| /* |
| * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved. |
| * Copyright (c) 2020, Intel Corporation. All rights reserved. |
| * |
| * This software is available to you under a choice of one of two |
| * licenses. You may choose to be licensed under the terms of the GNU |
| * General Public License (GPL) Version 2, available from the file |
| * COPYING in the main directory of this source tree, or the |
| * OpenIB.org BSD license below: |
| * |
| * Redistribution and use in source and binary forms, with or |
| * without modification, are permitted provided that the following |
| * conditions are met: |
| * |
| * - Redistributions of source code must retain the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer. |
| * |
| * - Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer in the documentation and/or other materials |
| * provided with the distribution. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS |
| * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
| * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| * SOFTWARE. |
| */ |
| |
| |
| #include <linux/kref.h> |
| #include <linux/random.h> |
| #include <linux/debugfs.h> |
| #include <linux/export.h> |
| #include <linux/delay.h> |
| #include <linux/dma-buf.h> |
| #include <linux/dma-resv.h> |
| #include <rdma/ib_umem_odp.h> |
| #include "dm.h" |
| #include "mlx5_ib.h" |
| #include "umr.h" |
| |
| enum { |
| MAX_PENDING_REG_MR = 8, |
| }; |
| |
| #define MLX5_UMR_ALIGN 2048 |
| |
| static void |
| create_mkey_callback(int status, struct mlx5_async_work *context); |
| static struct mlx5_ib_mr *reg_create(struct ib_pd *pd, struct ib_umem *umem, |
| u64 iova, int access_flags, |
| unsigned int page_size, bool populate); |
| |
| static void set_mkc_access_pd_addr_fields(void *mkc, int acc, u64 start_addr, |
| struct ib_pd *pd) |
| { |
| struct mlx5_ib_dev *dev = to_mdev(pd->device); |
| |
| MLX5_SET(mkc, mkc, a, !!(acc & IB_ACCESS_REMOTE_ATOMIC)); |
| MLX5_SET(mkc, mkc, rw, !!(acc & IB_ACCESS_REMOTE_WRITE)); |
| MLX5_SET(mkc, mkc, rr, !!(acc & IB_ACCESS_REMOTE_READ)); |
| MLX5_SET(mkc, mkc, lw, !!(acc & IB_ACCESS_LOCAL_WRITE)); |
| MLX5_SET(mkc, mkc, lr, 1); |
| |
| if (acc & IB_ACCESS_RELAXED_ORDERING) { |
| if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write)) |
| MLX5_SET(mkc, mkc, relaxed_ordering_write, 1); |
| |
| if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read) || |
| (MLX5_CAP_GEN(dev->mdev, |
| relaxed_ordering_read_pci_enabled) && |
| pcie_relaxed_ordering_enabled(dev->mdev->pdev))) |
| MLX5_SET(mkc, mkc, relaxed_ordering_read, 1); |
| } |
| |
| MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn); |
| MLX5_SET(mkc, mkc, qpn, 0xffffff); |
| MLX5_SET64(mkc, mkc, start_addr, start_addr); |
| } |
| |
| static void assign_mkey_variant(struct mlx5_ib_dev *dev, u32 *mkey, u32 *in) |
| { |
| u8 key = atomic_inc_return(&dev->mkey_var); |
| void *mkc; |
| |
| mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); |
| MLX5_SET(mkc, mkc, mkey_7_0, key); |
| *mkey = key; |
| } |
| |
| static int mlx5_ib_create_mkey(struct mlx5_ib_dev *dev, |
| struct mlx5_ib_mkey *mkey, u32 *in, int inlen) |
| { |
| int ret; |
| |
| assign_mkey_variant(dev, &mkey->key, in); |
| ret = mlx5_core_create_mkey(dev->mdev, &mkey->key, in, inlen); |
| if (!ret) |
| init_waitqueue_head(&mkey->wait); |
| |
| return ret; |
| } |
| |
| static int mlx5_ib_create_mkey_cb(struct mlx5r_async_create_mkey *async_create) |
| { |
| struct mlx5_ib_dev *dev = async_create->ent->dev; |
| size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in); |
| size_t outlen = MLX5_ST_SZ_BYTES(create_mkey_out); |
| |
| MLX5_SET(create_mkey_in, async_create->in, opcode, |
| MLX5_CMD_OP_CREATE_MKEY); |
| assign_mkey_variant(dev, &async_create->mkey, async_create->in); |
| return mlx5_cmd_exec_cb(&dev->async_ctx, async_create->in, inlen, |
| async_create->out, outlen, create_mkey_callback, |
| &async_create->cb_work); |
| } |
| |
| static int mkey_cache_max_order(struct mlx5_ib_dev *dev); |
| static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent); |
| |
| static int destroy_mkey(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr) |
| { |
| WARN_ON(xa_load(&dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key))); |
| |
| return mlx5_core_destroy_mkey(dev->mdev, mr->mmkey.key); |
| } |
| |
| static void create_mkey_warn(struct mlx5_ib_dev *dev, int status, void *out) |
| { |
| if (status == -ENXIO) /* core driver is not available */ |
| return; |
| |
| mlx5_ib_warn(dev, "async reg mr failed. status %d\n", status); |
| if (status != -EREMOTEIO) /* driver specific failure */ |
| return; |
| |
| /* Failed in FW, print cmd out failure details */ |
| mlx5_cmd_out_err(dev->mdev, MLX5_CMD_OP_CREATE_MKEY, 0, out); |
| } |
| |
| static int push_mkey_locked(struct mlx5_cache_ent *ent, u32 mkey) |
| { |
| unsigned long tmp = ent->mkeys_queue.ci % NUM_MKEYS_PER_PAGE; |
| struct mlx5_mkeys_page *page; |
| |
| lockdep_assert_held(&ent->mkeys_queue.lock); |
| if (ent->mkeys_queue.ci >= |
| ent->mkeys_queue.num_pages * NUM_MKEYS_PER_PAGE) { |
| page = kzalloc(sizeof(*page), GFP_ATOMIC); |
| if (!page) |
| return -ENOMEM; |
| ent->mkeys_queue.num_pages++; |
| list_add_tail(&page->list, &ent->mkeys_queue.pages_list); |
| } else { |
| page = list_last_entry(&ent->mkeys_queue.pages_list, |
| struct mlx5_mkeys_page, list); |
| } |
| |
| page->mkeys[tmp] = mkey; |
| ent->mkeys_queue.ci++; |
| return 0; |
| } |
| |
| static int pop_mkey_locked(struct mlx5_cache_ent *ent) |
| { |
| unsigned long tmp = (ent->mkeys_queue.ci - 1) % NUM_MKEYS_PER_PAGE; |
| struct mlx5_mkeys_page *last_page; |
| u32 mkey; |
| |
| lockdep_assert_held(&ent->mkeys_queue.lock); |
| last_page = list_last_entry(&ent->mkeys_queue.pages_list, |
| struct mlx5_mkeys_page, list); |
| mkey = last_page->mkeys[tmp]; |
| last_page->mkeys[tmp] = 0; |
| ent->mkeys_queue.ci--; |
| if (ent->mkeys_queue.num_pages > 1 && !tmp) { |
| list_del(&last_page->list); |
| ent->mkeys_queue.num_pages--; |
| kfree(last_page); |
| } |
| return mkey; |
| } |
| |
| static void create_mkey_callback(int status, struct mlx5_async_work *context) |
| { |
| struct mlx5r_async_create_mkey *mkey_out = |
| container_of(context, struct mlx5r_async_create_mkey, cb_work); |
| struct mlx5_cache_ent *ent = mkey_out->ent; |
| struct mlx5_ib_dev *dev = ent->dev; |
| unsigned long flags; |
| |
| if (status) { |
| create_mkey_warn(dev, status, mkey_out->out); |
| kfree(mkey_out); |
| spin_lock_irqsave(&ent->mkeys_queue.lock, flags); |
| ent->pending--; |
| WRITE_ONCE(dev->fill_delay, 1); |
| spin_unlock_irqrestore(&ent->mkeys_queue.lock, flags); |
| mod_timer(&dev->delay_timer, jiffies + HZ); |
| return; |
| } |
| |
| mkey_out->mkey |= mlx5_idx_to_mkey( |
| MLX5_GET(create_mkey_out, mkey_out->out, mkey_index)); |
| WRITE_ONCE(dev->cache.last_add, jiffies); |
| |
| spin_lock_irqsave(&ent->mkeys_queue.lock, flags); |
| push_mkey_locked(ent, mkey_out->mkey); |
| /* If we are doing fill_to_high_water then keep going. */ |
| queue_adjust_cache_locked(ent); |
| ent->pending--; |
| spin_unlock_irqrestore(&ent->mkeys_queue.lock, flags); |
| kfree(mkey_out); |
| } |
| |
| static int get_mkc_octo_size(unsigned int access_mode, unsigned int ndescs) |
| { |
| int ret = 0; |
| |
| switch (access_mode) { |
| case MLX5_MKC_ACCESS_MODE_MTT: |
| ret = DIV_ROUND_UP(ndescs, MLX5_IB_UMR_OCTOWORD / |
| sizeof(struct mlx5_mtt)); |
| break; |
| case MLX5_MKC_ACCESS_MODE_KSM: |
| ret = DIV_ROUND_UP(ndescs, MLX5_IB_UMR_OCTOWORD / |
| sizeof(struct mlx5_klm)); |
| break; |
| default: |
| WARN_ON(1); |
| } |
| return ret; |
| } |
| |
| static void set_cache_mkc(struct mlx5_cache_ent *ent, void *mkc) |
| { |
| set_mkc_access_pd_addr_fields(mkc, ent->rb_key.access_flags, 0, |
| ent->dev->umrc.pd); |
| MLX5_SET(mkc, mkc, free, 1); |
| MLX5_SET(mkc, mkc, umr_en, 1); |
| MLX5_SET(mkc, mkc, access_mode_1_0, ent->rb_key.access_mode & 0x3); |
| MLX5_SET(mkc, mkc, access_mode_4_2, |
| (ent->rb_key.access_mode >> 2) & 0x7); |
| |
| MLX5_SET(mkc, mkc, translations_octword_size, |
| get_mkc_octo_size(ent->rb_key.access_mode, |
| ent->rb_key.ndescs)); |
| MLX5_SET(mkc, mkc, log_page_size, PAGE_SHIFT); |
| } |
| |
| /* Asynchronously schedule new MRs to be populated in the cache. */ |
| static int add_keys(struct mlx5_cache_ent *ent, unsigned int num) |
| { |
| struct mlx5r_async_create_mkey *async_create; |
| void *mkc; |
| int err = 0; |
| int i; |
| |
| for (i = 0; i < num; i++) { |
| async_create = kzalloc(sizeof(struct mlx5r_async_create_mkey), |
| GFP_KERNEL); |
| if (!async_create) |
| return -ENOMEM; |
| mkc = MLX5_ADDR_OF(create_mkey_in, async_create->in, |
| memory_key_mkey_entry); |
| set_cache_mkc(ent, mkc); |
| async_create->ent = ent; |
| |
| spin_lock_irq(&ent->mkeys_queue.lock); |
| if (ent->pending >= MAX_PENDING_REG_MR) { |
| err = -EAGAIN; |
| goto free_async_create; |
| } |
| ent->pending++; |
| spin_unlock_irq(&ent->mkeys_queue.lock); |
| |
| err = mlx5_ib_create_mkey_cb(async_create); |
| if (err) { |
| mlx5_ib_warn(ent->dev, "create mkey failed %d\n", err); |
| goto err_create_mkey; |
| } |
| } |
| |
| return 0; |
| |
| err_create_mkey: |
| spin_lock_irq(&ent->mkeys_queue.lock); |
| ent->pending--; |
| free_async_create: |
| spin_unlock_irq(&ent->mkeys_queue.lock); |
| kfree(async_create); |
| return err; |
| } |
| |
| /* Synchronously create a MR in the cache */ |
| static int create_cache_mkey(struct mlx5_cache_ent *ent, u32 *mkey) |
| { |
| size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in); |
| void *mkc; |
| u32 *in; |
| int err; |
| |
| in = kzalloc(inlen, GFP_KERNEL); |
| if (!in) |
| return -ENOMEM; |
| mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); |
| set_cache_mkc(ent, mkc); |
| |
| err = mlx5_core_create_mkey(ent->dev->mdev, mkey, in, inlen); |
| if (err) |
| goto free_in; |
| |
| WRITE_ONCE(ent->dev->cache.last_add, jiffies); |
| free_in: |
| kfree(in); |
| return err; |
| } |
| |
| static void remove_cache_mr_locked(struct mlx5_cache_ent *ent) |
| { |
| u32 mkey; |
| |
| lockdep_assert_held(&ent->mkeys_queue.lock); |
| if (!ent->mkeys_queue.ci) |
| return; |
| mkey = pop_mkey_locked(ent); |
| spin_unlock_irq(&ent->mkeys_queue.lock); |
| mlx5_core_destroy_mkey(ent->dev->mdev, mkey); |
| spin_lock_irq(&ent->mkeys_queue.lock); |
| } |
| |
| static int resize_available_mrs(struct mlx5_cache_ent *ent, unsigned int target, |
| bool limit_fill) |
| __acquires(&ent->mkeys_queue.lock) __releases(&ent->mkeys_queue.lock) |
| { |
| int err; |
| |
| lockdep_assert_held(&ent->mkeys_queue.lock); |
| |
| while (true) { |
| if (limit_fill) |
| target = ent->limit * 2; |
| if (target == ent->pending + ent->mkeys_queue.ci) |
| return 0; |
| if (target > ent->pending + ent->mkeys_queue.ci) { |
| u32 todo = target - (ent->pending + ent->mkeys_queue.ci); |
| |
| spin_unlock_irq(&ent->mkeys_queue.lock); |
| err = add_keys(ent, todo); |
| if (err == -EAGAIN) |
| usleep_range(3000, 5000); |
| spin_lock_irq(&ent->mkeys_queue.lock); |
| if (err) { |
| if (err != -EAGAIN) |
| return err; |
| } else |
| return 0; |
| } else { |
| remove_cache_mr_locked(ent); |
| } |
| } |
| } |
| |
| static ssize_t size_write(struct file *filp, const char __user *buf, |
| size_t count, loff_t *pos) |
| { |
| struct mlx5_cache_ent *ent = filp->private_data; |
| u32 target; |
| int err; |
| |
| err = kstrtou32_from_user(buf, count, 0, &target); |
| if (err) |
| return err; |
| |
| /* |
| * Target is the new value of total_mrs the user requests, however we |
| * cannot free MRs that are in use. Compute the target value for stored |
| * mkeys. |
| */ |
| spin_lock_irq(&ent->mkeys_queue.lock); |
| if (target < ent->in_use) { |
| err = -EINVAL; |
| goto err_unlock; |
| } |
| target = target - ent->in_use; |
| if (target < ent->limit || target > ent->limit*2) { |
| err = -EINVAL; |
| goto err_unlock; |
| } |
| err = resize_available_mrs(ent, target, false); |
| if (err) |
| goto err_unlock; |
| spin_unlock_irq(&ent->mkeys_queue.lock); |
| |
| return count; |
| |
| err_unlock: |
| spin_unlock_irq(&ent->mkeys_queue.lock); |
| return err; |
| } |
| |
| static ssize_t size_read(struct file *filp, char __user *buf, size_t count, |
| loff_t *pos) |
| { |
| struct mlx5_cache_ent *ent = filp->private_data; |
| char lbuf[20]; |
| int err; |
| |
| err = snprintf(lbuf, sizeof(lbuf), "%ld\n", |
| ent->mkeys_queue.ci + ent->in_use); |
| if (err < 0) |
| return err; |
| |
| return simple_read_from_buffer(buf, count, pos, lbuf, err); |
| } |
| |
| static const struct file_operations size_fops = { |
| .owner = THIS_MODULE, |
| .open = simple_open, |
| .write = size_write, |
| .read = size_read, |
| }; |
| |
| static ssize_t limit_write(struct file *filp, const char __user *buf, |
| size_t count, loff_t *pos) |
| { |
| struct mlx5_cache_ent *ent = filp->private_data; |
| u32 var; |
| int err; |
| |
| err = kstrtou32_from_user(buf, count, 0, &var); |
| if (err) |
| return err; |
| |
| /* |
| * Upon set we immediately fill the cache to high water mark implied by |
| * the limit. |
| */ |
| spin_lock_irq(&ent->mkeys_queue.lock); |
| ent->limit = var; |
| err = resize_available_mrs(ent, 0, true); |
| spin_unlock_irq(&ent->mkeys_queue.lock); |
| if (err) |
| return err; |
| return count; |
| } |
| |
| static ssize_t limit_read(struct file *filp, char __user *buf, size_t count, |
| loff_t *pos) |
| { |
| struct mlx5_cache_ent *ent = filp->private_data; |
| char lbuf[20]; |
| int err; |
| |
| err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->limit); |
| if (err < 0) |
| return err; |
| |
| return simple_read_from_buffer(buf, count, pos, lbuf, err); |
| } |
| |
| static const struct file_operations limit_fops = { |
| .owner = THIS_MODULE, |
| .open = simple_open, |
| .write = limit_write, |
| .read = limit_read, |
| }; |
| |
| static bool someone_adding(struct mlx5_mkey_cache *cache) |
| { |
| struct mlx5_cache_ent *ent; |
| struct rb_node *node; |
| bool ret; |
| |
| mutex_lock(&cache->rb_lock); |
| for (node = rb_first(&cache->rb_root); node; node = rb_next(node)) { |
| ent = rb_entry(node, struct mlx5_cache_ent, node); |
| spin_lock_irq(&ent->mkeys_queue.lock); |
| ret = ent->mkeys_queue.ci < ent->limit; |
| spin_unlock_irq(&ent->mkeys_queue.lock); |
| if (ret) { |
| mutex_unlock(&cache->rb_lock); |
| return true; |
| } |
| } |
| mutex_unlock(&cache->rb_lock); |
| return false; |
| } |
| |
| /* |
| * Check if the bucket is outside the high/low water mark and schedule an async |
| * update. The cache refill has hysteresis, once the low water mark is hit it is |
| * refilled up to the high mark. |
| */ |
| static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent) |
| { |
| lockdep_assert_held(&ent->mkeys_queue.lock); |
| |
| if (ent->disabled || READ_ONCE(ent->dev->fill_delay) || ent->is_tmp) |
| return; |
| if (ent->mkeys_queue.ci < ent->limit) { |
| ent->fill_to_high_water = true; |
| mod_delayed_work(ent->dev->cache.wq, &ent->dwork, 0); |
| } else if (ent->fill_to_high_water && |
| ent->mkeys_queue.ci + ent->pending < 2 * ent->limit) { |
| /* |
| * Once we start populating due to hitting a low water mark |
| * continue until we pass the high water mark. |
| */ |
| mod_delayed_work(ent->dev->cache.wq, &ent->dwork, 0); |
| } else if (ent->mkeys_queue.ci == 2 * ent->limit) { |
| ent->fill_to_high_water = false; |
| } else if (ent->mkeys_queue.ci > 2 * ent->limit) { |
| /* Queue deletion of excess entries */ |
| ent->fill_to_high_water = false; |
| if (ent->pending) |
| queue_delayed_work(ent->dev->cache.wq, &ent->dwork, |
| msecs_to_jiffies(1000)); |
| else |
| mod_delayed_work(ent->dev->cache.wq, &ent->dwork, 0); |
| } |
| } |
| |
| static void __cache_work_func(struct mlx5_cache_ent *ent) |
| { |
| struct mlx5_ib_dev *dev = ent->dev; |
| struct mlx5_mkey_cache *cache = &dev->cache; |
| int err; |
| |
| spin_lock_irq(&ent->mkeys_queue.lock); |
| if (ent->disabled) |
| goto out; |
| |
| if (ent->fill_to_high_water && |
| ent->mkeys_queue.ci + ent->pending < 2 * ent->limit && |
| !READ_ONCE(dev->fill_delay)) { |
| spin_unlock_irq(&ent->mkeys_queue.lock); |
| err = add_keys(ent, 1); |
| spin_lock_irq(&ent->mkeys_queue.lock); |
| if (ent->disabled) |
| goto out; |
| if (err) { |
| /* |
| * EAGAIN only happens if there are pending MRs, so we |
| * will be rescheduled when storing them. The only |
| * failure path here is ENOMEM. |
| */ |
| if (err != -EAGAIN) { |
| mlx5_ib_warn( |
| dev, |
| "add keys command failed, err %d\n", |
| err); |
| queue_delayed_work(cache->wq, &ent->dwork, |
| msecs_to_jiffies(1000)); |
| } |
| } |
| } else if (ent->mkeys_queue.ci > 2 * ent->limit) { |
| bool need_delay; |
| |
| /* |
| * The remove_cache_mr() logic is performed as garbage |
| * collection task. Such task is intended to be run when no |
| * other active processes are running. |
| * |
| * The need_resched() will return TRUE if there are user tasks |
| * to be activated in near future. |
| * |
| * In such case, we don't execute remove_cache_mr() and postpone |
| * the garbage collection work to try to run in next cycle, in |
| * order to free CPU resources to other tasks. |
| */ |
| spin_unlock_irq(&ent->mkeys_queue.lock); |
| need_delay = need_resched() || someone_adding(cache) || |
| !time_after(jiffies, |
| READ_ONCE(cache->last_add) + 300 * HZ); |
| spin_lock_irq(&ent->mkeys_queue.lock); |
| if (ent->disabled) |
| goto out; |
| if (need_delay) { |
| queue_delayed_work(cache->wq, &ent->dwork, 300 * HZ); |
| goto out; |
| } |
| remove_cache_mr_locked(ent); |
| queue_adjust_cache_locked(ent); |
| } |
| out: |
| spin_unlock_irq(&ent->mkeys_queue.lock); |
| } |
| |
| static void delayed_cache_work_func(struct work_struct *work) |
| { |
| struct mlx5_cache_ent *ent; |
| |
| ent = container_of(work, struct mlx5_cache_ent, dwork.work); |
| __cache_work_func(ent); |
| } |
| |
| static int cache_ent_key_cmp(struct mlx5r_cache_rb_key key1, |
| struct mlx5r_cache_rb_key key2) |
| { |
| int res; |
| |
| res = key1.ats - key2.ats; |
| if (res) |
| return res; |
| |
| res = key1.access_mode - key2.access_mode; |
| if (res) |
| return res; |
| |
| res = key1.access_flags - key2.access_flags; |
| if (res) |
| return res; |
| |
| /* |
| * keep ndescs the last in the compare table since the find function |
| * searches for an exact match on all properties and only closest |
| * match in size. |
| */ |
| return key1.ndescs - key2.ndescs; |
| } |
| |
| static int mlx5_cache_ent_insert(struct mlx5_mkey_cache *cache, |
| struct mlx5_cache_ent *ent) |
| { |
| struct rb_node **new = &cache->rb_root.rb_node, *parent = NULL; |
| struct mlx5_cache_ent *cur; |
| int cmp; |
| |
| /* Figure out where to put new node */ |
| while (*new) { |
| cur = rb_entry(*new, struct mlx5_cache_ent, node); |
| parent = *new; |
| cmp = cache_ent_key_cmp(cur->rb_key, ent->rb_key); |
| if (cmp > 0) |
| new = &((*new)->rb_left); |
| if (cmp < 0) |
| new = &((*new)->rb_right); |
| if (cmp == 0) { |
| mutex_unlock(&cache->rb_lock); |
| return -EEXIST; |
| } |
| } |
| |
| /* Add new node and rebalance tree. */ |
| rb_link_node(&ent->node, parent, new); |
| rb_insert_color(&ent->node, &cache->rb_root); |
| |
| return 0; |
| } |
| |
| static struct mlx5_cache_ent * |
| mkey_cache_ent_from_rb_key(struct mlx5_ib_dev *dev, |
| struct mlx5r_cache_rb_key rb_key) |
| { |
| struct rb_node *node = dev->cache.rb_root.rb_node; |
| struct mlx5_cache_ent *cur, *smallest = NULL; |
| int cmp; |
| |
| /* |
| * Find the smallest ent with order >= requested_order. |
| */ |
| while (node) { |
| cur = rb_entry(node, struct mlx5_cache_ent, node); |
| cmp = cache_ent_key_cmp(cur->rb_key, rb_key); |
| if (cmp > 0) { |
| smallest = cur; |
| node = node->rb_left; |
| } |
| if (cmp < 0) |
| node = node->rb_right; |
| if (cmp == 0) |
| return cur; |
| } |
| |
| return (smallest && |
| smallest->rb_key.access_mode == rb_key.access_mode && |
| smallest->rb_key.access_flags == rb_key.access_flags && |
| smallest->rb_key.ats == rb_key.ats) ? |
| smallest : |
| NULL; |
| } |
| |
| static struct mlx5_ib_mr *_mlx5_mr_cache_alloc(struct mlx5_ib_dev *dev, |
| struct mlx5_cache_ent *ent, |
| int access_flags) |
| { |
| struct mlx5_ib_mr *mr; |
| int err; |
| |
| mr = kzalloc(sizeof(*mr), GFP_KERNEL); |
| if (!mr) |
| return ERR_PTR(-ENOMEM); |
| |
| spin_lock_irq(&ent->mkeys_queue.lock); |
| ent->in_use++; |
| |
| if (!ent->mkeys_queue.ci) { |
| queue_adjust_cache_locked(ent); |
| ent->miss++; |
| spin_unlock_irq(&ent->mkeys_queue.lock); |
| err = create_cache_mkey(ent, &mr->mmkey.key); |
| if (err) { |
| spin_lock_irq(&ent->mkeys_queue.lock); |
| ent->in_use--; |
| spin_unlock_irq(&ent->mkeys_queue.lock); |
| kfree(mr); |
| return ERR_PTR(err); |
| } |
| } else { |
| mr->mmkey.key = pop_mkey_locked(ent); |
| queue_adjust_cache_locked(ent); |
| spin_unlock_irq(&ent->mkeys_queue.lock); |
| } |
| mr->mmkey.cache_ent = ent; |
| mr->mmkey.type = MLX5_MKEY_MR; |
| init_waitqueue_head(&mr->mmkey.wait); |
| return mr; |
| } |
| |
| static int get_unchangeable_access_flags(struct mlx5_ib_dev *dev, |
| int access_flags) |
| { |
| int ret = 0; |
| |
| if ((access_flags & IB_ACCESS_REMOTE_ATOMIC) && |
| MLX5_CAP_GEN(dev->mdev, atomic) && |
| MLX5_CAP_GEN(dev->mdev, umr_modify_atomic_disabled)) |
| ret |= IB_ACCESS_REMOTE_ATOMIC; |
| |
| if ((access_flags & IB_ACCESS_RELAXED_ORDERING) && |
| MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write) && |
| !MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write_umr)) |
| ret |= IB_ACCESS_RELAXED_ORDERING; |
| |
| if ((access_flags & IB_ACCESS_RELAXED_ORDERING) && |
| (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read) || |
| MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read_pci_enabled)) && |
| !MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read_umr)) |
| ret |= IB_ACCESS_RELAXED_ORDERING; |
| |
| return ret; |
| } |
| |
| struct mlx5_ib_mr *mlx5_mr_cache_alloc(struct mlx5_ib_dev *dev, |
| int access_flags, int access_mode, |
| int ndescs) |
| { |
| struct mlx5r_cache_rb_key rb_key = { |
| .ndescs = ndescs, |
| .access_mode = access_mode, |
| .access_flags = get_unchangeable_access_flags(dev, access_flags) |
| }; |
| struct mlx5_cache_ent *ent = mkey_cache_ent_from_rb_key(dev, rb_key); |
| |
| if (!ent) |
| return ERR_PTR(-EOPNOTSUPP); |
| |
| return _mlx5_mr_cache_alloc(dev, ent, access_flags); |
| } |
| |
| static void clean_keys(struct mlx5_ib_dev *dev, struct mlx5_cache_ent *ent) |
| { |
| u32 mkey; |
| |
| cancel_delayed_work(&ent->dwork); |
| spin_lock_irq(&ent->mkeys_queue.lock); |
| while (ent->mkeys_queue.ci) { |
| mkey = pop_mkey_locked(ent); |
| spin_unlock_irq(&ent->mkeys_queue.lock); |
| mlx5_core_destroy_mkey(dev->mdev, mkey); |
| spin_lock_irq(&ent->mkeys_queue.lock); |
| } |
| spin_unlock_irq(&ent->mkeys_queue.lock); |
| } |
| |
| static void mlx5_mkey_cache_debugfs_cleanup(struct mlx5_ib_dev *dev) |
| { |
| if (!mlx5_debugfs_root || dev->is_rep) |
| return; |
| |
| debugfs_remove_recursive(dev->cache.fs_root); |
| dev->cache.fs_root = NULL; |
| } |
| |
| static void mlx5_mkey_cache_debugfs_add_ent(struct mlx5_ib_dev *dev, |
| struct mlx5_cache_ent *ent) |
| { |
| int order = order_base_2(ent->rb_key.ndescs); |
| struct dentry *dir; |
| |
| if (!mlx5_debugfs_root || dev->is_rep) |
| return; |
| |
| if (ent->rb_key.access_mode == MLX5_MKC_ACCESS_MODE_KSM) |
| order = MLX5_IMR_KSM_CACHE_ENTRY + 2; |
| |
| sprintf(ent->name, "%d", order); |
| dir = debugfs_create_dir(ent->name, dev->cache.fs_root); |
| debugfs_create_file("size", 0600, dir, ent, &size_fops); |
| debugfs_create_file("limit", 0600, dir, ent, &limit_fops); |
| debugfs_create_ulong("cur", 0400, dir, &ent->mkeys_queue.ci); |
| debugfs_create_u32("miss", 0600, dir, &ent->miss); |
| } |
| |
| static void mlx5_mkey_cache_debugfs_init(struct mlx5_ib_dev *dev) |
| { |
| struct dentry *dbg_root = mlx5_debugfs_get_dev_root(dev->mdev); |
| struct mlx5_mkey_cache *cache = &dev->cache; |
| |
| if (!mlx5_debugfs_root || dev->is_rep) |
| return; |
| |
| cache->fs_root = debugfs_create_dir("mr_cache", dbg_root); |
| } |
| |
| static void delay_time_func(struct timer_list *t) |
| { |
| struct mlx5_ib_dev *dev = from_timer(dev, t, delay_timer); |
| |
| WRITE_ONCE(dev->fill_delay, 0); |
| } |
| |
| static int mlx5r_mkeys_init(struct mlx5_cache_ent *ent) |
| { |
| struct mlx5_mkeys_page *page; |
| |
| page = kzalloc(sizeof(*page), GFP_KERNEL); |
| if (!page) |
| return -ENOMEM; |
| INIT_LIST_HEAD(&ent->mkeys_queue.pages_list); |
| spin_lock_init(&ent->mkeys_queue.lock); |
| list_add_tail(&page->list, &ent->mkeys_queue.pages_list); |
| ent->mkeys_queue.num_pages++; |
| return 0; |
| } |
| |
| static void mlx5r_mkeys_uninit(struct mlx5_cache_ent *ent) |
| { |
| struct mlx5_mkeys_page *page; |
| |
| WARN_ON(ent->mkeys_queue.ci || ent->mkeys_queue.num_pages > 1); |
| page = list_last_entry(&ent->mkeys_queue.pages_list, |
| struct mlx5_mkeys_page, list); |
| list_del(&page->list); |
| kfree(page); |
| } |
| |
| struct mlx5_cache_ent * |
| mlx5r_cache_create_ent_locked(struct mlx5_ib_dev *dev, |
| struct mlx5r_cache_rb_key rb_key, |
| bool persistent_entry) |
| { |
| struct mlx5_cache_ent *ent; |
| int order; |
| int ret; |
| |
| ent = kzalloc(sizeof(*ent), GFP_KERNEL); |
| if (!ent) |
| return ERR_PTR(-ENOMEM); |
| |
| ret = mlx5r_mkeys_init(ent); |
| if (ret) |
| goto mkeys_err; |
| ent->rb_key = rb_key; |
| ent->dev = dev; |
| ent->is_tmp = !persistent_entry; |
| |
| INIT_DELAYED_WORK(&ent->dwork, delayed_cache_work_func); |
| |
| ret = mlx5_cache_ent_insert(&dev->cache, ent); |
| if (ret) |
| goto ent_insert_err; |
| |
| if (persistent_entry) { |
| if (rb_key.access_mode == MLX5_MKC_ACCESS_MODE_KSM) |
| order = MLX5_IMR_KSM_CACHE_ENTRY; |
| else |
| order = order_base_2(rb_key.ndescs) - 2; |
| |
| if ((dev->mdev->profile.mask & MLX5_PROF_MASK_MR_CACHE) && |
| !dev->is_rep && mlx5_core_is_pf(dev->mdev) && |
| mlx5r_umr_can_load_pas(dev, 0)) |
| ent->limit = dev->mdev->profile.mr_cache[order].limit; |
| else |
| ent->limit = 0; |
| |
| mlx5_mkey_cache_debugfs_add_ent(dev, ent); |
| } else { |
| mod_delayed_work(ent->dev->cache.wq, |
| &ent->dev->cache.remove_ent_dwork, |
| msecs_to_jiffies(30 * 1000)); |
| } |
| |
| return ent; |
| ent_insert_err: |
| mlx5r_mkeys_uninit(ent); |
| mkeys_err: |
| kfree(ent); |
| return ERR_PTR(ret); |
| } |
| |
| static void remove_ent_work_func(struct work_struct *work) |
| { |
| struct mlx5_mkey_cache *cache; |
| struct mlx5_cache_ent *ent; |
| struct rb_node *cur; |
| |
| cache = container_of(work, struct mlx5_mkey_cache, |
| remove_ent_dwork.work); |
| mutex_lock(&cache->rb_lock); |
| cur = rb_last(&cache->rb_root); |
| while (cur) { |
| ent = rb_entry(cur, struct mlx5_cache_ent, node); |
| cur = rb_prev(cur); |
| mutex_unlock(&cache->rb_lock); |
| |
| spin_lock_irq(&ent->mkeys_queue.lock); |
| if (!ent->is_tmp) { |
| spin_unlock_irq(&ent->mkeys_queue.lock); |
| mutex_lock(&cache->rb_lock); |
| continue; |
| } |
| spin_unlock_irq(&ent->mkeys_queue.lock); |
| |
| clean_keys(ent->dev, ent); |
| mutex_lock(&cache->rb_lock); |
| } |
| mutex_unlock(&cache->rb_lock); |
| } |
| |
| int mlx5_mkey_cache_init(struct mlx5_ib_dev *dev) |
| { |
| struct mlx5_mkey_cache *cache = &dev->cache; |
| struct rb_root *root = &dev->cache.rb_root; |
| struct mlx5r_cache_rb_key rb_key = { |
| .access_mode = MLX5_MKC_ACCESS_MODE_MTT, |
| }; |
| struct mlx5_cache_ent *ent; |
| struct rb_node *node; |
| int ret; |
| int i; |
| |
| mutex_init(&dev->slow_path_mutex); |
| mutex_init(&dev->cache.rb_lock); |
| dev->cache.rb_root = RB_ROOT; |
| INIT_DELAYED_WORK(&dev->cache.remove_ent_dwork, remove_ent_work_func); |
| cache->wq = alloc_ordered_workqueue("mkey_cache", WQ_MEM_RECLAIM); |
| if (!cache->wq) { |
| mlx5_ib_warn(dev, "failed to create work queue\n"); |
| return -ENOMEM; |
| } |
| |
| mlx5_cmd_init_async_ctx(dev->mdev, &dev->async_ctx); |
| timer_setup(&dev->delay_timer, delay_time_func, 0); |
| mlx5_mkey_cache_debugfs_init(dev); |
| mutex_lock(&cache->rb_lock); |
| for (i = 0; i <= mkey_cache_max_order(dev); i++) { |
| rb_key.ndescs = 1 << (i + 2); |
| ent = mlx5r_cache_create_ent_locked(dev, rb_key, true); |
| if (IS_ERR(ent)) { |
| ret = PTR_ERR(ent); |
| goto err; |
| } |
| } |
| |
| ret = mlx5_odp_init_mkey_cache(dev); |
| if (ret) |
| goto err; |
| |
| mutex_unlock(&cache->rb_lock); |
| for (node = rb_first(root); node; node = rb_next(node)) { |
| ent = rb_entry(node, struct mlx5_cache_ent, node); |
| spin_lock_irq(&ent->mkeys_queue.lock); |
| queue_adjust_cache_locked(ent); |
| spin_unlock_irq(&ent->mkeys_queue.lock); |
| } |
| |
| return 0; |
| |
| err: |
| mutex_unlock(&cache->rb_lock); |
| mlx5_mkey_cache_debugfs_cleanup(dev); |
| mlx5_ib_warn(dev, "failed to create mkey cache entry\n"); |
| return ret; |
| } |
| |
| void mlx5_mkey_cache_cleanup(struct mlx5_ib_dev *dev) |
| { |
| struct rb_root *root = &dev->cache.rb_root; |
| struct mlx5_cache_ent *ent; |
| struct rb_node *node; |
| |
| if (!dev->cache.wq) |
| return; |
| |
| mutex_lock(&dev->cache.rb_lock); |
| cancel_delayed_work(&dev->cache.remove_ent_dwork); |
| for (node = rb_first(root); node; node = rb_next(node)) { |
| ent = rb_entry(node, struct mlx5_cache_ent, node); |
| spin_lock_irq(&ent->mkeys_queue.lock); |
| ent->disabled = true; |
| spin_unlock_irq(&ent->mkeys_queue.lock); |
| cancel_delayed_work(&ent->dwork); |
| } |
| mutex_unlock(&dev->cache.rb_lock); |
| |
| /* |
| * After all entries are disabled and will not reschedule on WQ, |
| * flush it and all async commands. |
| */ |
| flush_workqueue(dev->cache.wq); |
| |
| mlx5_mkey_cache_debugfs_cleanup(dev); |
| mlx5_cmd_cleanup_async_ctx(&dev->async_ctx); |
| |
| /* At this point all entries are disabled and have no concurrent work. */ |
| mutex_lock(&dev->cache.rb_lock); |
| node = rb_first(root); |
| while (node) { |
| ent = rb_entry(node, struct mlx5_cache_ent, node); |
| node = rb_next(node); |
| clean_keys(dev, ent); |
| rb_erase(&ent->node, root); |
| mlx5r_mkeys_uninit(ent); |
| kfree(ent); |
| } |
| mutex_unlock(&dev->cache.rb_lock); |
| |
| destroy_workqueue(dev->cache.wq); |
| del_timer_sync(&dev->delay_timer); |
| } |
| |
| struct ib_mr *mlx5_ib_get_dma_mr(struct ib_pd *pd, int acc) |
| { |
| struct mlx5_ib_dev *dev = to_mdev(pd->device); |
| int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); |
| struct mlx5_ib_mr *mr; |
| void *mkc; |
| u32 *in; |
| int err; |
| |
| mr = kzalloc(sizeof(*mr), GFP_KERNEL); |
| if (!mr) |
| return ERR_PTR(-ENOMEM); |
| |
| in = kzalloc(inlen, GFP_KERNEL); |
| if (!in) { |
| err = -ENOMEM; |
| goto err_free; |
| } |
| |
| mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); |
| |
| MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_PA); |
| MLX5_SET(mkc, mkc, length64, 1); |
| set_mkc_access_pd_addr_fields(mkc, acc | IB_ACCESS_RELAXED_ORDERING, 0, |
| pd); |
| |
| err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen); |
| if (err) |
| goto err_in; |
| |
| kfree(in); |
| mr->mmkey.type = MLX5_MKEY_MR; |
| mr->ibmr.lkey = mr->mmkey.key; |
| mr->ibmr.rkey = mr->mmkey.key; |
| mr->umem = NULL; |
| |
| return &mr->ibmr; |
| |
| err_in: |
| kfree(in); |
| |
| err_free: |
| kfree(mr); |
| |
| return ERR_PTR(err); |
| } |
| |
| static int get_octo_len(u64 addr, u64 len, int page_shift) |
| { |
| u64 page_size = 1ULL << page_shift; |
| u64 offset; |
| int npages; |
| |
| offset = addr & (page_size - 1); |
| npages = ALIGN(len + offset, page_size) >> page_shift; |
| return (npages + 1) / 2; |
| } |
| |
| static int mkey_cache_max_order(struct mlx5_ib_dev *dev) |
| { |
| if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset)) |
| return MKEY_CACHE_LAST_STD_ENTRY; |
| return MLX5_MAX_UMR_SHIFT; |
| } |
| |
| static void set_mr_fields(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr, |
| u64 length, int access_flags, u64 iova) |
| { |
| mr->ibmr.lkey = mr->mmkey.key; |
| mr->ibmr.rkey = mr->mmkey.key; |
| mr->ibmr.length = length; |
| mr->ibmr.device = &dev->ib_dev; |
| mr->ibmr.iova = iova; |
| mr->access_flags = access_flags; |
| } |
| |
| static unsigned int mlx5_umem_dmabuf_default_pgsz(struct ib_umem *umem, |
| u64 iova) |
| { |
| /* |
| * The alignment of iova has already been checked upon entering |
| * UVERBS_METHOD_REG_DMABUF_MR |
| */ |
| umem->iova = iova; |
| return PAGE_SIZE; |
| } |
| |
| static struct mlx5_ib_mr *alloc_cacheable_mr(struct ib_pd *pd, |
| struct ib_umem *umem, u64 iova, |
| int access_flags) |
| { |
| struct mlx5r_cache_rb_key rb_key = { |
| .access_mode = MLX5_MKC_ACCESS_MODE_MTT, |
| }; |
| struct mlx5_ib_dev *dev = to_mdev(pd->device); |
| struct mlx5_cache_ent *ent; |
| struct mlx5_ib_mr *mr; |
| unsigned int page_size; |
| |
| if (umem->is_dmabuf) |
| page_size = mlx5_umem_dmabuf_default_pgsz(umem, iova); |
| else |
| page_size = mlx5_umem_find_best_pgsz(umem, mkc, log_page_size, |
| 0, iova); |
| if (WARN_ON(!page_size)) |
| return ERR_PTR(-EINVAL); |
| |
| rb_key.ndescs = ib_umem_num_dma_blocks(umem, page_size); |
| rb_key.ats = mlx5_umem_needs_ats(dev, umem, access_flags); |
| rb_key.access_flags = get_unchangeable_access_flags(dev, access_flags); |
| ent = mkey_cache_ent_from_rb_key(dev, rb_key); |
| /* |
| * If the MR can't come from the cache then synchronously create an uncached |
| * one. |
| */ |
| if (!ent) { |
| mutex_lock(&dev->slow_path_mutex); |
| mr = reg_create(pd, umem, iova, access_flags, page_size, false); |
| mutex_unlock(&dev->slow_path_mutex); |
| if (IS_ERR(mr)) |
| return mr; |
| mr->mmkey.rb_key = rb_key; |
| return mr; |
| } |
| |
| mr = _mlx5_mr_cache_alloc(dev, ent, access_flags); |
| if (IS_ERR(mr)) |
| return mr; |
| |
| mr->ibmr.pd = pd; |
| mr->umem = umem; |
| mr->page_shift = order_base_2(page_size); |
| set_mr_fields(dev, mr, umem->length, access_flags, iova); |
| |
| return mr; |
| } |
| |
| /* |
| * If ibmr is NULL it will be allocated by reg_create. |
| * Else, the given ibmr will be used. |
| */ |
| static struct mlx5_ib_mr *reg_create(struct ib_pd *pd, struct ib_umem *umem, |
| u64 iova, int access_flags, |
| unsigned int page_size, bool populate) |
| { |
| struct mlx5_ib_dev *dev = to_mdev(pd->device); |
| struct mlx5_ib_mr *mr; |
| __be64 *pas; |
| void *mkc; |
| int inlen; |
| u32 *in; |
| int err; |
| bool pg_cap = !!(MLX5_CAP_GEN(dev->mdev, pg)); |
| |
| if (!page_size) |
| return ERR_PTR(-EINVAL); |
| mr = kzalloc(sizeof(*mr), GFP_KERNEL); |
| if (!mr) |
| return ERR_PTR(-ENOMEM); |
| |
| mr->ibmr.pd = pd; |
| mr->access_flags = access_flags; |
| mr->page_shift = order_base_2(page_size); |
| |
| inlen = MLX5_ST_SZ_BYTES(create_mkey_in); |
| if (populate) |
| inlen += sizeof(*pas) * |
| roundup(ib_umem_num_dma_blocks(umem, page_size), 2); |
| in = kvzalloc(inlen, GFP_KERNEL); |
| if (!in) { |
| err = -ENOMEM; |
| goto err_1; |
| } |
| pas = (__be64 *)MLX5_ADDR_OF(create_mkey_in, in, klm_pas_mtt); |
| if (populate) { |
| if (WARN_ON(access_flags & IB_ACCESS_ON_DEMAND)) { |
| err = -EINVAL; |
| goto err_2; |
| } |
| mlx5_ib_populate_pas(umem, 1UL << mr->page_shift, pas, |
| pg_cap ? MLX5_IB_MTT_PRESENT : 0); |
| } |
| |
| /* The pg_access bit allows setting the access flags |
| * in the page list submitted with the command. |
| */ |
| MLX5_SET(create_mkey_in, in, pg_access, !!(pg_cap)); |
| |
| mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); |
| set_mkc_access_pd_addr_fields(mkc, access_flags, iova, |
| populate ? pd : dev->umrc.pd); |
| MLX5_SET(mkc, mkc, free, !populate); |
| MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_MTT); |
| MLX5_SET(mkc, mkc, umr_en, 1); |
| |
| MLX5_SET64(mkc, mkc, len, umem->length); |
| MLX5_SET(mkc, mkc, bsf_octword_size, 0); |
| MLX5_SET(mkc, mkc, translations_octword_size, |
| get_octo_len(iova, umem->length, mr->page_shift)); |
| MLX5_SET(mkc, mkc, log_page_size, mr->page_shift); |
| if (mlx5_umem_needs_ats(dev, umem, access_flags)) |
| MLX5_SET(mkc, mkc, ma_translation_mode, 1); |
| if (populate) { |
| MLX5_SET(create_mkey_in, in, translations_octword_actual_size, |
| get_octo_len(iova, umem->length, mr->page_shift)); |
| } |
| |
| err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen); |
| if (err) { |
| mlx5_ib_warn(dev, "create mkey failed\n"); |
| goto err_2; |
| } |
| mr->mmkey.type = MLX5_MKEY_MR; |
| mr->mmkey.ndescs = get_octo_len(iova, umem->length, mr->page_shift); |
| mr->umem = umem; |
| set_mr_fields(dev, mr, umem->length, access_flags, iova); |
| kvfree(in); |
| |
| mlx5_ib_dbg(dev, "mkey = 0x%x\n", mr->mmkey.key); |
| |
| return mr; |
| |
| err_2: |
| kvfree(in); |
| err_1: |
| kfree(mr); |
| return ERR_PTR(err); |
| } |
| |
| static struct ib_mr *mlx5_ib_get_dm_mr(struct ib_pd *pd, u64 start_addr, |
| u64 length, int acc, int mode) |
| { |
| struct mlx5_ib_dev *dev = to_mdev(pd->device); |
| int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); |
| struct mlx5_ib_mr *mr; |
| void *mkc; |
| u32 *in; |
| int err; |
| |
| mr = kzalloc(sizeof(*mr), GFP_KERNEL); |
| if (!mr) |
| return ERR_PTR(-ENOMEM); |
| |
| in = kzalloc(inlen, GFP_KERNEL); |
| if (!in) { |
| err = -ENOMEM; |
| goto err_free; |
| } |
| |
| mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); |
| |
| MLX5_SET(mkc, mkc, access_mode_1_0, mode & 0x3); |
| MLX5_SET(mkc, mkc, access_mode_4_2, (mode >> 2) & 0x7); |
| MLX5_SET64(mkc, mkc, len, length); |
| set_mkc_access_pd_addr_fields(mkc, acc, start_addr, pd); |
| |
| err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen); |
| if (err) |
| goto err_in; |
| |
| kfree(in); |
| |
| set_mr_fields(dev, mr, length, acc, start_addr); |
| |
| return &mr->ibmr; |
| |
| err_in: |
| kfree(in); |
| |
| err_free: |
| kfree(mr); |
| |
| return ERR_PTR(err); |
| } |
| |
| int mlx5_ib_advise_mr(struct ib_pd *pd, |
| enum ib_uverbs_advise_mr_advice advice, |
| u32 flags, |
| struct ib_sge *sg_list, |
| u32 num_sge, |
| struct uverbs_attr_bundle *attrs) |
| { |
| if (advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH && |
| advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE && |
| advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_NO_FAULT) |
| return -EOPNOTSUPP; |
| |
| return mlx5_ib_advise_mr_prefetch(pd, advice, flags, |
| sg_list, num_sge); |
| } |
| |
| struct ib_mr *mlx5_ib_reg_dm_mr(struct ib_pd *pd, struct ib_dm *dm, |
| struct ib_dm_mr_attr *attr, |
| struct uverbs_attr_bundle *attrs) |
| { |
| struct mlx5_ib_dm *mdm = to_mdm(dm); |
| struct mlx5_core_dev *dev = to_mdev(dm->device)->mdev; |
| u64 start_addr = mdm->dev_addr + attr->offset; |
| int mode; |
| |
| switch (mdm->type) { |
| case MLX5_IB_UAPI_DM_TYPE_MEMIC: |
| if (attr->access_flags & ~MLX5_IB_DM_MEMIC_ALLOWED_ACCESS) |
| return ERR_PTR(-EINVAL); |
| |
| mode = MLX5_MKC_ACCESS_MODE_MEMIC; |
| start_addr -= pci_resource_start(dev->pdev, 0); |
| break; |
| case MLX5_IB_UAPI_DM_TYPE_STEERING_SW_ICM: |
| case MLX5_IB_UAPI_DM_TYPE_HEADER_MODIFY_SW_ICM: |
| case MLX5_IB_UAPI_DM_TYPE_HEADER_MODIFY_PATTERN_SW_ICM: |
| case MLX5_IB_UAPI_DM_TYPE_ENCAP_SW_ICM: |
| if (attr->access_flags & ~MLX5_IB_DM_SW_ICM_ALLOWED_ACCESS) |
| return ERR_PTR(-EINVAL); |
| |
| mode = MLX5_MKC_ACCESS_MODE_SW_ICM; |
| break; |
| default: |
| return ERR_PTR(-EINVAL); |
| } |
| |
| return mlx5_ib_get_dm_mr(pd, start_addr, attr->length, |
| attr->access_flags, mode); |
| } |
| |
| static struct ib_mr *create_real_mr(struct ib_pd *pd, struct ib_umem *umem, |
| u64 iova, int access_flags) |
| { |
| struct mlx5_ib_dev *dev = to_mdev(pd->device); |
| struct mlx5_ib_mr *mr = NULL; |
| bool xlt_with_umr; |
| int err; |
| |
| xlt_with_umr = mlx5r_umr_can_load_pas(dev, umem->length); |
| if (xlt_with_umr) { |
| mr = alloc_cacheable_mr(pd, umem, iova, access_flags); |
| } else { |
| unsigned int page_size = mlx5_umem_find_best_pgsz( |
| umem, mkc, log_page_size, 0, iova); |
| |
| mutex_lock(&dev->slow_path_mutex); |
| mr = reg_create(pd, umem, iova, access_flags, page_size, true); |
| mutex_unlock(&dev->slow_path_mutex); |
| } |
| if (IS_ERR(mr)) { |
| ib_umem_release(umem); |
| return ERR_CAST(mr); |
| } |
| |
| mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key); |
| |
| atomic_add(ib_umem_num_pages(umem), &dev->mdev->priv.reg_pages); |
| |
| if (xlt_with_umr) { |
| /* |
| * If the MR was created with reg_create then it will be |
| * configured properly but left disabled. It is safe to go ahead |
| * and configure it again via UMR while enabling it. |
| */ |
| err = mlx5r_umr_update_mr_pas(mr, MLX5_IB_UPD_XLT_ENABLE); |
| if (err) { |
| mlx5_ib_dereg_mr(&mr->ibmr, NULL); |
| return ERR_PTR(err); |
| } |
| } |
| return &mr->ibmr; |
| } |
| |
| static struct ib_mr *create_user_odp_mr(struct ib_pd *pd, u64 start, u64 length, |
| u64 iova, int access_flags, |
| struct ib_udata *udata) |
| { |
| struct mlx5_ib_dev *dev = to_mdev(pd->device); |
| struct ib_umem_odp *odp; |
| struct mlx5_ib_mr *mr; |
| int err; |
| |
| if (!IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) |
| return ERR_PTR(-EOPNOTSUPP); |
| |
| err = mlx5r_odp_create_eq(dev, &dev->odp_pf_eq); |
| if (err) |
| return ERR_PTR(err); |
| if (!start && length == U64_MAX) { |
| if (iova != 0) |
| return ERR_PTR(-EINVAL); |
| if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT)) |
| return ERR_PTR(-EINVAL); |
| |
| mr = mlx5_ib_alloc_implicit_mr(to_mpd(pd), access_flags); |
| if (IS_ERR(mr)) |
| return ERR_CAST(mr); |
| return &mr->ibmr; |
| } |
| |
| /* ODP requires xlt update via umr to work. */ |
| if (!mlx5r_umr_can_load_pas(dev, length)) |
| return ERR_PTR(-EINVAL); |
| |
| odp = ib_umem_odp_get(&dev->ib_dev, start, length, access_flags, |
| &mlx5_mn_ops); |
| if (IS_ERR(odp)) |
| return ERR_CAST(odp); |
| |
| mr = alloc_cacheable_mr(pd, &odp->umem, iova, access_flags); |
| if (IS_ERR(mr)) { |
| ib_umem_release(&odp->umem); |
| return ERR_CAST(mr); |
| } |
| xa_init(&mr->implicit_children); |
| |
| odp->private = mr; |
| err = mlx5r_store_odp_mkey(dev, &mr->mmkey); |
| if (err) |
| goto err_dereg_mr; |
| |
| err = mlx5_ib_init_odp_mr(mr); |
| if (err) |
| goto err_dereg_mr; |
| return &mr->ibmr; |
| |
| err_dereg_mr: |
| mlx5_ib_dereg_mr(&mr->ibmr, NULL); |
| return ERR_PTR(err); |
| } |
| |
| struct ib_mr *mlx5_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length, |
| u64 iova, int access_flags, |
| struct ib_udata *udata) |
| { |
| struct mlx5_ib_dev *dev = to_mdev(pd->device); |
| struct ib_umem *umem; |
| |
| if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM)) |
| return ERR_PTR(-EOPNOTSUPP); |
| |
| mlx5_ib_dbg(dev, "start 0x%llx, iova 0x%llx, length 0x%llx, access_flags 0x%x\n", |
| start, iova, length, access_flags); |
| |
| if (access_flags & IB_ACCESS_ON_DEMAND) |
| return create_user_odp_mr(pd, start, length, iova, access_flags, |
| udata); |
| umem = ib_umem_get(&dev->ib_dev, start, length, access_flags); |
| if (IS_ERR(umem)) |
| return ERR_CAST(umem); |
| return create_real_mr(pd, umem, iova, access_flags); |
| } |
| |
| static void mlx5_ib_dmabuf_invalidate_cb(struct dma_buf_attachment *attach) |
| { |
| struct ib_umem_dmabuf *umem_dmabuf = attach->importer_priv; |
| struct mlx5_ib_mr *mr = umem_dmabuf->private; |
| |
| dma_resv_assert_held(umem_dmabuf->attach->dmabuf->resv); |
| |
| if (!umem_dmabuf->sgt) |
| return; |
| |
| mlx5r_umr_update_mr_pas(mr, MLX5_IB_UPD_XLT_ZAP); |
| ib_umem_dmabuf_unmap_pages(umem_dmabuf); |
| } |
| |
| static struct dma_buf_attach_ops mlx5_ib_dmabuf_attach_ops = { |
| .allow_peer2peer = 1, |
| .move_notify = mlx5_ib_dmabuf_invalidate_cb, |
| }; |
| |
| struct ib_mr *mlx5_ib_reg_user_mr_dmabuf(struct ib_pd *pd, u64 offset, |
| u64 length, u64 virt_addr, |
| int fd, int access_flags, |
| struct ib_udata *udata) |
| { |
| struct mlx5_ib_dev *dev = to_mdev(pd->device); |
| struct mlx5_ib_mr *mr = NULL; |
| struct ib_umem_dmabuf *umem_dmabuf; |
| int err; |
| |
| if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM) || |
| !IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) |
| return ERR_PTR(-EOPNOTSUPP); |
| |
| mlx5_ib_dbg(dev, |
| "offset 0x%llx, virt_addr 0x%llx, length 0x%llx, fd %d, access_flags 0x%x\n", |
| offset, virt_addr, length, fd, access_flags); |
| |
| /* dmabuf requires xlt update via umr to work. */ |
| if (!mlx5r_umr_can_load_pas(dev, length)) |
| return ERR_PTR(-EINVAL); |
| |
| umem_dmabuf = ib_umem_dmabuf_get(&dev->ib_dev, offset, length, fd, |
| access_flags, |
| &mlx5_ib_dmabuf_attach_ops); |
| if (IS_ERR(umem_dmabuf)) { |
| mlx5_ib_dbg(dev, "umem_dmabuf get failed (%ld)\n", |
| PTR_ERR(umem_dmabuf)); |
| return ERR_CAST(umem_dmabuf); |
| } |
| |
| mr = alloc_cacheable_mr(pd, &umem_dmabuf->umem, virt_addr, |
| access_flags); |
| if (IS_ERR(mr)) { |
| ib_umem_release(&umem_dmabuf->umem); |
| return ERR_CAST(mr); |
| } |
| |
| mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key); |
| |
| atomic_add(ib_umem_num_pages(mr->umem), &dev->mdev->priv.reg_pages); |
| umem_dmabuf->private = mr; |
| err = mlx5r_store_odp_mkey(dev, &mr->mmkey); |
| if (err) |
| goto err_dereg_mr; |
| |
| err = mlx5_ib_init_dmabuf_mr(mr); |
| if (err) |
| goto err_dereg_mr; |
| return &mr->ibmr; |
| |
| err_dereg_mr: |
| mlx5_ib_dereg_mr(&mr->ibmr, NULL); |
| return ERR_PTR(err); |
| } |
| |
| /* |
| * True if the change in access flags can be done via UMR, only some access |
| * flags can be updated. |
| */ |
| static bool can_use_umr_rereg_access(struct mlx5_ib_dev *dev, |
| unsigned int current_access_flags, |
| unsigned int target_access_flags) |
| { |
| unsigned int diffs = current_access_flags ^ target_access_flags; |
| |
| if (diffs & ~(IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE | |
| IB_ACCESS_REMOTE_READ | IB_ACCESS_RELAXED_ORDERING)) |
| return false; |
| return mlx5r_umr_can_reconfig(dev, current_access_flags, |
| target_access_flags); |
| } |
| |
| static bool can_use_umr_rereg_pas(struct mlx5_ib_mr *mr, |
| struct ib_umem *new_umem, |
| int new_access_flags, u64 iova, |
| unsigned long *page_size) |
| { |
| struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device); |
| |
| /* We only track the allocated sizes of MRs from the cache */ |
| if (!mr->mmkey.cache_ent) |
| return false; |
| if (!mlx5r_umr_can_load_pas(dev, new_umem->length)) |
| return false; |
| |
| *page_size = |
| mlx5_umem_find_best_pgsz(new_umem, mkc, log_page_size, 0, iova); |
| if (WARN_ON(!*page_size)) |
| return false; |
| return (mr->mmkey.cache_ent->rb_key.ndescs) >= |
| ib_umem_num_dma_blocks(new_umem, *page_size); |
| } |
| |
| static int umr_rereg_pas(struct mlx5_ib_mr *mr, struct ib_pd *pd, |
| int access_flags, int flags, struct ib_umem *new_umem, |
| u64 iova, unsigned long page_size) |
| { |
| struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device); |
| int upd_flags = MLX5_IB_UPD_XLT_ADDR | MLX5_IB_UPD_XLT_ENABLE; |
| struct ib_umem *old_umem = mr->umem; |
| int err; |
| |
| /* |
| * To keep everything simple the MR is revoked before we start to mess |
| * with it. This ensure the change is atomic relative to any use of the |
| * MR. |
| */ |
| err = mlx5r_umr_revoke_mr(mr); |
| if (err) |
| return err; |
| |
| if (flags & IB_MR_REREG_PD) { |
| mr->ibmr.pd = pd; |
| upd_flags |= MLX5_IB_UPD_XLT_PD; |
| } |
| if (flags & IB_MR_REREG_ACCESS) { |
| mr->access_flags = access_flags; |
| upd_flags |= MLX5_IB_UPD_XLT_ACCESS; |
| } |
| |
| mr->ibmr.iova = iova; |
| mr->ibmr.length = new_umem->length; |
| mr->page_shift = order_base_2(page_size); |
| mr->umem = new_umem; |
| err = mlx5r_umr_update_mr_pas(mr, upd_flags); |
| if (err) { |
| /* |
| * The MR is revoked at this point so there is no issue to free |
| * new_umem. |
| */ |
| mr->umem = old_umem; |
| return err; |
| } |
| |
| atomic_sub(ib_umem_num_pages(old_umem), &dev->mdev->priv.reg_pages); |
| ib_umem_release(old_umem); |
| atomic_add(ib_umem_num_pages(new_umem), &dev->mdev->priv.reg_pages); |
| return 0; |
| } |
| |
| struct ib_mr *mlx5_ib_rereg_user_mr(struct ib_mr *ib_mr, int flags, u64 start, |
| u64 length, u64 iova, int new_access_flags, |
| struct ib_pd *new_pd, |
| struct ib_udata *udata) |
| { |
| struct mlx5_ib_dev *dev = to_mdev(ib_mr->device); |
| struct mlx5_ib_mr *mr = to_mmr(ib_mr); |
| int err; |
| |
| if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM)) |
| return ERR_PTR(-EOPNOTSUPP); |
| |
| mlx5_ib_dbg( |
| dev, |
| "start 0x%llx, iova 0x%llx, length 0x%llx, access_flags 0x%x\n", |
| start, iova, length, new_access_flags); |
| |
| if (flags & ~(IB_MR_REREG_TRANS | IB_MR_REREG_PD | IB_MR_REREG_ACCESS)) |
| return ERR_PTR(-EOPNOTSUPP); |
| |
| if (!(flags & IB_MR_REREG_ACCESS)) |
| new_access_flags = mr->access_flags; |
| if (!(flags & IB_MR_REREG_PD)) |
| new_pd = ib_mr->pd; |
| |
| if (!(flags & IB_MR_REREG_TRANS)) { |
| struct ib_umem *umem; |
| |
| /* Fast path for PD/access change */ |
| if (can_use_umr_rereg_access(dev, mr->access_flags, |
| new_access_flags)) { |
| err = mlx5r_umr_rereg_pd_access(mr, new_pd, |
| new_access_flags); |
| if (err) |
| return ERR_PTR(err); |
| return NULL; |
| } |
| /* DM or ODP MR's don't have a normal umem so we can't re-use it */ |
| if (!mr->umem || is_odp_mr(mr) || is_dmabuf_mr(mr)) |
| goto recreate; |
| |
| /* |
| * Only one active MR can refer to a umem at one time, revoke |
| * the old MR before assigning the umem to the new one. |
| */ |
| err = mlx5r_umr_revoke_mr(mr); |
| if (err) |
| return ERR_PTR(err); |
| umem = mr->umem; |
| mr->umem = NULL; |
| atomic_sub(ib_umem_num_pages(umem), &dev->mdev->priv.reg_pages); |
| |
| return create_real_mr(new_pd, umem, mr->ibmr.iova, |
| new_access_flags); |
| } |
| |
| /* |
| * DM doesn't have a PAS list so we can't re-use it, odp/dmabuf does |
| * but the logic around releasing the umem is different |
| */ |
| if (!mr->umem || is_odp_mr(mr) || is_dmabuf_mr(mr)) |
| goto recreate; |
| |
| if (!(new_access_flags & IB_ACCESS_ON_DEMAND) && |
| can_use_umr_rereg_access(dev, mr->access_flags, new_access_flags)) { |
| struct ib_umem *new_umem; |
| unsigned long page_size; |
| |
| new_umem = ib_umem_get(&dev->ib_dev, start, length, |
| new_access_flags); |
| if (IS_ERR(new_umem)) |
| return ERR_CAST(new_umem); |
| |
| /* Fast path for PAS change */ |
| if (can_use_umr_rereg_pas(mr, new_umem, new_access_flags, iova, |
| &page_size)) { |
| err = umr_rereg_pas(mr, new_pd, new_access_flags, flags, |
| new_umem, iova, page_size); |
| if (err) { |
| ib_umem_release(new_umem); |
| return ERR_PTR(err); |
| } |
| return NULL; |
| } |
| return create_real_mr(new_pd, new_umem, iova, new_access_flags); |
| } |
| |
| /* |
| * Everything else has no state we can preserve, just create a new MR |
| * from scratch |
| */ |
| recreate: |
| return mlx5_ib_reg_user_mr(new_pd, start, length, iova, |
| new_access_flags, udata); |
| } |
| |
| static int |
| mlx5_alloc_priv_descs(struct ib_device *device, |
| struct mlx5_ib_mr *mr, |
| int ndescs, |
| int desc_size) |
| { |
| struct mlx5_ib_dev *dev = to_mdev(device); |
| struct device *ddev = &dev->mdev->pdev->dev; |
| int size = ndescs * desc_size; |
| int add_size; |
| int ret; |
| |
| add_size = max_t(int, MLX5_UMR_ALIGN - ARCH_KMALLOC_MINALIGN, 0); |
| if (is_power_of_2(MLX5_UMR_ALIGN) && add_size) { |
| int end = max_t(int, MLX5_UMR_ALIGN, roundup_pow_of_two(size)); |
| |
| add_size = min_t(int, end - size, add_size); |
| } |
| |
| mr->descs_alloc = kzalloc(size + add_size, GFP_KERNEL); |
| if (!mr->descs_alloc) |
| return -ENOMEM; |
| |
| mr->descs = PTR_ALIGN(mr->descs_alloc, MLX5_UMR_ALIGN); |
| |
| mr->desc_map = dma_map_single(ddev, mr->descs, size, DMA_TO_DEVICE); |
| if (dma_mapping_error(ddev, mr->desc_map)) { |
| ret = -ENOMEM; |
| goto err; |
| } |
| |
| return 0; |
| err: |
| kfree(mr->descs_alloc); |
| |
| return ret; |
| } |
| |
| static void |
| mlx5_free_priv_descs(struct mlx5_ib_mr *mr) |
| { |
| if (!mr->umem && mr->descs) { |
| struct ib_device *device = mr->ibmr.device; |
| int size = mr->max_descs * mr->desc_size; |
| struct mlx5_ib_dev *dev = to_mdev(device); |
| |
| dma_unmap_single(&dev->mdev->pdev->dev, mr->desc_map, size, |
| DMA_TO_DEVICE); |
| kfree(mr->descs_alloc); |
| mr->descs = NULL; |
| } |
| } |
| |
| static int cache_ent_find_and_store(struct mlx5_ib_dev *dev, |
| struct mlx5_ib_mr *mr) |
| { |
| struct mlx5_mkey_cache *cache = &dev->cache; |
| struct mlx5_cache_ent *ent; |
| int ret; |
| |
| if (mr->mmkey.cache_ent) { |
| spin_lock_irq(&mr->mmkey.cache_ent->mkeys_queue.lock); |
| mr->mmkey.cache_ent->in_use--; |
| goto end; |
| } |
| |
| mutex_lock(&cache->rb_lock); |
| ent = mkey_cache_ent_from_rb_key(dev, mr->mmkey.rb_key); |
| if (ent) { |
| if (ent->rb_key.ndescs == mr->mmkey.rb_key.ndescs) { |
| if (ent->disabled) { |
| mutex_unlock(&cache->rb_lock); |
| return -EOPNOTSUPP; |
| } |
| mr->mmkey.cache_ent = ent; |
| spin_lock_irq(&mr->mmkey.cache_ent->mkeys_queue.lock); |
| mutex_unlock(&cache->rb_lock); |
| goto end; |
| } |
| } |
| |
| ent = mlx5r_cache_create_ent_locked(dev, mr->mmkey.rb_key, false); |
| mutex_unlock(&cache->rb_lock); |
| if (IS_ERR(ent)) |
| return PTR_ERR(ent); |
| |
| mr->mmkey.cache_ent = ent; |
| spin_lock_irq(&mr->mmkey.cache_ent->mkeys_queue.lock); |
| |
| end: |
| ret = push_mkey_locked(mr->mmkey.cache_ent, mr->mmkey.key); |
| spin_unlock_irq(&mr->mmkey.cache_ent->mkeys_queue.lock); |
| return ret; |
| } |
| |
| int mlx5_ib_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata) |
| { |
| struct mlx5_ib_mr *mr = to_mmr(ibmr); |
| struct mlx5_ib_dev *dev = to_mdev(ibmr->device); |
| int rc; |
| |
| /* |
| * Any async use of the mr must hold the refcount, once the refcount |
| * goes to zero no other thread, such as ODP page faults, prefetch, any |
| * UMR activity, etc can touch the mkey. Thus it is safe to destroy it. |
| */ |
| if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) && |
| refcount_read(&mr->mmkey.usecount) != 0 && |
| xa_erase(&mr_to_mdev(mr)->odp_mkeys, mlx5_base_mkey(mr->mmkey.key))) |
| mlx5r_deref_wait_odp_mkey(&mr->mmkey); |
| |
| if (ibmr->type == IB_MR_TYPE_INTEGRITY) { |
| xa_cmpxchg(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key), |
| mr->sig, NULL, GFP_KERNEL); |
| |
| if (mr->mtt_mr) { |
| rc = mlx5_ib_dereg_mr(&mr->mtt_mr->ibmr, NULL); |
| if (rc) |
| return rc; |
| mr->mtt_mr = NULL; |
| } |
| if (mr->klm_mr) { |
| rc = mlx5_ib_dereg_mr(&mr->klm_mr->ibmr, NULL); |
| if (rc) |
| return rc; |
| mr->klm_mr = NULL; |
| } |
| |
| if (mlx5_core_destroy_psv(dev->mdev, |
| mr->sig->psv_memory.psv_idx)) |
| mlx5_ib_warn(dev, "failed to destroy mem psv %d\n", |
| mr->sig->psv_memory.psv_idx); |
| if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx)) |
| mlx5_ib_warn(dev, "failed to destroy wire psv %d\n", |
| mr->sig->psv_wire.psv_idx); |
| kfree(mr->sig); |
| mr->sig = NULL; |
| } |
| |
| /* Stop DMA */ |
| if (mr->umem && mlx5r_umr_can_load_pas(dev, mr->umem->length)) |
| if (mlx5r_umr_revoke_mr(mr) || |
| cache_ent_find_and_store(dev, mr)) |
| mr->mmkey.cache_ent = NULL; |
| |
| if (!mr->mmkey.cache_ent) { |
| rc = destroy_mkey(to_mdev(mr->ibmr.device), mr); |
| if (rc) |
| return rc; |
| } |
| |
| if (mr->umem) { |
| bool is_odp = is_odp_mr(mr); |
| |
| if (!is_odp) |
| atomic_sub(ib_umem_num_pages(mr->umem), |
| &dev->mdev->priv.reg_pages); |
| ib_umem_release(mr->umem); |
| if (is_odp) |
| mlx5_ib_free_odp_mr(mr); |
| } |
| |
| if (!mr->mmkey.cache_ent) |
| mlx5_free_priv_descs(mr); |
| |
| kfree(mr); |
| return 0; |
| } |
| |
| static void mlx5_set_umr_free_mkey(struct ib_pd *pd, u32 *in, int ndescs, |
| int access_mode, int page_shift) |
| { |
| void *mkc; |
| |
| mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); |
| |
| /* This is only used from the kernel, so setting the PD is OK. */ |
| set_mkc_access_pd_addr_fields(mkc, IB_ACCESS_RELAXED_ORDERING, 0, pd); |
| MLX5_SET(mkc, mkc, free, 1); |
| MLX5_SET(mkc, mkc, translations_octword_size, ndescs); |
| MLX5_SET(mkc, mkc, access_mode_1_0, access_mode & 0x3); |
| MLX5_SET(mkc, mkc, access_mode_4_2, (access_mode >> 2) & 0x7); |
| MLX5_SET(mkc, mkc, umr_en, 1); |
| MLX5_SET(mkc, mkc, log_page_size, page_shift); |
| } |
| |
| static int _mlx5_alloc_mkey_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr, |
| int ndescs, int desc_size, int page_shift, |
| int access_mode, u32 *in, int inlen) |
| { |
| struct mlx5_ib_dev *dev = to_mdev(pd->device); |
| int err; |
| |
| mr->access_mode = access_mode; |
| mr->desc_size = desc_size; |
| mr->max_descs = ndescs; |
| |
| err = mlx5_alloc_priv_descs(pd->device, mr, ndescs, desc_size); |
| if (err) |
| return err; |
| |
| mlx5_set_umr_free_mkey(pd, in, ndescs, access_mode, page_shift); |
| |
| err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen); |
| if (err) |
| goto err_free_descs; |
| |
| mr->mmkey.type = MLX5_MKEY_MR; |
| mr->ibmr.lkey = mr->mmkey.key; |
| mr->ibmr.rkey = mr->mmkey.key; |
| |
| return 0; |
| |
| err_free_descs: |
| mlx5_free_priv_descs(mr); |
| return err; |
| } |
| |
| static struct mlx5_ib_mr *mlx5_ib_alloc_pi_mr(struct ib_pd *pd, |
| u32 max_num_sg, u32 max_num_meta_sg, |
| int desc_size, int access_mode) |
| { |
| int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); |
| int ndescs = ALIGN(max_num_sg + max_num_meta_sg, 4); |
| int page_shift = 0; |
| struct mlx5_ib_mr *mr; |
| u32 *in; |
| int err; |
| |
| mr = kzalloc(sizeof(*mr), GFP_KERNEL); |
| if (!mr) |
| return ERR_PTR(-ENOMEM); |
| |
| mr->ibmr.pd = pd; |
| mr->ibmr.device = pd->device; |
| |
| in = kzalloc(inlen, GFP_KERNEL); |
| if (!in) { |
| err = -ENOMEM; |
| goto err_free; |
| } |
| |
| if (access_mode == MLX5_MKC_ACCESS_MODE_MTT) |
| page_shift = PAGE_SHIFT; |
| |
| err = _mlx5_alloc_mkey_descs(pd, mr, ndescs, desc_size, page_shift, |
| access_mode, in, inlen); |
| if (err) |
| goto err_free_in; |
| |
| mr->umem = NULL; |
| kfree(in); |
| |
| return mr; |
| |
| err_free_in: |
| kfree(in); |
| err_free: |
| kfree(mr); |
| return ERR_PTR(err); |
| } |
| |
| static int mlx5_alloc_mem_reg_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr, |
| int ndescs, u32 *in, int inlen) |
| { |
| return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_mtt), |
| PAGE_SHIFT, MLX5_MKC_ACCESS_MODE_MTT, in, |
| inlen); |
| } |
| |
| static int mlx5_alloc_sg_gaps_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr, |
| int ndescs, u32 *in, int inlen) |
| { |
| return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_klm), |
| 0, MLX5_MKC_ACCESS_MODE_KLMS, in, inlen); |
| } |
| |
| static int mlx5_alloc_integrity_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr, |
| int max_num_sg, int max_num_meta_sg, |
| u32 *in, int inlen) |
| { |
| struct mlx5_ib_dev *dev = to_mdev(pd->device); |
| u32 psv_index[2]; |
| void *mkc; |
| int err; |
| |
| mr->sig = kzalloc(sizeof(*mr->sig), GFP_KERNEL); |
| if (!mr->sig) |
| return -ENOMEM; |
| |
| /* create mem & wire PSVs */ |
| err = mlx5_core_create_psv(dev->mdev, to_mpd(pd)->pdn, 2, psv_index); |
| if (err) |
| goto err_free_sig; |
| |
| mr->sig->psv_memory.psv_idx = psv_index[0]; |
| mr->sig->psv_wire.psv_idx = psv_index[1]; |
| |
| mr->sig->sig_status_checked = true; |
| mr->sig->sig_err_exists = false; |
| /* Next UMR, Arm SIGERR */ |
| ++mr->sig->sigerr_count; |
| mr->klm_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg, |
| sizeof(struct mlx5_klm), |
| MLX5_MKC_ACCESS_MODE_KLMS); |
| if (IS_ERR(mr->klm_mr)) { |
| err = PTR_ERR(mr->klm_mr); |
| goto err_destroy_psv; |
| } |
| mr->mtt_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg, |
| sizeof(struct mlx5_mtt), |
| MLX5_MKC_ACCESS_MODE_MTT); |
| if (IS_ERR(mr->mtt_mr)) { |
| err = PTR_ERR(mr->mtt_mr); |
| goto err_free_klm_mr; |
| } |
| |
| /* Set bsf descriptors for mkey */ |
| mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); |
| MLX5_SET(mkc, mkc, bsf_en, 1); |
| MLX5_SET(mkc, mkc, bsf_octword_size, MLX5_MKEY_BSF_OCTO_SIZE); |
| |
| err = _mlx5_alloc_mkey_descs(pd, mr, 4, sizeof(struct mlx5_klm), 0, |
| MLX5_MKC_ACCESS_MODE_KLMS, in, inlen); |
| if (err) |
| goto err_free_mtt_mr; |
| |
| err = xa_err(xa_store(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key), |
| mr->sig, GFP_KERNEL)); |
| if (err) |
| goto err_free_descs; |
| return 0; |
| |
| err_free_descs: |
| destroy_mkey(dev, mr); |
| mlx5_free_priv_descs(mr); |
| err_free_mtt_mr: |
| mlx5_ib_dereg_mr(&mr->mtt_mr->ibmr, NULL); |
| mr->mtt_mr = NULL; |
| err_free_klm_mr: |
| mlx5_ib_dereg_mr(&mr->klm_mr->ibmr, NULL); |
| mr->klm_mr = NULL; |
| err_destroy_psv: |
| if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_memory.psv_idx)) |
| mlx5_ib_warn(dev, "failed to destroy mem psv %d\n", |
| mr->sig->psv_memory.psv_idx); |
| if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx)) |
| mlx5_ib_warn(dev, "failed to destroy wire psv %d\n", |
| mr->sig->psv_wire.psv_idx); |
| err_free_sig: |
| kfree(mr->sig); |
| |
| return err; |
| } |
| |
| static struct ib_mr *__mlx5_ib_alloc_mr(struct ib_pd *pd, |
| enum ib_mr_type mr_type, u32 max_num_sg, |
| u32 max_num_meta_sg) |
| { |
| struct mlx5_ib_dev *dev = to_mdev(pd->device); |
| int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); |
| int ndescs = ALIGN(max_num_sg, 4); |
| struct mlx5_ib_mr *mr; |
| u32 *in; |
| int err; |
| |
| mr = kzalloc(sizeof(*mr), GFP_KERNEL); |
| if (!mr) |
| return ERR_PTR(-ENOMEM); |
| |
| in = kzalloc(inlen, GFP_KERNEL); |
| if (!in) { |
| err = -ENOMEM; |
| goto err_free; |
| } |
| |
| mr->ibmr.device = pd->device; |
| mr->umem = NULL; |
| |
| switch (mr_type) { |
| case IB_MR_TYPE_MEM_REG: |
| err = mlx5_alloc_mem_reg_descs(pd, mr, ndescs, in, inlen); |
| break; |
| case IB_MR_TYPE_SG_GAPS: |
| err = mlx5_alloc_sg_gaps_descs(pd, mr, ndescs, in, inlen); |
| break; |
| case IB_MR_TYPE_INTEGRITY: |
| err = mlx5_alloc_integrity_descs(pd, mr, max_num_sg, |
| max_num_meta_sg, in, inlen); |
| break; |
| default: |
| mlx5_ib_warn(dev, "Invalid mr type %d\n", mr_type); |
| err = -EINVAL; |
| } |
| |
| if (err) |
| goto err_free_in; |
| |
| kfree(in); |
| |
| return &mr->ibmr; |
| |
| err_free_in: |
| kfree(in); |
| err_free: |
| kfree(mr); |
| return ERR_PTR(err); |
| } |
| |
| struct ib_mr *mlx5_ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type, |
| u32 max_num_sg) |
| { |
| return __mlx5_ib_alloc_mr(pd, mr_type, max_num_sg, 0); |
| } |
| |
| struct ib_mr *mlx5_ib_alloc_mr_integrity(struct ib_pd *pd, |
| u32 max_num_sg, u32 max_num_meta_sg) |
| { |
| return __mlx5_ib_alloc_mr(pd, IB_MR_TYPE_INTEGRITY, max_num_sg, |
| max_num_meta_sg); |
| } |
| |
| int mlx5_ib_alloc_mw(struct ib_mw *ibmw, struct ib_udata *udata) |
| { |
| struct mlx5_ib_dev *dev = to_mdev(ibmw->device); |
| int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); |
| struct mlx5_ib_mw *mw = to_mmw(ibmw); |
| unsigned int ndescs; |
| u32 *in = NULL; |
| void *mkc; |
| int err; |
| struct mlx5_ib_alloc_mw req = {}; |
| struct { |
| __u32 comp_mask; |
| __u32 response_length; |
| } resp = {}; |
| |
| err = ib_copy_from_udata(&req, udata, min(udata->inlen, sizeof(req))); |
| if (err) |
| return err; |
| |
| if (req.comp_mask || req.reserved1 || req.reserved2) |
| return -EOPNOTSUPP; |
| |
| if (udata->inlen > sizeof(req) && |
| !ib_is_udata_cleared(udata, sizeof(req), |
| udata->inlen - sizeof(req))) |
| return -EOPNOTSUPP; |
| |
| ndescs = req.num_klms ? roundup(req.num_klms, 4) : roundup(1, 4); |
| |
| in = kzalloc(inlen, GFP_KERNEL); |
| if (!in) |
| return -ENOMEM; |
| |
| mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); |
| |
| MLX5_SET(mkc, mkc, free, 1); |
| MLX5_SET(mkc, mkc, translations_octword_size, ndescs); |
| MLX5_SET(mkc, mkc, pd, to_mpd(ibmw->pd)->pdn); |
| MLX5_SET(mkc, mkc, umr_en, 1); |
| MLX5_SET(mkc, mkc, lr, 1); |
| MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_KLMS); |
| MLX5_SET(mkc, mkc, en_rinval, !!((ibmw->type == IB_MW_TYPE_2))); |
| MLX5_SET(mkc, mkc, qpn, 0xffffff); |
| |
| err = mlx5_ib_create_mkey(dev, &mw->mmkey, in, inlen); |
| if (err) |
| goto free; |
| |
| mw->mmkey.type = MLX5_MKEY_MW; |
| ibmw->rkey = mw->mmkey.key; |
| mw->mmkey.ndescs = ndescs; |
| |
| resp.response_length = |
| min(offsetofend(typeof(resp), response_length), udata->outlen); |
| if (resp.response_length) { |
| err = ib_copy_to_udata(udata, &resp, resp.response_length); |
| if (err) |
| goto free_mkey; |
| } |
| |
| if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) { |
| err = mlx5r_store_odp_mkey(dev, &mw->mmkey); |
| if (err) |
| goto free_mkey; |
| } |
| |
| kfree(in); |
| return 0; |
| |
| free_mkey: |
| mlx5_core_destroy_mkey(dev->mdev, mw->mmkey.key); |
| free: |
| kfree(in); |
| return err; |
| } |
| |
| int mlx5_ib_dealloc_mw(struct ib_mw *mw) |
| { |
| struct mlx5_ib_dev *dev = to_mdev(mw->device); |
| struct mlx5_ib_mw *mmw = to_mmw(mw); |
| |
| if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) && |
| xa_erase(&dev->odp_mkeys, mlx5_base_mkey(mmw->mmkey.key))) |
| /* |
| * pagefault_single_data_segment() may be accessing mmw |
| * if the user bound an ODP MR to this MW. |
| */ |
| mlx5r_deref_wait_odp_mkey(&mmw->mmkey); |
| |
| return mlx5_core_destroy_mkey(dev->mdev, mmw->mmkey.key); |
| } |
| |
| int mlx5_ib_check_mr_status(struct ib_mr *ibmr, u32 check_mask, |
| struct ib_mr_status *mr_status) |
| { |
| struct mlx5_ib_mr *mmr = to_mmr(ibmr); |
| int ret = 0; |
| |
| if (check_mask & ~IB_MR_CHECK_SIG_STATUS) { |
| pr_err("Invalid status check mask\n"); |
| ret = -EINVAL; |
| goto done; |
| } |
| |
| mr_status->fail_status = 0; |
| if (check_mask & IB_MR_CHECK_SIG_STATUS) { |
| if (!mmr->sig) { |
| ret = -EINVAL; |
| pr_err("signature status check requested on a non-signature enabled MR\n"); |
| goto done; |
| } |
| |
| mmr->sig->sig_status_checked = true; |
| if (!mmr->sig->sig_err_exists) |
| goto done; |
| |
| if (ibmr->lkey == mmr->sig->err_item.key) |
| memcpy(&mr_status->sig_err, &mmr->sig->err_item, |
| sizeof(mr_status->sig_err)); |
| else { |
| mr_status->sig_err.err_type = IB_SIG_BAD_GUARD; |
| mr_status->sig_err.sig_err_offset = 0; |
| mr_status->sig_err.key = mmr->sig->err_item.key; |
| } |
| |
| mmr->sig->sig_err_exists = false; |
| mr_status->fail_status |= IB_MR_CHECK_SIG_STATUS; |
| } |
| |
| done: |
| return ret; |
| } |
| |
| static int |
| mlx5_ib_map_pa_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg, |
| int data_sg_nents, unsigned int *data_sg_offset, |
| struct scatterlist *meta_sg, int meta_sg_nents, |
| unsigned int *meta_sg_offset) |
| { |
| struct mlx5_ib_mr *mr = to_mmr(ibmr); |
| unsigned int sg_offset = 0; |
| int n = 0; |
| |
| mr->meta_length = 0; |
| if (data_sg_nents == 1) { |
| n++; |
| mr->mmkey.ndescs = 1; |
| if (data_sg_offset) |
| sg_offset = *data_sg_offset; |
| mr->data_length = sg_dma_len(data_sg) - sg_offset; |
| mr->data_iova = sg_dma_address(data_sg) + sg_offset; |
| if (meta_sg_nents == 1) { |
| n++; |
| mr->meta_ndescs = 1; |
| if (meta_sg_offset) |
| sg_offset = *meta_sg_offset; |
| else |
| sg_offset = 0; |
| mr->meta_length = sg_dma_len(meta_sg) - sg_offset; |
| mr->pi_iova = sg_dma_address(meta_sg) + sg_offset; |
| } |
| ibmr->length = mr->data_length + mr->meta_length; |
| } |
| |
| return n; |
| } |
| |
| static int |
| mlx5_ib_sg_to_klms(struct mlx5_ib_mr *mr, |
| struct scatterlist *sgl, |
| unsigned short sg_nents, |
| unsigned int *sg_offset_p, |
| struct scatterlist *meta_sgl, |
| unsigned short meta_sg_nents, |
| unsigned int *meta_sg_offset_p) |
| { |
| struct scatterlist *sg = sgl; |
| struct mlx5_klm *klms = mr->descs; |
| unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0; |
| u32 lkey = mr->ibmr.pd->local_dma_lkey; |
| int i, j = 0; |
| |
| mr->ibmr.iova = sg_dma_address(sg) + sg_offset; |
| mr->ibmr.length = 0; |
| |
| for_each_sg(sgl, sg, sg_nents, i) { |
| if (unlikely(i >= mr->max_descs)) |
| break; |
| klms[i].va = cpu_to_be64(sg_dma_address(sg) + sg_offset); |
| klms[i].bcount = cpu_to_be32(sg_dma_len(sg) - sg_offset); |
| klms[i].key = cpu_to_be32(lkey); |
| mr->ibmr.length += sg_dma_len(sg) - sg_offset; |
| |
| sg_offset = 0; |
| } |
| |
| if (sg_offset_p) |
| *sg_offset_p = sg_offset; |
| |
| mr->mmkey.ndescs = i; |
| mr->data_length = mr->ibmr.length; |
| |
| if (meta_sg_nents) { |
| sg = meta_sgl; |
| sg_offset = meta_sg_offset_p ? *meta_sg_offset_p : 0; |
| for_each_sg(meta_sgl, sg, meta_sg_nents, j) { |
| if (unlikely(i + j >= mr->max_descs)) |
| break; |
| klms[i + j].va = cpu_to_be64(sg_dma_address(sg) + |
| sg_offset); |
| klms[i + j].bcount = cpu_to_be32(sg_dma_len(sg) - |
| sg_offset); |
| klms[i + j].key = cpu_to_be32(lkey); |
| mr->ibmr.length += sg_dma_len(sg) - sg_offset; |
| |
| sg_offset = 0; |
| } |
| if (meta_sg_offset_p) |
| *meta_sg_offset_p = sg_offset; |
| |
| mr->meta_ndescs = j; |
| mr->meta_length = mr->ibmr.length - mr->data_length; |
| } |
| |
| return i + j; |
| } |
| |
| static int mlx5_set_page(struct ib_mr *ibmr, u64 addr) |
| { |
| struct mlx5_ib_mr *mr = to_mmr(ibmr); |
| __be64 *descs; |
| |
| if (unlikely(mr->mmkey.ndescs == mr->max_descs)) |
| return -ENOMEM; |
| |
| descs = mr->descs; |
| descs[mr->mmkey.ndescs++] = cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR); |
| |
| return 0; |
| } |
| |
| static int mlx5_set_page_pi(struct ib_mr *ibmr, u64 addr) |
| { |
| struct mlx5_ib_mr *mr = to_mmr(ibmr); |
| __be64 *descs; |
| |
| if (unlikely(mr->mmkey.ndescs + mr->meta_ndescs == mr->max_descs)) |
| return -ENOMEM; |
| |
| descs = mr->descs; |
| descs[mr->mmkey.ndescs + mr->meta_ndescs++] = |
| cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR); |
| |
| return 0; |
| } |
| |
| static int |
| mlx5_ib_map_mtt_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg, |
| int data_sg_nents, unsigned int *data_sg_offset, |
| struct scatterlist *meta_sg, int meta_sg_nents, |
| unsigned int *meta_sg_offset) |
| { |
| struct mlx5_ib_mr *mr = to_mmr(ibmr); |
| struct mlx5_ib_mr *pi_mr = mr->mtt_mr; |
| int n; |
| |
| pi_mr->mmkey.ndescs = 0; |
| pi_mr->meta_ndescs = 0; |
| pi_mr->meta_length = 0; |
| |
| ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map, |
| pi_mr->desc_size * pi_mr->max_descs, |
| DMA_TO_DEVICE); |
| |
| pi_mr->ibmr.page_size = ibmr->page_size; |
| n = ib_sg_to_pages(&pi_mr->ibmr, data_sg, data_sg_nents, data_sg_offset, |
| mlx5_set_page); |
| if (n != data_sg_nents) |
| return n; |
| |
| pi_mr->data_iova = pi_mr->ibmr.iova; |
| pi_mr->data_length = pi_mr->ibmr.length; |
| pi_mr->ibmr.length = pi_mr->data_length; |
| ibmr->length = pi_mr->data_length; |
| |
| if (meta_sg_nents) { |
| u64 page_mask = ~((u64)ibmr->page_size - 1); |
| u64 iova = pi_mr->data_iova; |
| |
| n += ib_sg_to_pages(&pi_mr->ibmr, meta_sg, meta_sg_nents, |
| meta_sg_offset, mlx5_set_page_pi); |
| |
| pi_mr->meta_length = pi_mr->ibmr.length; |
| /* |
| * PI address for the HW is the offset of the metadata address |
| * relative to the first data page address. |
| * It equals to first data page address + size of data pages + |
| * metadata offset at the first metadata page |
| */ |
| pi_mr->pi_iova = (iova & page_mask) + |
| pi_mr->mmkey.ndescs * ibmr->page_size + |
| (pi_mr->ibmr.iova & ~page_mask); |
| /* |
| * In order to use one MTT MR for data and metadata, we register |
| * also the gaps between the end of the data and the start of |
| * the metadata (the sig MR will verify that the HW will access |
| * to right addresses). This mapping is safe because we use |
| * internal mkey for the registration. |
| */ |
| pi_mr->ibmr.length = pi_mr->pi_iova + pi_mr->meta_length - iova; |
| pi_mr->ibmr.iova = iova; |
| ibmr->length += pi_mr->meta_length; |
| } |
| |
| ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map, |
| pi_mr->desc_size * pi_mr->max_descs, |
| DMA_TO_DEVICE); |
| |
| return n; |
| } |
| |
| static int |
| mlx5_ib_map_klm_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg, |
| int data_sg_nents, unsigned int *data_sg_offset, |
| struct scatterlist *meta_sg, int meta_sg_nents, |
| unsigned int *meta_sg_offset) |
| { |
| struct mlx5_ib_mr *mr = to_mmr(ibmr); |
| struct mlx5_ib_mr *pi_mr = mr->klm_mr; |
| int n; |
| |
| pi_mr->mmkey.ndescs = 0; |
| pi_mr->meta_ndescs = 0; |
| pi_mr->meta_length = 0; |
| |
| ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map, |
| pi_mr->desc_size * pi_mr->max_descs, |
| DMA_TO_DEVICE); |
| |
| n = mlx5_ib_sg_to_klms(pi_mr, data_sg, data_sg_nents, data_sg_offset, |
| meta_sg, meta_sg_nents, meta_sg_offset); |
| |
| ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map, |
| pi_mr->desc_size * pi_mr->max_descs, |
| DMA_TO_DEVICE); |
| |
| /* This is zero-based memory region */ |
| pi_mr->data_iova = 0; |
| pi_mr->ibmr.iova = 0; |
| pi_mr->pi_iova = pi_mr->data_length; |
| ibmr->length = pi_mr->ibmr.length; |
| |
| return n; |
| } |
| |
| int mlx5_ib_map_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg, |
| int data_sg_nents, unsigned int *data_sg_offset, |
| struct scatterlist *meta_sg, int meta_sg_nents, |
| unsigned int *meta_sg_offset) |
| { |
| struct mlx5_ib_mr *mr = to_mmr(ibmr); |
| struct mlx5_ib_mr *pi_mr = NULL; |
| int n; |
| |
| WARN_ON(ibmr->type != IB_MR_TYPE_INTEGRITY); |
| |
| mr->mmkey.ndescs = 0; |
| mr->data_length = 0; |
| mr->data_iova = 0; |
| mr->meta_ndescs = 0; |
| mr->pi_iova = 0; |
| /* |
| * As a performance optimization, if possible, there is no need to |
| * perform UMR operation to register the data/metadata buffers. |
| * First try to map the sg lists to PA descriptors with local_dma_lkey. |
| * Fallback to UMR only in case of a failure. |
| */ |
| n = mlx5_ib_map_pa_mr_sg_pi(ibmr, data_sg, data_sg_nents, |
| data_sg_offset, meta_sg, meta_sg_nents, |
| meta_sg_offset); |
| if (n == data_sg_nents + meta_sg_nents) |
| goto out; |
| /* |
| * As a performance optimization, if possible, there is no need to map |
| * the sg lists to KLM descriptors. First try to map the sg lists to MTT |
| * descriptors and fallback to KLM only in case of a failure. |
| * It's more efficient for the HW to work with MTT descriptors |
| * (especially in high load). |
| * Use KLM (indirect access) only if it's mandatory. |
| */ |
| pi_mr = mr->mtt_mr; |
| n = mlx5_ib_map_mtt_mr_sg_pi(ibmr, data_sg, data_sg_nents, |
| data_sg_offset, meta_sg, meta_sg_nents, |
| meta_sg_offset); |
| if (n == data_sg_nents + meta_sg_nents) |
| goto out; |
| |
| pi_mr = mr->klm_mr; |
| n = mlx5_ib_map_klm_mr_sg_pi(ibmr, data_sg, data_sg_nents, |
| data_sg_offset, meta_sg, meta_sg_nents, |
| meta_sg_offset); |
| if (unlikely(n != data_sg_nents + meta_sg_nents)) |
| return -ENOMEM; |
| |
| out: |
| /* This is zero-based memory region */ |
| ibmr->iova = 0; |
| mr->pi_mr = pi_mr; |
| if (pi_mr) |
| ibmr->sig_attrs->meta_length = pi_mr->meta_length; |
| else |
| ibmr->sig_attrs->meta_length = mr->meta_length; |
| |
| return 0; |
| } |
| |
| int mlx5_ib_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents, |
| unsigned int *sg_offset) |
| { |
| struct mlx5_ib_mr *mr = to_mmr(ibmr); |
| int n; |
| |
| mr->mmkey.ndescs = 0; |
| |
| ib_dma_sync_single_for_cpu(ibmr->device, mr->desc_map, |
| mr->desc_size * mr->max_descs, |
| DMA_TO_DEVICE); |
| |
| if (mr->access_mode == MLX5_MKC_ACCESS_MODE_KLMS) |
| n = mlx5_ib_sg_to_klms(mr, sg, sg_nents, sg_offset, NULL, 0, |
| NULL); |
| else |
| n = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, |
| mlx5_set_page); |
| |
| ib_dma_sync_single_for_device(ibmr->device, mr->desc_map, |
| mr->desc_size * mr->max_descs, |
| DMA_TO_DEVICE); |
| |
| return n; |
| } |