| // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) |
| /* Copyright (c) 2022 Meta Platforms, Inc. and affiliates. */ |
| #include <ctype.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <libelf.h> |
| #include <gelf.h> |
| #include <unistd.h> |
| #include <linux/ptrace.h> |
| #include <linux/kernel.h> |
| |
| /* s8 will be marked as poison while it's a reg of riscv */ |
| #if defined(__riscv) |
| #define rv_s8 s8 |
| #endif |
| |
| #include "bpf.h" |
| #include "libbpf.h" |
| #include "libbpf_common.h" |
| #include "libbpf_internal.h" |
| #include "hashmap.h" |
| |
| /* libbpf's USDT support consists of BPF-side state/code and user-space |
| * state/code working together in concert. BPF-side parts are defined in |
| * usdt.bpf.h header library. User-space state is encapsulated by struct |
| * usdt_manager and all the supporting code centered around usdt_manager. |
| * |
| * usdt.bpf.h defines two BPF maps that usdt_manager expects: USDT spec map |
| * and IP-to-spec-ID map, which is auxiliary map necessary for kernels that |
| * don't support BPF cookie (see below). These two maps are implicitly |
| * embedded into user's end BPF object file when user's code included |
| * usdt.bpf.h. This means that libbpf doesn't do anything special to create |
| * these USDT support maps. They are created by normal libbpf logic of |
| * instantiating BPF maps when opening and loading BPF object. |
| * |
| * As such, libbpf is basically unaware of the need to do anything |
| * USDT-related until the very first call to bpf_program__attach_usdt(), which |
| * can be called by user explicitly or happen automatically during skeleton |
| * attach (or, equivalently, through generic bpf_program__attach() call). At |
| * this point, libbpf will instantiate and initialize struct usdt_manager and |
| * store it in bpf_object. USDT manager is per-BPF object construct, as each |
| * independent BPF object might or might not have USDT programs, and thus all |
| * the expected USDT-related state. There is no coordination between two |
| * bpf_object in parts of USDT attachment, they are oblivious of each other's |
| * existence and libbpf is just oblivious, dealing with bpf_object-specific |
| * USDT state. |
| * |
| * Quick crash course on USDTs. |
| * |
| * From user-space application's point of view, USDT is essentially just |
| * a slightly special function call that normally has zero overhead, unless it |
| * is being traced by some external entity (e.g, BPF-based tool). Here's how |
| * a typical application can trigger USDT probe: |
| * |
| * #include <sys/sdt.h> // provided by systemtap-sdt-devel package |
| * // folly also provide similar functionality in folly/tracing/StaticTracepoint.h |
| * |
| * STAP_PROBE3(my_usdt_provider, my_usdt_probe_name, 123, x, &y); |
| * |
| * USDT is identified by it's <provider-name>:<probe-name> pair of names. Each |
| * individual USDT has a fixed number of arguments (3 in the above example) |
| * and specifies values of each argument as if it was a function call. |
| * |
| * USDT call is actually not a function call, but is instead replaced by |
| * a single NOP instruction (thus zero overhead, effectively). But in addition |
| * to that, those USDT macros generate special SHT_NOTE ELF records in |
| * .note.stapsdt ELF section. Here's an example USDT definition as emitted by |
| * `readelf -n <binary>`: |
| * |
| * stapsdt 0x00000089 NT_STAPSDT (SystemTap probe descriptors) |
| * Provider: test |
| * Name: usdt12 |
| * Location: 0x0000000000549df3, Base: 0x00000000008effa4, Semaphore: 0x0000000000a4606e |
| * Arguments: -4@-1204(%rbp) -4@%edi -8@-1216(%rbp) -8@%r8 -4@$5 -8@%r9 8@%rdx 8@%r10 -4@$-9 -2@%cx -2@%ax -1@%sil |
| * |
| * In this case we have USDT test:usdt12 with 12 arguments. |
| * |
| * Location and base are offsets used to calculate absolute IP address of that |
| * NOP instruction that kernel can replace with an interrupt instruction to |
| * trigger instrumentation code (BPF program for all that we care about). |
| * |
| * Semaphore above is and optional feature. It records an address of a 2-byte |
| * refcount variable (normally in '.probes' ELF section) used for signaling if |
| * there is anything that is attached to USDT. This is useful for user |
| * applications if, for example, they need to prepare some arguments that are |
| * passed only to USDTs and preparation is expensive. By checking if USDT is |
| * "activated", an application can avoid paying those costs unnecessarily. |
| * Recent enough kernel has built-in support for automatically managing this |
| * refcount, which libbpf expects and relies on. If USDT is defined without |
| * associated semaphore, this value will be zero. See selftests for semaphore |
| * examples. |
| * |
| * Arguments is the most interesting part. This USDT specification string is |
| * providing information about all the USDT arguments and their locations. The |
| * part before @ sign defined byte size of the argument (1, 2, 4, or 8) and |
| * whether the argument is signed or unsigned (negative size means signed). |
| * The part after @ sign is assembly-like definition of argument location |
| * (see [0] for more details). Technically, assembler can provide some pretty |
| * advanced definitions, but libbpf is currently supporting three most common |
| * cases: |
| * 1) immediate constant, see 5th and 9th args above (-4@$5 and -4@-9); |
| * 2) register value, e.g., 8@%rdx, which means "unsigned 8-byte integer |
| * whose value is in register %rdx"; |
| * 3) memory dereference addressed by register, e.g., -4@-1204(%rbp), which |
| * specifies signed 32-bit integer stored at offset -1204 bytes from |
| * memory address stored in %rbp. |
| * |
| * [0] https://sourceware.org/systemtap/wiki/UserSpaceProbeImplementation |
| * |
| * During attachment, libbpf parses all the relevant USDT specifications and |
| * prepares `struct usdt_spec` (USDT spec), which is then provided to BPF-side |
| * code through spec map. This allows BPF applications to quickly fetch the |
| * actual value at runtime using a simple BPF-side code. |
| * |
| * With basics out of the way, let's go over less immediately obvious aspects |
| * of supporting USDTs. |
| * |
| * First, there is no special USDT BPF program type. It is actually just |
| * a uprobe BPF program (which for kernel, at least currently, is just a kprobe |
| * program, so BPF_PROG_TYPE_KPROBE program type). With the only difference |
| * that uprobe is usually attached at the function entry, while USDT will |
| * normally will be somewhere inside the function. But it should always be |
| * pointing to NOP instruction, which makes such uprobes the fastest uprobe |
| * kind. |
| * |
| * Second, it's important to realize that such STAP_PROBEn(provider, name, ...) |
| * macro invocations can end up being inlined many-many times, depending on |
| * specifics of each individual user application. So single conceptual USDT |
| * (identified by provider:name pair of identifiers) is, generally speaking, |
| * multiple uprobe locations (USDT call sites) in different places in user |
| * application. Further, again due to inlining, each USDT call site might end |
| * up having the same argument #N be located in a different place. In one call |
| * site it could be a constant, in another will end up in a register, and in |
| * yet another could be some other register or even somewhere on the stack. |
| * |
| * As such, "attaching to USDT" means (in general case) attaching the same |
| * uprobe BPF program to multiple target locations in user application, each |
| * potentially having a completely different USDT spec associated with it. |
| * To wire all this up together libbpf allocates a unique integer spec ID for |
| * each unique USDT spec. Spec IDs are allocated as sequential small integers |
| * so that they can be used as keys in array BPF map (for performance reasons). |
| * Spec ID allocation and accounting is big part of what usdt_manager is |
| * about. This state has to be maintained per-BPF object and coordinate |
| * between different USDT attachments within the same BPF object. |
| * |
| * Spec ID is the key in spec BPF map, value is the actual USDT spec layed out |
| * as struct usdt_spec. Each invocation of BPF program at runtime needs to |
| * know its associated spec ID. It gets it either through BPF cookie, which |
| * libbpf sets to spec ID during attach time, or, if kernel is too old to |
| * support BPF cookie, through IP-to-spec-ID map that libbpf maintains in such |
| * case. The latter means that some modes of operation can't be supported |
| * without BPF cookie. Such mode is attaching to shared library "generically", |
| * without specifying target process. In such case, it's impossible to |
| * calculate absolute IP addresses for IP-to-spec-ID map, and thus such mode |
| * is not supported without BPF cookie support. |
| * |
| * Note that libbpf is using BPF cookie functionality for its own internal |
| * needs, so user itself can't rely on BPF cookie feature. To that end, libbpf |
| * provides conceptually equivalent USDT cookie support. It's still u64 |
| * user-provided value that can be associated with USDT attachment. Note that |
| * this will be the same value for all USDT call sites within the same single |
| * *logical* USDT attachment. This makes sense because to user attaching to |
| * USDT is a single BPF program triggered for singular USDT probe. The fact |
| * that this is done at multiple actual locations is a mostly hidden |
| * implementation details. This USDT cookie value can be fetched with |
| * bpf_usdt_cookie(ctx) API provided by usdt.bpf.h |
| * |
| * Lastly, while single USDT can have tons of USDT call sites, it doesn't |
| * necessarily have that many different USDT specs. It very well might be |
| * that 1000 USDT call sites only need 5 different USDT specs, because all the |
| * arguments are typically contained in a small set of registers or stack |
| * locations. As such, it's wasteful to allocate as many USDT spec IDs as |
| * there are USDT call sites. So libbpf tries to be frugal and performs |
| * on-the-fly deduplication during a single USDT attachment to only allocate |
| * the minimal required amount of unique USDT specs (and thus spec IDs). This |
| * is trivially achieved by using USDT spec string (Arguments string from USDT |
| * note) as a lookup key in a hashmap. USDT spec string uniquely defines |
| * everything about how to fetch USDT arguments, so two USDT call sites |
| * sharing USDT spec string can safely share the same USDT spec and spec ID. |
| * Note, this spec string deduplication is happening only during the same USDT |
| * attachment, so each USDT spec shares the same USDT cookie value. This is |
| * not generally true for other USDT attachments within the same BPF object, |
| * as even if USDT spec string is the same, USDT cookie value can be |
| * different. It was deemed excessive to try to deduplicate across independent |
| * USDT attachments by taking into account USDT spec string *and* USDT cookie |
| * value, which would complicated spec ID accounting significantly for little |
| * gain. |
| */ |
| |
| #define USDT_BASE_SEC ".stapsdt.base" |
| #define USDT_SEMA_SEC ".probes" |
| #define USDT_NOTE_SEC ".note.stapsdt" |
| #define USDT_NOTE_TYPE 3 |
| #define USDT_NOTE_NAME "stapsdt" |
| |
| /* should match exactly enum __bpf_usdt_arg_type from usdt.bpf.h */ |
| enum usdt_arg_type { |
| USDT_ARG_CONST, |
| USDT_ARG_REG, |
| USDT_ARG_REG_DEREF, |
| }; |
| |
| /* should match exactly struct __bpf_usdt_arg_spec from usdt.bpf.h */ |
| struct usdt_arg_spec { |
| __u64 val_off; |
| enum usdt_arg_type arg_type; |
| short reg_off; |
| bool arg_signed; |
| char arg_bitshift; |
| }; |
| |
| /* should match BPF_USDT_MAX_ARG_CNT in usdt.bpf.h */ |
| #define USDT_MAX_ARG_CNT 12 |
| |
| /* should match struct __bpf_usdt_spec from usdt.bpf.h */ |
| struct usdt_spec { |
| struct usdt_arg_spec args[USDT_MAX_ARG_CNT]; |
| __u64 usdt_cookie; |
| short arg_cnt; |
| }; |
| |
| struct usdt_note { |
| const char *provider; |
| const char *name; |
| /* USDT args specification string, e.g.: |
| * "-4@%esi -4@-24(%rbp) -4@%ecx 2@%ax 8@%rdx" |
| */ |
| const char *args; |
| long loc_addr; |
| long base_addr; |
| long sema_addr; |
| }; |
| |
| struct usdt_target { |
| long abs_ip; |
| long rel_ip; |
| long sema_off; |
| struct usdt_spec spec; |
| const char *spec_str; |
| }; |
| |
| struct usdt_manager { |
| struct bpf_map *specs_map; |
| struct bpf_map *ip_to_spec_id_map; |
| |
| int *free_spec_ids; |
| size_t free_spec_cnt; |
| size_t next_free_spec_id; |
| |
| bool has_bpf_cookie; |
| bool has_sema_refcnt; |
| }; |
| |
| struct usdt_manager *usdt_manager_new(struct bpf_object *obj) |
| { |
| static const char *ref_ctr_sysfs_path = "/sys/bus/event_source/devices/uprobe/format/ref_ctr_offset"; |
| struct usdt_manager *man; |
| struct bpf_map *specs_map, *ip_to_spec_id_map; |
| |
| specs_map = bpf_object__find_map_by_name(obj, "__bpf_usdt_specs"); |
| ip_to_spec_id_map = bpf_object__find_map_by_name(obj, "__bpf_usdt_ip_to_spec_id"); |
| if (!specs_map || !ip_to_spec_id_map) { |
| pr_warn("usdt: failed to find USDT support BPF maps, did you forget to include bpf/usdt.bpf.h?\n"); |
| return ERR_PTR(-ESRCH); |
| } |
| |
| man = calloc(1, sizeof(*man)); |
| if (!man) |
| return ERR_PTR(-ENOMEM); |
| |
| man->specs_map = specs_map; |
| man->ip_to_spec_id_map = ip_to_spec_id_map; |
| |
| /* Detect if BPF cookie is supported for kprobes. |
| * We don't need IP-to-ID mapping if we can use BPF cookies. |
| * Added in: 7adfc6c9b315 ("bpf: Add bpf_get_attach_cookie() BPF helper to access bpf_cookie value") |
| */ |
| man->has_bpf_cookie = kernel_supports(obj, FEAT_BPF_COOKIE); |
| |
| /* Detect kernel support for automatic refcounting of USDT semaphore. |
| * If this is not supported, USDTs with semaphores will not be supported. |
| * Added in: a6ca88b241d5 ("trace_uprobe: support reference counter in fd-based uprobe") |
| */ |
| man->has_sema_refcnt = access(ref_ctr_sysfs_path, F_OK) == 0; |
| |
| return man; |
| } |
| |
| void usdt_manager_free(struct usdt_manager *man) |
| { |
| if (IS_ERR_OR_NULL(man)) |
| return; |
| |
| free(man->free_spec_ids); |
| free(man); |
| } |
| |
| static int sanity_check_usdt_elf(Elf *elf, const char *path) |
| { |
| GElf_Ehdr ehdr; |
| int endianness; |
| |
| if (elf_kind(elf) != ELF_K_ELF) { |
| pr_warn("usdt: unrecognized ELF kind %d for '%s'\n", elf_kind(elf), path); |
| return -EBADF; |
| } |
| |
| switch (gelf_getclass(elf)) { |
| case ELFCLASS64: |
| if (sizeof(void *) != 8) { |
| pr_warn("usdt: attaching to 64-bit ELF binary '%s' is not supported\n", path); |
| return -EBADF; |
| } |
| break; |
| case ELFCLASS32: |
| if (sizeof(void *) != 4) { |
| pr_warn("usdt: attaching to 32-bit ELF binary '%s' is not supported\n", path); |
| return -EBADF; |
| } |
| break; |
| default: |
| pr_warn("usdt: unsupported ELF class for '%s'\n", path); |
| return -EBADF; |
| } |
| |
| if (!gelf_getehdr(elf, &ehdr)) |
| return -EINVAL; |
| |
| if (ehdr.e_type != ET_EXEC && ehdr.e_type != ET_DYN) { |
| pr_warn("usdt: unsupported type of ELF binary '%s' (%d), only ET_EXEC and ET_DYN are supported\n", |
| path, ehdr.e_type); |
| return -EBADF; |
| } |
| |
| #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ |
| endianness = ELFDATA2LSB; |
| #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ |
| endianness = ELFDATA2MSB; |
| #else |
| # error "Unrecognized __BYTE_ORDER__" |
| #endif |
| if (endianness != ehdr.e_ident[EI_DATA]) { |
| pr_warn("usdt: ELF endianness mismatch for '%s'\n", path); |
| return -EBADF; |
| } |
| |
| return 0; |
| } |
| |
| static int find_elf_sec_by_name(Elf *elf, const char *sec_name, GElf_Shdr *shdr, Elf_Scn **scn) |
| { |
| Elf_Scn *sec = NULL; |
| size_t shstrndx; |
| |
| if (elf_getshdrstrndx(elf, &shstrndx)) |
| return -EINVAL; |
| |
| /* check if ELF is corrupted and avoid calling elf_strptr if yes */ |
| if (!elf_rawdata(elf_getscn(elf, shstrndx), NULL)) |
| return -EINVAL; |
| |
| while ((sec = elf_nextscn(elf, sec)) != NULL) { |
| char *name; |
| |
| if (!gelf_getshdr(sec, shdr)) |
| return -EINVAL; |
| |
| name = elf_strptr(elf, shstrndx, shdr->sh_name); |
| if (name && strcmp(sec_name, name) == 0) { |
| *scn = sec; |
| return 0; |
| } |
| } |
| |
| return -ENOENT; |
| } |
| |
| struct elf_seg { |
| long start; |
| long end; |
| long offset; |
| bool is_exec; |
| }; |
| |
| static int cmp_elf_segs(const void *_a, const void *_b) |
| { |
| const struct elf_seg *a = _a; |
| const struct elf_seg *b = _b; |
| |
| return a->start < b->start ? -1 : 1; |
| } |
| |
| static int parse_elf_segs(Elf *elf, const char *path, struct elf_seg **segs, size_t *seg_cnt) |
| { |
| GElf_Phdr phdr; |
| size_t n; |
| int i, err; |
| struct elf_seg *seg; |
| void *tmp; |
| |
| *seg_cnt = 0; |
| |
| if (elf_getphdrnum(elf, &n)) { |
| err = -errno; |
| return err; |
| } |
| |
| for (i = 0; i < n; i++) { |
| if (!gelf_getphdr(elf, i, &phdr)) { |
| err = -errno; |
| return err; |
| } |
| |
| pr_debug("usdt: discovered PHDR #%d in '%s': vaddr 0x%lx memsz 0x%lx offset 0x%lx type 0x%lx flags 0x%lx\n", |
| i, path, (long)phdr.p_vaddr, (long)phdr.p_memsz, (long)phdr.p_offset, |
| (long)phdr.p_type, (long)phdr.p_flags); |
| if (phdr.p_type != PT_LOAD) |
| continue; |
| |
| tmp = libbpf_reallocarray(*segs, *seg_cnt + 1, sizeof(**segs)); |
| if (!tmp) |
| return -ENOMEM; |
| |
| *segs = tmp; |
| seg = *segs + *seg_cnt; |
| (*seg_cnt)++; |
| |
| seg->start = phdr.p_vaddr; |
| seg->end = phdr.p_vaddr + phdr.p_memsz; |
| seg->offset = phdr.p_offset; |
| seg->is_exec = phdr.p_flags & PF_X; |
| } |
| |
| if (*seg_cnt == 0) { |
| pr_warn("usdt: failed to find PT_LOAD program headers in '%s'\n", path); |
| return -ESRCH; |
| } |
| |
| qsort(*segs, *seg_cnt, sizeof(**segs), cmp_elf_segs); |
| return 0; |
| } |
| |
| static int parse_lib_segs(int pid, const char *lib_path, struct elf_seg **segs, size_t *seg_cnt) |
| { |
| char path[PATH_MAX], line[PATH_MAX], mode[16]; |
| size_t seg_start, seg_end, seg_off; |
| struct elf_seg *seg; |
| int tmp_pid, i, err; |
| FILE *f; |
| |
| *seg_cnt = 0; |
| |
| /* Handle containerized binaries only accessible from |
| * /proc/<pid>/root/<path>. They will be reported as just /<path> in |
| * /proc/<pid>/maps. |
| */ |
| if (sscanf(lib_path, "/proc/%d/root%s", &tmp_pid, path) == 2 && pid == tmp_pid) |
| goto proceed; |
| |
| if (!realpath(lib_path, path)) { |
| pr_warn("usdt: failed to get absolute path of '%s' (err %d), using path as is...\n", |
| lib_path, -errno); |
| libbpf_strlcpy(path, lib_path, sizeof(path)); |
| } |
| |
| proceed: |
| sprintf(line, "/proc/%d/maps", pid); |
| f = fopen(line, "r"); |
| if (!f) { |
| err = -errno; |
| pr_warn("usdt: failed to open '%s' to get base addr of '%s': %d\n", |
| line, lib_path, err); |
| return err; |
| } |
| |
| /* We need to handle lines with no path at the end: |
| * |
| * 7f5c6f5d1000-7f5c6f5d3000 rw-p 001c7000 08:04 21238613 /usr/lib64/libc-2.17.so |
| * 7f5c6f5d3000-7f5c6f5d8000 rw-p 00000000 00:00 0 |
| * 7f5c6f5d8000-7f5c6f5d9000 r-xp 00000000 103:01 362990598 /data/users/andriin/linux/tools/bpf/usdt/libhello_usdt.so |
| */ |
| while (fscanf(f, "%zx-%zx %s %zx %*s %*d%[^\n]\n", |
| &seg_start, &seg_end, mode, &seg_off, line) == 5) { |
| void *tmp; |
| |
| /* to handle no path case (see above) we need to capture line |
| * without skipping any whitespaces. So we need to strip |
| * leading whitespaces manually here |
| */ |
| i = 0; |
| while (isblank(line[i])) |
| i++; |
| if (strcmp(line + i, path) != 0) |
| continue; |
| |
| pr_debug("usdt: discovered segment for lib '%s': addrs %zx-%zx mode %s offset %zx\n", |
| path, seg_start, seg_end, mode, seg_off); |
| |
| /* ignore non-executable sections for shared libs */ |
| if (mode[2] != 'x') |
| continue; |
| |
| tmp = libbpf_reallocarray(*segs, *seg_cnt + 1, sizeof(**segs)); |
| if (!tmp) { |
| err = -ENOMEM; |
| goto err_out; |
| } |
| |
| *segs = tmp; |
| seg = *segs + *seg_cnt; |
| *seg_cnt += 1; |
| |
| seg->start = seg_start; |
| seg->end = seg_end; |
| seg->offset = seg_off; |
| seg->is_exec = true; |
| } |
| |
| if (*seg_cnt == 0) { |
| pr_warn("usdt: failed to find '%s' (resolved to '%s') within PID %d memory mappings\n", |
| lib_path, path, pid); |
| err = -ESRCH; |
| goto err_out; |
| } |
| |
| qsort(*segs, *seg_cnt, sizeof(**segs), cmp_elf_segs); |
| err = 0; |
| err_out: |
| fclose(f); |
| return err; |
| } |
| |
| static struct elf_seg *find_elf_seg(struct elf_seg *segs, size_t seg_cnt, long addr, bool relative) |
| { |
| struct elf_seg *seg; |
| int i; |
| |
| if (relative) { |
| /* for shared libraries, address is relative offset and thus |
| * should be fall within logical offset-based range of |
| * [offset_start, offset_end) |
| */ |
| for (i = 0, seg = segs; i < seg_cnt; i++, seg++) { |
| if (seg->offset <= addr && addr < seg->offset + (seg->end - seg->start)) |
| return seg; |
| } |
| } else { |
| /* for binaries, address is absolute and thus should be within |
| * absolute address range of [seg_start, seg_end) |
| */ |
| for (i = 0, seg = segs; i < seg_cnt; i++, seg++) { |
| if (seg->start <= addr && addr < seg->end) |
| return seg; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| static int parse_usdt_note(Elf *elf, const char *path, long base_addr, |
| GElf_Nhdr *nhdr, const char *data, size_t name_off, size_t desc_off, |
| struct usdt_note *usdt_note); |
| |
| static int parse_usdt_spec(struct usdt_spec *spec, const struct usdt_note *note, __u64 usdt_cookie); |
| |
| static int collect_usdt_targets(struct usdt_manager *man, Elf *elf, const char *path, pid_t pid, |
| const char *usdt_provider, const char *usdt_name, __u64 usdt_cookie, |
| struct usdt_target **out_targets, size_t *out_target_cnt) |
| { |
| size_t off, name_off, desc_off, seg_cnt = 0, lib_seg_cnt = 0, target_cnt = 0; |
| struct elf_seg *segs = NULL, *lib_segs = NULL; |
| struct usdt_target *targets = NULL, *target; |
| long base_addr = 0; |
| Elf_Scn *notes_scn, *base_scn; |
| GElf_Shdr base_shdr, notes_shdr; |
| GElf_Ehdr ehdr; |
| GElf_Nhdr nhdr; |
| Elf_Data *data; |
| int err; |
| |
| *out_targets = NULL; |
| *out_target_cnt = 0; |
| |
| err = find_elf_sec_by_name(elf, USDT_NOTE_SEC, ¬es_shdr, ¬es_scn); |
| if (err) { |
| pr_warn("usdt: no USDT notes section (%s) found in '%s'\n", USDT_NOTE_SEC, path); |
| return err; |
| } |
| |
| if (notes_shdr.sh_type != SHT_NOTE || !gelf_getehdr(elf, &ehdr)) { |
| pr_warn("usdt: invalid USDT notes section (%s) in '%s'\n", USDT_NOTE_SEC, path); |
| return -EINVAL; |
| } |
| |
| err = parse_elf_segs(elf, path, &segs, &seg_cnt); |
| if (err) { |
| pr_warn("usdt: failed to process ELF program segments for '%s': %d\n", path, err); |
| goto err_out; |
| } |
| |
| /* .stapsdt.base ELF section is optional, but is used for prelink |
| * offset compensation (see a big comment further below) |
| */ |
| if (find_elf_sec_by_name(elf, USDT_BASE_SEC, &base_shdr, &base_scn) == 0) |
| base_addr = base_shdr.sh_addr; |
| |
| data = elf_getdata(notes_scn, 0); |
| off = 0; |
| while ((off = gelf_getnote(data, off, &nhdr, &name_off, &desc_off)) > 0) { |
| long usdt_abs_ip, usdt_rel_ip, usdt_sema_off = 0; |
| struct usdt_note note; |
| struct elf_seg *seg = NULL; |
| void *tmp; |
| |
| err = parse_usdt_note(elf, path, base_addr, &nhdr, |
| data->d_buf, name_off, desc_off, ¬e); |
| if (err) |
| goto err_out; |
| |
| if (strcmp(note.provider, usdt_provider) != 0 || strcmp(note.name, usdt_name) != 0) |
| continue; |
| |
| /* We need to compensate "prelink effect". See [0] for details, |
| * relevant parts quoted here: |
| * |
| * Each SDT probe also expands into a non-allocated ELF note. You can |
| * find this by looking at SHT_NOTE sections and decoding the format; |
| * see below for details. Because the note is non-allocated, it means |
| * there is no runtime cost, and also preserved in both stripped files |
| * and .debug files. |
| * |
| * However, this means that prelink won't adjust the note's contents |
| * for address offsets. Instead, this is done via the .stapsdt.base |
| * section. This is a special section that is added to the text. We |
| * will only ever have one of these sections in a final link and it |
| * will only ever be one byte long. Nothing about this section itself |
| * matters, we just use it as a marker to detect prelink address |
| * adjustments. |
| * |
| * Each probe note records the link-time address of the .stapsdt.base |
| * section alongside the probe PC address. The decoder compares the |
| * base address stored in the note with the .stapsdt.base section's |
| * sh_addr. Initially these are the same, but the section header will |
| * be adjusted by prelink. So the decoder applies the difference to |
| * the probe PC address to get the correct prelinked PC address; the |
| * same adjustment is applied to the semaphore address, if any. |
| * |
| * [0] https://sourceware.org/systemtap/wiki/UserSpaceProbeImplementation |
| */ |
| usdt_rel_ip = usdt_abs_ip = note.loc_addr; |
| if (base_addr) { |
| usdt_abs_ip += base_addr - note.base_addr; |
| usdt_rel_ip += base_addr - note.base_addr; |
| } |
| |
| if (ehdr.e_type == ET_EXEC) { |
| /* When attaching uprobes (which what USDTs basically |
| * are) kernel expects a relative IP to be specified, |
| * so if we are attaching to an executable ELF binary |
| * (i.e., not a shared library), we need to calculate |
| * proper relative IP based on ELF's load address |
| */ |
| seg = find_elf_seg(segs, seg_cnt, usdt_abs_ip, false /* relative */); |
| if (!seg) { |
| err = -ESRCH; |
| pr_warn("usdt: failed to find ELF program segment for '%s:%s' in '%s' at IP 0x%lx\n", |
| usdt_provider, usdt_name, path, usdt_abs_ip); |
| goto err_out; |
| } |
| if (!seg->is_exec) { |
| err = -ESRCH; |
| pr_warn("usdt: matched ELF binary '%s' segment [0x%lx, 0x%lx) for '%s:%s' at IP 0x%lx is not executable\n", |
| path, seg->start, seg->end, usdt_provider, usdt_name, |
| usdt_abs_ip); |
| goto err_out; |
| } |
| |
| usdt_rel_ip = usdt_abs_ip - (seg->start - seg->offset); |
| } else if (!man->has_bpf_cookie) { /* ehdr.e_type == ET_DYN */ |
| /* If we don't have BPF cookie support but need to |
| * attach to a shared library, we'll need to know and |
| * record absolute addresses of attach points due to |
| * the need to lookup USDT spec by absolute IP of |
| * triggered uprobe. Doing this resolution is only |
| * possible when we have a specific PID of the process |
| * that's using specified shared library. BPF cookie |
| * removes the absolute address limitation as we don't |
| * need to do this lookup (we just use BPF cookie as |
| * an index of USDT spec), so for newer kernels with |
| * BPF cookie support libbpf supports USDT attachment |
| * to shared libraries with no PID filter. |
| */ |
| if (pid < 0) { |
| pr_warn("usdt: attaching to shared libraries without specific PID is not supported on current kernel\n"); |
| err = -ENOTSUP; |
| goto err_out; |
| } |
| |
| /* lib_segs are lazily initialized only if necessary */ |
| if (lib_seg_cnt == 0) { |
| err = parse_lib_segs(pid, path, &lib_segs, &lib_seg_cnt); |
| if (err) { |
| pr_warn("usdt: failed to get memory segments in PID %d for shared library '%s': %d\n", |
| pid, path, err); |
| goto err_out; |
| } |
| } |
| |
| seg = find_elf_seg(lib_segs, lib_seg_cnt, usdt_rel_ip, true /* relative */); |
| if (!seg) { |
| err = -ESRCH; |
| pr_warn("usdt: failed to find shared lib memory segment for '%s:%s' in '%s' at relative IP 0x%lx\n", |
| usdt_provider, usdt_name, path, usdt_rel_ip); |
| goto err_out; |
| } |
| |
| usdt_abs_ip = seg->start + (usdt_rel_ip - seg->offset); |
| } |
| |
| pr_debug("usdt: probe for '%s:%s' in %s '%s': addr 0x%lx base 0x%lx (resolved abs_ip 0x%lx rel_ip 0x%lx) args '%s' in segment [0x%lx, 0x%lx) at offset 0x%lx\n", |
| usdt_provider, usdt_name, ehdr.e_type == ET_EXEC ? "exec" : "lib ", path, |
| note.loc_addr, note.base_addr, usdt_abs_ip, usdt_rel_ip, note.args, |
| seg ? seg->start : 0, seg ? seg->end : 0, seg ? seg->offset : 0); |
| |
| /* Adjust semaphore address to be a relative offset */ |
| if (note.sema_addr) { |
| if (!man->has_sema_refcnt) { |
| pr_warn("usdt: kernel doesn't support USDT semaphore refcounting for '%s:%s' in '%s'\n", |
| usdt_provider, usdt_name, path); |
| err = -ENOTSUP; |
| goto err_out; |
| } |
| |
| seg = find_elf_seg(segs, seg_cnt, note.sema_addr, false /* relative */); |
| if (!seg) { |
| err = -ESRCH; |
| pr_warn("usdt: failed to find ELF loadable segment with semaphore of '%s:%s' in '%s' at 0x%lx\n", |
| usdt_provider, usdt_name, path, note.sema_addr); |
| goto err_out; |
| } |
| if (seg->is_exec) { |
| err = -ESRCH; |
| pr_warn("usdt: matched ELF binary '%s' segment [0x%lx, 0x%lx] for semaphore of '%s:%s' at 0x%lx is executable\n", |
| path, seg->start, seg->end, usdt_provider, usdt_name, |
| note.sema_addr); |
| goto err_out; |
| } |
| |
| usdt_sema_off = note.sema_addr - (seg->start - seg->offset); |
| |
| pr_debug("usdt: sema for '%s:%s' in %s '%s': addr 0x%lx base 0x%lx (resolved 0x%lx) in segment [0x%lx, 0x%lx] at offset 0x%lx\n", |
| usdt_provider, usdt_name, ehdr.e_type == ET_EXEC ? "exec" : "lib ", |
| path, note.sema_addr, note.base_addr, usdt_sema_off, |
| seg->start, seg->end, seg->offset); |
| } |
| |
| /* Record adjusted addresses and offsets and parse USDT spec */ |
| tmp = libbpf_reallocarray(targets, target_cnt + 1, sizeof(*targets)); |
| if (!tmp) { |
| err = -ENOMEM; |
| goto err_out; |
| } |
| targets = tmp; |
| |
| target = &targets[target_cnt]; |
| memset(target, 0, sizeof(*target)); |
| |
| target->abs_ip = usdt_abs_ip; |
| target->rel_ip = usdt_rel_ip; |
| target->sema_off = usdt_sema_off; |
| |
| /* notes->args references strings from Elf itself, so they can |
| * be referenced safely until elf_end() call |
| */ |
| target->spec_str = note.args; |
| |
| err = parse_usdt_spec(&target->spec, ¬e, usdt_cookie); |
| if (err) |
| goto err_out; |
| |
| target_cnt++; |
| } |
| |
| *out_targets = targets; |
| *out_target_cnt = target_cnt; |
| err = target_cnt; |
| |
| err_out: |
| free(segs); |
| free(lib_segs); |
| if (err < 0) |
| free(targets); |
| return err; |
| } |
| |
| struct bpf_link_usdt { |
| struct bpf_link link; |
| |
| struct usdt_manager *usdt_man; |
| |
| size_t spec_cnt; |
| int *spec_ids; |
| |
| size_t uprobe_cnt; |
| struct { |
| long abs_ip; |
| struct bpf_link *link; |
| } *uprobes; |
| }; |
| |
| static int bpf_link_usdt_detach(struct bpf_link *link) |
| { |
| struct bpf_link_usdt *usdt_link = container_of(link, struct bpf_link_usdt, link); |
| struct usdt_manager *man = usdt_link->usdt_man; |
| int i; |
| |
| for (i = 0; i < usdt_link->uprobe_cnt; i++) { |
| /* detach underlying uprobe link */ |
| bpf_link__destroy(usdt_link->uprobes[i].link); |
| /* there is no need to update specs map because it will be |
| * unconditionally overwritten on subsequent USDT attaches, |
| * but if BPF cookies are not used we need to remove entry |
| * from ip_to_spec_id map, otherwise we'll run into false |
| * conflicting IP errors |
| */ |
| if (!man->has_bpf_cookie) { |
| /* not much we can do about errors here */ |
| (void)bpf_map_delete_elem(bpf_map__fd(man->ip_to_spec_id_map), |
| &usdt_link->uprobes[i].abs_ip); |
| } |
| } |
| |
| /* try to return the list of previously used spec IDs to usdt_manager |
| * for future reuse for subsequent USDT attaches |
| */ |
| if (!man->free_spec_ids) { |
| /* if there were no free spec IDs yet, just transfer our IDs */ |
| man->free_spec_ids = usdt_link->spec_ids; |
| man->free_spec_cnt = usdt_link->spec_cnt; |
| usdt_link->spec_ids = NULL; |
| } else { |
| /* otherwise concat IDs */ |
| size_t new_cnt = man->free_spec_cnt + usdt_link->spec_cnt; |
| int *new_free_ids; |
| |
| new_free_ids = libbpf_reallocarray(man->free_spec_ids, new_cnt, |
| sizeof(*new_free_ids)); |
| /* If we couldn't resize free_spec_ids, we'll just leak |
| * a bunch of free IDs; this is very unlikely to happen and if |
| * system is so exhausted on memory, it's the least of user's |
| * concerns, probably. |
| * So just do our best here to return those IDs to usdt_manager. |
| */ |
| if (new_free_ids) { |
| memcpy(new_free_ids + man->free_spec_cnt, usdt_link->spec_ids, |
| usdt_link->spec_cnt * sizeof(*usdt_link->spec_ids)); |
| man->free_spec_ids = new_free_ids; |
| man->free_spec_cnt = new_cnt; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void bpf_link_usdt_dealloc(struct bpf_link *link) |
| { |
| struct bpf_link_usdt *usdt_link = container_of(link, struct bpf_link_usdt, link); |
| |
| free(usdt_link->spec_ids); |
| free(usdt_link->uprobes); |
| free(usdt_link); |
| } |
| |
| static size_t specs_hash_fn(const void *key, void *ctx) |
| { |
| const char *s = key; |
| |
| return str_hash(s); |
| } |
| |
| static bool specs_equal_fn(const void *key1, const void *key2, void *ctx) |
| { |
| const char *s1 = key1; |
| const char *s2 = key2; |
| |
| return strcmp(s1, s2) == 0; |
| } |
| |
| static int allocate_spec_id(struct usdt_manager *man, struct hashmap *specs_hash, |
| struct bpf_link_usdt *link, struct usdt_target *target, |
| int *spec_id, bool *is_new) |
| { |
| void *tmp; |
| int err; |
| |
| /* check if we already allocated spec ID for this spec string */ |
| if (hashmap__find(specs_hash, target->spec_str, &tmp)) { |
| *spec_id = (long)tmp; |
| *is_new = false; |
| return 0; |
| } |
| |
| /* otherwise it's a new ID that needs to be set up in specs map and |
| * returned back to usdt_manager when USDT link is detached |
| */ |
| tmp = libbpf_reallocarray(link->spec_ids, link->spec_cnt + 1, sizeof(*link->spec_ids)); |
| if (!tmp) |
| return -ENOMEM; |
| link->spec_ids = tmp; |
| |
| /* get next free spec ID, giving preference to free list, if not empty */ |
| if (man->free_spec_cnt) { |
| *spec_id = man->free_spec_ids[man->free_spec_cnt - 1]; |
| |
| /* cache spec ID for current spec string for future lookups */ |
| err = hashmap__add(specs_hash, target->spec_str, (void *)(long)*spec_id); |
| if (err) |
| return err; |
| |
| man->free_spec_cnt--; |
| } else { |
| /* don't allocate spec ID bigger than what fits in specs map */ |
| if (man->next_free_spec_id >= bpf_map__max_entries(man->specs_map)) |
| return -E2BIG; |
| |
| *spec_id = man->next_free_spec_id; |
| |
| /* cache spec ID for current spec string for future lookups */ |
| err = hashmap__add(specs_hash, target->spec_str, (void *)(long)*spec_id); |
| if (err) |
| return err; |
| |
| man->next_free_spec_id++; |
| } |
| |
| /* remember new spec ID in the link for later return back to free list on detach */ |
| link->spec_ids[link->spec_cnt] = *spec_id; |
| link->spec_cnt++; |
| *is_new = true; |
| return 0; |
| } |
| |
| struct bpf_link *usdt_manager_attach_usdt(struct usdt_manager *man, const struct bpf_program *prog, |
| pid_t pid, const char *path, |
| const char *usdt_provider, const char *usdt_name, |
| __u64 usdt_cookie) |
| { |
| int i, fd, err, spec_map_fd, ip_map_fd; |
| LIBBPF_OPTS(bpf_uprobe_opts, opts); |
| struct hashmap *specs_hash = NULL; |
| struct bpf_link_usdt *link = NULL; |
| struct usdt_target *targets = NULL; |
| size_t target_cnt; |
| Elf *elf; |
| |
| spec_map_fd = bpf_map__fd(man->specs_map); |
| ip_map_fd = bpf_map__fd(man->ip_to_spec_id_map); |
| |
| /* TODO: perform path resolution similar to uprobe's */ |
| fd = open(path, O_RDONLY); |
| if (fd < 0) { |
| err = -errno; |
| pr_warn("usdt: failed to open ELF binary '%s': %d\n", path, err); |
| return libbpf_err_ptr(err); |
| } |
| |
| elf = elf_begin(fd, ELF_C_READ_MMAP, NULL); |
| if (!elf) { |
| err = -EBADF; |
| pr_warn("usdt: failed to parse ELF binary '%s': %s\n", path, elf_errmsg(-1)); |
| goto err_out; |
| } |
| |
| err = sanity_check_usdt_elf(elf, path); |
| if (err) |
| goto err_out; |
| |
| /* normalize PID filter */ |
| if (pid < 0) |
| pid = -1; |
| else if (pid == 0) |
| pid = getpid(); |
| |
| /* discover USDT in given binary, optionally limiting |
| * activations to a given PID, if pid > 0 |
| */ |
| err = collect_usdt_targets(man, elf, path, pid, usdt_provider, usdt_name, |
| usdt_cookie, &targets, &target_cnt); |
| if (err <= 0) { |
| err = (err == 0) ? -ENOENT : err; |
| goto err_out; |
| } |
| |
| specs_hash = hashmap__new(specs_hash_fn, specs_equal_fn, NULL); |
| if (IS_ERR(specs_hash)) { |
| err = PTR_ERR(specs_hash); |
| goto err_out; |
| } |
| |
| link = calloc(1, sizeof(*link)); |
| if (!link) { |
| err = -ENOMEM; |
| goto err_out; |
| } |
| |
| link->usdt_man = man; |
| link->link.detach = &bpf_link_usdt_detach; |
| link->link.dealloc = &bpf_link_usdt_dealloc; |
| |
| link->uprobes = calloc(target_cnt, sizeof(*link->uprobes)); |
| if (!link->uprobes) { |
| err = -ENOMEM; |
| goto err_out; |
| } |
| |
| for (i = 0; i < target_cnt; i++) { |
| struct usdt_target *target = &targets[i]; |
| struct bpf_link *uprobe_link; |
| bool is_new; |
| int spec_id; |
| |
| /* Spec ID can be either reused or newly allocated. If it is |
| * newly allocated, we'll need to fill out spec map, otherwise |
| * entire spec should be valid and can be just used by a new |
| * uprobe. We reuse spec when USDT arg spec is identical. We |
| * also never share specs between two different USDT |
| * attachments ("links"), so all the reused specs already |
| * share USDT cookie value implicitly. |
| */ |
| err = allocate_spec_id(man, specs_hash, link, target, &spec_id, &is_new); |
| if (err) |
| goto err_out; |
| |
| if (is_new && bpf_map_update_elem(spec_map_fd, &spec_id, &target->spec, BPF_ANY)) { |
| err = -errno; |
| pr_warn("usdt: failed to set USDT spec #%d for '%s:%s' in '%s': %d\n", |
| spec_id, usdt_provider, usdt_name, path, err); |
| goto err_out; |
| } |
| if (!man->has_bpf_cookie && |
| bpf_map_update_elem(ip_map_fd, &target->abs_ip, &spec_id, BPF_NOEXIST)) { |
| err = -errno; |
| if (err == -EEXIST) { |
| pr_warn("usdt: IP collision detected for spec #%d for '%s:%s' in '%s'\n", |
| spec_id, usdt_provider, usdt_name, path); |
| } else { |
| pr_warn("usdt: failed to map IP 0x%lx to spec #%d for '%s:%s' in '%s': %d\n", |
| target->abs_ip, spec_id, usdt_provider, usdt_name, |
| path, err); |
| } |
| goto err_out; |
| } |
| |
| opts.ref_ctr_offset = target->sema_off; |
| opts.bpf_cookie = man->has_bpf_cookie ? spec_id : 0; |
| uprobe_link = bpf_program__attach_uprobe_opts(prog, pid, path, |
| target->rel_ip, &opts); |
| err = libbpf_get_error(uprobe_link); |
| if (err) { |
| pr_warn("usdt: failed to attach uprobe #%d for '%s:%s' in '%s': %d\n", |
| i, usdt_provider, usdt_name, path, err); |
| goto err_out; |
| } |
| |
| link->uprobes[i].link = uprobe_link; |
| link->uprobes[i].abs_ip = target->abs_ip; |
| link->uprobe_cnt++; |
| } |
| |
| free(targets); |
| hashmap__free(specs_hash); |
| elf_end(elf); |
| close(fd); |
| |
| return &link->link; |
| |
| err_out: |
| if (link) |
| bpf_link__destroy(&link->link); |
| free(targets); |
| hashmap__free(specs_hash); |
| if (elf) |
| elf_end(elf); |
| close(fd); |
| return libbpf_err_ptr(err); |
| } |
| |
| /* Parse out USDT ELF note from '.note.stapsdt' section. |
| * Logic inspired by perf's code. |
| */ |
| static int parse_usdt_note(Elf *elf, const char *path, long base_addr, |
| GElf_Nhdr *nhdr, const char *data, size_t name_off, size_t desc_off, |
| struct usdt_note *note) |
| { |
| const char *provider, *name, *args; |
| long addrs[3]; |
| size_t len; |
| |
| /* sanity check USDT note name and type first */ |
| if (strncmp(data + name_off, USDT_NOTE_NAME, nhdr->n_namesz) != 0) |
| return -EINVAL; |
| if (nhdr->n_type != USDT_NOTE_TYPE) |
| return -EINVAL; |
| |
| /* sanity check USDT note contents ("description" in ELF terminology) */ |
| len = nhdr->n_descsz; |
| data = data + desc_off; |
| |
| /* +3 is the very minimum required to store three empty strings */ |
| if (len < sizeof(addrs) + 3) |
| return -EINVAL; |
| |
| /* get location, base, and semaphore addrs */ |
| memcpy(&addrs, data, sizeof(addrs)); |
| |
| /* parse string fields: provider, name, args */ |
| provider = data + sizeof(addrs); |
| |
| name = (const char *)memchr(provider, '\0', data + len - provider); |
| if (!name) /* non-zero-terminated provider */ |
| return -EINVAL; |
| name++; |
| if (name >= data + len || *name == '\0') /* missing or empty name */ |
| return -EINVAL; |
| |
| args = memchr(name, '\0', data + len - name); |
| if (!args) /* non-zero-terminated name */ |
| return -EINVAL; |
| ++args; |
| if (args >= data + len) /* missing arguments spec */ |
| return -EINVAL; |
| |
| note->provider = provider; |
| note->name = name; |
| if (*args == '\0' || *args == ':') |
| note->args = ""; |
| else |
| note->args = args; |
| note->loc_addr = addrs[0]; |
| note->base_addr = addrs[1]; |
| note->sema_addr = addrs[2]; |
| |
| return 0; |
| } |
| |
| static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg); |
| |
| static int parse_usdt_spec(struct usdt_spec *spec, const struct usdt_note *note, __u64 usdt_cookie) |
| { |
| const char *s; |
| int len; |
| |
| spec->usdt_cookie = usdt_cookie; |
| spec->arg_cnt = 0; |
| |
| s = note->args; |
| while (s[0]) { |
| if (spec->arg_cnt >= USDT_MAX_ARG_CNT) { |
| pr_warn("usdt: too many USDT arguments (> %d) for '%s:%s' with args spec '%s'\n", |
| USDT_MAX_ARG_CNT, note->provider, note->name, note->args); |
| return -E2BIG; |
| } |
| |
| len = parse_usdt_arg(s, spec->arg_cnt, &spec->args[spec->arg_cnt]); |
| if (len < 0) |
| return len; |
| |
| s += len; |
| spec->arg_cnt++; |
| } |
| |
| return 0; |
| } |
| |
| /* Architecture-specific logic for parsing USDT argument location specs */ |
| |
| #if defined(__x86_64__) || defined(__i386__) |
| |
| static int calc_pt_regs_off(const char *reg_name) |
| { |
| static struct { |
| const char *names[4]; |
| size_t pt_regs_off; |
| } reg_map[] = { |
| #ifdef __x86_64__ |
| #define reg_off(reg64, reg32) offsetof(struct pt_regs, reg64) |
| #else |
| #define reg_off(reg64, reg32) offsetof(struct pt_regs, reg32) |
| #endif |
| { {"rip", "eip", "", ""}, reg_off(rip, eip) }, |
| { {"rax", "eax", "ax", "al"}, reg_off(rax, eax) }, |
| { {"rbx", "ebx", "bx", "bl"}, reg_off(rbx, ebx) }, |
| { {"rcx", "ecx", "cx", "cl"}, reg_off(rcx, ecx) }, |
| { {"rdx", "edx", "dx", "dl"}, reg_off(rdx, edx) }, |
| { {"rsi", "esi", "si", "sil"}, reg_off(rsi, esi) }, |
| { {"rdi", "edi", "di", "dil"}, reg_off(rdi, edi) }, |
| { {"rbp", "ebp", "bp", "bpl"}, reg_off(rbp, ebp) }, |
| { {"rsp", "esp", "sp", "spl"}, reg_off(rsp, esp) }, |
| #undef reg_off |
| #ifdef __x86_64__ |
| { {"r8", "r8d", "r8w", "r8b"}, offsetof(struct pt_regs, r8) }, |
| { {"r9", "r9d", "r9w", "r9b"}, offsetof(struct pt_regs, r9) }, |
| { {"r10", "r10d", "r10w", "r10b"}, offsetof(struct pt_regs, r10) }, |
| { {"r11", "r11d", "r11w", "r11b"}, offsetof(struct pt_regs, r11) }, |
| { {"r12", "r12d", "r12w", "r12b"}, offsetof(struct pt_regs, r12) }, |
| { {"r13", "r13d", "r13w", "r13b"}, offsetof(struct pt_regs, r13) }, |
| { {"r14", "r14d", "r14w", "r14b"}, offsetof(struct pt_regs, r14) }, |
| { {"r15", "r15d", "r15w", "r15b"}, offsetof(struct pt_regs, r15) }, |
| #endif |
| }; |
| int i, j; |
| |
| for (i = 0; i < ARRAY_SIZE(reg_map); i++) { |
| for (j = 0; j < ARRAY_SIZE(reg_map[i].names); j++) { |
| if (strcmp(reg_name, reg_map[i].names[j]) == 0) |
| return reg_map[i].pt_regs_off; |
| } |
| } |
| |
| pr_warn("usdt: unrecognized register '%s'\n", reg_name); |
| return -ENOENT; |
| } |
| |
| static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg) |
| { |
| char *reg_name = NULL; |
| int arg_sz, len, reg_off; |
| long off; |
| |
| if (sscanf(arg_str, " %d @ %ld ( %%%m[^)] ) %n", &arg_sz, &off, ®_name, &len) == 3) { |
| /* Memory dereference case, e.g., -4@-20(%rbp) */ |
| arg->arg_type = USDT_ARG_REG_DEREF; |
| arg->val_off = off; |
| reg_off = calc_pt_regs_off(reg_name); |
| free(reg_name); |
| if (reg_off < 0) |
| return reg_off; |
| arg->reg_off = reg_off; |
| } else if (sscanf(arg_str, " %d @ %%%ms %n", &arg_sz, ®_name, &len) == 2) { |
| /* Register read case, e.g., -4@%eax */ |
| arg->arg_type = USDT_ARG_REG; |
| arg->val_off = 0; |
| |
| reg_off = calc_pt_regs_off(reg_name); |
| free(reg_name); |
| if (reg_off < 0) |
| return reg_off; |
| arg->reg_off = reg_off; |
| } else if (sscanf(arg_str, " %d @ $%ld %n", &arg_sz, &off, &len) == 2) { |
| /* Constant value case, e.g., 4@$71 */ |
| arg->arg_type = USDT_ARG_CONST; |
| arg->val_off = off; |
| arg->reg_off = 0; |
| } else { |
| pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str); |
| return -EINVAL; |
| } |
| |
| arg->arg_signed = arg_sz < 0; |
| if (arg_sz < 0) |
| arg_sz = -arg_sz; |
| |
| switch (arg_sz) { |
| case 1: case 2: case 4: case 8: |
| arg->arg_bitshift = 64 - arg_sz * 8; |
| break; |
| default: |
| pr_warn("usdt: unsupported arg #%d (spec '%s') size: %d\n", |
| arg_num, arg_str, arg_sz); |
| return -EINVAL; |
| } |
| |
| return len; |
| } |
| |
| #elif defined(__s390x__) |
| |
| /* Do not support __s390__ for now, since user_pt_regs is broken with -m31. */ |
| |
| static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg) |
| { |
| unsigned int reg; |
| int arg_sz, len; |
| long off; |
| |
| if (sscanf(arg_str, " %d @ %ld ( %%r%u ) %n", &arg_sz, &off, ®, &len) == 3) { |
| /* Memory dereference case, e.g., -2@-28(%r15) */ |
| arg->arg_type = USDT_ARG_REG_DEREF; |
| arg->val_off = off; |
| if (reg > 15) { |
| pr_warn("usdt: unrecognized register '%%r%u'\n", reg); |
| return -EINVAL; |
| } |
| arg->reg_off = offsetof(user_pt_regs, gprs[reg]); |
| } else if (sscanf(arg_str, " %d @ %%r%u %n", &arg_sz, ®, &len) == 2) { |
| /* Register read case, e.g., -8@%r0 */ |
| arg->arg_type = USDT_ARG_REG; |
| arg->val_off = 0; |
| if (reg > 15) { |
| pr_warn("usdt: unrecognized register '%%r%u'\n", reg); |
| return -EINVAL; |
| } |
| arg->reg_off = offsetof(user_pt_regs, gprs[reg]); |
| } else if (sscanf(arg_str, " %d @ %ld %n", &arg_sz, &off, &len) == 2) { |
| /* Constant value case, e.g., 4@71 */ |
| arg->arg_type = USDT_ARG_CONST; |
| arg->val_off = off; |
| arg->reg_off = 0; |
| } else { |
| pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str); |
| return -EINVAL; |
| } |
| |
| arg->arg_signed = arg_sz < 0; |
| if (arg_sz < 0) |
| arg_sz = -arg_sz; |
| |
| switch (arg_sz) { |
| case 1: case 2: case 4: case 8: |
| arg->arg_bitshift = 64 - arg_sz * 8; |
| break; |
| default: |
| pr_warn("usdt: unsupported arg #%d (spec '%s') size: %d\n", |
| arg_num, arg_str, arg_sz); |
| return -EINVAL; |
| } |
| |
| return len; |
| } |
| |
| #elif defined(__aarch64__) |
| |
| static int calc_pt_regs_off(const char *reg_name) |
| { |
| int reg_num; |
| |
| if (sscanf(reg_name, "x%d", ®_num) == 1) { |
| if (reg_num >= 0 && reg_num < 31) |
| return offsetof(struct user_pt_regs, regs[reg_num]); |
| } else if (strcmp(reg_name, "sp") == 0) { |
| return offsetof(struct user_pt_regs, sp); |
| } |
| pr_warn("usdt: unrecognized register '%s'\n", reg_name); |
| return -ENOENT; |
| } |
| |
| static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg) |
| { |
| char *reg_name = NULL; |
| int arg_sz, len, reg_off; |
| long off; |
| |
| if (sscanf(arg_str, " %d @ \[ %m[a-z0-9], %ld ] %n", &arg_sz, ®_name, &off, &len) == 3) { |
| /* Memory dereference case, e.g., -4@[sp, 96] */ |
| arg->arg_type = USDT_ARG_REG_DEREF; |
| arg->val_off = off; |
| reg_off = calc_pt_regs_off(reg_name); |
| free(reg_name); |
| if (reg_off < 0) |
| return reg_off; |
| arg->reg_off = reg_off; |
| } else if (sscanf(arg_str, " %d @ \[ %m[a-z0-9] ] %n", &arg_sz, ®_name, &len) == 2) { |
| /* Memory dereference case, e.g., -4@[sp] */ |
| arg->arg_type = USDT_ARG_REG_DEREF; |
| arg->val_off = 0; |
| reg_off = calc_pt_regs_off(reg_name); |
| free(reg_name); |
| if (reg_off < 0) |
| return reg_off; |
| arg->reg_off = reg_off; |
| } else if (sscanf(arg_str, " %d @ %ld %n", &arg_sz, &off, &len) == 2) { |
| /* Constant value case, e.g., 4@5 */ |
| arg->arg_type = USDT_ARG_CONST; |
| arg->val_off = off; |
| arg->reg_off = 0; |
| } else if (sscanf(arg_str, " %d @ %m[a-z0-9] %n", &arg_sz, ®_name, &len) == 2) { |
| /* Register read case, e.g., -8@x4 */ |
| arg->arg_type = USDT_ARG_REG; |
| arg->val_off = 0; |
| reg_off = calc_pt_regs_off(reg_name); |
| free(reg_name); |
| if (reg_off < 0) |
| return reg_off; |
| arg->reg_off = reg_off; |
| } else { |
| pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str); |
| return -EINVAL; |
| } |
| |
| arg->arg_signed = arg_sz < 0; |
| if (arg_sz < 0) |
| arg_sz = -arg_sz; |
| |
| switch (arg_sz) { |
| case 1: case 2: case 4: case 8: |
| arg->arg_bitshift = 64 - arg_sz * 8; |
| break; |
| default: |
| pr_warn("usdt: unsupported arg #%d (spec '%s') size: %d\n", |
| arg_num, arg_str, arg_sz); |
| return -EINVAL; |
| } |
| |
| return len; |
| } |
| |
| #elif defined(__riscv) |
| |
| static int calc_pt_regs_off(const char *reg_name) |
| { |
| static struct { |
| const char *name; |
| size_t pt_regs_off; |
| } reg_map[] = { |
| { "ra", offsetof(struct user_regs_struct, ra) }, |
| { "sp", offsetof(struct user_regs_struct, sp) }, |
| { "gp", offsetof(struct user_regs_struct, gp) }, |
| { "tp", offsetof(struct user_regs_struct, tp) }, |
| { "a0", offsetof(struct user_regs_struct, a0) }, |
| { "a1", offsetof(struct user_regs_struct, a1) }, |
| { "a2", offsetof(struct user_regs_struct, a2) }, |
| { "a3", offsetof(struct user_regs_struct, a3) }, |
| { "a4", offsetof(struct user_regs_struct, a4) }, |
| { "a5", offsetof(struct user_regs_struct, a5) }, |
| { "a6", offsetof(struct user_regs_struct, a6) }, |
| { "a7", offsetof(struct user_regs_struct, a7) }, |
| { "s0", offsetof(struct user_regs_struct, s0) }, |
| { "s1", offsetof(struct user_regs_struct, s1) }, |
| { "s2", offsetof(struct user_regs_struct, s2) }, |
| { "s3", offsetof(struct user_regs_struct, s3) }, |
| { "s4", offsetof(struct user_regs_struct, s4) }, |
| { "s5", offsetof(struct user_regs_struct, s5) }, |
| { "s6", offsetof(struct user_regs_struct, s6) }, |
| { "s7", offsetof(struct user_regs_struct, s7) }, |
| { "s8", offsetof(struct user_regs_struct, rv_s8) }, |
| { "s9", offsetof(struct user_regs_struct, s9) }, |
| { "s10", offsetof(struct user_regs_struct, s10) }, |
| { "s11", offsetof(struct user_regs_struct, s11) }, |
| { "t0", offsetof(struct user_regs_struct, t0) }, |
| { "t1", offsetof(struct user_regs_struct, t1) }, |
| { "t2", offsetof(struct user_regs_struct, t2) }, |
| { "t3", offsetof(struct user_regs_struct, t3) }, |
| { "t4", offsetof(struct user_regs_struct, t4) }, |
| { "t5", offsetof(struct user_regs_struct, t5) }, |
| { "t6", offsetof(struct user_regs_struct, t6) }, |
| }; |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(reg_map); i++) { |
| if (strcmp(reg_name, reg_map[i].name) == 0) |
| return reg_map[i].pt_regs_off; |
| } |
| |
| pr_warn("usdt: unrecognized register '%s'\n", reg_name); |
| return -ENOENT; |
| } |
| |
| static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg) |
| { |
| char *reg_name = NULL; |
| int arg_sz, len, reg_off; |
| long off; |
| |
| if (sscanf(arg_str, " %d @ %ld ( %m[a-z0-9] ) %n", &arg_sz, &off, ®_name, &len) == 3) { |
| /* Memory dereference case, e.g., -8@-88(s0) */ |
| arg->arg_type = USDT_ARG_REG_DEREF; |
| arg->val_off = off; |
| reg_off = calc_pt_regs_off(reg_name); |
| free(reg_name); |
| if (reg_off < 0) |
| return reg_off; |
| arg->reg_off = reg_off; |
| } else if (sscanf(arg_str, " %d @ %ld %n", &arg_sz, &off, &len) == 2) { |
| /* Constant value case, e.g., 4@5 */ |
| arg->arg_type = USDT_ARG_CONST; |
| arg->val_off = off; |
| arg->reg_off = 0; |
| } else if (sscanf(arg_str, " %d @ %m[a-z0-9] %n", &arg_sz, ®_name, &len) == 2) { |
| /* Register read case, e.g., -8@a1 */ |
| arg->arg_type = USDT_ARG_REG; |
| arg->val_off = 0; |
| reg_off = calc_pt_regs_off(reg_name); |
| free(reg_name); |
| if (reg_off < 0) |
| return reg_off; |
| arg->reg_off = reg_off; |
| } else { |
| pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str); |
| return -EINVAL; |
| } |
| |
| arg->arg_signed = arg_sz < 0; |
| if (arg_sz < 0) |
| arg_sz = -arg_sz; |
| |
| switch (arg_sz) { |
| case 1: case 2: case 4: case 8: |
| arg->arg_bitshift = 64 - arg_sz * 8; |
| break; |
| default: |
| pr_warn("usdt: unsupported arg #%d (spec '%s') size: %d\n", |
| arg_num, arg_str, arg_sz); |
| return -EINVAL; |
| } |
| |
| return len; |
| } |
| |
| #else |
| |
| static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg) |
| { |
| pr_warn("usdt: libbpf doesn't support USDTs on current architecture\n"); |
| return -ENOTSUP; |
| } |
| |
| #endif |