrupt(vcpu, irq, inc_eip); |
| return; |
| } |
| intr = irq | INTR_INFO_VALID_MASK; |
| if (vcpu->arch.interrupt.soft) { |
| intr |= INTR_TYPE_SOFT_INTR; |
| vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, |
| vmx->vcpu.arch.event_exit_inst_len); |
| } else |
| intr |= INTR_TYPE_EXT_INTR; |
| vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr); |
| |
| vmx_clear_hlt(vcpu); |
| } |
| |
| static void vmx_inject_nmi(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| |
| if (!enable_vnmi) { |
| /* |
| * Tracking the NMI-blocked state in software is built upon |
| * finding the next open IRQ window. This, in turn, depends on |
| * well-behaving guests: They have to keep IRQs disabled at |
| * least as long as the NMI handler runs. Otherwise we may |
| * cause NMI nesting, maybe breaking the guest. But as this is |
| * highly unlikely, we can live with the residual risk. |
| */ |
| vmx->loaded_vmcs->soft_vnmi_blocked = 1; |
| vmx->loaded_vmcs->vnmi_blocked_time = 0; |
| } |
| |
| ++vcpu->stat.nmi_injections; |
| vmx->loaded_vmcs->nmi_known_unmasked = false; |
| |
| if (vmx->rmode.vm86_active) { |
| kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0); |
| return; |
| } |
| |
| vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, |
| INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR); |
| |
| vmx_clear_hlt(vcpu); |
| } |
| |
| bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| bool masked; |
| |
| if (!enable_vnmi) |
| return vmx->loaded_vmcs->soft_vnmi_blocked; |
| if (vmx->loaded_vmcs->nmi_known_unmasked) |
| return false; |
| masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI; |
| vmx->loaded_vmcs->nmi_known_unmasked = !masked; |
| return masked; |
| } |
| |
| void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| |
| if (!enable_vnmi) { |
| if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) { |
| vmx->loaded_vmcs->soft_vnmi_blocked = masked; |
| vmx->loaded_vmcs->vnmi_blocked_time = 0; |
| } |
| } else { |
| vmx->loaded_vmcs->nmi_known_unmasked = !masked; |
| if (masked) |
| vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, |
| GUEST_INTR_STATE_NMI); |
| else |
| vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO, |
| GUEST_INTR_STATE_NMI); |
| } |
| } |
| |
| bool vmx_nmi_blocked(struct kvm_vcpu *vcpu) |
| { |
| if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu)) |
| return false; |
| |
| if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked) |
| return true; |
| |
| return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & |
| (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI | |
| GUEST_INTR_STATE_NMI)); |
| } |
| |
| static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection) |
| { |
| if (to_vmx(vcpu)->nested.nested_run_pending) |
| return -EBUSY; |
| |
| /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */ |
| if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu)) |
| return -EBUSY; |
| |
| return !vmx_nmi_blocked(vcpu); |
| } |
| |
| bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu) |
| { |
| if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) |
| return false; |
| |
| return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) || |
| (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & |
| (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)); |
| } |
| |
| static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection) |
| { |
| if (to_vmx(vcpu)->nested.nested_run_pending) |
| return -EBUSY; |
| |
| /* |
| * An IRQ must not be injected into L2 if it's supposed to VM-Exit, |
| * e.g. if the IRQ arrived asynchronously after checking nested events. |
| */ |
| if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) |
| return -EBUSY; |
| |
| return !vmx_interrupt_blocked(vcpu); |
| } |
| |
| static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr) |
| { |
| void __user *ret; |
| |
| if (enable_unrestricted_guest) |
| return 0; |
| |
| mutex_lock(&kvm->slots_lock); |
| ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr, |
| PAGE_SIZE * 3); |
| mutex_unlock(&kvm->slots_lock); |
| |
| if (IS_ERR(ret)) |
| return PTR_ERR(ret); |
| |
| to_kvm_vmx(kvm)->tss_addr = addr; |
| |
| return init_rmode_tss(kvm, ret); |
| } |
| |
| static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr) |
| { |
| to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr; |
| return 0; |
| } |
| |
| static bool rmode_exception(struct kvm_vcpu *vcpu, int vec) |
| { |
| switch (vec) { |
| case BP_VECTOR: |
| /* |
| * Update instruction length as we may reinject the exception |
| * from user space while in guest debugging mode. |
| */ |
| to_vmx(vcpu)->vcpu.arch.event_exit_inst_len = |
| vmcs_read32(VM_EXIT_INSTRUCTION_LEN); |
| if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) |
| return false; |
| fallthrough; |
| case DB_VECTOR: |
| return !(vcpu->guest_debug & |
| (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)); |
| case DE_VECTOR: |
| case OF_VECTOR: |
| case BR_VECTOR: |
| case UD_VECTOR: |
| case DF_VECTOR: |
| case SS_VECTOR: |
| case GP_VECTOR: |
| case MF_VECTOR: |
| return true; |
| } |
| return false; |
| } |
| |
| static int handle_rmode_exception(struct kvm_vcpu *vcpu, |
| int vec, u32 err_code) |
| { |
| /* |
| * Instruction with address size override prefix opcode 0x67 |
| * Cause the #SS fault with 0 error code in VM86 mode. |
| */ |
| if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) { |
| if (kvm_emulate_instruction(vcpu, 0)) { |
| if (vcpu->arch.halt_request) { |
| vcpu->arch.halt_request = 0; |
| return kvm_emulate_halt_noskip(vcpu); |
| } |
| return 1; |
| } |
| return 0; |
| } |
| |
| /* |
| * Forward all other exceptions that are valid in real mode. |
| * FIXME: Breaks guest debugging in real mode, needs to be fixed with |
| * the required debugging infrastructure rework. |
| */ |
| kvm_queue_exception(vcpu, vec); |
| return 1; |
| } |
| |
| static int handle_machine_check(struct kvm_vcpu *vcpu) |
| { |
| /* handled by vmx_vcpu_run() */ |
| return 1; |
| } |
| |
| /* |
| * If the host has split lock detection disabled, then #AC is |
| * unconditionally injected into the guest, which is the pre split lock |
| * detection behaviour. |
| * |
| * If the host has split lock detection enabled then #AC is |
| * only injected into the guest when: |
| * - Guest CPL == 3 (user mode) |
| * - Guest has #AC detection enabled in CR0 |
| * - Guest EFLAGS has AC bit set |
| */ |
| bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu) |
| { |
| if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) |
| return true; |
| |
| return vmx_get_cpl(vcpu) == 3 && kvm_is_cr0_bit_set(vcpu, X86_CR0_AM) && |
| (kvm_get_rflags(vcpu) & X86_EFLAGS_AC); |
| } |
| |
| static int handle_exception_nmi(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| struct kvm_run *kvm_run = vcpu->run; |
| u32 intr_info, ex_no, error_code; |
| unsigned long cr2, dr6; |
| u32 vect_info; |
| |
| vect_info = vmx->idt_vectoring_info; |
| intr_info = vmx_get_intr_info(vcpu); |
| |
| /* |
| * Machine checks are handled by handle_exception_irqoff(), or by |
| * vmx_vcpu_run() if a #MC occurs on VM-Entry. NMIs are handled by |
| * vmx_vcpu_enter_exit(). |
| */ |
| if (is_machine_check(intr_info) || is_nmi(intr_info)) |
| return 1; |
| |
| /* |
| * Queue the exception here instead of in handle_nm_fault_irqoff(). |
| * This ensures the nested_vmx check is not skipped so vmexit can |
| * be reflected to L1 (when it intercepts #NM) before reaching this |
| * point. |
| */ |
| if (is_nm_fault(intr_info)) { |
| kvm_queue_exception(vcpu, NM_VECTOR); |
| return 1; |
| } |
| |
| if (is_invalid_opcode(intr_info)) |
| return handle_ud(vcpu); |
| |
| error_code = 0; |
| if (intr_info & INTR_INFO_DELIVER_CODE_MASK) |
| error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); |
| |
| if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) { |
| WARN_ON_ONCE(!enable_vmware_backdoor); |
| |
| /* |
| * VMware backdoor emulation on #GP interception only handles |
| * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero |
| * error code on #GP. |
| */ |
| if (error_code) { |
| kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); |
| return 1; |
| } |
| return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP); |
| } |
| |
| /* |
| * The #PF with PFEC.RSVD = 1 indicates the guest is accessing |
| * MMIO, it is better to report an internal error. |
| * See the comments in vmx_handle_exit. |
| */ |
| if ((vect_info & VECTORING_INFO_VALID_MASK) && |
| !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) { |
| vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
| vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX; |
| vcpu->run->internal.ndata = 4; |
| vcpu->run->internal.data[0] = vect_info; |
| vcpu->run->internal.data[1] = intr_info; |
| vcpu->run->internal.data[2] = error_code; |
| vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu; |
| return 0; |
| } |
| |
| if (is_page_fault(intr_info)) { |
| cr2 = vmx_get_exit_qual(vcpu); |
| if (enable_ept && !vcpu->arch.apf.host_apf_flags) { |
| /* |
| * EPT will cause page fault only if we need to |
| * detect illegal GPAs. |
| */ |
| WARN_ON_ONCE(!allow_smaller_maxphyaddr); |
| kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code); |
| return 1; |
| } else |
| return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0); |
| } |
| |
| ex_no = intr_info & INTR_INFO_VECTOR_MASK; |
| |
| if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no)) |
| return handle_rmode_exception(vcpu, ex_no, error_code); |
| |
| switch (ex_no) { |
| case DB_VECTOR: |
| dr6 = vmx_get_exit_qual(vcpu); |
| if (!(vcpu->guest_debug & |
| (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) { |
| /* |
| * If the #DB was due to ICEBP, a.k.a. INT1, skip the |
| * instruction. ICEBP generates a trap-like #DB, but |
| * despite its interception control being tied to #DB, |
| * is an instruction intercept, i.e. the VM-Exit occurs |
| * on the ICEBP itself. Use the inner "skip" helper to |
| * avoid single-step #DB and MTF updates, as ICEBP is |
| * higher priority. Note, skipping ICEBP still clears |
| * STI and MOVSS blocking. |
| * |
| * For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS |
| * if single-step is enabled in RFLAGS and STI or MOVSS |
| * blocking is active, as the CPU doesn't set the bit |
| * on VM-Exit due to #DB interception. VM-Entry has a |
| * consistency check that a single-step #DB is pending |
| * in this scenario as the previous instruction cannot |
| * have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV |
| * don't modify RFLAGS), therefore the one instruction |
| * delay when activating single-step breakpoints must |
| * have already expired. Note, the CPU sets/clears BS |
| * as appropriate for all other VM-Exits types. |
| */ |
| if (is_icebp(intr_info)) |
| WARN_ON(!skip_emulated_instruction(vcpu)); |
| else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) && |
| (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & |
| (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS))) |
| vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, |
| vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS); |
| |
| kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); |
| return 1; |
| } |
| kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; |
| kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7); |
| fallthrough; |
| case BP_VECTOR: |
| /* |
| * Update instruction length as we may reinject #BP from |
| * user space while in guest debugging mode. Reading it for |
| * #DB as well causes no harm, it is not used in that case. |
| */ |
| vmx->vcpu.arch.event_exit_inst_len = |
| vmcs_read32(VM_EXIT_INSTRUCTION_LEN); |
| kvm_run->exit_reason = KVM_EXIT_DEBUG; |
| kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); |
| kvm_run->debug.arch.exception = ex_no; |
| break; |
| case AC_VECTOR: |
| if (vmx_guest_inject_ac(vcpu)) { |
| kvm_queue_exception_e(vcpu, AC_VECTOR, error_code); |
| return 1; |
| } |
| |
| /* |
| * Handle split lock. Depending on detection mode this will |
| * either warn and disable split lock detection for this |
| * task or force SIGBUS on it. |
| */ |
| if (handle_guest_split_lock(kvm_rip_read(vcpu))) |
| return 1; |
| fallthrough; |
| default: |
| kvm_run->exit_reason = KVM_EXIT_EXCEPTION; |
| kvm_run->ex.exception = ex_no; |
| kvm_run->ex.error_code = error_code; |
| break; |
| } |
| return 0; |
| } |
| |
| static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu) |
| { |
| ++vcpu->stat.irq_exits; |
| return 1; |
| } |
| |
| static int handle_triple_fault(struct kvm_vcpu *vcpu) |
| { |
| vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; |
| vcpu->mmio_needed = 0; |
| return 0; |
| } |
| |
| static int handle_io(struct kvm_vcpu *vcpu) |
| { |
| unsigned long exit_qualification; |
| int size, in, string; |
| unsigned port; |
| |
| exit_qualification = vmx_get_exit_qual(vcpu); |
| string = (exit_qualification & 16) != 0; |
| |
| ++vcpu->stat.io_exits; |
| |
| if (string) |
| return kvm_emulate_instruction(vcpu, 0); |
| |
| port = exit_qualification >> 16; |
| size = (exit_qualification & 7) + 1; |
| in = (exit_qualification & 8) != 0; |
| |
| return kvm_fast_pio(vcpu, size, port, in); |
| } |
| |
| static void |
| vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) |
| { |
| /* |
| * Patch in the VMCALL instruction: |
| */ |
| hypercall[0] = 0x0f; |
| hypercall[1] = 0x01; |
| hypercall[2] = 0xc1; |
| } |
| |
| /* called to set cr0 as appropriate for a mov-to-cr0 exit. */ |
| static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val) |
| { |
| if (is_guest_mode(vcpu)) { |
| struct vmcs12 *vmcs12 = get_vmcs12(vcpu); |
| unsigned long orig_val = val; |
| |
| /* |
| * We get here when L2 changed cr0 in a way that did not change |
| * any of L1's shadowed bits (see nested_vmx_exit_handled_cr), |
| * but did change L0 shadowed bits. So we first calculate the |
| * effective cr0 value that L1 would like to write into the |
| * hardware. It consists of the L2-owned bits from the new |
| * value combined with the L1-owned bits from L1's guest_cr0. |
| */ |
| val = (val & ~vmcs12->cr0_guest_host_mask) | |
| (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask); |
| |
| if (kvm_set_cr0(vcpu, val)) |
| return 1; |
| vmcs_writel(CR0_READ_SHADOW, orig_val); |
| return 0; |
| } else { |
| return kvm_set_cr0(vcpu, val); |
| } |
| } |
| |
| static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val) |
| { |
| if (is_guest_mode(vcpu)) { |
| struct vmcs12 *vmcs12 = get_vmcs12(vcpu); |
| unsigned long orig_val = val; |
| |
| /* analogously to handle_set_cr0 */ |
| val = (val & ~vmcs12->cr4_guest_host_mask) | |
| (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask); |
| if (kvm_set_cr4(vcpu, val)) |
| return 1; |
| vmcs_writel(CR4_READ_SHADOW, orig_val); |
| return 0; |
| } else |
| return kvm_set_cr4(vcpu, val); |
| } |
| |
| static int handle_desc(struct kvm_vcpu *vcpu) |
| { |
| /* |
| * UMIP emulation relies on intercepting writes to CR4.UMIP, i.e. this |
| * and other code needs to be updated if UMIP can be guest owned. |
| */ |
| BUILD_BUG_ON(KVM_POSSIBLE_CR4_GUEST_BITS & X86_CR4_UMIP); |
| |
| WARN_ON_ONCE(!kvm_is_cr4_bit_set(vcpu, X86_CR4_UMIP)); |
| return kvm_emulate_instruction(vcpu, 0); |
| } |
| |
| static int handle_cr(struct kvm_vcpu *vcpu) |
| { |
| unsigned long exit_qualification, val; |
| int cr; |
| int reg; |
| int err; |
| int ret; |
| |
| exit_qualification = vmx_get_exit_qual(vcpu); |
| cr = exit_qualification & 15; |
| reg = (exit_qualification >> 8) & 15; |
| switch ((exit_qualification >> 4) & 3) { |
| case 0: /* mov to cr */ |
| val = kvm_register_read(vcpu, reg); |
| trace_kvm_cr_write(cr, val); |
| switch (cr) { |
| case 0: |
| err = handle_set_cr0(vcpu, val); |
| return kvm_complete_insn_gp(vcpu, err); |
| case 3: |
| WARN_ON_ONCE(enable_unrestricted_guest); |
| |
| err = kvm_set_cr3(vcpu, val); |
| return kvm_complete_insn_gp(vcpu, err); |
| case 4: |
| err = handle_set_cr4(vcpu, val); |
| return kvm_complete_insn_gp(vcpu, err); |
| case 8: { |
| u8 cr8_prev = kvm_get_cr8(vcpu); |
| u8 cr8 = (u8)val; |
| err = kvm_set_cr8(vcpu, cr8); |
| ret = kvm_complete_insn_gp(vcpu, err); |
| if (lapic_in_kernel(vcpu)) |
| return ret; |
| if (cr8_prev <= cr8) |
| return ret; |
| /* |
| * TODO: we might be squashing a |
| * KVM_GUESTDBG_SINGLESTEP-triggered |
| * KVM_EXIT_DEBUG here. |
| */ |
| vcpu->run->exit_reason = KVM_EXIT_SET_TPR; |
| return 0; |
| } |
| } |
| break; |
| case 2: /* clts */ |
| KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS"); |
| return -EIO; |
| case 1: /*mov from cr*/ |
| switch (cr) { |
| case 3: |
| WARN_ON_ONCE(enable_unrestricted_guest); |
| |
| val = kvm_read_cr3(vcpu); |
| kvm_register_write(vcpu, reg, val); |
| trace_kvm_cr_read(cr, val); |
| return kvm_skip_emulated_instruction(vcpu); |
| case 8: |
| val = kvm_get_cr8(vcpu); |
| kvm_register_write(vcpu, reg, val); |
| trace_kvm_cr_read(cr, val); |
| return kvm_skip_emulated_instruction(vcpu); |
| } |
| break; |
| case 3: /* lmsw */ |
| val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f; |
| trace_kvm_cr_write(0, (kvm_read_cr0_bits(vcpu, ~0xful) | val)); |
| kvm_lmsw(vcpu, val); |
| |
| return kvm_skip_emulated_instruction(vcpu); |
| default: |
| break; |
| } |
| vcpu->run->exit_reason = 0; |
| vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n", |
| (int)(exit_qualification >> 4) & 3, cr); |
| return 0; |
| } |
| |
| static int handle_dr(struct kvm_vcpu *vcpu) |
| { |
| unsigned long exit_qualification; |
| int dr, dr7, reg; |
| int err = 1; |
| |
| exit_qualification = vmx_get_exit_qual(vcpu); |
| dr = exit_qualification & DEBUG_REG_ACCESS_NUM; |
| |
| /* First, if DR does not exist, trigger UD */ |
| if (!kvm_require_dr(vcpu, dr)) |
| return 1; |
| |
| if (vmx_get_cpl(vcpu) > 0) |
| goto out; |
| |
| dr7 = vmcs_readl(GUEST_DR7); |
| if (dr7 & DR7_GD) { |
| /* |
| * As the vm-exit takes precedence over the debug trap, we |
| * need to emulate the latter, either for the host or the |
| * guest debugging itself. |
| */ |
| if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { |
| vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW; |
| vcpu->run->debug.arch.dr7 = dr7; |
| vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu); |
| vcpu->run->debug.arch.exception = DB_VECTOR; |
| vcpu->run->exit_reason = KVM_EXIT_DEBUG; |
| return 0; |
| } else { |
| kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD); |
| return 1; |
| } |
| } |
| |
| if (vcpu->guest_debug == 0) { |
| exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING); |
| |
| /* |
| * No more DR vmexits; force a reload of the debug registers |
| * and reenter on this instruction. The next vmexit will |
| * retrieve the full state of the debug registers. |
| */ |
| vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; |
| return 1; |
| } |
| |
| reg = DEBUG_REG_ACCESS_REG(exit_qualification); |
| if (exit_qualification & TYPE_MOV_FROM_DR) { |
| kvm_register_write(vcpu, reg, kvm_get_dr(vcpu, dr)); |
| err = 0; |
| } else { |
| err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg)); |
| } |
| |
| out: |
| return kvm_complete_insn_gp(vcpu, err); |
| } |
| |
| static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) |
| { |
| get_debugreg(vcpu->arch.db[0], 0); |
| get_debugreg(vcpu->arch.db[1], 1); |
| get_debugreg(vcpu->arch.db[2], 2); |
| get_debugreg(vcpu->arch.db[3], 3); |
| get_debugreg(vcpu->arch.dr6, 6); |
| vcpu->arch.dr7 = vmcs_readl(GUEST_DR7); |
| |
| vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; |
| exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING); |
| |
| /* |
| * exc_debug expects dr6 to be cleared after it runs, avoid that it sees |
| * a stale dr6 from the guest. |
| */ |
| set_debugreg(DR6_RESERVED, 6); |
| } |
| |
| static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val) |
| { |
| vmcs_writel(GUEST_DR7, val); |
| } |
| |
| static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu) |
| { |
| kvm_apic_update_ppr(vcpu); |
| return 1; |
| } |
| |
| static int handle_interrupt_window(struct kvm_vcpu *vcpu) |
| { |
| exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING); |
| |
| kvm_make_request(KVM_REQ_EVENT, vcpu); |
| |
| ++vcpu->stat.irq_window_exits; |
| return 1; |
| } |
| |
| static int handle_invlpg(struct kvm_vcpu *vcpu) |
| { |
| unsigned long exit_qualification = vmx_get_exit_qual(vcpu); |
| |
| kvm_mmu_invlpg(vcpu, exit_qualification); |
| return kvm_skip_emulated_instruction(vcpu); |
| } |
| |
| static int handle_apic_access(struct kvm_vcpu *vcpu) |
| { |
| if (likely(fasteoi)) { |
| unsigned long exit_qualification = vmx_get_exit_qual(vcpu); |
| int access_type, offset; |
| |
| access_type = exit_qualification & APIC_ACCESS_TYPE; |
| offset = exit_qualification & APIC_ACCESS_OFFSET; |
| /* |
| * Sane guest uses MOV to write EOI, with written value |
| * not cared. So make a short-circuit here by avoiding |
| * heavy instruction emulation. |
| */ |
| if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) && |
| (offset == APIC_EOI)) { |
| kvm_lapic_set_eoi(vcpu); |
| return kvm_skip_emulated_instruction(vcpu); |
| } |
| } |
| return kvm_emulate_instruction(vcpu, 0); |
| } |
| |
| static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu) |
| { |
| unsigned long exit_qualification = vmx_get_exit_qual(vcpu); |
| int vector = exit_qualification & 0xff; |
| |
| /* EOI-induced VM exit is trap-like and thus no need to adjust IP */ |
| kvm_apic_set_eoi_accelerated(vcpu, vector); |
| return 1; |
| } |
| |
| static int handle_apic_write(struct kvm_vcpu *vcpu) |
| { |
| unsigned long exit_qualification = vmx_get_exit_qual(vcpu); |
| |
| /* |
| * APIC-write VM-Exit is trap-like, KVM doesn't need to advance RIP and |
| * hardware has done any necessary aliasing, offset adjustments, etc... |
| * for the access. I.e. the correct value has already been written to |
| * the vAPIC page for the correct 16-byte chunk. KVM needs only to |
| * retrieve the register value and emulate the access. |
| */ |
| u32 offset = exit_qualification & 0xff0; |
| |
| kvm_apic_write_nodecode(vcpu, offset); |
| return 1; |
| } |
| |
| static int handle_task_switch(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| unsigned long exit_qualification; |
| bool has_error_code = false; |
| u32 error_code = 0; |
| u16 tss_selector; |
| int reason, type, idt_v, idt_index; |
| |
| idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK); |
| idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK); |
| type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK); |
| |
| exit_qualification = vmx_get_exit_qual(vcpu); |
| |
| reason = (u32)exit_qualification >> 30; |
| if (reason == TASK_SWITCH_GATE && idt_v) { |
| switch (type) { |
| case INTR_TYPE_NMI_INTR: |
| vcpu->arch.nmi_injected = false; |
| vmx_set_nmi_mask(vcpu, true); |
| break; |
| case INTR_TYPE_EXT_INTR: |
| case INTR_TYPE_SOFT_INTR: |
| kvm_clear_interrupt_queue(vcpu); |
| break; |
| case INTR_TYPE_HARD_EXCEPTION: |
| if (vmx->idt_vectoring_info & |
| VECTORING_INFO_DELIVER_CODE_MASK) { |
| has_error_code = true; |
| error_code = |
| vmcs_read32(IDT_VECTORING_ERROR_CODE); |
| } |
| fallthrough; |
| case INTR_TYPE_SOFT_EXCEPTION: |
| kvm_clear_exception_queue(vcpu); |
| break; |
| default: |
| break; |
| } |
| } |
| tss_selector = exit_qualification; |
| |
| if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION && |
| type != INTR_TYPE_EXT_INTR && |
| type != INTR_TYPE_NMI_INTR)) |
| WARN_ON(!skip_emulated_instruction(vcpu)); |
| |
| /* |
| * TODO: What about debug traps on tss switch? |
| * Are we supposed to inject them and update dr6? |
| */ |
| return kvm_task_switch(vcpu, tss_selector, |
| type == INTR_TYPE_SOFT_INTR ? idt_index : -1, |
| reason, has_error_code, error_code); |
| } |
| |
| static int handle_ept_violation(struct kvm_vcpu *vcpu) |
| { |
| unsigned long exit_qualification; |
| gpa_t gpa; |
| u64 error_code; |
| |
| exit_qualification = vmx_get_exit_qual(vcpu); |
| |
| /* |
| * EPT violation happened while executing iret from NMI, |
| * "blocked by NMI" bit has to be set before next VM entry. |
| * There are errata that may cause this bit to not be set: |
| * AAK134, BY25. |
| */ |
| if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && |
| enable_vnmi && |
| (exit_qualification & INTR_INFO_UNBLOCK_NMI)) |
| vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI); |
| |
| gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); |
| trace_kvm_page_fault(vcpu, gpa, exit_qualification); |
| |
| /* Is it a read fault? */ |
| error_code = (exit_qualification & EPT_VIOLATION_ACC_READ) |
| ? PFERR_USER_MASK : 0; |
| /* Is it a write fault? */ |
| error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE) |
| ? PFERR_WRITE_MASK : 0; |
| /* Is it a fetch fault? */ |
| error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR) |
| ? PFERR_FETCH_MASK : 0; |
| /* ept page table entry is present? */ |
| error_code |= (exit_qualification & EPT_VIOLATION_RWX_MASK) |
| ? PFERR_PRESENT_MASK : 0; |
| |
| error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ? |
| PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK; |
| |
| vcpu->arch.exit_qualification = exit_qualification; |
| |
| /* |
| * Check that the GPA doesn't exceed physical memory limits, as that is |
| * a guest page fault. We have to emulate the instruction here, because |
| * if the illegal address is that of a paging structure, then |
| * EPT_VIOLATION_ACC_WRITE bit is set. Alternatively, if supported we |
| * would also use advanced VM-exit information for EPT violations to |
| * reconstruct the page fault error code. |
| */ |
| if (unlikely(allow_smaller_maxphyaddr && !kvm_vcpu_is_legal_gpa(vcpu, gpa))) |
| return kvm_emulate_instruction(vcpu, 0); |
| |
| return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0); |
| } |
| |
| static int handle_ept_misconfig(struct kvm_vcpu *vcpu) |
| { |
| gpa_t gpa; |
| |
| if (vmx_check_emulate_instruction(vcpu, EMULTYPE_PF, NULL, 0)) |
| return 1; |
| |
| /* |
| * A nested guest cannot optimize MMIO vmexits, because we have an |
| * nGPA here instead of the required GPA. |
| */ |
| gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); |
| if (!is_guest_mode(vcpu) && |
| !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) { |
| trace_kvm_fast_mmio(gpa); |
| return kvm_skip_emulated_instruction(vcpu); |
| } |
| |
| return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0); |
| } |
| |
| static int handle_nmi_window(struct kvm_vcpu *vcpu) |
| { |
| if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm)) |
| return -EIO; |
| |
| exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING); |
| ++vcpu->stat.nmi_window_exits; |
| kvm_make_request(KVM_REQ_EVENT, vcpu); |
| |
| return 1; |
| } |
| |
| static bool vmx_emulation_required_with_pending_exception(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| |
| return vmx->emulation_required && !vmx->rmode.vm86_active && |
| (kvm_is_exception_pending(vcpu) || vcpu->arch.exception.injected); |
| } |
| |
| static int handle_invalid_guest_state(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| bool intr_window_requested; |
| unsigned count = 130; |
| |
| intr_window_requested = exec_controls_get(vmx) & |
| CPU_BASED_INTR_WINDOW_EXITING; |
| |
| while (vmx->emulation_required && count-- != 0) { |
| if (intr_window_requested && !vmx_interrupt_blocked(vcpu)) |
| return handle_interrupt_window(&vmx->vcpu); |
| |
| if (kvm_test_request(KVM_REQ_EVENT, vcpu)) |
| return 1; |
| |
| if (!kvm_emulate_instruction(vcpu, 0)) |
| return 0; |
| |
| if (vmx_emulation_required_with_pending_exception(vcpu)) { |
| kvm_prepare_emulation_failure_exit(vcpu); |
| return 0; |
| } |
| |
| if (vcpu->arch.halt_request) { |
| vcpu->arch.halt_request = 0; |
| return kvm_emulate_halt_noskip(vcpu); |
| } |
| |
| /* |
| * Note, return 1 and not 0, vcpu_run() will invoke |
| * xfer_to_guest_mode() which will create a proper return |
| * code. |
| */ |
| if (__xfer_to_guest_mode_work_pending()) |
| return 1; |
| } |
| |
| return 1; |
| } |
| |
| static int vmx_vcpu_pre_run(struct kvm_vcpu *vcpu) |
| { |
| if (vmx_emulation_required_with_pending_exception(vcpu)) { |
| kvm_prepare_emulation_failure_exit(vcpu); |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| static void grow_ple_window(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| unsigned int old = vmx->ple_window; |
| |
| vmx->ple_window = __grow_ple_window(old, ple_window, |
| ple_window_grow, |
| ple_window_max); |
| |
| if (vmx->ple_window != old) { |
| vmx->ple_window_dirty = true; |
| trace_kvm_ple_window_update(vcpu->vcpu_id, |
| vmx->ple_window, old); |
| } |
| } |
| |
| static void shrink_ple_window(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| unsigned int old = vmx->ple_window; |
| |
| vmx->ple_window = __shrink_ple_window(old, ple_window, |
| ple_window_shrink, |
| ple_window); |
| |
| if (vmx->ple_window != old) { |
| vmx->ple_window_dirty = true; |
| trace_kvm_ple_window_update(vcpu->vcpu_id, |
| vmx->ple_window, old); |
| } |
| } |
| |
| /* |
| * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE |
| * exiting, so only get here on cpu with PAUSE-Loop-Exiting. |
| */ |
| static int handle_pause(struct kvm_vcpu *vcpu) |
| { |
| if (!kvm_pause_in_guest(vcpu->kvm)) |
| grow_ple_window(vcpu); |
| |
| /* |
| * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting" |
| * VM-execution control is ignored if CPL > 0. OTOH, KVM |
| * never set PAUSE_EXITING and just set PLE if supported, |
| * so the vcpu must be CPL=0 if it gets a PAUSE exit. |
| */ |
| kvm_vcpu_on_spin(vcpu, true); |
| return kvm_skip_emulated_instruction(vcpu); |
| } |
| |
| static int handle_monitor_trap(struct kvm_vcpu *vcpu) |
| { |
| return 1; |
| } |
| |
| static int handle_invpcid(struct kvm_vcpu *vcpu) |
| { |
| u32 vmx_instruction_info; |
| unsigned long type; |
| gva_t gva; |
| struct { |
| u64 pcid; |
| u64 gla; |
| } operand; |
| int gpr_index; |
| |
| if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) { |
| kvm_queue_exception(vcpu, UD_VECTOR); |
| return 1; |
| } |
| |
| vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); |
| gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info); |
| type = kvm_register_read(vcpu, gpr_index); |
| |
| /* According to the Intel instruction reference, the memory operand |
| * is read even if it isn't needed (e.g., for type==all) |
| */ |
| if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu), |
| vmx_instruction_info, false, |
| sizeof(operand), &gva)) |
| return 1; |
| |
| return kvm_handle_invpcid(vcpu, type, gva); |
| } |
| |
| static int handle_pml_full(struct kvm_vcpu *vcpu) |
| { |
| unsigned long exit_qualification; |
| |
| trace_kvm_pml_full(vcpu->vcpu_id); |
| |
| exit_qualification = vmx_get_exit_qual(vcpu); |
| |
| /* |
| * PML buffer FULL happened while executing iret from NMI, |
| * "blocked by NMI" bit has to be set before next VM entry. |
| */ |
| if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && |
| enable_vnmi && |
| (exit_qualification & INTR_INFO_UNBLOCK_NMI)) |
| vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, |
| GUEST_INTR_STATE_NMI); |
| |
| /* |
| * PML buffer already flushed at beginning of VMEXIT. Nothing to do |
| * here.., and there's no userspace involvement needed for PML. |
| */ |
| return 1; |
| } |
| |
| static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu, |
| bool force_immediate_exit) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| |
| /* |
| * In the *extremely* unlikely scenario that this is a spurious VM-Exit |
| * due to the timer expiring while it was "soft" disabled, just eat the |
| * exit and re-enter the guest. |
| */ |
| if (unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) |
| return EXIT_FASTPATH_REENTER_GUEST; |
| |
| /* |
| * If the timer expired because KVM used it to force an immediate exit, |
| * then mission accomplished. |
| */ |
| if (force_immediate_exit) |
| return EXIT_FASTPATH_EXIT_HANDLED; |
| |
| /* |
| * If L2 is active, go down the slow path as emulating the guest timer |
| * expiration likely requires synthesizing a nested VM-Exit. |
| */ |
| if (is_guest_mode(vcpu)) |
| return EXIT_FASTPATH_NONE; |
| |
| kvm_lapic_expired_hv_timer(vcpu); |
| return EXIT_FASTPATH_REENTER_GUEST; |
| } |
| |
| static int handle_preemption_timer(struct kvm_vcpu *vcpu) |
| { |
| /* |
| * This non-fastpath handler is reached if and only if the preemption |
| * timer was being used to emulate a guest timer while L2 is active. |
| * All other scenarios are supposed to be handled in the fastpath. |
| */ |
| WARN_ON_ONCE(!is_guest_mode(vcpu)); |
| kvm_lapic_expired_hv_timer(vcpu); |
| return 1; |
| } |
| |
| /* |
| * When nested=0, all VMX instruction VM Exits filter here. The handlers |
| * are overwritten by nested_vmx_setup() when nested=1. |
| */ |
| static int handle_vmx_instruction(struct kvm_vcpu *vcpu) |
| { |
| kvm_queue_exception(vcpu, UD_VECTOR); |
| return 1; |
| } |
| |
| #ifndef CONFIG_X86_SGX_KVM |
| static int handle_encls(struct kvm_vcpu *vcpu) |
| { |
| /* |
| * SGX virtualization is disabled. There is no software enable bit for |
| * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent |
| * the guest from executing ENCLS (when SGX is supported by hardware). |
| */ |
| kvm_queue_exception(vcpu, UD_VECTOR); |
| return 1; |
| } |
| #endif /* CONFIG_X86_SGX_KVM */ |
| |
| static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu) |
| { |
| /* |
| * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK |
| * VM-Exits. Unconditionally set the flag here and leave the handling to |
| * vmx_handle_exit(). |
| */ |
| to_vmx(vcpu)->exit_reason.bus_lock_detected = true; |
| return 1; |
| } |
| |
| static int handle_notify(struct kvm_vcpu *vcpu) |
| { |
| unsigned long exit_qual = vmx_get_exit_qual(vcpu); |
| bool context_invalid = exit_qual & NOTIFY_VM_CONTEXT_INVALID; |
| |
| ++vcpu->stat.notify_window_exits; |
| |
| /* |
| * Notify VM exit happened while executing iret from NMI, |
| * "blocked by NMI" bit has to be set before next VM entry. |
| */ |
| if (enable_vnmi && (exit_qual & INTR_INFO_UNBLOCK_NMI)) |
| vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, |
| GUEST_INTR_STATE_NMI); |
| |
| if (vcpu->kvm->arch.notify_vmexit_flags & KVM_X86_NOTIFY_VMEXIT_USER || |
| context_invalid) { |
| vcpu->run->exit_reason = KVM_EXIT_NOTIFY; |
| vcpu->run->notify.flags = context_invalid ? |
| KVM_NOTIFY_CONTEXT_INVALID : 0; |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| /* |
| * The exit handlers return 1 if the exit was handled fully and guest execution |
| * may resume. Otherwise they set the kvm_run parameter to indicate what needs |
| * to be done to userspace and return 0. |
| */ |
| static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = { |
| [EXIT_REASON_EXCEPTION_NMI] = handle_exception_nmi, |
| [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt, |
| [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault, |
| [EXIT_REASON_NMI_WINDOW] = handle_nmi_window, |
| [EXIT_REASON_IO_INSTRUCTION] = handle_io, |
| [EXIT_REASON_CR_ACCESS] = handle_cr, |
| [EXIT_REASON_DR_ACCESS] = handle_dr, |
| [EXIT_REASON_CPUID] = kvm_emulate_cpuid, |
| [EXIT_REASON_MSR_READ] = kvm_emulate_rdmsr, |
| [EXIT_REASON_MSR_WRITE] = kvm_emulate_wrmsr, |
| [EXIT_REASON_INTERRUPT_WINDOW] = handle_interrupt_window, |
| [EXIT_REASON_HLT] = kvm_emulate_halt, |
| [EXIT_REASON_INVD] = kvm_emulate_invd, |
| [EXIT_REASON_INVLPG] = handle_invlpg, |
| [EXIT_REASON_RDPMC] = kvm_emulate_rdpmc, |
| [EXIT_REASON_VMCALL] = kvm_emulate_hypercall, |
| [EXIT_REASON_VMCLEAR] = handle_vmx_instruction, |
| [EXIT_REASON_VMLAUNCH] = handle_vmx_instruction, |
| [EXIT_REASON_VMPTRLD] = handle_vmx_instruction, |
| [EXIT_REASON_VMPTRST] = handle_vmx_instruction, |
| [EXIT_REASON_VMREAD] = handle_vmx_instruction, |
| [EXIT_REASON_VMRESUME] = handle_vmx_instruction, |
| [EXIT_REASON_VMWRITE] = handle_vmx_instruction, |
| [EXIT_REASON_VMOFF] = handle_vmx_instruction, |
| [EXIT_REASON_VMON] = handle_vmx_instruction, |
| [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold, |
| [EXIT_REASON_APIC_ACCESS] = handle_apic_access, |
| [EXIT_REASON_APIC_WRITE] = handle_apic_write, |
| [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced, |
| [EXIT_REASON_WBINVD] = kvm_emulate_wbinvd, |
| [EXIT_REASON_XSETBV] = kvm_emulate_xsetbv, |
| [EXIT_REASON_TASK_SWITCH] = handle_task_switch, |
| [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check, |
| [EXIT_REASON_GDTR_IDTR] = handle_desc, |
| [EXIT_REASON_LDTR_TR] = handle_desc, |
| [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation, |
| [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig, |
| [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause, |
| [EXIT_REASON_MWAIT_INSTRUCTION] = kvm_emulate_mwait, |
| [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap, |
| [EXIT_REASON_MONITOR_INSTRUCTION] = kvm_emulate_monitor, |
| [EXIT_REASON_INVEPT] = handle_vmx_instruction, |
| [EXIT_REASON_INVVPID] = handle_vmx_instruction, |
| [EXIT_REASON_RDRAND] = kvm_handle_invalid_op, |
| [EXIT_REASON_RDSEED] = kvm_handle_invalid_op, |
| [EXIT_REASON_PML_FULL] = handle_pml_full, |
| [EXIT_REASON_INVPCID] = handle_invpcid, |
| [EXIT_REASON_VMFUNC] = handle_vmx_instruction, |
| [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer, |
| [EXIT_REASON_ENCLS] = handle_encls, |
| [EXIT_REASON_BUS_LOCK] = handle_bus_lock_vmexit, |
| [EXIT_REASON_NOTIFY] = handle_notify, |
| }; |
| |
| static const int kvm_vmx_max_exit_handlers = |
| ARRAY_SIZE(kvm_vmx_exit_handlers); |
| |
| static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason, |
| u64 *info1, u64 *info2, |
| u32 *intr_info, u32 *error_code) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| |
| *reason = vmx->exit_reason.full; |
| *info1 = vmx_get_exit_qual(vcpu); |
| if (!(vmx->exit_reason.failed_vmentry)) { |
| *info2 = vmx->idt_vectoring_info; |
| *intr_info = vmx_get_intr_info(vcpu); |
| if (is_exception_with_error_code(*intr_info)) |
| *error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); |
| else |
| *error_code = 0; |
| } else { |
| *info2 = 0; |
| *intr_info = 0; |
| *error_code = 0; |
| } |
| } |
| |
| static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx) |
| { |
| if (vmx->pml_pg) { |
| __free_page(vmx->pml_pg); |
| vmx->pml_pg = NULL; |
| } |
| } |
| |
| static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| u64 *pml_buf; |
| u16 pml_idx; |
| |
| pml_idx = vmcs_read16(GUEST_PML_INDEX); |
| |
| /* Do nothing if PML buffer is empty */ |
| if (pml_idx == (PML_ENTITY_NUM - 1)) |
| return; |
| |
| /* PML index always points to next available PML buffer entity */ |
| if (pml_idx >= PML_ENTITY_NUM) |
| pml_idx = 0; |
| else |
| pml_idx++; |
| |
| pml_buf = page_address(vmx->pml_pg); |
| for (; pml_idx < PML_ENTITY_NUM; pml_idx++) { |
| u64 gpa; |
| |
| gpa = pml_buf[pml_idx]; |
| WARN_ON(gpa & (PAGE_SIZE - 1)); |
| kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT); |
| } |
| |
| /* reset PML index */ |
| vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); |
| } |
| |
| static void vmx_dump_sel(char *name, uint32_t sel) |
| { |
| pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n", |
| name, vmcs_read16(sel), |
| vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR), |
| vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR), |
| vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR)); |
| } |
| |
| static void vmx_dump_dtsel(char *name, uint32_t limit) |
| { |
| pr_err("%s limit=0x%08x, base=0x%016lx\n", |
| name, vmcs_read32(limit), |
| vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT)); |
| } |
| |
| static void vmx_dump_msrs(char *name, struct vmx_msrs *m) |
| { |
| unsigned int i; |
| struct vmx_msr_entry *e; |
| |
| pr_err("MSR %s:\n", name); |
| for (i = 0, e = m->val; i < m->nr; ++i, ++e) |
| pr_err(" %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value); |
| } |
| |
| void dump_vmcs(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| u32 vmentry_ctl, vmexit_ctl; |
| u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control; |
| u64 tertiary_exec_control; |
| unsigned long cr4; |
| int efer_slot; |
| |
| if (!dump_invalid_vmcs) { |
| pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n"); |
| return; |
| } |
| |
| vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS); |
| vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS); |
| cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); |
| pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL); |
| cr4 = vmcs_readl(GUEST_CR4); |
| |
| if (cpu_has_secondary_exec_ctrls()) |
| secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); |
| else |
| secondary_exec_control = 0; |
| |
| if (cpu_has_tertiary_exec_ctrls()) |
| tertiary_exec_control = vmcs_read64(TERTIARY_VM_EXEC_CONTROL); |
| else |
| tertiary_exec_control = 0; |
| |
| pr_err("VMCS %p, last attempted VM-entry on CPU %d\n", |
| vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu); |
| pr_err("*** Guest State ***\n"); |
| pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", |
| vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW), |
| vmcs_readl(CR0_GUEST_HOST_MASK)); |
| pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", |
| cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK)); |
| pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3)); |
| if (cpu_has_vmx_ept()) { |
| pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n", |
| vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1)); |
| pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n", |
| vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3)); |
| } |
| pr_err("RSP = 0x%016lx RIP = 0x%016lx\n", |
| vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP)); |
| pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n", |
| vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7)); |
| pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", |
| vmcs_readl(GUEST_SYSENTER_ESP), |
| vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP)); |
| vmx_dump_sel("CS: ", GUEST_CS_SELECTOR); |
| vmx_dump_sel("DS: ", GUEST_DS_SELECTOR); |
| vmx_dump_sel("SS: ", GUEST_SS_SELECTOR); |
| vmx_dump_sel("ES: ", GUEST_ES_SELECTOR); |
| vmx_dump_sel("FS: ", GUEST_FS_SELECTOR); |
| vmx_dump_sel("GS: ", GUEST_GS_SELECTOR); |
| vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT); |
| vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR); |
| vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT); |
| vmx_dump_sel("TR: ", GUEST_TR_SELECTOR); |
| efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER); |
| if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER) |
| pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER)); |
| else if (efer_slot >= 0) |
| pr_err("EFER= 0x%016llx (autoload)\n", |
| vmx->msr_autoload.guest.val[efer_slot].value); |
| else if (vmentry_ctl & VM_ENTRY_IA32E_MODE) |
| pr_err("EFER= 0x%016llx (effective)\n", |
| vcpu->arch.efer | (EFER_LMA | EFER_LME)); |
| else |
| pr_err("EFER= 0x%016llx (effective)\n", |
| vcpu->arch.efer & ~(EFER_LMA | EFER_LME)); |
| if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT) |
| pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT)); |
| pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n", |
| vmcs_read64(GUEST_IA32_DEBUGCTL), |
| vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS)); |
| if (cpu_has_load_perf_global_ctrl() && |
| vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) |
| pr_err("PerfGlobCtl = 0x%016llx\n", |
| vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL)); |
| if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS) |
| pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS)); |
| pr_err("Interruptibility = %08x ActivityState = %08x\n", |
| vmcs_read32(GUEST_INTERRUPTIBILITY_INFO), |
| vmcs_read32(GUEST_ACTIVITY_STATE)); |
| if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) |
| pr_err("InterruptStatus = %04x\n", |
| vmcs_read16(GUEST_INTR_STATUS)); |
| if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0) |
| vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest); |
| if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0) |
| vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest); |
| |
| pr_err("*** Host State ***\n"); |
| pr_err("RIP = 0x%016lx RSP = 0x%016lx\n", |
| vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP)); |
| pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n", |
| vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR), |
| vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR), |
| vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR), |
| vmcs_read16(HOST_TR_SELECTOR)); |
| pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n", |
| vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE), |
| vmcs_readl(HOST_TR_BASE)); |
| pr_err("GDTBase=%016lx IDTBase=%016lx\n", |
| vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE)); |
| pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n", |
| vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3), |
| vmcs_readl(HOST_CR4)); |
| pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", |
| vmcs_readl(HOST_IA32_SYSENTER_ESP), |
| vmcs_read32(HOST_IA32_SYSENTER_CS), |
| vmcs_readl(HOST_IA32_SYSENTER_EIP)); |
| if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER) |
| pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER)); |
| if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT) |
| pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT)); |
| if (cpu_has_load_perf_global_ctrl() && |
| vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) |
| pr_err("PerfGlobCtl = 0x%016llx\n", |
| vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL)); |
| if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0) |
| vmx_dump_msrs("host autoload", &vmx->msr_autoload.host); |
| |
| pr_err("*** Control State ***\n"); |
| pr_err("CPUBased=0x%08x SecondaryExec=0x%08x TertiaryExec=0x%016llx\n", |
| cpu_based_exec_ctrl, secondary_exec_control, tertiary_exec_control); |
| pr_err("PinBased=0x%08x EntryControls=%08x ExitControls=%08x\n", |
| pin_based_exec_ctrl, vmentry_ctl, vmexit_ctl); |
| pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n", |
| vmcs_read32(EXCEPTION_BITMAP), |
| vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK), |
| vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH)); |
| pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n", |
| vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), |
| vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE), |
| vmcs_read32(VM_ENTRY_INSTRUCTION_LEN)); |
| pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n", |
| vmcs_read32(VM_EXIT_INTR_INFO), |
| vmcs_read32(VM_EXIT_INTR_ERROR_CODE), |
| vmcs_read32(VM_EXIT_INSTRUCTION_LEN)); |
| pr_err(" reason=%08x qualification=%016lx\n", |
| vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION)); |
| pr_err("IDTVectoring: info=%08x errcode=%08x\n", |
| vmcs_read32(IDT_VECTORING_INFO_FIELD), |
| vmcs_read32(IDT_VECTORING_ERROR_CODE)); |
| pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET)); |
| if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING) |
| pr_err("TSC Multiplier = 0x%016llx\n", |
| vmcs_read64(TSC_MULTIPLIER)); |
| if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) { |
| if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) { |
| u16 status = vmcs_read16(GUEST_INTR_STATUS); |
| pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff); |
| } |
| pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD)); |
| if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) |
| pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR)); |
| pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR)); |
| } |
| if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR) |
| pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV)); |
| if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT)) |
| pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER)); |
| if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING) |
| pr_err("PLE Gap=%08x Window=%08x\n", |
| vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW)); |
| if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID) |
| pr_err("Virtual processor ID = 0x%04x\n", |
| vmcs_read16(VIRTUAL_PROCESSOR_ID)); |
| } |
| |
| /* |
| * The guest has exited. See if we can fix it or if we need userspace |
| * assistance. |
| */ |
| static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| union vmx_exit_reason exit_reason = vmx->exit_reason; |
| u32 vectoring_info = vmx->idt_vectoring_info; |
| u16 exit_handler_index; |
| |
| /* |
| * Flush logged GPAs PML buffer, this will make dirty_bitmap more |
| * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before |
| * querying dirty_bitmap, we only need to kick all vcpus out of guest |
| * mode as if vcpus is in root mode, the PML buffer must has been |
| * flushed already. Note, PML is never enabled in hardware while |
| * running L2. |
| */ |
| if (enable_pml && !is_guest_mode(vcpu)) |
| vmx_flush_pml_buffer(vcpu); |
| |
| /* |
| * KVM should never reach this point with a pending nested VM-Enter. |
| * More specifically, short-circuiting VM-Entry to emulate L2 due to |
| * invalid guest state should never happen as that means KVM knowingly |
| * allowed a nested VM-Enter with an invalid vmcs12. More below. |
| */ |
| if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm)) |
| return -EIO; |
| |
| if (is_guest_mode(vcpu)) { |
| /* |
| * PML is never enabled when running L2, bail immediately if a |
| * PML full exit occurs as something is horribly wrong. |
| */ |
| if (exit_reason.basic == EXIT_REASON_PML_FULL) |
| goto unexpected_vmexit; |
| |
| /* |
| * The host physical addresses of some pages of guest memory |
| * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC |
| * Page). The CPU may write to these pages via their host |
| * physical address while L2 is running, bypassing any |
| * address-translation-based dirty tracking (e.g. EPT write |
| * protection). |
| * |
| * Mark them dirty on every exit from L2 to prevent them from |
| * getting out of sync with dirty tracking. |
| */ |
| nested_mark_vmcs12_pages_dirty(vcpu); |
| |
| /* |
| * Synthesize a triple fault if L2 state is invalid. In normal |
| * operation, nested VM-Enter rejects any attempt to enter L2 |
| * with invalid state. However, those checks are skipped if |
| * state is being stuffed via RSM or KVM_SET_NESTED_STATE. If |
| * L2 state is invalid, it means either L1 modified SMRAM state |
| * or userspace provided bad state. Synthesize TRIPLE_FAULT as |
| * doing so is architecturally allowed in the RSM case, and is |
| * the least awful solution for the userspace case without |
| * risking false positives. |
| */ |
| if (vmx->emulation_required) { |
| nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0); |
| return 1; |
| } |
| |
| if (nested_vmx_reflect_vmexit(vcpu)) |
| return 1; |
| } |
| |
| /* If guest state is invalid, start emulating. L2 is handled above. */ |
| if (vmx->emulation_required) |
| return handle_invalid_guest_state(vcpu); |
| |
| if (exit_reason.failed_vmentry) { |
| dump_vmcs(vcpu); |
| vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; |
| vcpu->run->fail_entry.hardware_entry_failure_reason |
| = exit_reason.full; |
| vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; |
| return 0; |
| } |
| |
| if (unlikely(vmx->fail)) { |
| dump_vmcs(vcpu); |
| vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; |
| vcpu->run->fail_entry.hardware_entry_failure_reason |
| = vmcs_read32(VM_INSTRUCTION_ERROR); |
| vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; |
| return 0; |
| } |
| |
| /* |
| * Note: |
| * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by |
| * delivery event since it indicates guest is accessing MMIO. |
| * The vm-exit can be triggered again after return to guest that |
| * will cause infinite loop. |
| */ |
| if ((vectoring_info & VECTORING_INFO_VALID_MASK) && |
| (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI && |
| exit_reason.basic != EXIT_REASON_EPT_VIOLATION && |
| exit_reason.basic != EXIT_REASON_PML_FULL && |
| exit_reason.basic != EXIT_REASON_APIC_ACCESS && |
| exit_reason.basic != EXIT_REASON_TASK_SWITCH && |
| exit_reason.basic != EXIT_REASON_NOTIFY)) { |
| int ndata = 3; |
| |
| vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
| vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV; |
| vcpu->run->internal.data[0] = vectoring_info; |
| vcpu->run->internal.data[1] = exit_reason.full; |
| vcpu->run->internal.data[2] = vmx_get_exit_qual(vcpu); |
| if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) { |
| vcpu->run->internal.data[ndata++] = |
| vmcs_read64(GUEST_PHYSICAL_ADDRESS); |
| } |
| vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu; |
| vcpu->run->internal.ndata = ndata; |
| return 0; |
| } |
| |
| if (unlikely(!enable_vnmi && |
| vmx->loaded_vmcs->soft_vnmi_blocked)) { |
| if (!vmx_interrupt_blocked(vcpu)) { |
| vmx->loaded_vmcs->soft_vnmi_blocked = 0; |
| } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL && |
| vcpu->arch.nmi_pending) { |
| /* |
| * This CPU don't support us in finding the end of an |
| * NMI-blocked window if the guest runs with IRQs |
| * disabled. So we pull the trigger after 1 s of |
| * futile waiting, but inform the user about this. |
| */ |
| printk(KERN_WARNING "%s: Breaking out of NMI-blocked " |
| "state on VCPU %d after 1 s timeout\n", |
| __func__, vcpu->vcpu_id); |
| vmx->loaded_vmcs->soft_vnmi_blocked = 0; |
| } |
| } |
| |
| if (exit_fastpath != EXIT_FASTPATH_NONE) |
| return 1; |
| |
| if (exit_reason.basic >= kvm_vmx_max_exit_handlers) |
| goto unexpected_vmexit; |
| #ifdef CONFIG_MITIGATION_RETPOLINE |
| if (exit_reason.basic == EXIT_REASON_MSR_WRITE) |
| return kvm_emulate_wrmsr(vcpu); |
| else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER) |
| return handle_preemption_timer(vcpu); |
| else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW) |
| return handle_interrupt_window(vcpu); |
| else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT) |
| return handle_external_interrupt(vcpu); |
| else if (exit_reason.basic == EXIT_REASON_HLT) |
| return kvm_emulate_halt(vcpu); |
| else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) |
| return handle_ept_misconfig(vcpu); |
| #endif |
| |
| exit_handler_index = array_index_nospec((u16)exit_reason.basic, |
| kvm_vmx_max_exit_handlers); |
| if (!kvm_vmx_exit_handlers[exit_handler_index]) |
| goto unexpected_vmexit; |
| |
| return kvm_vmx_exit_handlers[exit_handler_index](vcpu); |
| |
| unexpected_vmexit: |
| vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n", |
| exit_reason.full); |
| dump_vmcs(vcpu); |
| vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
| vcpu->run->internal.suberror = |
| KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; |
| vcpu->run->internal.ndata = 2; |
| vcpu->run->internal.data[0] = exit_reason.full; |
| vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; |
| return 0; |
| } |
| |
| static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) |
| { |
| int ret = __vmx_handle_exit(vcpu, exit_fastpath); |
| |
| /* |
| * Exit to user space when bus lock detected to inform that there is |
| * a bus lock in guest. |
| */ |
| if (to_vmx(vcpu)->exit_reason.bus_lock_detected) { |
| if (ret > 0) |
| vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK; |
| |
| vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK; |
| return 0; |
| } |
| return ret; |
| } |
| |
| /* |
| * Software based L1D cache flush which is used when microcode providing |
| * the cache control MSR is not loaded. |
| * |
| * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to |
| * flush it is required to read in 64 KiB because the replacement algorithm |
| * is not exactly LRU. This could be sized at runtime via topology |
| * information but as all relevant affected CPUs have 32KiB L1D cache size |
| * there is no point in doing so. |
| */ |
| static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu) |
| { |
| int size = PAGE_SIZE << L1D_CACHE_ORDER; |
| |
| /* |
| * This code is only executed when the flush mode is 'cond' or |
| * 'always' |
| */ |
| if (static_branch_likely(&vmx_l1d_flush_cond)) { |
| bool flush_l1d; |
| |
| /* |
| * Clear the per-vcpu flush bit, it gets set again |
| * either from vcpu_run() or from one of the unsafe |
| * VMEXIT handlers. |
| */ |
| flush_l1d = vcpu->arch.l1tf_flush_l1d; |
| vcpu->arch.l1tf_flush_l1d = false; |
| |
| /* |
| * Clear the per-cpu flush bit, it gets set again from |
| * the interrupt handlers. |
| */ |
| flush_l1d |= kvm_get_cpu_l1tf_flush_l1d(); |
| kvm_clear_cpu_l1tf_flush_l1d(); |
| |
| if (!flush_l1d) |
| return; |
| } |
| |
| vcpu->stat.l1d_flush++; |
| |
| if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) { |
| native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); |
| return; |
| } |
| |
| asm volatile( |
| /* First ensure the pages are in the TLB */ |
| "xorl %%eax, %%eax\n" |
| ".Lpopulate_tlb:\n\t" |
| "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" |
| "addl $4096, %%eax\n\t" |
| "cmpl %%eax, %[size]\n\t" |
| "jne .Lpopulate_tlb\n\t" |
| "xorl %%eax, %%eax\n\t" |
| "cpuid\n\t" |
| /* Now fill the cache */ |
| "xorl %%eax, %%eax\n" |
| ".Lfill_cache:\n" |
| "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" |
| "addl $64, %%eax\n\t" |
| "cmpl %%eax, %[size]\n\t" |
| "jne .Lfill_cache\n\t" |
| "lfence\n" |
| :: [flush_pages] "r" (vmx_l1d_flush_pages), |
| [size] "r" (size) |
| : "eax", "ebx", "ecx", "edx"); |
| } |
| |
| static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) |
| { |
| struct vmcs12 *vmcs12 = get_vmcs12(vcpu); |
| int tpr_threshold; |
| |
| if (is_guest_mode(vcpu) && |
| nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) |
| return; |
| |
| tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr; |
| if (is_guest_mode(vcpu)) |
| to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold; |
| else |
| vmcs_write32(TPR_THRESHOLD, tpr_threshold); |
| } |
| |
| void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| u32 sec_exec_control; |
| |
| if (!lapic_in_kernel(vcpu)) |
| return; |
| |
| if (!flexpriority_enabled && |
| !cpu_has_vmx_virtualize_x2apic_mode()) |
| return; |
| |
| /* Postpone execution until vmcs01 is the current VMCS. */ |
| if (is_guest_mode(vcpu)) { |
| vmx->nested.change_vmcs01_virtual_apic_mode = true; |
| return; |
| } |
| |
| sec_exec_control = secondary_exec_controls_get(vmx); |
| sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | |
| SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE); |
| |
| switch (kvm_get_apic_mode(vcpu)) { |
| case LAPIC_MODE_INVALID: |
| WARN_ONCE(true, "Invalid local APIC state"); |
| break; |
| case LAPIC_MODE_DISABLED: |
| break; |
| case LAPIC_MODE_XAPIC: |
| if (flexpriority_enabled) { |
| sec_exec_control |= |
| SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; |
| kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); |
| |
| /* |
| * Flush the TLB, reloading the APIC access page will |
| * only do so if its physical address has changed, but |
| * the guest may have inserted a non-APIC mapping into |
| * the TLB while the APIC access page was disabled. |
| */ |
| kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); |
| } |
| break; |
| case LAPIC_MODE_X2APIC: |
| if (cpu_has_vmx_virtualize_x2apic_mode()) |
| sec_exec_control |= |
| SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; |
| break; |
| } |
| secondary_exec_controls_set(vmx, sec_exec_control); |
| |
| vmx_update_msr_bitmap_x2apic(vcpu); |
| } |
| |
| static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu) |
| { |
| const gfn_t gfn = APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT; |
| struct kvm *kvm = vcpu->kvm; |
| struct kvm_memslots *slots = kvm_memslots(kvm); |
| struct kvm_memory_slot *slot; |
| unsigned long mmu_seq; |
| kvm_pfn_t pfn; |
| |
| /* Defer reload until vmcs01 is the current VMCS. */ |
| if (is_guest_mode(vcpu)) { |
| to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true; |
| return; |
| } |
| |
| if (!(secondary_exec_controls_get(to_vmx(vcpu)) & |
| SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) |
| return; |
| |
| /* |
| * Explicitly grab the memslot using KVM's internal slot ID to ensure |
| * KVM doesn't unintentionally grab a userspace memslot. It _should_ |
| * be impossible for userspace to create a memslot for the APIC when |
| * APICv is enabled, but paranoia won't hurt in this case. |
| */ |
| slot = id_to_memslot(slots, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT); |
| if (!slot || slot->flags & KVM_MEMSLOT_INVALID) |
| return; |
| |
| /* |
| * Ensure that the mmu_notifier sequence count is read before KVM |
| * retrieves the pfn from the primary MMU. Note, the memslot is |
| * protected by SRCU, not the mmu_notifier. Pairs with the smp_wmb() |
| * in kvm_mmu_invalidate_end(). |
| */ |
| mmu_seq = kvm->mmu_invalidate_seq; |
| smp_rmb(); |
| |
| /* |
| * No need to retry if the memslot does not exist or is invalid. KVM |
| * controls the APIC-access page memslot, and only deletes the memslot |
| * if APICv is permanently inhibited, i.e. the memslot won't reappear. |
| */ |
| pfn = gfn_to_pfn_memslot(slot, gfn); |
| if (is_error_noslot_pfn(pfn)) |
| return; |
| |
| read_lock(&vcpu->kvm->mmu_lock); |
| if (mmu_invalidate_retry_gfn(kvm, mmu_seq, gfn)) { |
| kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); |
| read_unlock(&vcpu->kvm->mmu_lock); |
| goto out; |
| } |
| |
| vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(pfn)); |
| read_unlock(&vcpu->kvm->mmu_lock); |
| |
| /* |
| * No need for a manual TLB flush at this point, KVM has already done a |
| * flush if there were SPTEs pointing at the previous page. |
| */ |
| out: |
| /* |
| * Do not pin apic access page in memory, the MMU notifier |
| * will call us again if it is migrated or swapped out. |
| */ |
| kvm_release_pfn_clean(pfn); |
| } |
| |
| static void vmx_hwapic_isr_update(int max_isr) |
| { |
| u16 status; |
| u8 old; |
| |
| if (max_isr == -1) |
| max_isr = 0; |
| |
| status = vmcs_read16(GUEST_INTR_STATUS); |
| old = status >> 8; |
| if (max_isr != old) { |
| status &= 0xff; |
| status |= max_isr << 8; |
| vmcs_write16(GUEST_INTR_STATUS, status); |
| } |
| } |
| |
| static void vmx_set_rvi(int vector) |
| { |
| u16 status; |
| u8 old; |
| |
| if (vector == -1) |
| vector = 0; |
| |
| status = vmcs_read16(GUEST_INTR_STATUS); |
| old = (u8)status & 0xff; |
| if ((u8)vector != old) { |
| status &= ~0xff; |
| status |= (u8)vector; |
| vmcs_write16(GUEST_INTR_STATUS, status); |
| } |
| } |
| |
| static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr) |
| { |
| /* |
| * When running L2, updating RVI is only relevant when |
| * vmcs12 virtual-interrupt-delivery enabled. |
| * However, it can be enabled only when L1 also |
| * intercepts external-interrupts and in that case |
| * we should not update vmcs02 RVI but instead intercept |
| * interrupt. Therefore, do nothing when running L2. |
| */ |
| if (!is_guest_mode(vcpu)) |
| vmx_set_rvi(max_irr); |
| } |
| |
| static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| int max_irr; |
| bool got_posted_interrupt; |
| |
| if (KVM_BUG_ON(!enable_apicv, vcpu->kvm)) |
| return -EIO; |
| |
| if (pi_test_on(&vmx->pi_desc)) { |
| pi_clear_on(&vmx->pi_desc); |
| /* |
| * IOMMU can write to PID.ON, so the barrier matters even on UP. |
| * But on x86 this is just a compiler barrier anyway. |
| */ |
| smp_mb__after_atomic(); |
| got_posted_interrupt = |
| kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr); |
| } else { |
| max_irr = kvm_lapic_find_highest_irr(vcpu); |
| got_posted_interrupt = false; |
| } |
| |
| /* |
| * Newly recognized interrupts are injected via either virtual interrupt |
| * delivery (RVI) or KVM_REQ_EVENT. Virtual interrupt delivery is |
| * disabled in two cases: |
| * |
| * 1) If L2 is running and the vCPU has a new pending interrupt. If L1 |
| * wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a |
| * VM-Exit to L1. If L1 doesn't want to exit, the interrupt is injected |
| * into L2, but KVM doesn't use virtual interrupt delivery to inject |
| * interrupts into L2, and so KVM_REQ_EVENT is again needed. |
| * |
| * 2) If APICv is disabled for this vCPU, assigned devices may still |
| * attempt to post interrupts. The posted interrupt vector will cause |
| * a VM-Exit and the subsequent entry will call sync_pir_to_irr. |
| */ |
| if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu)) |
| vmx_set_rvi(max_irr); |
| else if (got_posted_interrupt) |
| kvm_make_request(KVM_REQ_EVENT, vcpu); |
| |
| return max_irr; |
| } |
| |
| static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap) |
| { |
| if (!kvm_vcpu_apicv_active(vcpu)) |
| return; |
| |
| vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]); |
| vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]); |
| vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]); |
| vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]); |
| } |
| |
| static void vmx_apicv_pre_state_restore(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| |
| pi_clear_on(&vmx->pi_desc); |
| memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir)); |
| } |
| |
| void vmx_do_interrupt_irqoff(unsigned long entry); |
| void vmx_do_nmi_irqoff(void); |
| |
| static void handle_nm_fault_irqoff(struct kvm_vcpu *vcpu) |
| { |
| /* |
| * Save xfd_err to guest_fpu before interrupt is enabled, so the |
| * MSR value is not clobbered by the host activity before the guest |
| * has chance to consume it. |
| * |
| * Do not blindly read xfd_err here, since this exception might |
| * be caused by L1 interception on a platform which doesn't |
| * support xfd at all. |
| * |
| * Do it conditionally upon guest_fpu::xfd. xfd_err matters |
| * only when xfd contains a non-zero value. |
| * |
| * Queuing exception is done in vmx_handle_exit. See comment there. |
| */ |
| if (vcpu->arch.guest_fpu.fpstate->xfd) |
| rdmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); |
| } |
| |
| static void handle_exception_irqoff(struct vcpu_vmx *vmx) |
| { |
| u32 intr_info = vmx_get_intr_info(&vmx->vcpu); |
| |
| /* if exit due to PF check for async PF */ |
| if (is_page_fault(intr_info)) |
| vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags(); |
| /* if exit due to NM, handle before interrupts are enabled */ |
| else if (is_nm_fault(intr_info)) |
| handle_nm_fault_irqoff(&vmx->vcpu); |
| /* Handle machine checks before interrupts are enabled */ |
| else if (is_machine_check(intr_info)) |
| kvm_machine_check(); |
| } |
| |
| static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu) |
| { |
| u32 intr_info = vmx_get_intr_info(vcpu); |
| unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK; |
| |
| if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm, |
| "unexpected VM-Exit interrupt info: 0x%x", intr_info)) |
| return; |
| |
| kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ); |
| if (cpu_feature_enabled(X86_FEATURE_FRED)) |
| fred_entry_from_kvm(EVENT_TYPE_EXTINT, vector); |
| else |
| vmx_do_interrupt_irqoff(gate_offset((gate_desc *)host_idt_base + vector)); |
| kvm_after_interrupt(vcpu); |
| |
| vcpu->arch.at_instruction_boundary = true; |
| } |
| |
| static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| |
| if (vmx->emulation_required) |
| return; |
| |
| if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT) |
| handle_external_interrupt_irqoff(vcpu); |
| else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI) |
| handle_exception_irqoff(vmx); |
| } |
| |
| /* |
| * The kvm parameter can be NULL (module initialization, or invocation before |
| * VM creation). Be sure to check the kvm parameter before using it. |
| */ |
| static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index) |
| { |
| switch (index) { |
| case MSR_IA32_SMBASE: |
| if (!IS_ENABLED(CONFIG_KVM_SMM)) |
| return false; |
| /* |
| * We cannot do SMM unless we can run the guest in big |
| * real mode. |
| */ |
| return enable_unrestricted_guest || emulate_invalid_guest_state; |
| case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: |
| return nested; |
| case MSR_AMD64_VIRT_SPEC_CTRL: |
| case MSR_AMD64_TSC_RATIO: |
| /* This is AMD only. */ |
| return false; |
| default: |
| return true; |
| } |
| } |
| |
| static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx) |
| { |
| u32 exit_intr_info; |
| bool unblock_nmi; |
| u8 vector; |
| bool idtv_info_valid; |
| |
| idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK; |
| |
| if (enable_vnmi) { |
| if (vmx->loaded_vmcs->nmi_known_unmasked) |
| return; |
| |
| exit_intr_info = vmx_get_intr_info(&vmx->vcpu); |
| unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0; |
| vector = exit_intr_info & INTR_INFO_VECTOR_MASK; |
| /* |
| * SDM 3: 27.7.1.2 (September 2008) |
| * Re-set bit "block by NMI" before VM entry if vmexit caused by |
| * a guest IRET fault. |
| * SDM 3: 23.2.2 (September 2008) |
| * Bit 12 is undefined in any of the following cases: |
| * If the VM exit sets the valid bit in the IDT-vectoring |
| * information field. |
| * If the VM exit is due to a double fault. |
| */ |
| if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi && |
| vector != DF_VECTOR && !idtv_info_valid) |
| vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, |
| GUEST_INTR_STATE_NMI); |
| else |
| vmx->loaded_vmcs->nmi_known_unmasked = |
| !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) |
| & GUEST_INTR_STATE_NMI); |
| } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked)) |
| vmx->loaded_vmcs->vnmi_blocked_time += |
| ktime_to_ns(ktime_sub(ktime_get(), |
| vmx->loaded_vmcs->entry_time)); |
| } |
| |
| static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu, |
| u32 idt_vectoring_info, |
| int instr_len_field, |
| int error_code_field) |
| { |
| u8 vector; |
| int type; |
| bool idtv_info_valid; |
| |
| idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK; |
| |
| vcpu->arch.nmi_injected = false; |
| kvm_clear_exception_queue(vcpu); |
| kvm_clear_interrupt_queue(vcpu); |
| |
| if (!idtv_info_valid) |
| return; |
| |
| kvm_make_request(KVM_REQ_EVENT, vcpu); |
| |
| vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK; |
| type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK; |
| |
| switch (type) { |
| case INTR_TYPE_NMI_INTR: |
| vcpu->arch.nmi_injected = true; |
| /* |
| * SDM 3: 27.7.1.2 (September 2008) |
| * Clear bit "block by NMI" before VM entry if a NMI |
| * delivery faulted. |
| */ |
| vmx_set_nmi_mask(vcpu, false); |
| break; |
| case INTR_TYPE_SOFT_EXCEPTION: |
| vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); |
| fallthrough; |
| case INTR_TYPE_HARD_EXCEPTION: |
| if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) { |
| u32 err = vmcs_read32(error_code_field); |
| kvm_requeue_exception_e(vcpu, vector, err); |
| } else |
| kvm_requeue_exception(vcpu, vector); |
| break; |
| case INTR_TYPE_SOFT_INTR: |
| vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); |
| fallthrough; |
| case INTR_TYPE_EXT_INTR: |
| kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| static void vmx_complete_interrupts(struct vcpu_vmx *vmx) |
| { |
| __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info, |
| VM_EXIT_INSTRUCTION_LEN, |
| IDT_VECTORING_ERROR_CODE); |
| } |
| |
| static void vmx_cancel_injection(struct kvm_vcpu *vcpu) |
| { |
| __vmx_complete_interrupts(vcpu, |
| vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), |
| VM_ENTRY_INSTRUCTION_LEN, |
| VM_ENTRY_EXCEPTION_ERROR_CODE); |
| |
| vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); |
| } |
| |
| static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx) |
| { |
| int i, nr_msrs; |
| struct perf_guest_switch_msr *msrs; |
| struct kvm_pmu *pmu = vcpu_to_pmu(&vmx->vcpu); |
| |
| pmu->host_cross_mapped_mask = 0; |
| if (pmu->pebs_enable & pmu->global_ctrl) |
| intel_pmu_cross_mapped_check(pmu); |
| |
| /* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */ |
| msrs = perf_guest_get_msrs(&nr_msrs, (void *)pmu); |
| if (!msrs) |
| return; |
| |
| for (i = 0; i < nr_msrs; i++) |
| if (msrs[i].host == msrs[i].guest) |
| clear_atomic_switch_msr(vmx, msrs[i].msr); |
| else |
| add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest, |
| msrs[i].host, false); |
| } |
| |
| static void vmx_update_hv_timer(struct kvm_vcpu *vcpu, bool force_immediate_exit) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| u64 tscl; |
| u32 delta_tsc; |
| |
| if (force_immediate_exit) { |
| vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0); |
| vmx->loaded_vmcs->hv_timer_soft_disabled = false; |
| } else if (vmx->hv_deadline_tsc != -1) { |
| tscl = rdtsc(); |
| if (vmx->hv_deadline_tsc > tscl) |
| /* set_hv_timer ensures the delta fits in 32-bits */ |
| delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >> |
| cpu_preemption_timer_multi); |
| else |
| delta_tsc = 0; |
| |
| vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc); |
| vmx->loaded_vmcs->hv_timer_soft_disabled = false; |
| } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) { |
| vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1); |
| vmx->loaded_vmcs->hv_timer_soft_disabled = true; |
| } |
| } |
| |
| void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp) |
| { |
| if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) { |
| vmx->loaded_vmcs->host_state.rsp = host_rsp; |
| vmcs_writel(HOST_RSP, host_rsp); |
| } |
| } |
| |
| void noinstr vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx, |
| unsigned int flags) |
| { |
| u64 hostval = this_cpu_read(x86_spec_ctrl_current); |
| |
| if (!cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL)) |
| return; |
| |
| if (flags & VMX_RUN_SAVE_SPEC_CTRL) |
| vmx->spec_ctrl = __rdmsr(MSR_IA32_SPEC_CTRL); |
| |
| /* |
| * If the guest/host SPEC_CTRL values differ, restore the host value. |
| * |
| * For legacy IBRS, the IBRS bit always needs to be written after |
| * transitioning from a less privileged predictor mode, regardless of |
| * whether the guest/host values differ. |
| */ |
| if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) || |
| vmx->spec_ctrl != hostval) |
| native_wrmsrl(MSR_IA32_SPEC_CTRL, hostval); |
| |
| barrier_nospec(); |
| } |
| |
| static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu, |
| bool force_immediate_exit) |
| { |
| /* |
| * If L2 is active, some VMX preemption timer exits can be handled in |
| * the fastpath even, all other exits must use the slow path. |
| */ |
| if (is_guest_mode(vcpu) && |
| to_vmx(vcpu)->exit_reason.basic != EXIT_REASON_PREEMPTION_TIMER) |
| return EXIT_FASTPATH_NONE; |
| |
| switch (to_vmx(vcpu)->exit_reason.basic) { |
| case EXIT_REASON_MSR_WRITE: |
| return handle_fastpath_set_msr_irqoff(vcpu); |
| case EXIT_REASON_PREEMPTION_TIMER: |
| return handle_fastpath_preemption_timer(vcpu, force_immediate_exit); |
| default: |
| return EXIT_FASTPATH_NONE; |
| } |
| } |
| |
| static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu, |
| unsigned int flags) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| |
| guest_state_enter_irqoff(); |
| |
| /* |
| * L1D Flush includes CPU buffer clear to mitigate MDS, but VERW |
| * mitigation for MDS is done late in VMentry and is still |
| * executed in spite of L1D Flush. This is because an extra VERW |
| * should not matter much after the big hammer L1D Flush. |
| */ |
| if (static_branch_unlikely(&vmx_l1d_should_flush)) |
| vmx_l1d_flush(vcpu); |
| else if (static_branch_unlikely(&mmio_stale_data_clear) && |
| kvm_arch_has_assigned_device(vcpu->kvm)) |
| mds_clear_cpu_buffers(); |
| |
| vmx_disable_fb_clear(vmx); |
| |
| if (vcpu->arch.cr2 != native_read_cr2()) |
| native_write_cr2(vcpu->arch.cr2); |
| |
| vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs, |
| flags); |
| |
| vcpu->arch.cr2 = native_read_cr2(); |
| vcpu->arch.regs_avail &= ~VMX_REGS_LAZY_LOAD_SET; |
| |
| vmx->idt_vectoring_info = 0; |
| |
| vmx_enable_fb_clear(vmx); |
| |
| if (unlikely(vmx->fail)) { |
| vmx->exit_reason.full = 0xdead; |
| goto out; |
| } |
| |
| vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON); |
| if (likely(!vmx->exit_reason.failed_vmentry)) |
| vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD); |
| |
| if ((u16)vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI && |
| is_nmi(vmx_get_intr_info(vcpu))) { |
| kvm_before_interrupt(vcpu, KVM_HANDLING_NMI); |
| if (cpu_feature_enabled(X86_FEATURE_FRED)) |
| fred_entry_from_kvm(EVENT_TYPE_NMI, NMI_VECTOR); |
| else |
| vmx_do_nmi_irqoff(); |
| kvm_after_interrupt(vcpu); |
| } |
| |
| out: |
| guest_state_exit_irqoff(); |
| } |
| |
| static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu, bool force_immediate_exit) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| unsigned long cr3, cr4; |
| |
| /* Record the guest's net vcpu time for enforced NMI injections. */ |
| if (unlikely(!enable_vnmi && |
| vmx->loaded_vmcs->soft_vnmi_blocked)) |
| vmx->loaded_vmcs->entry_time = ktime_get(); |
| |
| /* |
| * Don't enter VMX if guest state is invalid, let the exit handler |
| * start emulation until we arrive back to a valid state. Synthesize a |
| * consistency check VM-Exit due to invalid guest state and bail. |
| */ |
| if (unlikely(vmx->emulation_required)) { |
| vmx->fail = 0; |
| |
| vmx->exit_reason.full = EXIT_REASON_INVALID_STATE; |
| vmx->exit_reason.failed_vmentry = 1; |
| kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1); |
| vmx->exit_qualification = ENTRY_FAIL_DEFAULT; |
| kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2); |
| vmx->exit_intr_info = 0; |
| return EXIT_FASTPATH_NONE; |
| } |
| |
| trace_kvm_entry(vcpu, force_immediate_exit); |
| |
| if (vmx->ple_window_dirty) { |
| vmx->ple_window_dirty = false; |
| vmcs_write32(PLE_WINDOW, vmx->ple_window); |
| } |
| |
| /* |
| * We did this in prepare_switch_to_guest, because it needs to |
| * be within srcu_read_lock. |
| */ |
| WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync); |
| |
| if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP)) |
| vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]); |
| if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP)) |
| vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]); |
| vcpu->arch.regs_dirty = 0; |
| |
| /* |
| * Refresh vmcs.HOST_CR3 if necessary. This must be done immediately |
| * prior to VM-Enter, as the kernel may load a new ASID (PCID) any time |
| * it switches back to the current->mm, which can occur in KVM context |
| * when switching to a temporary mm to patch kernel code, e.g. if KVM |
| * toggles a static key while handling a VM-Exit. |
| */ |
| cr3 = __get_current_cr3_fast(); |
| if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) { |
| vmcs_writel(HOST_CR3, cr3); |
| vmx->loaded_vmcs->host_state.cr3 = cr3; |
| } |
| |
| cr4 = cr4_read_shadow(); |
| if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) { |
| vmcs_writel(HOST_CR4, cr4); |
| vmx->loaded_vmcs->host_state.cr4 = cr4; |
| } |
| |
| /* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */ |
| if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) |
| set_debugreg(vcpu->arch.dr6, 6); |
| |
| /* When single-stepping over STI and MOV SS, we must clear the |
| * corresponding interruptibility bits in the guest state. Otherwise |
| * vmentry fails as it then expects bit 14 (BS) in pending debug |
| * exceptions being set, but that's not correct for the guest debugging |
| * case. */ |
| if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) |
| vmx_set_interrupt_shadow(vcpu, 0); |
| |
| kvm_load_guest_xsave_state(vcpu); |
| |
| pt_guest_enter(vmx); |
| |
| atomic_switch_perf_msrs(vmx); |
| if (intel_pmu_lbr_is_enabled(vcpu)) |
| vmx_passthrough_lbr_msrs(vcpu); |
| |
| if (enable_preemption_timer) |
| vmx_update_hv_timer(vcpu, force_immediate_exit); |
| else if (force_immediate_exit) |
| smp_send_reschedule(vcpu->cpu); |
| |
| kvm_wait_lapic_expire(vcpu); |
| |
| /* The actual VMENTER/EXIT is in the .noinstr.text section. */ |
| vmx_vcpu_enter_exit(vcpu, __vmx_vcpu_run_flags(vmx)); |
| |
| /* All fields are clean at this point */ |
| if (kvm_is_using_evmcs()) { |
| current_evmcs->hv_clean_fields |= |
| HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL; |
| |
| current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu); |
| } |
| |
| /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */ |
| if (vmx->host_debugctlmsr) |
| update_debugctlmsr(vmx->host_debugctlmsr); |
| |
| #ifndef CONFIG_X86_64 |
| /* |
| * The sysexit path does not restore ds/es, so we must set them to |
| * a reasonable value ourselves. |
| * |
| * We can't defer this to vmx_prepare_switch_to_host() since that |
| * function may be executed in interrupt context, which saves and |
| * restore segments around it, nullifying its effect. |
| */ |
| loadsegment(ds, __USER_DS); |
| loadsegment(es, __USER_DS); |
| #endif |
| |
| pt_guest_exit(vmx); |
| |
| kvm_load_host_xsave_state(vcpu); |
| |
| if (is_guest_mode(vcpu)) { |
| /* |
| * Track VMLAUNCH/VMRESUME that have made past guest state |
| * checking. |
| */ |
| if (vmx->nested.nested_run_pending && |
| !vmx->exit_reason.failed_vmentry) |
| ++vcpu->stat.nested_run; |
| |
| vmx->nested.nested_run_pending = 0; |
| } |
| |
| if (unlikely(vmx->fail)) |
| return EXIT_FASTPATH_NONE; |
| |
| if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY)) |
| kvm_machine_check(); |
| |
| trace_kvm_exit(vcpu, KVM_ISA_VMX); |
| |
| if (unlikely(vmx->exit_reason.failed_vmentry)) |
| return EXIT_FASTPATH_NONE; |
| |
| vmx->loaded_vmcs->launched = 1; |
| |
| vmx_recover_nmi_blocking(vmx); |
| vmx_complete_interrupts(vmx); |
| |
| return vmx_exit_handlers_fastpath(vcpu, force_immediate_exit); |
| } |
| |
| static void vmx_vcpu_free(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| |
| if (enable_pml) |
| vmx_destroy_pml_buffer(vmx); |
| free_vpid(vmx->vpid); |
| nested_vmx_free_vcpu(vcpu); |
| free_loaded_vmcs(vmx->loaded_vmcs); |
| } |
| |
| static int vmx_vcpu_create(struct kvm_vcpu *vcpu) |
| { |
| struct vmx_uret_msr *tsx_ctrl; |
| struct vcpu_vmx *vmx; |
| int i, err; |
| |
| BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0); |
| vmx = to_vmx(vcpu); |
| |
| INIT_LIST_HEAD(&vmx->pi_wakeup_list); |
| |
| err = -ENOMEM; |
| |
| vmx->vpid = allocate_vpid(); |
| |
| /* |
| * If PML is turned on, failure on enabling PML just results in failure |
| * of creating the vcpu, therefore we can simplify PML logic (by |
| * avoiding dealing with cases, such as enabling PML partially on vcpus |
| * for the guest), etc. |
| */ |
| if (enable_pml) { |
| vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); |
| if (!vmx->pml_pg) |
| goto free_vpid; |
| } |
| |
| for (i = 0; i < kvm_nr_uret_msrs; ++i) |
| vmx->guest_uret_msrs[i].mask = -1ull; |
| if (boot_cpu_has(X86_FEATURE_RTM)) { |
| /* |
| * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception. |
| * Keep the host value unchanged to avoid changing CPUID bits |
| * under the host kernel's feet. |
| */ |
| tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL); |
| if (tsx_ctrl) |
| tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR; |
| } |
| |
| err = alloc_loaded_vmcs(&vmx->vmcs01); |
| if (err < 0) |
| goto free_pml; |
| |
| /* |
| * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a |
| * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the |
| * feature only for vmcs01, KVM currently isn't equipped to realize any |
| * performance benefits from enabling it for vmcs02. |
| */ |
| if (kvm_is_using_evmcs() && |
| (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) { |
| struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs; |
| |
| evmcs->hv_enlightenments_control.msr_bitmap = 1; |
| } |
| |
| /* The MSR bitmap starts with all ones */ |
| bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS); |
| bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS); |
| |
| vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R); |
| #ifdef CONFIG_X86_64 |
| vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW); |
| vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW); |
| vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW); |
| #endif |
| vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW); |
| vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW); |
| vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW); |
| if (kvm_cstate_in_guest(vcpu->kvm)) { |
| vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R); |
| vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R); |
| vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R); |
| vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R); |
| } |
| |
| vmx->loaded_vmcs = &vmx->vmcs01; |
| |
| if (cpu_need_virtualize_apic_accesses(vcpu)) { |
| err = kvm_alloc_apic_access_page(vcpu->kvm); |
| if (err) |
| goto free_vmcs; |
| } |
| |
| if (enable_ept && !enable_unrestricted_guest) { |
| err = init_rmode_identity_map(vcpu->kvm); |
| if (err) |
| goto free_vmcs; |
| } |
| |
| if (vmx_can_use_ipiv(vcpu)) |
| WRITE_ONCE(to_kvm_vmx(vcpu->kvm)->pid_table[vcpu->vcpu_id], |
| __pa(&vmx->pi_desc) | PID_TABLE_ENTRY_VALID); |
| |
| return 0; |
| |
| free_vmcs: |
| free_loaded_vmcs(vmx->loaded_vmcs); |
| free_pml: |
| vmx_destroy_pml_buffer(vmx); |
| free_vpid: |
| free_vpid(vmx->vpid); |
| return err; |
| } |
| |
| #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" |
| #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" |
| |
| static int vmx_vm_init(struct kvm *kvm) |
| { |
| if (!ple_gap) |
| kvm->arch.pause_in_guest = true; |
| |
| if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) { |
| switch (l1tf_mitigation) { |
| case L1TF_MITIGATION_OFF: |
| case L1TF_MITIGATION_FLUSH_NOWARN: |
| /* 'I explicitly don't care' is set */ |
| break; |
| case L1TF_MITIGATION_FLUSH: |
| case L1TF_MITIGATION_FLUSH_NOSMT: |
| case L1TF_MITIGATION_FULL: |
| /* |
| * Warn upon starting the first VM in a potentially |
| * insecure environment. |
| */ |
| if (sched_smt_active()) |
| pr_warn_once(L1TF_MSG_SMT); |
| if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER) |
| pr_warn_once(L1TF_MSG_L1D); |
| break; |
| case L1TF_MITIGATION_FULL_FORCE: |
| /* Flush is enforced */ |
| break; |
| } |
| } |
| return 0; |
| } |
| |
| static u8 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) |
| { |
| /* We wanted to honor guest CD/MTRR/PAT, but doing so could result in |
| * memory aliases with conflicting memory types and sometimes MCEs. |
| * We have to be careful as to what are honored and when. |
| * |
| * For MMIO, guest CD/MTRR are ignored. The EPT memory type is set to |
| * UC. The effective memory type is UC or WC depending on guest PAT. |
| * This was historically the source of MCEs and we want to be |
| * conservative. |
| * |
| * When there is no need to deal with noncoherent DMA (e.g., no VT-d |
| * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored. The |
| * EPT memory type is set to WB. The effective memory type is forced |
| * WB. |
| * |
| * Otherwise, we trust guest. Guest CD/MTRR/PAT are all honored. The |
| * EPT memory type is used to emulate guest CD/MTRR. |
| */ |
| |
| if (is_mmio) |
| return MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT; |
| |
| if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) |
| return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT; |
| |
| if (kvm_read_cr0_bits(vcpu, X86_CR0_CD)) { |
| if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) |
| return MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT; |
| else |
| return (MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT) | |
| VMX_EPT_IPAT_BIT; |
| } |
| |
| return kvm_mtrr_get_guest_memory_type(vcpu, gfn) << VMX_EPT_MT_EPTE_SHIFT; |
| } |
| |
| static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl) |
| { |
| /* |
| * These bits in the secondary execution controls field |
| * are dynamic, the others are mostly based on the hypervisor |
| * architecture and the guest's CPUID. Do not touch the |
| * dynamic bits. |
| */ |
| u32 mask = |
| SECONDARY_EXEC_SHADOW_VMCS | |
| SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | |
| SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | |
| SECONDARY_EXEC_DESC; |
| |
| u32 cur_ctl = secondary_exec_controls_get(vmx); |
| |
| secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask)); |
| } |
| |
| /* |
| * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits |
| * (indicating "allowed-1") if they are supported in the guest's CPUID. |
| */ |
| static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| struct kvm_cpuid_entry2 *entry; |
| |
| vmx->nested.msrs.cr0_fixed1 = 0xffffffff; |
| vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE; |
| |
| #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \ |
| if (entry && (entry->_reg & (_cpuid_mask))) \ |
| vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \ |
| } while (0) |
| |
| entry = kvm_find_cpuid_entry(vcpu, 0x1); |
| cr4_fixed1_update(X86_CR4_VME, edx, feature_bit(VME)); |
| cr4_fixed1_update(X86_CR4_PVI, edx, feature_bit(VME)); |
| cr4_fixed1_update(X86_CR4_TSD, edx, feature_bit(TSC)); |
| cr4_fixed1_update(X86_CR4_DE, edx, feature_bit(DE)); |
| cr4_fixed1_update(X86_CR4_PSE, edx, feature_bit(PSE)); |
| cr4_fixed1_update(X86_CR4_PAE, edx, feature_bit(PAE)); |
| cr4_fixed1_update(X86_CR4_MCE, edx, feature_bit(MCE)); |
| cr4_fixed1_update(X86_CR4_PGE, edx, feature_bit(PGE)); |
| cr4_fixed1_update(X86_CR4_OSFXSR, edx, feature_bit(FXSR)); |
| cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM)); |
| cr4_fixed1_update(X86_CR4_VMXE, ecx, feature_bit(VMX)); |
| cr4_fixed1_update(X86_CR4_SMXE, ecx, feature_bit(SMX)); |
| cr4_fixed1_update(X86_CR4_PCIDE, ecx, feature_bit(PCID)); |
| cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, feature_bit(XSAVE)); |
| |
| entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 0); |
| cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, feature_bit(FSGSBASE)); |
| cr4_fixed1_update(X86_CR4_SMEP, ebx, feature_bit(SMEP)); |
| cr4_fixed1_update(X86_CR4_SMAP, ebx, feature_bit(SMAP)); |
| cr4_fixed1_update(X86_CR4_PKE, ecx, feature_bit(PKU)); |
| cr4_fixed1_update(X86_CR4_UMIP, ecx, feature_bit(UMIP)); |
| cr4_fixed1_update(X86_CR4_LA57, ecx, feature_bit(LA57)); |
| |
| entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 1); |
| cr4_fixed1_update(X86_CR4_LAM_SUP, eax, feature_bit(LAM)); |
| |
| #undef cr4_fixed1_update |
| } |
| |
| static void update_intel_pt_cfg(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| struct kvm_cpuid_entry2 *best = NULL; |
| int i; |
| |
| for (i = 0; i < PT_CPUID_LEAVES; i++) { |
| best = kvm_find_cpuid_entry_index(vcpu, 0x14, i); |
| if (!best) |
| return; |
| vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax; |
| vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx; |
| vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx; |
| vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx; |
| } |
| |
| /* Get the number of configurable Address Ranges for filtering */ |
| vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps, |
| PT_CAP_num_address_ranges); |
| |
| /* Initialize and clear the no dependency bits */ |
| vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS | |
| RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC | |
| RTIT_CTL_BRANCH_EN); |
| |
| /* |
| * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise |
| * will inject an #GP |
| */ |
| if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering)) |
| vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN; |
| |
| /* |
| * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and |
| * PSBFreq can be set |
| */ |
| if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc)) |
| vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC | |
| RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ); |
| |
| /* |
| * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set |
| */ |
| if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc)) |
| vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN | |
| RTIT_CTL_MTC_RANGE); |
| |
| /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */ |
| if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite)) |
| vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW | |
| RTIT_CTL_PTW_EN); |
| |
| /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */ |
| if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace)) |
| vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN; |
| |
| /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */ |
| if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output)) |
| vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA; |
| |
| /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */ |
| if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys)) |
| vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN; |
| |
| /* unmask address range configure area */ |
| for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) |
| vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4)); |
| } |
| |
| static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| |
| /* |
| * XSAVES is effectively enabled if and only if XSAVE is also exposed |
| * to the guest. XSAVES depends on CR4.OSXSAVE, and CR4.OSXSAVE can be |
| * set if and only if XSAVE is supported. |
| */ |
| if (boot_cpu_has(X86_FEATURE_XSAVE) && |
| guest_cpuid_has(vcpu, X86_FEATURE_XSAVE)) |
| kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_XSAVES); |
| |
| kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VMX); |
| kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_LAM); |
| |
| vmx_setup_uret_msrs(vmx); |
| |
| if (cpu_has_secondary_exec_ctrls()) |
| vmcs_set_secondary_exec_control(vmx, |
| vmx_secondary_exec_control(vmx)); |
| |
| if (guest_can_use(vcpu, X86_FEATURE_VMX)) |
| vmx->msr_ia32_feature_control_valid_bits |= |
| FEAT_CTL_VMX_ENABLED_INSIDE_SMX | |
| FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX; |
| else |
| vmx->msr_ia32_feature_control_valid_bits &= |
| ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX | |
| FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX); |
| |
| if (guest_can_use(vcpu, X86_FEATURE_VMX)) |
| nested_vmx_cr_fixed1_bits_update(vcpu); |
| |
| if (boot_cpu_has(X86_FEATURE_INTEL_PT) && |
| guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT)) |
| update_intel_pt_cfg(vcpu); |
| |
| if (boot_cpu_has(X86_FEATURE_RTM)) { |
| struct vmx_uret_msr *msr; |
| msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL); |
| if (msr) { |
| bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM); |
| vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE); |
| } |
| } |
| |
| if (kvm_cpu_cap_has(X86_FEATURE_XFD)) |
| vmx_set_intercept_for_msr(vcpu, MSR_IA32_XFD_ERR, MSR_TYPE_R, |
| !guest_cpuid_has(vcpu, X86_FEATURE_XFD)); |
| |
| if (boot_cpu_has(X86_FEATURE_IBPB)) |
| vmx_set_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W, |
| !guest_has_pred_cmd_msr(vcpu)); |
| |
| if (boot_cpu_has(X86_FEATURE_FLUSH_L1D)) |
| vmx_set_intercept_for_msr(vcpu, MSR_IA32_FLUSH_CMD, MSR_TYPE_W, |
| !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D)); |
| |
| set_cr4_guest_host_mask(vmx); |
| |
| vmx_write_encls_bitmap(vcpu, NULL); |
| if (guest_cpuid_has(vcpu, X86_FEATURE_SGX)) |
| vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED; |
| else |
| vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED; |
| |
| if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC)) |
| vmx->msr_ia32_feature_control_valid_bits |= |
| FEAT_CTL_SGX_LC_ENABLED; |
| else |
| vmx->msr_ia32_feature_control_valid_bits &= |
| ~FEAT_CTL_SGX_LC_ENABLED; |
| |
| /* Refresh #PF interception to account for MAXPHYADDR changes. */ |
| vmx_update_exception_bitmap(vcpu); |
| } |
| |
| static __init u64 vmx_get_perf_capabilities(void) |
| { |
| u64 perf_cap = PMU_CAP_FW_WRITES; |
| u64 host_perf_cap = 0; |
| |
| if (!enable_pmu) |
| return 0; |
| |
| if (boot_cpu_has(X86_FEATURE_PDCM)) |
| rdmsrl(MSR_IA32_PERF_CAPABILITIES, host_perf_cap); |
| |
| if (!cpu_feature_enabled(X86_FEATURE_ARCH_LBR)) { |
| x86_perf_get_lbr(&vmx_lbr_caps); |
| |
| /* |
| * KVM requires LBR callstack support, as the overhead due to |
| * context switching LBRs without said support is too high. |
| * See intel_pmu_create_guest_lbr_event() for more info. |
| */ |
| if (!vmx_lbr_caps.has_callstack) |
| memset(&vmx_lbr_caps, 0, sizeof(vmx_lbr_caps)); |
| else if (vmx_lbr_caps.nr) |
| perf_cap |= host_perf_cap & PMU_CAP_LBR_FMT; |
| } |
| |
| if (vmx_pebs_supported()) { |
| perf_cap |= host_perf_cap & PERF_CAP_PEBS_MASK; |
| |
| /* |
| * Disallow adaptive PEBS as it is functionally broken, can be |
| * used by the guest to read *host* LBRs, and can be used to |
| * bypass userspace event filters. To correctly and safely |
| * support adaptive PEBS, KVM needs to: |
| * |
| * 1. Account for the ADAPTIVE flag when (re)programming fixed |
| * counters. |
| * |
| * 2. Gain support from perf (or take direct control of counter |
| * programming) to support events without adaptive PEBS |
| * enabled for the hardware counter. |
| * |
| * 3. Ensure LBR MSRs cannot hold host data on VM-Entry with |
| * adaptive PEBS enabled and MSR_PEBS_DATA_CFG.LBRS=1. |
| * |
| * 4. Document which PMU events are effectively exposed to the |
| * guest via adaptive PEBS, and make adaptive PEBS mutually |
| * exclusive with KVM_SET_PMU_EVENT_FILTER if necessary. |
| */ |
| perf_cap &= ~PERF_CAP_PEBS_BASELINE; |
| } |
| |
| return perf_cap; |
| } |
| |
| static __init void vmx_set_cpu_caps(void) |
| { |
| kvm_set_cpu_caps(); |
| |
| /* CPUID 0x1 */ |
| if (nested) |
| kvm_cpu_cap_set(X86_FEATURE_VMX); |
| |
| /* CPUID 0x7 */ |
| if (kvm_mpx_supported()) |
| kvm_cpu_cap_check_and_set(X86_FEATURE_MPX); |
| if (!cpu_has_vmx_invpcid()) |
| kvm_cpu_cap_clear(X86_FEATURE_INVPCID); |
| if (vmx_pt_mode_is_host_guest()) |
| kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT); |
| if (vmx_pebs_supported()) { |
| kvm_cpu_cap_check_and_set(X86_FEATURE_DS); |
| kvm_cpu_cap_check_and_set(X86_FEATURE_DTES64); |
| } |
| |
| if (!enable_pmu) |
| kvm_cpu_cap_clear(X86_FEATURE_PDCM); |
| kvm_caps.supported_perf_cap = vmx_get_perf_capabilities(); |
| |
| if (!enable_sgx) { |
| kvm_cpu_cap_clear(X86_FEATURE_SGX); |
| kvm_cpu_cap_clear(X86_FEATURE_SGX_LC); |
| kvm_cpu_cap_clear(X86_FEATURE_SGX1); |
| kvm_cpu_cap_clear(X86_FEATURE_SGX2); |
| } |
| |
| if (vmx_umip_emulated()) |
| kvm_cpu_cap_set(X86_FEATURE_UMIP); |
| |
| /* CPUID 0xD.1 */ |
| kvm_caps.supported_xss = 0; |
| if (!cpu_has_vmx_xsaves()) |
| kvm_cpu_cap_clear(X86_FEATURE_XSAVES); |
| |
| /* CPUID 0x80000001 and 0x7 (RDPID) */ |
| if (!cpu_has_vmx_rdtscp()) { |
| kvm_cpu_cap_clear(X86_FEATURE_RDTSCP); |
| kvm_cpu_cap_clear(X86_FEATURE_RDPID); |
| } |
| |
| if (cpu_has_vmx_waitpkg()) |
| kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG); |
| } |
| |
| static int vmx_check_intercept_io(struct kvm_vcpu *vcpu, |
| struct x86_instruction_info *info) |
| { |
| struct vmcs12 *vmcs12 = get_vmcs12(vcpu); |
| unsigned short port; |
| bool intercept; |
| int size; |
| |
| if (info->intercept == x86_intercept_in || |
| info->intercept == x86_intercept_ins) { |
| port = info->src_val; |
| size = info->dst_bytes; |
| } else { |
| port = info->dst_val; |
| size = info->src_bytes; |
| } |
| |
| /* |
| * If the 'use IO bitmaps' VM-execution control is 0, IO instruction |
| * VM-exits depend on the 'unconditional IO exiting' VM-execution |
| * control. |
| * |
| * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps. |
| */ |
| if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS)) |
| intercept = nested_cpu_has(vmcs12, |
| CPU_BASED_UNCOND_IO_EXITING); |
| else |
| intercept = nested_vmx_check_io_bitmaps(vcpu, port, size); |
| |
| /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */ |
| return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE; |
| } |
| |
| static int vmx_check_intercept(struct kvm_vcpu *vcpu, |
| struct x86_instruction_info *info, |
| enum x86_intercept_stage stage, |
| struct x86_exception *exception) |
| { |
| struct vmcs12 *vmcs12 = get_vmcs12(vcpu); |
| |
| switch (info->intercept) { |
| /* |
| * RDPID causes #UD if disabled through secondary execution controls. |
| * Because it is marked as EmulateOnUD, we need to intercept it here. |
| * Note, RDPID is hidden behind ENABLE_RDTSCP. |
| */ |
| case x86_intercept_rdpid: |
| if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) { |
| exception->vector = UD_VECTOR; |
| exception->error_code_valid = false; |
| return X86EMUL_PROPAGATE_FAULT; |
| } |
| break; |
| |
| case x86_intercept_in: |
| case x86_intercept_ins: |
| case x86_intercept_out: |
| case x86_intercept_outs: |
| return vmx_check_intercept_io(vcpu, info); |
| |
| case x86_intercept_lgdt: |
| case x86_intercept_lidt: |
| case x86_intercept_lldt: |
| case x86_intercept_ltr: |
| case x86_intercept_sgdt: |
| case x86_intercept_sidt: |
| case x86_intercept_sldt: |
| case x86_intercept_str: |
| if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC)) |
| return X86EMUL_CONTINUE; |
| |
| /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */ |
| break; |
| |
| case x86_intercept_pause: |
| /* |
| * PAUSE is a single-byte NOP with a REPE prefix, i.e. collides |
| * with vanilla NOPs in the emulator. Apply the interception |
| * check only to actual PAUSE instructions. Don't check |
| * PAUSE-loop-exiting, software can't expect a given PAUSE to |
| * exit, i.e. KVM is within its rights to allow L2 to execute |
| * the PAUSE. |
| */ |
| if ((info->rep_prefix != REPE_PREFIX) || |
| !nested_cpu_has2(vmcs12, CPU_BASED_PAUSE_EXITING)) |
| return X86EMUL_CONTINUE; |
| |
| break; |
| |
| /* TODO: check more intercepts... */ |
| default: |
| break; |
| } |
| |
| return X86EMUL_UNHANDLEABLE; |
| } |
| |
| #ifdef CONFIG_X86_64 |
| /* (a << shift) / divisor, return 1 if overflow otherwise 0 */ |
| static inline int u64_shl_div_u64(u64 a, unsigned int shift, |
| u64 divisor, u64 *result) |
| { |
| u64 low = a << shift, high = a >> (64 - shift); |
| |
| /* To avoid the overflow on divq */ |
| if (high >= divisor) |
| return 1; |
| |
| /* Low hold the result, high hold rem which is discarded */ |
| asm("divq %2\n\t" : "=a" (low), "=d" (high) : |
| "rm" (divisor), "0" (low), "1" (high)); |
| *result = low; |
| |
| return 0; |
| } |
| |
| static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc, |
| bool *expired) |
| { |
| struct vcpu_vmx *vmx; |
| u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles; |
| struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer; |
| |
| vmx = to_vmx(vcpu); |
| tscl = rdtsc(); |
| guest_tscl = kvm_read_l1_tsc(vcpu, tscl); |
| delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl; |
| lapic_timer_advance_cycles = nsec_to_cycles(vcpu, |
| ktimer->timer_advance_ns); |
| |
| if (delta_tsc > lapic_timer_advance_cycles) |
| delta_tsc -= lapic_timer_advance_cycles; |
| else |
| delta_tsc = 0; |
| |
| /* Convert to host delta tsc if tsc scaling is enabled */ |
| if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio && |
| delta_tsc && u64_shl_div_u64(delta_tsc, |
| kvm_caps.tsc_scaling_ratio_frac_bits, |
| vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc)) |
| return -ERANGE; |
| |
| /* |
| * If the delta tsc can't fit in the 32 bit after the multi shift, |
| * we can't use the preemption timer. |
| * It's possible that it fits on later vmentries, but checking |
| * on every vmentry is costly so we just use an hrtimer. |
| */ |
| if (delta_tsc >> (cpu_preemption_timer_multi + 32)) |
| return -ERANGE; |
| |
| vmx->hv_deadline_tsc = tscl + delta_tsc; |
| *expired = !delta_tsc; |
| return 0; |
| } |
| |
| static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu) |
| { |
| to_vmx(vcpu)->hv_deadline_tsc = -1; |
| } |
| #endif |
| |
| static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu) |
| { |
| if (!kvm_pause_in_guest(vcpu->kvm)) |
| shrink_ple_window(vcpu); |
| } |
| |
| void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| |
| if (WARN_ON_ONCE(!enable_pml)) |
| return; |
| |
| if (is_guest_mode(vcpu)) { |
| vmx->nested.update_vmcs01_cpu_dirty_logging = true; |
| return; |
| } |
| |
| /* |
| * Note, nr_memslots_dirty_logging can be changed concurrent with this |
| * code, but in that case another update request will be made and so |
| * the guest will never run with a stale PML value. |
| */ |
| if (atomic_read(&vcpu->kvm->nr_memslots_dirty_logging)) |
| secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML); |
| else |
| secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML); |
| } |
| |
| static void vmx_setup_mce(struct kvm_vcpu *vcpu) |
| { |
| if (vcpu->arch.mcg_cap & MCG_LMCE_P) |
| to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |= |
| FEAT_CTL_LMCE_ENABLED; |
| else |
| to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &= |
| ~FEAT_CTL_LMCE_ENABLED; |
| } |
| |
| #ifdef CONFIG_KVM_SMM |
| static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection) |
| { |
| /* we need a nested vmexit to enter SMM, postpone if run is pending */ |
| if (to_vmx(vcpu)->nested.nested_run_pending) |
| return -EBUSY; |
| return !is_smm(vcpu); |
| } |
| |
| static int vmx_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| |
| /* |
| * TODO: Implement custom flows for forcing the vCPU out/in of L2 on |
| * SMI and RSM. Using the common VM-Exit + VM-Enter routines is wrong |
| * SMI and RSM only modify state that is saved and restored via SMRAM. |
| * E.g. most MSRs are left untouched, but many are modified by VM-Exit |
| * and VM-Enter, and thus L2's values may be corrupted on SMI+RSM. |
| */ |
| vmx->nested.smm.guest_mode = is_guest_mode(vcpu); |
| if (vmx->nested.smm.guest_mode) |
| nested_vmx_vmexit(vcpu, -1, 0, 0); |
| |
| vmx->nested.smm.vmxon = vmx->nested.vmxon; |
| vmx->nested.vmxon = false; |
| vmx_clear_hlt(vcpu); |
| return 0; |
| } |
| |
| static int vmx_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| int ret; |
| |
| if (vmx->nested.smm.vmxon) { |
| vmx->nested.vmxon = true; |
| vmx->nested.smm.vmxon = false; |
| } |
| |
| if (vmx->nested.smm.guest_mode) { |
| ret = nested_vmx_enter_non_root_mode(vcpu, false); |
| if (ret) |
| return ret; |
| |
| vmx->nested.nested_run_pending = 1; |
| vmx->nested.smm.guest_mode = false; |
| } |
| return 0; |
| } |
| |
| static void vmx_enable_smi_window(struct kvm_vcpu *vcpu) |
| { |
| /* RSM will cause a vmexit anyway. */ |
| } |
| #endif |
| |
| static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu) |
| { |
| return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu); |
| } |
| |
| static void vmx_migrate_timers(struct kvm_vcpu *vcpu) |
| { |
| if (is_guest_mode(vcpu)) { |
| struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer; |
| |
| if (hrtimer_try_to_cancel(timer) == 1) |
| hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); |
| } |
| } |
| |
| static void vmx_hardware_unsetup(void) |
| { |
| kvm_set_posted_intr_wakeup_handler(NULL); |
| |
| if (nested) |
| nested_vmx_hardware_unsetup(); |
| |
| free_kvm_area(); |
| } |
| |
| #define VMX_REQUIRED_APICV_INHIBITS \ |
| ( \ |
| BIT(APICV_INHIBIT_REASON_DISABLE)| \ |
| BIT(APICV_INHIBIT_REASON_ABSENT) | \ |
| BIT(APICV_INHIBIT_REASON_HYPERV) | \ |
| BIT(APICV_INHIBIT_REASON_BLOCKIRQ) | \ |
| BIT(APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED) | \ |
| BIT(APICV_INHIBIT_REASON_APIC_ID_MODIFIED) | \ |
| BIT(APICV_INHIBIT_REASON_APIC_BASE_MODIFIED) \ |
| ) |
| |
| static void vmx_vm_destroy(struct kvm *kvm) |
| { |
| struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); |
| |
| free_pages((unsigned long)kvm_vmx->pid_table, vmx_get_pid_table_order(kvm)); |
| } |
| |
| /* |
| * Note, the SDM states that the linear address is masked *after* the modified |
| * canonicality check, whereas KVM masks (untags) the address and then performs |
| * a "normal" canonicality check. Functionally, the two methods are identical, |
| * and when the masking occurs relative to the canonicality check isn't visible |
| * to software, i.e. KVM's behavior doesn't violate the SDM. |
| */ |
| gva_t vmx_get_untagged_addr(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags) |
| { |
| int lam_bit; |
| unsigned long cr3_bits; |
| |
| if (flags & (X86EMUL_F_FETCH | X86EMUL_F_IMPLICIT | X86EMUL_F_INVLPG)) |
| return gva; |
| |
| if (!is_64_bit_mode(vcpu)) |
| return gva; |
| |
| /* |
| * Bit 63 determines if the address should be treated as user address |
| * or a supervisor address. |
| */ |
| if (!(gva & BIT_ULL(63))) { |
| cr3_bits = kvm_get_active_cr3_lam_bits(vcpu); |
| if (!(cr3_bits & (X86_CR3_LAM_U57 | X86_CR3_LAM_U48))) |
| return gva; |
| |
| /* LAM_U48 is ignored if LAM_U57 is set. */ |
| lam_bit = cr3_bits & X86_CR3_LAM_U57 ? 56 : 47; |
| } else { |
| if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_LAM_SUP)) |
| return gva; |
| |
| lam_bit = kvm_is_cr4_bit_set(vcpu, X86_CR4_LA57) ? 56 : 47; |
| } |
| |
| /* |
| * Untag the address by sign-extending the lam_bit, but NOT to bit 63. |
| * Bit 63 is retained from the raw virtual address so that untagging |
| * doesn't change a user access to a supervisor access, and vice versa. |
| */ |
| return (sign_extend64(gva, lam_bit) & ~BIT_ULL(63)) | (gva & BIT_ULL(63)); |
| } |
| |
| static struct kvm_x86_ops vmx_x86_ops __initdata = { |
| .name = KBUILD_MODNAME, |
| |
| .check_processor_compatibility = vmx_check_processor_compat, |
| |
| .hardware_unsetup = vmx_hardware_unsetup, |
| |
| .hardware_enable = vmx_hardware_enable, |
| .hardware_disable = vmx_hardware_disable, |
| .has_emulated_msr = vmx_has_emulated_msr, |
| |
| .vm_size = sizeof(struct kvm_vmx), |
| .vm_init = vmx_vm_init, |
| .vm_destroy = vmx_vm_destroy, |
| |
| .vcpu_precreate = vmx_vcpu_precreate, |
| .vcpu_create = vmx_vcpu_create, |
| .vcpu_free = vmx_vcpu_free, |
| .vcpu_reset = vmx_vcpu_reset, |
| |
| .prepare_switch_to_guest = vmx_prepare_switch_to_guest, |
| .vcpu_load = vmx_vcpu_load, |
| .vcpu_put = vmx_vcpu_put, |
| |
| .update_exception_bitmap = vmx_update_exception_bitmap, |
| .get_msr_feature = vmx_get_msr_feature, |
| .get_msr = vmx_get_msr, |
| .set_msr = vmx_set_msr, |
| .get_segment_base = vmx_get_segment_base, |
| .get_segment = vmx_get_segment, |
| .set_segment = vmx_set_segment, |
| .get_cpl = vmx_get_cpl, |
| .get_cs_db_l_bits = vmx_get_cs_db_l_bits, |
| .is_valid_cr0 = vmx_is_valid_cr0, |
| .set_cr0 = vmx_set_cr0, |
| .is_valid_cr4 = vmx_is_valid_cr4, |
| .set_cr4 = vmx_set_cr4, |
| .set_efer = vmx_set_efer, |
| .get_idt = vmx_get_idt, |
| .set_idt = vmx_set_idt, |
| .get_gdt = vmx_get_gdt, |
| .set_gdt = vmx_set_gdt, |
| .set_dr7 = vmx_set_dr7, |
| .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs, |
| .cache_reg = vmx_cache_reg, |
| .get_rflags = vmx_get_rflags, |
| .set_rflags = vmx_set_rflags, |
| .get_if_flag = vmx_get_if_flag, |
| |
| .flush_tlb_all = vmx_flush_tlb_all, |
| .flush_tlb_current = vmx_flush_tlb_current, |
| .flush_tlb_gva = vmx_flush_tlb_gva, |
| .flush_tlb_guest = vmx_flush_tlb_guest, |
| |
| .vcpu_pre_run = vmx_vcpu_pre_run, |
| .vcpu_run = vmx_vcpu_run, |
| .handle_exit = vmx_handle_exit, |
| .skip_emulated_instruction = vmx_skip_emulated_instruction, |
| .update_emulated_instruction = vmx_update_emulated_instruction, |
| .set_interrupt_shadow = vmx_set_interrupt_shadow, |
| .get_interrupt_shadow = vmx_get_interrupt_shadow, |
| .patch_hypercall = vmx_patch_hypercall, |
| .inject_irq = vmx_inject_irq, |
| .inject_nmi = vmx_inject_nmi, |
| .inject_exception = vmx_inject_exception, |
| .cancel_injection = vmx_cancel_injection, |
| .interrupt_allowed = vmx_interrupt_allowed, |
| .nmi_allowed = vmx_nmi_allowed, |
| .get_nmi_mask = vmx_get_nmi_mask, |
| .set_nmi_mask = vmx_set_nmi_mask, |
| .enable_nmi_window = vmx_enable_nmi_window, |
| .enable_irq_window = vmx_enable_irq_window, |
| .update_cr8_intercept = vmx_update_cr8_intercept, |
| .set_virtual_apic_mode = vmx_set_virtual_apic_mode, |
| .set_apic_access_page_addr = vmx_set_apic_access_page_addr, |
| .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl, |
| .load_eoi_exitmap = vmx_load_eoi_exitmap, |
| .apicv_pre_state_restore = vmx_apicv_pre_state_restore, |
| .required_apicv_inhibits = VMX_REQUIRED_APICV_INHIBITS, |
| .hwapic_irr_update = vmx_hwapic_irr_update, |
| .hwapic_isr_update = vmx_hwapic_isr_update, |
| .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt, |
| .sync_pir_to_irr = vmx_sync_pir_to_irr, |
| .deliver_interrupt = vmx_deliver_interrupt, |
| .dy_apicv_has_pending_interrupt = pi_has_pending_interrupt, |
| |
| .set_tss_addr = vmx_set_tss_addr, |
| .set_identity_map_addr = vmx_set_identity_map_addr, |
| .get_mt_mask = vmx_get_mt_mask, |
| |
| .get_exit_info = vmx_get_exit_info, |
| |
| .vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid, |
| |
| .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit, |
| |
| .get_l2_tsc_offset = vmx_get_l2_tsc_offset, |
| .get_l2_tsc_multiplier = vmx_get_l2_tsc_multiplier, |
| .write_tsc_offset = vmx_write_tsc_offset, |
| .write_tsc_multiplier = vmx_write_tsc_multiplier, |
| |
| .load_mmu_pgd = vmx_load_mmu_pgd, |
| |
| .check_intercept = vmx_check_intercept, |
| .handle_exit_irqoff = vmx_handle_exit_irqoff, |
| |
| .sched_in = vmx_sched_in, |
| |
| .cpu_dirty_log_size = PML_ENTITY_NUM, |
| .update_cpu_dirty_logging = vmx_update_cpu_dirty_logging, |
| |
| .nested_ops = &vmx_nested_ops, |
| |
| .pi_update_irte = vmx_pi_update_irte, |
| .pi_start_assignment = vmx_pi_start_assignment, |
| |
| #ifdef CONFIG_X86_64 |
| .set_hv_timer = vmx_set_hv_timer, |
| .cancel_hv_timer = vmx_cancel_hv_timer, |
| #endif |
| |
| .setup_mce = vmx_setup_mce, |
| |
| #ifdef CONFIG_KVM_SMM |
| .smi_allowed = vmx_smi_allowed, |
| .enter_smm = vmx_enter_smm, |
| .leave_smm = vmx_leave_smm, |
| .enable_smi_window = vmx_enable_smi_window, |
| #endif |
| |
| .check_emulate_instruction = vmx_check_emulate_instruction, |
| .apic_init_signal_blocked = vmx_apic_init_signal_blocked, |
| .migrate_timers = vmx_migrate_timers, |
| |
| .msr_filter_changed = vmx_msr_filter_changed, |
| .complete_emulated_msr = kvm_complete_insn_gp, |
| |
| .vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector, |
| |
| .get_untagged_addr = vmx_get_untagged_addr, |
| }; |
| |
| static unsigned int vmx_handle_intel_pt_intr(void) |
| { |
| struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); |
| |
| /* '0' on failure so that the !PT case can use a RET0 static call. */ |
| if (!vcpu || !kvm_handling_nmi_from_guest(vcpu)) |
| return 0; |
| |
| kvm_make_request(KVM_REQ_PMI, vcpu); |
| __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT, |
| (unsigned long *)&vcpu->arch.pmu.global_status); |
| return 1; |
| } |
| |
| static __init void vmx_setup_user_return_msrs(void) |
| { |
| |
| /* |
| * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm |
| * will emulate SYSCALL in legacy mode if the vendor string in guest |
| * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To |
| * support this emulation, MSR_STAR is included in the list for i386, |
| * but is never loaded into hardware. MSR_CSTAR is also never loaded |
| * into hardware and is here purely for emulation purposes. |
| */ |
| const u32 vmx_uret_msrs_list[] = { |
| #ifdef CONFIG_X86_64 |
| MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, |
| #endif |
| MSR_EFER, MSR_TSC_AUX, MSR_STAR, |
| MSR_IA32_TSX_CTRL, |
| }; |
| int i; |
| |
| BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS); |
| |
| for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i) |
| kvm_add_user_return_msr(vmx_uret_msrs_list[i]); |
| } |
| |
| static void __init vmx_setup_me_spte_mask(void) |
| { |
| u64 me_mask = 0; |
| |
| /* |
| * kvm_get_shadow_phys_bits() returns shadow_phys_bits. Use |
| * the former to avoid exposing shadow_phys_bits. |
| * |
| * On pre-MKTME system, boot_cpu_data.x86_phys_bits equals to |
| * shadow_phys_bits. On MKTME and/or TDX capable systems, |
| * boot_cpu_data.x86_phys_bits holds the actual physical address |
| * w/o the KeyID bits, and shadow_phys_bits equals to MAXPHYADDR |
| * reported by CPUID. Those bits between are KeyID bits. |
| */ |
| if (boot_cpu_data.x86_phys_bits != kvm_get_shadow_phys_bits()) |
| me_mask = rsvd_bits(boot_cpu_data.x86_phys_bits, |
| kvm_get_shadow_phys_bits() - 1); |
| /* |
| * Unlike SME, host kernel doesn't support setting up any |
| * MKTME KeyID on Intel platforms. No memory encryption |
| * bits should be included into the SPTE. |
| */ |
| kvm_mmu_set_me_spte_mask(0, me_mask); |
| } |
| |
| static struct kvm_x86_init_ops vmx_init_ops __initdata; |
| |
| static __init int hardware_setup(void) |
| { |
| unsigned long host_bndcfgs; |
| struct desc_ptr dt; |
| int r; |
| |
| store_idt(&dt); |
| host_idt_base = dt.address; |
| |
| vmx_setup_user_return_msrs(); |
| |
| if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0) |
| return -EIO; |
| |
| if (cpu_has_perf_global_ctrl_bug()) |
| pr_warn_once("VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL " |
| "does not work properly. Using workaround\n"); |
| |
| if (boot_cpu_has(X86_FEATURE_NX)) |
| kvm_enable_efer_bits(EFER_NX); |
| |
| if (boot_cpu_has(X86_FEATURE_MPX)) { |
| rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs); |
| WARN_ONCE(host_bndcfgs, "BNDCFGS in host will be lost"); |
| } |
| |
| if (!cpu_has_vmx_mpx()) |
| kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | |
| XFEATURE_MASK_BNDCSR); |
| |
| if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() || |
| !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global())) |
| enable_vpid = 0; |
| |
| if (!cpu_has_vmx_ept() || |
| !cpu_has_vmx_ept_4levels() || |
| !cpu_has_vmx_ept_mt_wb() || |
| !cpu_has_vmx_invept_global()) |
| enable_ept = 0; |
| |
| /* NX support is required for shadow paging. */ |
| if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) { |
| pr_err_ratelimited("NX (Execute Disable) not supported\n"); |
| return -EOPNOTSUPP; |
| } |
| |
| if (!cpu_has_vmx_ept_ad_bits() || !enable_ept) |
| enable_ept_ad_bits = 0; |
| |
| if (!cpu_has_vmx_unrestricted_guest() || !enable_ept) |
| enable_unrestricted_guest = 0; |
| |
| if (!cpu_has_vmx_flexpriority()) |
| flexpriority_enabled = 0; |
| |
| if (!cpu_has_virtual_nmis()) |
| enable_vnmi = 0; |
| |
| #ifdef CONFIG_X86_SGX_KVM |
| if (!cpu_has_vmx_encls_vmexit()) |
| enable_sgx = false; |
| #endif |
| |
| /* |
| * set_apic_access_page_addr() is used to reload apic access |
| * page upon invalidation. No need to do anything if not |
| * using the APIC_ACCESS_ADDR VMCS field. |
| */ |
| if (!flexpriority_enabled) |
| vmx_x86_ops.set_apic_access_page_addr = NULL; |
| |
| if (!cpu_has_vmx_tpr_shadow()) |
| vmx_x86_ops.update_cr8_intercept = NULL; |
| |
| #if IS_ENABLED(CONFIG_HYPERV) |
| if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH |
| && enable_ept) { |
| vmx_x86_ops.flush_remote_tlbs = hv_flush_remote_tlbs; |
| vmx_x86_ops.flush_remote_tlbs_range = hv_flush_remote_tlbs_range; |
| } |
| #endif |
| |
| if (!cpu_has_vmx_ple()) { |
| ple_gap = 0; |
| ple_window = 0; |
| ple_window_grow = 0; |
| ple_window_max = 0; |
| ple_window_shrink = 0; |
| } |
| |
| if (!cpu_has_vmx_apicv()) |
| enable_apicv = 0; |
| if (!enable_apicv) |
| vmx_x86_ops.sync_pir_to_irr = NULL; |
| |
| if (!enable_apicv || !cpu_has_vmx_ipiv()) |
| enable_ipiv = false; |
| |
| if (cpu_has_vmx_tsc_scaling()) |
| kvm_caps.has_tsc_control = true; |
| |
| kvm_caps.max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX; |
| kvm_caps.tsc_scaling_ratio_frac_bits = 48; |
| kvm_caps.has_bus_lock_exit = cpu_has_vmx_bus_lock_detection(); |
| kvm_caps.has_notify_vmexit = cpu_has_notify_vmexit(); |
| |
| set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */ |
| |
| if (enable_ept) |
| kvm_mmu_set_ept_masks(enable_ept_ad_bits, |
| cpu_has_vmx_ept_execute_only()); |
| |
| /* |
| * Setup shadow_me_value/shadow_me_mask to include MKTME KeyID |
| * bits to shadow_zero_check. |
| */ |
| vmx_setup_me_spte_mask(); |
| |
| kvm_configure_mmu(enable_ept, 0, vmx_get_max_ept_level(), |
| ept_caps_to_lpage_level(vmx_capability.ept)); |
| |
| /* |
| * Only enable PML when hardware supports PML feature, and both EPT |
| * and EPT A/D bit features are enabled -- PML depends on them to work. |
| */ |
| if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml()) |
| enable_pml = 0; |
| |
| if (!enable_pml) |
| vmx_x86_ops.cpu_dirty_log_size = 0; |
| |
| if (!cpu_has_vmx_preemption_timer()) |
| enable_preemption_timer = false; |
| |
| if (enable_preemption_timer) { |
| u64 use_timer_freq = 5000ULL * 1000 * 1000; |
| |
| cpu_preemption_timer_multi = |
| vmcs_config.misc & VMX_MISC_PREEMPTION_TIMER_RATE_MASK; |
| |
| if (tsc_khz) |
| use_timer_freq = (u64)tsc_khz * 1000; |
| use_timer_freq >>= cpu_preemption_timer_multi; |
| |
| /* |
| * KVM "disables" the preemption timer by setting it to its max |
| * value. Don't use the timer if it might cause spurious exits |
| * at a rate faster than 0.1 Hz (of uninterrupted guest time). |
| */ |
| if (use_timer_freq > 0xffffffffu / 10) |
| enable_preemption_timer = false; |
| } |
| |
| if (!enable_preemption_timer) { |
| vmx_x86_ops.set_hv_timer = NULL; |
| vmx_x86_ops.cancel_hv_timer = NULL; |
| } |
| |
| kvm_caps.supported_mce_cap |= MCG_LMCE_P; |
| kvm_caps.supported_mce_cap |= MCG_CMCI_P; |
| |
| if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST) |
| return -EINVAL; |
| if (!enable_ept || !enable_pmu || !cpu_has_vmx_intel_pt()) |
| pt_mode = PT_MODE_SYSTEM; |
| if (pt_mode == PT_MODE_HOST_GUEST) |
| vmx_init_ops.handle_intel_pt_intr = vmx_handle_intel_pt_intr; |
| else |
| vmx_init_ops.handle_intel_pt_intr = NULL; |
| |
| setup_default_sgx_lepubkeyhash(); |
| |
| if (nested) { |
| nested_vmx_setup_ctls_msrs(&vmcs_config, vmx_capability.ept); |
| |
| r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers); |
| if (r) |
| return r; |
| } |
| |
| vmx_set_cpu_caps(); |
| |
| r = alloc_kvm_area(); |
| if (r && nested) |
| nested_vmx_hardware_unsetup(); |
| |
| kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler); |
| |
| return r; |
| } |
| |
| static struct kvm_x86_init_ops vmx_init_ops __initdata = { |
| .hardware_setup = hardware_setup, |
| .handle_intel_pt_intr = NULL, |
| |
| .runtime_ops = &vmx_x86_ops, |
| .pmu_ops = &intel_pmu_ops, |
| }; |
| |
| static void vmx_cleanup_l1d_flush(void) |
| { |
| if (vmx_l1d_flush_pages) { |
| free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER); |
| vmx_l1d_flush_pages = NULL; |
| } |
| /* Restore state so sysfs ignores VMX */ |
| l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO; |
| } |
| |
| static void __vmx_exit(void) |
| { |
| allow_smaller_maxphyaddr = false; |
| |
| cpu_emergency_unregister_virt_callback(vmx_emergency_disable); |
| |
| vmx_cleanup_l1d_flush(); |
| } |
| |
| static void vmx_exit(void) |
| { |
| kvm_exit(); |
| kvm_x86_vendor_exit(); |
| |
| __vmx_exit(); |
| } |
| module_exit(vmx_exit); |
| |
| static int __init vmx_init(void) |
| { |
| int r, cpu; |
| |
| if (!kvm_is_vmx_supported()) |
| return -EOPNOTSUPP; |
| |
| /* |
| * Note, hv_init_evmcs() touches only VMX knobs, i.e. there's nothing |
| * to unwind if a later step fails. |
| */ |
| hv_init_evmcs(); |
| |
| r = kvm_x86_vendor_init(&vmx_init_ops); |
| if (r) |
| return r; |
| |
| /* |
| * Must be called after common x86 init so enable_ept is properly set |
| * up. Hand the parameter mitigation value in which was stored in |
| * the pre module init parser. If no parameter was given, it will |
| * contain 'auto' which will be turned into the default 'cond' |
| * mitigation mode. |
| */ |
| r = vmx_setup_l1d_flush(vmentry_l1d_flush_param); |
| if (r) |
| goto err_l1d_flush; |
| |
| for_each_possible_cpu(cpu) { |
| INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu)); |
| |
| pi_init_cpu(cpu); |
| } |
| |
| cpu_emergency_register_virt_callback(vmx_emergency_disable); |
| |
| vmx_check_vmcs12_offsets(); |
| |
| /* |
| * Shadow paging doesn't have a (further) performance penalty |
| * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it |
| * by default |
| */ |
| if (!enable_ept) |
| allow_smaller_maxphyaddr = true; |
| |
| /* |
| * Common KVM initialization _must_ come last, after this, /dev/kvm is |
| * exposed to userspace! |
| */ |
| r = kvm_init(sizeof(struct vcpu_vmx), __alignof__(struct vcpu_vmx), |
| THIS_MODULE); |
| if (r) |
| goto err_kvm_init; |
| |
| return 0; |
| |
| err_kvm_init: |
| __vmx_exit(); |
| err_l1d_flush: |
| kvm_x86_vendor_exit(); |
| return r; |
| } |
| module_init(vmx_init); |