| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * |
| * Copyright (C) 2007 Alan Stern |
| * Copyright (C) 2009 IBM Corporation |
| * Copyright (C) 2009 Frederic Weisbecker <fweisbec@gmail.com> |
| * |
| * Authors: Alan Stern <stern@rowland.harvard.edu> |
| * K.Prasad <prasad@linux.vnet.ibm.com> |
| * Frederic Weisbecker <fweisbec@gmail.com> |
| */ |
| |
| /* |
| * HW_breakpoint: a unified kernel/user-space hardware breakpoint facility, |
| * using the CPU's debug registers. |
| */ |
| |
| #include <linux/perf_event.h> |
| #include <linux/hw_breakpoint.h> |
| #include <linux/irqflags.h> |
| #include <linux/notifier.h> |
| #include <linux/kallsyms.h> |
| #include <linux/kprobes.h> |
| #include <linux/percpu.h> |
| #include <linux/kdebug.h> |
| #include <linux/kernel.h> |
| #include <linux/export.h> |
| #include <linux/sched.h> |
| #include <linux/smp.h> |
| |
| #include <asm/hw_breakpoint.h> |
| #include <asm/processor.h> |
| #include <asm/debugreg.h> |
| #include <asm/user.h> |
| #include <asm/desc.h> |
| #include <asm/tlbflush.h> |
| |
| /* Per cpu debug control register value */ |
| DEFINE_PER_CPU(unsigned long, cpu_dr7); |
| EXPORT_PER_CPU_SYMBOL(cpu_dr7); |
| |
| /* Per cpu debug address registers values */ |
| static DEFINE_PER_CPU(unsigned long, cpu_debugreg[HBP_NUM]); |
| |
| /* |
| * Stores the breakpoints currently in use on each breakpoint address |
| * register for each cpus |
| */ |
| static DEFINE_PER_CPU(struct perf_event *, bp_per_reg[HBP_NUM]); |
| |
| |
| static inline unsigned long |
| __encode_dr7(int drnum, unsigned int len, unsigned int type) |
| { |
| unsigned long bp_info; |
| |
| bp_info = (len | type) & 0xf; |
| bp_info <<= (DR_CONTROL_SHIFT + drnum * DR_CONTROL_SIZE); |
| bp_info |= (DR_GLOBAL_ENABLE << (drnum * DR_ENABLE_SIZE)); |
| |
| return bp_info; |
| } |
| |
| /* |
| * Encode the length, type, Exact, and Enable bits for a particular breakpoint |
| * as stored in debug register 7. |
| */ |
| unsigned long encode_dr7(int drnum, unsigned int len, unsigned int type) |
| { |
| return __encode_dr7(drnum, len, type) | DR_GLOBAL_SLOWDOWN; |
| } |
| |
| /* |
| * Decode the length and type bits for a particular breakpoint as |
| * stored in debug register 7. Return the "enabled" status. |
| */ |
| int decode_dr7(unsigned long dr7, int bpnum, unsigned *len, unsigned *type) |
| { |
| int bp_info = dr7 >> (DR_CONTROL_SHIFT + bpnum * DR_CONTROL_SIZE); |
| |
| *len = (bp_info & 0xc) | 0x40; |
| *type = (bp_info & 0x3) | 0x80; |
| |
| return (dr7 >> (bpnum * DR_ENABLE_SIZE)) & 0x3; |
| } |
| |
| /* |
| * Install a perf counter breakpoint. |
| * |
| * We seek a free debug address register and use it for this |
| * breakpoint. Eventually we enable it in the debug control register. |
| * |
| * Atomic: we hold the counter->ctx->lock and we only handle variables |
| * and registers local to this cpu. |
| */ |
| int arch_install_hw_breakpoint(struct perf_event *bp) |
| { |
| struct arch_hw_breakpoint *info = counter_arch_bp(bp); |
| unsigned long *dr7; |
| int i; |
| |
| lockdep_assert_irqs_disabled(); |
| |
| for (i = 0; i < HBP_NUM; i++) { |
| struct perf_event **slot = this_cpu_ptr(&bp_per_reg[i]); |
| |
| if (!*slot) { |
| *slot = bp; |
| break; |
| } |
| } |
| |
| if (WARN_ONCE(i == HBP_NUM, "Can't find any breakpoint slot")) |
| return -EBUSY; |
| |
| set_debugreg(info->address, i); |
| __this_cpu_write(cpu_debugreg[i], info->address); |
| |
| dr7 = this_cpu_ptr(&cpu_dr7); |
| *dr7 |= encode_dr7(i, info->len, info->type); |
| |
| /* |
| * Ensure we first write cpu_dr7 before we set the DR7 register. |
| * This ensures an NMI never see cpu_dr7 0 when DR7 is not. |
| */ |
| barrier(); |
| |
| set_debugreg(*dr7, 7); |
| if (info->mask) |
| set_dr_addr_mask(info->mask, i); |
| |
| return 0; |
| } |
| |
| /* |
| * Uninstall the breakpoint contained in the given counter. |
| * |
| * First we search the debug address register it uses and then we disable |
| * it. |
| * |
| * Atomic: we hold the counter->ctx->lock and we only handle variables |
| * and registers local to this cpu. |
| */ |
| void arch_uninstall_hw_breakpoint(struct perf_event *bp) |
| { |
| struct arch_hw_breakpoint *info = counter_arch_bp(bp); |
| unsigned long dr7; |
| int i; |
| |
| lockdep_assert_irqs_disabled(); |
| |
| for (i = 0; i < HBP_NUM; i++) { |
| struct perf_event **slot = this_cpu_ptr(&bp_per_reg[i]); |
| |
| if (*slot == bp) { |
| *slot = NULL; |
| break; |
| } |
| } |
| |
| if (WARN_ONCE(i == HBP_NUM, "Can't find any breakpoint slot")) |
| return; |
| |
| dr7 = this_cpu_read(cpu_dr7); |
| dr7 &= ~__encode_dr7(i, info->len, info->type); |
| |
| set_debugreg(dr7, 7); |
| if (info->mask) |
| set_dr_addr_mask(0, i); |
| |
| /* |
| * Ensure the write to cpu_dr7 is after we've set the DR7 register. |
| * This ensures an NMI never see cpu_dr7 0 when DR7 is not. |
| */ |
| barrier(); |
| |
| this_cpu_write(cpu_dr7, dr7); |
| } |
| |
| static int arch_bp_generic_len(int x86_len) |
| { |
| switch (x86_len) { |
| case X86_BREAKPOINT_LEN_1: |
| return HW_BREAKPOINT_LEN_1; |
| case X86_BREAKPOINT_LEN_2: |
| return HW_BREAKPOINT_LEN_2; |
| case X86_BREAKPOINT_LEN_4: |
| return HW_BREAKPOINT_LEN_4; |
| #ifdef CONFIG_X86_64 |
| case X86_BREAKPOINT_LEN_8: |
| return HW_BREAKPOINT_LEN_8; |
| #endif |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| int arch_bp_generic_fields(int x86_len, int x86_type, |
| int *gen_len, int *gen_type) |
| { |
| int len; |
| |
| /* Type */ |
| switch (x86_type) { |
| case X86_BREAKPOINT_EXECUTE: |
| if (x86_len != X86_BREAKPOINT_LEN_X) |
| return -EINVAL; |
| |
| *gen_type = HW_BREAKPOINT_X; |
| *gen_len = sizeof(long); |
| return 0; |
| case X86_BREAKPOINT_WRITE: |
| *gen_type = HW_BREAKPOINT_W; |
| break; |
| case X86_BREAKPOINT_RW: |
| *gen_type = HW_BREAKPOINT_W | HW_BREAKPOINT_R; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| /* Len */ |
| len = arch_bp_generic_len(x86_len); |
| if (len < 0) |
| return -EINVAL; |
| *gen_len = len; |
| |
| return 0; |
| } |
| |
| /* |
| * Check for virtual address in kernel space. |
| */ |
| int arch_check_bp_in_kernelspace(struct arch_hw_breakpoint *hw) |
| { |
| unsigned long va; |
| int len; |
| |
| va = hw->address; |
| len = arch_bp_generic_len(hw->len); |
| WARN_ON_ONCE(len < 0); |
| |
| /* |
| * We don't need to worry about va + len - 1 overflowing: |
| * we already require that va is aligned to a multiple of len. |
| */ |
| return (va >= TASK_SIZE_MAX) || ((va + len - 1) >= TASK_SIZE_MAX); |
| } |
| |
| /* |
| * Checks whether the range [addr, end], overlaps the area [base, base + size). |
| */ |
| static inline bool within_area(unsigned long addr, unsigned long end, |
| unsigned long base, unsigned long size) |
| { |
| return end >= base && addr < (base + size); |
| } |
| |
| /* |
| * Checks whether the range from addr to end, inclusive, overlaps the fixed |
| * mapped CPU entry area range or other ranges used for CPU entry. |
| */ |
| static inline bool within_cpu_entry(unsigned long addr, unsigned long end) |
| { |
| int cpu; |
| |
| /* CPU entry erea is always used for CPU entry */ |
| if (within_area(addr, end, CPU_ENTRY_AREA_BASE, |
| CPU_ENTRY_AREA_MAP_SIZE)) |
| return true; |
| |
| /* |
| * When FSGSBASE is enabled, paranoid_entry() fetches the per-CPU |
| * GSBASE value via __per_cpu_offset or pcpu_unit_offsets. |
| */ |
| #ifdef CONFIG_SMP |
| if (within_area(addr, end, (unsigned long)__per_cpu_offset, |
| sizeof(unsigned long) * nr_cpu_ids)) |
| return true; |
| #else |
| if (within_area(addr, end, (unsigned long)&pcpu_unit_offsets, |
| sizeof(pcpu_unit_offsets))) |
| return true; |
| #endif |
| |
| for_each_possible_cpu(cpu) { |
| /* The original rw GDT is being used after load_direct_gdt() */ |
| if (within_area(addr, end, (unsigned long)get_cpu_gdt_rw(cpu), |
| GDT_SIZE)) |
| return true; |
| |
| /* |
| * cpu_tss_rw is not directly referenced by hardware, but |
| * cpu_tss_rw is also used in CPU entry code, |
| */ |
| if (within_area(addr, end, |
| (unsigned long)&per_cpu(cpu_tss_rw, cpu), |
| sizeof(struct tss_struct))) |
| return true; |
| |
| /* |
| * cpu_tlbstate.user_pcid_flush_mask is used for CPU entry. |
| * If a data breakpoint on it, it will cause an unwanted #DB. |
| * Protect the full cpu_tlbstate structure to be sure. |
| */ |
| if (within_area(addr, end, |
| (unsigned long)&per_cpu(cpu_tlbstate, cpu), |
| sizeof(struct tlb_state))) |
| return true; |
| |
| /* |
| * When in guest (X86_FEATURE_HYPERVISOR), local_db_save() |
| * will read per-cpu cpu_dr7 before clear dr7 register. |
| */ |
| if (within_area(addr, end, (unsigned long)&per_cpu(cpu_dr7, cpu), |
| sizeof(cpu_dr7))) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static int arch_build_bp_info(struct perf_event *bp, |
| const struct perf_event_attr *attr, |
| struct arch_hw_breakpoint *hw) |
| { |
| unsigned long bp_end; |
| |
| bp_end = attr->bp_addr + attr->bp_len - 1; |
| if (bp_end < attr->bp_addr) |
| return -EINVAL; |
| |
| /* |
| * Prevent any breakpoint of any type that overlaps the CPU |
| * entry area and data. This protects the IST stacks and also |
| * reduces the chance that we ever find out what happens if |
| * there's a data breakpoint on the GDT, IDT, or TSS. |
| */ |
| if (within_cpu_entry(attr->bp_addr, bp_end)) |
| return -EINVAL; |
| |
| hw->address = attr->bp_addr; |
| hw->mask = 0; |
| |
| /* Type */ |
| switch (attr->bp_type) { |
| case HW_BREAKPOINT_W: |
| hw->type = X86_BREAKPOINT_WRITE; |
| break; |
| case HW_BREAKPOINT_W | HW_BREAKPOINT_R: |
| hw->type = X86_BREAKPOINT_RW; |
| break; |
| case HW_BREAKPOINT_X: |
| /* |
| * We don't allow kernel breakpoints in places that are not |
| * acceptable for kprobes. On non-kprobes kernels, we don't |
| * allow kernel breakpoints at all. |
| */ |
| if (attr->bp_addr >= TASK_SIZE_MAX) { |
| if (within_kprobe_blacklist(attr->bp_addr)) |
| return -EINVAL; |
| } |
| |
| hw->type = X86_BREAKPOINT_EXECUTE; |
| /* |
| * x86 inst breakpoints need to have a specific undefined len. |
| * But we still need to check userspace is not trying to setup |
| * an unsupported length, to get a range breakpoint for example. |
| */ |
| if (attr->bp_len == sizeof(long)) { |
| hw->len = X86_BREAKPOINT_LEN_X; |
| return 0; |
| } |
| fallthrough; |
| default: |
| return -EINVAL; |
| } |
| |
| /* Len */ |
| switch (attr->bp_len) { |
| case HW_BREAKPOINT_LEN_1: |
| hw->len = X86_BREAKPOINT_LEN_1; |
| break; |
| case HW_BREAKPOINT_LEN_2: |
| hw->len = X86_BREAKPOINT_LEN_2; |
| break; |
| case HW_BREAKPOINT_LEN_4: |
| hw->len = X86_BREAKPOINT_LEN_4; |
| break; |
| #ifdef CONFIG_X86_64 |
| case HW_BREAKPOINT_LEN_8: |
| hw->len = X86_BREAKPOINT_LEN_8; |
| break; |
| #endif |
| default: |
| /* AMD range breakpoint */ |
| if (!is_power_of_2(attr->bp_len)) |
| return -EINVAL; |
| if (attr->bp_addr & (attr->bp_len - 1)) |
| return -EINVAL; |
| |
| if (!boot_cpu_has(X86_FEATURE_BPEXT)) |
| return -EOPNOTSUPP; |
| |
| /* |
| * It's impossible to use a range breakpoint to fake out |
| * user vs kernel detection because bp_len - 1 can't |
| * have the high bit set. If we ever allow range instruction |
| * breakpoints, then we'll have to check for kprobe-blacklisted |
| * addresses anywhere in the range. |
| */ |
| hw->mask = attr->bp_len - 1; |
| hw->len = X86_BREAKPOINT_LEN_1; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Validate the arch-specific HW Breakpoint register settings |
| */ |
| int hw_breakpoint_arch_parse(struct perf_event *bp, |
| const struct perf_event_attr *attr, |
| struct arch_hw_breakpoint *hw) |
| { |
| unsigned int align; |
| int ret; |
| |
| |
| ret = arch_build_bp_info(bp, attr, hw); |
| if (ret) |
| return ret; |
| |
| switch (hw->len) { |
| case X86_BREAKPOINT_LEN_1: |
| align = 0; |
| if (hw->mask) |
| align = hw->mask; |
| break; |
| case X86_BREAKPOINT_LEN_2: |
| align = 1; |
| break; |
| case X86_BREAKPOINT_LEN_4: |
| align = 3; |
| break; |
| #ifdef CONFIG_X86_64 |
| case X86_BREAKPOINT_LEN_8: |
| align = 7; |
| break; |
| #endif |
| default: |
| WARN_ON_ONCE(1); |
| return -EINVAL; |
| } |
| |
| /* |
| * Check that the low-order bits of the address are appropriate |
| * for the alignment implied by len. |
| */ |
| if (hw->address & align) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| /* |
| * Release the user breakpoints used by ptrace |
| */ |
| void flush_ptrace_hw_breakpoint(struct task_struct *tsk) |
| { |
| int i; |
| struct thread_struct *t = &tsk->thread; |
| |
| for (i = 0; i < HBP_NUM; i++) { |
| unregister_hw_breakpoint(t->ptrace_bps[i]); |
| t->ptrace_bps[i] = NULL; |
| } |
| |
| t->virtual_dr6 = 0; |
| t->ptrace_dr7 = 0; |
| } |
| |
| void hw_breakpoint_restore(void) |
| { |
| set_debugreg(__this_cpu_read(cpu_debugreg[0]), 0); |
| set_debugreg(__this_cpu_read(cpu_debugreg[1]), 1); |
| set_debugreg(__this_cpu_read(cpu_debugreg[2]), 2); |
| set_debugreg(__this_cpu_read(cpu_debugreg[3]), 3); |
| set_debugreg(DR6_RESERVED, 6); |
| set_debugreg(__this_cpu_read(cpu_dr7), 7); |
| } |
| EXPORT_SYMBOL_GPL(hw_breakpoint_restore); |
| |
| /* |
| * Handle debug exception notifications. |
| * |
| * Return value is either NOTIFY_STOP or NOTIFY_DONE as explained below. |
| * |
| * NOTIFY_DONE returned if one of the following conditions is true. |
| * i) When the causative address is from user-space and the exception |
| * is a valid one, i.e. not triggered as a result of lazy debug register |
| * switching |
| * ii) When there are more bits than trap<n> set in DR6 register (such |
| * as BD, BS or BT) indicating that more than one debug condition is |
| * met and requires some more action in do_debug(). |
| * |
| * NOTIFY_STOP returned for all other cases |
| * |
| */ |
| static int hw_breakpoint_handler(struct die_args *args) |
| { |
| int i, rc = NOTIFY_STOP; |
| struct perf_event *bp; |
| unsigned long *dr6_p; |
| unsigned long dr6; |
| bool bpx; |
| |
| /* The DR6 value is pointed by args->err */ |
| dr6_p = (unsigned long *)ERR_PTR(args->err); |
| dr6 = *dr6_p; |
| |
| /* Do an early return if no trap bits are set in DR6 */ |
| if ((dr6 & DR_TRAP_BITS) == 0) |
| return NOTIFY_DONE; |
| |
| /* Handle all the breakpoints that were triggered */ |
| for (i = 0; i < HBP_NUM; ++i) { |
| if (likely(!(dr6 & (DR_TRAP0 << i)))) |
| continue; |
| |
| bp = this_cpu_read(bp_per_reg[i]); |
| if (!bp) |
| continue; |
| |
| bpx = bp->hw.info.type == X86_BREAKPOINT_EXECUTE; |
| |
| /* |
| * TF and data breakpoints are traps and can be merged, however |
| * instruction breakpoints are faults and will be raised |
| * separately. |
| * |
| * However DR6 can indicate both TF and instruction |
| * breakpoints. In that case take TF as that has precedence and |
| * delay the instruction breakpoint for the next exception. |
| */ |
| if (bpx && (dr6 & DR_STEP)) |
| continue; |
| |
| /* |
| * Reset the 'i'th TRAP bit in dr6 to denote completion of |
| * exception handling |
| */ |
| (*dr6_p) &= ~(DR_TRAP0 << i); |
| |
| perf_bp_event(bp, args->regs); |
| |
| /* |
| * Set up resume flag to avoid breakpoint recursion when |
| * returning back to origin. |
| */ |
| if (bpx) |
| args->regs->flags |= X86_EFLAGS_RF; |
| } |
| |
| /* |
| * Further processing in do_debug() is needed for a) user-space |
| * breakpoints (to generate signals) and b) when the system has |
| * taken exception due to multiple causes |
| */ |
| if ((current->thread.virtual_dr6 & DR_TRAP_BITS) || |
| (dr6 & (~DR_TRAP_BITS))) |
| rc = NOTIFY_DONE; |
| |
| return rc; |
| } |
| |
| /* |
| * Handle debug exception notifications. |
| */ |
| int hw_breakpoint_exceptions_notify( |
| struct notifier_block *unused, unsigned long val, void *data) |
| { |
| if (val != DIE_DEBUG) |
| return NOTIFY_DONE; |
| |
| return hw_breakpoint_handler(data); |
| } |
| |
| void hw_breakpoint_pmu_read(struct perf_event *bp) |
| { |
| /* TODO */ |
| } |