| /* |
| * arch/arm/kernel/kprobes-test.c |
| * |
| * Copyright (C) 2011 Jon Medhurst <tixy@yxit.co.uk>. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| |
| /* |
| * This file contains test code for ARM kprobes. |
| * |
| * The top level function run_all_tests() executes tests for all of the |
| * supported instruction sets: ARM, 16-bit Thumb, and 32-bit Thumb. These tests |
| * fall into two categories; run_api_tests() checks basic functionality of the |
| * kprobes API, and run_test_cases() is a comprehensive test for kprobes |
| * instruction decoding and simulation. |
| * |
| * run_test_cases() first checks the kprobes decoding table for self consistency |
| * (using table_test()) then executes a series of test cases for each of the CPU |
| * instruction forms. coverage_start() and coverage_end() are used to verify |
| * that these test cases cover all of the possible combinations of instructions |
| * described by the kprobes decoding tables. |
| * |
| * The individual test cases are in kprobes-test-arm.c and kprobes-test-thumb.c |
| * which use the macros defined in kprobes-test.h. The rest of this |
| * documentation will describe the operation of the framework used by these |
| * test cases. |
| */ |
| |
| /* |
| * TESTING METHODOLOGY |
| * ------------------- |
| * |
| * The methodology used to test an ARM instruction 'test_insn' is to use |
| * inline assembler like: |
| * |
| * test_before: nop |
| * test_case: test_insn |
| * test_after: nop |
| * |
| * When the test case is run a kprobe is placed of each nop. The |
| * post-handler of the test_before probe is used to modify the saved CPU |
| * register context to that which we require for the test case. The |
| * pre-handler of the of the test_after probe saves a copy of the CPU |
| * register context. In this way we can execute test_insn with a specific |
| * register context and see the results afterwards. |
| * |
| * To actually test the kprobes instruction emulation we perform the above |
| * step a second time but with an additional kprobe on the test_case |
| * instruction itself. If the emulation is accurate then the results seen |
| * by the test_after probe will be identical to the first run which didn't |
| * have a probe on test_case. |
| * |
| * Each test case is run several times with a variety of variations in the |
| * flags value of stored in CPSR, and for Thumb code, different ITState. |
| * |
| * For instructions which can modify PC, a second test_after probe is used |
| * like this: |
| * |
| * test_before: nop |
| * test_case: test_insn |
| * test_after: nop |
| * b test_done |
| * test_after2: nop |
| * test_done: |
| * |
| * The test case is constructed such that test_insn branches to |
| * test_after2, or, if testing a conditional instruction, it may just |
| * continue to test_after. The probes inserted at both locations let us |
| * determine which happened. A similar approach is used for testing |
| * backwards branches... |
| * |
| * b test_before |
| * b test_done @ helps to cope with off by 1 branches |
| * test_after2: nop |
| * b test_done |
| * test_before: nop |
| * test_case: test_insn |
| * test_after: nop |
| * test_done: |
| * |
| * The macros used to generate the assembler instructions describe above |
| * are TEST_INSTRUCTION, TEST_BRANCH_F (branch forwards) and TEST_BRANCH_B |
| * (branch backwards). In these, the local variables numbered 1, 50, 2 and |
| * 99 represent: test_before, test_case, test_after2 and test_done. |
| * |
| * FRAMEWORK |
| * --------- |
| * |
| * Each test case is wrapped between the pair of macros TESTCASE_START and |
| * TESTCASE_END. As well as performing the inline assembler boilerplate, |
| * these call out to the kprobes_test_case_start() and |
| * kprobes_test_case_end() functions which drive the execution of the test |
| * case. The specific arguments to use for each test case are stored as |
| * inline data constructed using the various TEST_ARG_* macros. Putting |
| * this all together, a simple test case may look like: |
| * |
| * TESTCASE_START("Testing mov r0, r7") |
| * TEST_ARG_REG(7, 0x12345678) // Set r7=0x12345678 |
| * TEST_ARG_END("") |
| * TEST_INSTRUCTION("mov r0, r7") |
| * TESTCASE_END |
| * |
| * Note, in practice the single convenience macro TEST_R would be used for this |
| * instead. |
| * |
| * The above would expand to assembler looking something like: |
| * |
| * @ TESTCASE_START |
| * bl __kprobes_test_case_start |
| * .pushsection .rodata |
| * "10: |
| * .ascii "mov r0, r7" @ text title for test case |
| * .byte 0 |
| * .popsection |
| * @ start of inline data... |
| * .word 10b @ pointer to title in .rodata section |
| * |
| * @ TEST_ARG_REG |
| * .byte ARG_TYPE_REG |
| * .byte 7 |
| * .short 0 |
| * .word 0x1234567 |
| * |
| * @ TEST_ARG_END |
| * .byte ARG_TYPE_END |
| * .byte TEST_ISA @ flags, including ISA being tested |
| * .short 50f-0f @ offset of 'test_before' |
| * .short 2f-0f @ offset of 'test_after2' (if relevent) |
| * .short 99f-0f @ offset of 'test_done' |
| * @ start of test case code... |
| * 0: |
| * .code TEST_ISA @ switch to ISA being tested |
| * |
| * @ TEST_INSTRUCTION |
| * 50: nop @ location for 'test_before' probe |
| * 1: mov r0, r7 @ the test case instruction 'test_insn' |
| * nop @ location for 'test_after' probe |
| * |
| * // TESTCASE_END |
| * 2: |
| * 99: bl __kprobes_test_case_end_##TEST_ISA |
| * .code NONMAL_ISA |
| * |
| * When the above is execute the following happens... |
| * |
| * __kprobes_test_case_start() is an assembler wrapper which sets up space |
| * for a stack buffer and calls the C function kprobes_test_case_start(). |
| * This C function will do some initial processing of the inline data and |
| * setup some global state. It then inserts the test_before and test_after |
| * kprobes and returns a value which causes the assembler wrapper to jump |
| * to the start of the test case code, (local label '0'). |
| * |
| * When the test case code executes, the test_before probe will be hit and |
| * test_before_post_handler will call setup_test_context(). This fills the |
| * stack buffer and CPU registers with a test pattern and then processes |
| * the test case arguments. In our example there is one TEST_ARG_REG which |
| * indicates that R7 should be loaded with the value 0x12345678. |
| * |
| * When the test_before probe ends, the test case continues and executes |
| * the "mov r0, r7" instruction. It then hits the test_after probe and the |
| * pre-handler for this (test_after_pre_handler) will save a copy of the |
| * CPU register context. This should now have R0 holding the same value as |
| * R7. |
| * |
| * Finally we get to the call to __kprobes_test_case_end_{32,16}. This is |
| * an assembler wrapper which switches back to the ISA used by the test |
| * code and calls the C function kprobes_test_case_end(). |
| * |
| * For each run through the test case, test_case_run_count is incremented |
| * by one. For even runs, kprobes_test_case_end() saves a copy of the |
| * register and stack buffer contents from the test case just run. It then |
| * inserts a kprobe on the test case instruction 'test_insn' and returns a |
| * value to cause the test case code to be re-run. |
| * |
| * For odd numbered runs, kprobes_test_case_end() compares the register and |
| * stack buffer contents to those that were saved on the previous even |
| * numbered run (the one without the kprobe on test_insn). These should be |
| * the same if the kprobe instruction simulation routine is correct. |
| * |
| * The pair of test case runs is repeated with different combinations of |
| * flag values in CPSR and, for Thumb, different ITState. This is |
| * controlled by test_context_cpsr(). |
| * |
| * BUILDING TEST CASES |
| * ------------------- |
| * |
| * |
| * As an aid to building test cases, the stack buffer is initialised with |
| * some special values: |
| * |
| * [SP+13*4] Contains SP+120. This can be used to test instructions |
| * which load a value into SP. |
| * |
| * [SP+15*4] When testing branching instructions using TEST_BRANCH_{F,B}, |
| * this holds the target address of the branch, 'test_after2'. |
| * This can be used to test instructions which load a PC value |
| * from memory. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/slab.h> |
| #include <linux/sched/clock.h> |
| #include <linux/kprobes.h> |
| #include <linux/errno.h> |
| #include <linux/stddef.h> |
| #include <linux/bug.h> |
| #include <asm/opcodes.h> |
| |
| #include "core.h" |
| #include "test-core.h" |
| #include "../decode-arm.h" |
| #include "../decode-thumb.h" |
| |
| |
| #define BENCHMARKING 1 |
| |
| |
| /* |
| * Test basic API |
| */ |
| |
| static bool test_regs_ok; |
| static int test_func_instance; |
| static int pre_handler_called; |
| static int post_handler_called; |
| static int jprobe_func_called; |
| static int kretprobe_handler_called; |
| static int tests_failed; |
| |
| #define FUNC_ARG1 0x12345678 |
| #define FUNC_ARG2 0xabcdef |
| |
| |
| #ifndef CONFIG_THUMB2_KERNEL |
| |
| #define RET(reg) "mov pc, "#reg |
| |
| long arm_func(long r0, long r1); |
| |
| static void __used __naked __arm_kprobes_test_func(void) |
| { |
| __asm__ __volatile__ ( |
| ".arm \n\t" |
| ".type arm_func, %%function \n\t" |
| "arm_func: \n\t" |
| "adds r0, r0, r1 \n\t" |
| "mov pc, lr \n\t" |
| ".code "NORMAL_ISA /* Back to Thumb if necessary */ |
| : : : "r0", "r1", "cc" |
| ); |
| } |
| |
| #else /* CONFIG_THUMB2_KERNEL */ |
| |
| #define RET(reg) "bx "#reg |
| |
| long thumb16_func(long r0, long r1); |
| long thumb32even_func(long r0, long r1); |
| long thumb32odd_func(long r0, long r1); |
| |
| static void __used __naked __thumb_kprobes_test_funcs(void) |
| { |
| __asm__ __volatile__ ( |
| ".type thumb16_func, %%function \n\t" |
| "thumb16_func: \n\t" |
| "adds.n r0, r0, r1 \n\t" |
| "bx lr \n\t" |
| |
| ".align \n\t" |
| ".type thumb32even_func, %%function \n\t" |
| "thumb32even_func: \n\t" |
| "adds.w r0, r0, r1 \n\t" |
| "bx lr \n\t" |
| |
| ".align \n\t" |
| "nop.n \n\t" |
| ".type thumb32odd_func, %%function \n\t" |
| "thumb32odd_func: \n\t" |
| "adds.w r0, r0, r1 \n\t" |
| "bx lr \n\t" |
| |
| : : : "r0", "r1", "cc" |
| ); |
| } |
| |
| #endif /* CONFIG_THUMB2_KERNEL */ |
| |
| |
| static int call_test_func(long (*func)(long, long), bool check_test_regs) |
| { |
| long ret; |
| |
| ++test_func_instance; |
| test_regs_ok = false; |
| |
| ret = (*func)(FUNC_ARG1, FUNC_ARG2); |
| if (ret != FUNC_ARG1 + FUNC_ARG2) { |
| pr_err("FAIL: call_test_func: func returned %lx\n", ret); |
| return false; |
| } |
| |
| if (check_test_regs && !test_regs_ok) { |
| pr_err("FAIL: test regs not OK\n"); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static int __kprobes pre_handler(struct kprobe *p, struct pt_regs *regs) |
| { |
| pre_handler_called = test_func_instance; |
| if (regs->ARM_r0 == FUNC_ARG1 && regs->ARM_r1 == FUNC_ARG2) |
| test_regs_ok = true; |
| return 0; |
| } |
| |
| static void __kprobes post_handler(struct kprobe *p, struct pt_regs *regs, |
| unsigned long flags) |
| { |
| post_handler_called = test_func_instance; |
| if (regs->ARM_r0 != FUNC_ARG1 + FUNC_ARG2 || regs->ARM_r1 != FUNC_ARG2) |
| test_regs_ok = false; |
| } |
| |
| static struct kprobe the_kprobe = { |
| .addr = 0, |
| .pre_handler = pre_handler, |
| .post_handler = post_handler |
| }; |
| |
| static int test_kprobe(long (*func)(long, long)) |
| { |
| int ret; |
| |
| the_kprobe.addr = (kprobe_opcode_t *)func; |
| ret = register_kprobe(&the_kprobe); |
| if (ret < 0) { |
| pr_err("FAIL: register_kprobe failed with %d\n", ret); |
| return ret; |
| } |
| |
| ret = call_test_func(func, true); |
| |
| unregister_kprobe(&the_kprobe); |
| the_kprobe.flags = 0; /* Clear disable flag to allow reuse */ |
| |
| if (!ret) |
| return -EINVAL; |
| if (pre_handler_called != test_func_instance) { |
| pr_err("FAIL: kprobe pre_handler not called\n"); |
| return -EINVAL; |
| } |
| if (post_handler_called != test_func_instance) { |
| pr_err("FAIL: kprobe post_handler not called\n"); |
| return -EINVAL; |
| } |
| if (!call_test_func(func, false)) |
| return -EINVAL; |
| if (pre_handler_called == test_func_instance || |
| post_handler_called == test_func_instance) { |
| pr_err("FAIL: probe called after unregistering\n"); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static void __kprobes jprobe_func(long r0, long r1) |
| { |
| jprobe_func_called = test_func_instance; |
| if (r0 == FUNC_ARG1 && r1 == FUNC_ARG2) |
| test_regs_ok = true; |
| jprobe_return(); |
| } |
| |
| static struct jprobe the_jprobe = { |
| .entry = jprobe_func, |
| }; |
| |
| static int test_jprobe(long (*func)(long, long)) |
| { |
| int ret; |
| |
| the_jprobe.kp.addr = (kprobe_opcode_t *)func; |
| ret = register_jprobe(&the_jprobe); |
| if (ret < 0) { |
| pr_err("FAIL: register_jprobe failed with %d\n", ret); |
| return ret; |
| } |
| |
| ret = call_test_func(func, true); |
| |
| unregister_jprobe(&the_jprobe); |
| the_jprobe.kp.flags = 0; /* Clear disable flag to allow reuse */ |
| |
| if (!ret) |
| return -EINVAL; |
| if (jprobe_func_called != test_func_instance) { |
| pr_err("FAIL: jprobe handler function not called\n"); |
| return -EINVAL; |
| } |
| if (!call_test_func(func, false)) |
| return -EINVAL; |
| if (jprobe_func_called == test_func_instance) { |
| pr_err("FAIL: probe called after unregistering\n"); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int __kprobes |
| kretprobe_handler(struct kretprobe_instance *ri, struct pt_regs *regs) |
| { |
| kretprobe_handler_called = test_func_instance; |
| if (regs_return_value(regs) == FUNC_ARG1 + FUNC_ARG2) |
| test_regs_ok = true; |
| return 0; |
| } |
| |
| static struct kretprobe the_kretprobe = { |
| .handler = kretprobe_handler, |
| }; |
| |
| static int test_kretprobe(long (*func)(long, long)) |
| { |
| int ret; |
| |
| the_kretprobe.kp.addr = (kprobe_opcode_t *)func; |
| ret = register_kretprobe(&the_kretprobe); |
| if (ret < 0) { |
| pr_err("FAIL: register_kretprobe failed with %d\n", ret); |
| return ret; |
| } |
| |
| ret = call_test_func(func, true); |
| |
| unregister_kretprobe(&the_kretprobe); |
| the_kretprobe.kp.flags = 0; /* Clear disable flag to allow reuse */ |
| |
| if (!ret) |
| return -EINVAL; |
| if (kretprobe_handler_called != test_func_instance) { |
| pr_err("FAIL: kretprobe handler not called\n"); |
| return -EINVAL; |
| } |
| if (!call_test_func(func, false)) |
| return -EINVAL; |
| if (jprobe_func_called == test_func_instance) { |
| pr_err("FAIL: kretprobe called after unregistering\n"); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int run_api_tests(long (*func)(long, long)) |
| { |
| int ret; |
| |
| pr_info(" kprobe\n"); |
| ret = test_kprobe(func); |
| if (ret < 0) |
| return ret; |
| |
| pr_info(" jprobe\n"); |
| ret = test_jprobe(func); |
| #if defined(CONFIG_THUMB2_KERNEL) && !defined(MODULE) |
| if (ret == -EINVAL) { |
| pr_err("FAIL: Known longtime bug with jprobe on Thumb kernels\n"); |
| tests_failed = ret; |
| ret = 0; |
| } |
| #endif |
| if (ret < 0) |
| return ret; |
| |
| pr_info(" kretprobe\n"); |
| ret = test_kretprobe(func); |
| if (ret < 0) |
| return ret; |
| |
| return 0; |
| } |
| |
| |
| /* |
| * Benchmarking |
| */ |
| |
| #if BENCHMARKING |
| |
| static void __naked benchmark_nop(void) |
| { |
| __asm__ __volatile__ ( |
| "nop \n\t" |
| RET(lr)" \n\t" |
| ); |
| } |
| |
| #ifdef CONFIG_THUMB2_KERNEL |
| #define wide ".w" |
| #else |
| #define wide |
| #endif |
| |
| static void __naked benchmark_pushpop1(void) |
| { |
| __asm__ __volatile__ ( |
| "stmdb"wide" sp!, {r3-r11,lr} \n\t" |
| "ldmia"wide" sp!, {r3-r11,pc}" |
| ); |
| } |
| |
| static void __naked benchmark_pushpop2(void) |
| { |
| __asm__ __volatile__ ( |
| "stmdb"wide" sp!, {r0-r8,lr} \n\t" |
| "ldmia"wide" sp!, {r0-r8,pc}" |
| ); |
| } |
| |
| static void __naked benchmark_pushpop3(void) |
| { |
| __asm__ __volatile__ ( |
| "stmdb"wide" sp!, {r4,lr} \n\t" |
| "ldmia"wide" sp!, {r4,pc}" |
| ); |
| } |
| |
| static void __naked benchmark_pushpop4(void) |
| { |
| __asm__ __volatile__ ( |
| "stmdb"wide" sp!, {r0,lr} \n\t" |
| "ldmia"wide" sp!, {r0,pc}" |
| ); |
| } |
| |
| |
| #ifdef CONFIG_THUMB2_KERNEL |
| |
| static void __naked benchmark_pushpop_thumb(void) |
| { |
| __asm__ __volatile__ ( |
| "push.n {r0-r7,lr} \n\t" |
| "pop.n {r0-r7,pc}" |
| ); |
| } |
| |
| #endif |
| |
| static int __kprobes |
| benchmark_pre_handler(struct kprobe *p, struct pt_regs *regs) |
| { |
| return 0; |
| } |
| |
| static int benchmark(void(*fn)(void)) |
| { |
| unsigned n, i, t, t0; |
| |
| for (n = 1000; ; n *= 2) { |
| t0 = sched_clock(); |
| for (i = n; i > 0; --i) |
| fn(); |
| t = sched_clock() - t0; |
| if (t >= 250000000) |
| break; /* Stop once we took more than 0.25 seconds */ |
| } |
| return t / n; /* Time for one iteration in nanoseconds */ |
| }; |
| |
| static int kprobe_benchmark(void(*fn)(void), unsigned offset) |
| { |
| struct kprobe k = { |
| .addr = (kprobe_opcode_t *)((uintptr_t)fn + offset), |
| .pre_handler = benchmark_pre_handler, |
| }; |
| |
| int ret = register_kprobe(&k); |
| if (ret < 0) { |
| pr_err("FAIL: register_kprobe failed with %d\n", ret); |
| return ret; |
| } |
| |
| ret = benchmark(fn); |
| |
| unregister_kprobe(&k); |
| return ret; |
| }; |
| |
| struct benchmarks { |
| void (*fn)(void); |
| unsigned offset; |
| const char *title; |
| }; |
| |
| static int run_benchmarks(void) |
| { |
| int ret; |
| struct benchmarks list[] = { |
| {&benchmark_nop, 0, "nop"}, |
| /* |
| * benchmark_pushpop{1,3} will have the optimised |
| * instruction emulation, whilst benchmark_pushpop{2,4} will |
| * be the equivalent unoptimised instructions. |
| */ |
| {&benchmark_pushpop1, 0, "stmdb sp!, {r3-r11,lr}"}, |
| {&benchmark_pushpop1, 4, "ldmia sp!, {r3-r11,pc}"}, |
| {&benchmark_pushpop2, 0, "stmdb sp!, {r0-r8,lr}"}, |
| {&benchmark_pushpop2, 4, "ldmia sp!, {r0-r8,pc}"}, |
| {&benchmark_pushpop3, 0, "stmdb sp!, {r4,lr}"}, |
| {&benchmark_pushpop3, 4, "ldmia sp!, {r4,pc}"}, |
| {&benchmark_pushpop4, 0, "stmdb sp!, {r0,lr}"}, |
| {&benchmark_pushpop4, 4, "ldmia sp!, {r0,pc}"}, |
| #ifdef CONFIG_THUMB2_KERNEL |
| {&benchmark_pushpop_thumb, 0, "push.n {r0-r7,lr}"}, |
| {&benchmark_pushpop_thumb, 2, "pop.n {r0-r7,pc}"}, |
| #endif |
| {0} |
| }; |
| |
| struct benchmarks *b; |
| for (b = list; b->fn; ++b) { |
| ret = kprobe_benchmark(b->fn, b->offset); |
| if (ret < 0) |
| return ret; |
| pr_info(" %dns for kprobe %s\n", ret, b->title); |
| } |
| |
| pr_info("\n"); |
| return 0; |
| } |
| |
| #endif /* BENCHMARKING */ |
| |
| |
| /* |
| * Decoding table self-consistency tests |
| */ |
| |
| static const int decode_struct_sizes[NUM_DECODE_TYPES] = { |
| [DECODE_TYPE_TABLE] = sizeof(struct decode_table), |
| [DECODE_TYPE_CUSTOM] = sizeof(struct decode_custom), |
| [DECODE_TYPE_SIMULATE] = sizeof(struct decode_simulate), |
| [DECODE_TYPE_EMULATE] = sizeof(struct decode_emulate), |
| [DECODE_TYPE_OR] = sizeof(struct decode_or), |
| [DECODE_TYPE_REJECT] = sizeof(struct decode_reject) |
| }; |
| |
| static int table_iter(const union decode_item *table, |
| int (*fn)(const struct decode_header *, void *), |
| void *args) |
| { |
| const struct decode_header *h = (struct decode_header *)table; |
| int result; |
| |
| for (;;) { |
| enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK; |
| |
| if (type == DECODE_TYPE_END) |
| return 0; |
| |
| result = fn(h, args); |
| if (result) |
| return result; |
| |
| h = (struct decode_header *) |
| ((uintptr_t)h + decode_struct_sizes[type]); |
| |
| } |
| } |
| |
| static int table_test_fail(const struct decode_header *h, const char* message) |
| { |
| |
| pr_err("FAIL: kprobes test failure \"%s\" (mask %08x, value %08x)\n", |
| message, h->mask.bits, h->value.bits); |
| return -EINVAL; |
| } |
| |
| struct table_test_args { |
| const union decode_item *root_table; |
| u32 parent_mask; |
| u32 parent_value; |
| }; |
| |
| static int table_test_fn(const struct decode_header *h, void *args) |
| { |
| struct table_test_args *a = (struct table_test_args *)args; |
| enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK; |
| |
| if (h->value.bits & ~h->mask.bits) |
| return table_test_fail(h, "Match value has bits not in mask"); |
| |
| if ((h->mask.bits & a->parent_mask) != a->parent_mask) |
| return table_test_fail(h, "Mask has bits not in parent mask"); |
| |
| if ((h->value.bits ^ a->parent_value) & a->parent_mask) |
| return table_test_fail(h, "Value is inconsistent with parent"); |
| |
| if (type == DECODE_TYPE_TABLE) { |
| struct decode_table *d = (struct decode_table *)h; |
| struct table_test_args args2 = *a; |
| args2.parent_mask = h->mask.bits; |
| args2.parent_value = h->value.bits; |
| return table_iter(d->table.table, table_test_fn, &args2); |
| } |
| |
| return 0; |
| } |
| |
| static int table_test(const union decode_item *table) |
| { |
| struct table_test_args args = { |
| .root_table = table, |
| .parent_mask = 0, |
| .parent_value = 0 |
| }; |
| return table_iter(args.root_table, table_test_fn, &args); |
| } |
| |
| |
| /* |
| * Decoding table test coverage analysis |
| * |
| * coverage_start() builds a coverage_table which contains a list of |
| * coverage_entry's to match each entry in the specified kprobes instruction |
| * decoding table. |
| * |
| * When test cases are run, coverage_add() is called to process each case. |
| * This looks up the corresponding entry in the coverage_table and sets it as |
| * being matched, as well as clearing the regs flag appropriate for the test. |
| * |
| * After all test cases have been run, coverage_end() is called to check that |
| * all entries in coverage_table have been matched and that all regs flags are |
| * cleared. I.e. that all possible combinations of instructions described by |
| * the kprobes decoding tables have had a test case executed for them. |
| */ |
| |
| bool coverage_fail; |
| |
| #define MAX_COVERAGE_ENTRIES 256 |
| |
| struct coverage_entry { |
| const struct decode_header *header; |
| unsigned regs; |
| unsigned nesting; |
| char matched; |
| }; |
| |
| struct coverage_table { |
| struct coverage_entry *base; |
| unsigned num_entries; |
| unsigned nesting; |
| }; |
| |
| struct coverage_table coverage; |
| |
| #define COVERAGE_ANY_REG (1<<0) |
| #define COVERAGE_SP (1<<1) |
| #define COVERAGE_PC (1<<2) |
| #define COVERAGE_PCWB (1<<3) |
| |
| static const char coverage_register_lookup[16] = { |
| [REG_TYPE_ANY] = COVERAGE_ANY_REG | COVERAGE_SP | COVERAGE_PC, |
| [REG_TYPE_SAMEAS16] = COVERAGE_ANY_REG, |
| [REG_TYPE_SP] = COVERAGE_SP, |
| [REG_TYPE_PC] = COVERAGE_PC, |
| [REG_TYPE_NOSP] = COVERAGE_ANY_REG | COVERAGE_SP, |
| [REG_TYPE_NOSPPC] = COVERAGE_ANY_REG | COVERAGE_SP | COVERAGE_PC, |
| [REG_TYPE_NOPC] = COVERAGE_ANY_REG | COVERAGE_PC, |
| [REG_TYPE_NOPCWB] = COVERAGE_ANY_REG | COVERAGE_PC | COVERAGE_PCWB, |
| [REG_TYPE_NOPCX] = COVERAGE_ANY_REG, |
| [REG_TYPE_NOSPPCX] = COVERAGE_ANY_REG | COVERAGE_SP, |
| }; |
| |
| unsigned coverage_start_registers(const struct decode_header *h) |
| { |
| unsigned regs = 0; |
| int i; |
| for (i = 0; i < 20; i += 4) { |
| int r = (h->type_regs.bits >> (DECODE_TYPE_BITS + i)) & 0xf; |
| regs |= coverage_register_lookup[r] << i; |
| } |
| return regs; |
| } |
| |
| static int coverage_start_fn(const struct decode_header *h, void *args) |
| { |
| struct coverage_table *coverage = (struct coverage_table *)args; |
| enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK; |
| struct coverage_entry *entry = coverage->base + coverage->num_entries; |
| |
| if (coverage->num_entries == MAX_COVERAGE_ENTRIES - 1) { |
| pr_err("FAIL: Out of space for test coverage data"); |
| return -ENOMEM; |
| } |
| |
| ++coverage->num_entries; |
| |
| entry->header = h; |
| entry->regs = coverage_start_registers(h); |
| entry->nesting = coverage->nesting; |
| entry->matched = false; |
| |
| if (type == DECODE_TYPE_TABLE) { |
| struct decode_table *d = (struct decode_table *)h; |
| int ret; |
| ++coverage->nesting; |
| ret = table_iter(d->table.table, coverage_start_fn, coverage); |
| --coverage->nesting; |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int coverage_start(const union decode_item *table) |
| { |
| coverage.base = kmalloc(MAX_COVERAGE_ENTRIES * |
| sizeof(struct coverage_entry), GFP_KERNEL); |
| coverage.num_entries = 0; |
| coverage.nesting = 0; |
| return table_iter(table, coverage_start_fn, &coverage); |
| } |
| |
| static void |
| coverage_add_registers(struct coverage_entry *entry, kprobe_opcode_t insn) |
| { |
| int regs = entry->header->type_regs.bits >> DECODE_TYPE_BITS; |
| int i; |
| for (i = 0; i < 20; i += 4) { |
| enum decode_reg_type reg_type = (regs >> i) & 0xf; |
| int reg = (insn >> i) & 0xf; |
| int flag; |
| |
| if (!reg_type) |
| continue; |
| |
| if (reg == 13) |
| flag = COVERAGE_SP; |
| else if (reg == 15) |
| flag = COVERAGE_PC; |
| else |
| flag = COVERAGE_ANY_REG; |
| entry->regs &= ~(flag << i); |
| |
| switch (reg_type) { |
| |
| case REG_TYPE_NONE: |
| case REG_TYPE_ANY: |
| case REG_TYPE_SAMEAS16: |
| break; |
| |
| case REG_TYPE_SP: |
| if (reg != 13) |
| return; |
| break; |
| |
| case REG_TYPE_PC: |
| if (reg != 15) |
| return; |
| break; |
| |
| case REG_TYPE_NOSP: |
| if (reg == 13) |
| return; |
| break; |
| |
| case REG_TYPE_NOSPPC: |
| case REG_TYPE_NOSPPCX: |
| if (reg == 13 || reg == 15) |
| return; |
| break; |
| |
| case REG_TYPE_NOPCWB: |
| if (!is_writeback(insn)) |
| break; |
| if (reg == 15) { |
| entry->regs &= ~(COVERAGE_PCWB << i); |
| return; |
| } |
| break; |
| |
| case REG_TYPE_NOPC: |
| case REG_TYPE_NOPCX: |
| if (reg == 15) |
| return; |
| break; |
| } |
| |
| } |
| } |
| |
| static void coverage_add(kprobe_opcode_t insn) |
| { |
| struct coverage_entry *entry = coverage.base; |
| struct coverage_entry *end = coverage.base + coverage.num_entries; |
| bool matched = false; |
| unsigned nesting = 0; |
| |
| for (; entry < end; ++entry) { |
| const struct decode_header *h = entry->header; |
| enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK; |
| |
| if (entry->nesting > nesting) |
| continue; /* Skip sub-table we didn't match */ |
| |
| if (entry->nesting < nesting) |
| break; /* End of sub-table we were scanning */ |
| |
| if (!matched) { |
| if ((insn & h->mask.bits) != h->value.bits) |
| continue; |
| entry->matched = true; |
| } |
| |
| switch (type) { |
| |
| case DECODE_TYPE_TABLE: |
| ++nesting; |
| break; |
| |
| case DECODE_TYPE_CUSTOM: |
| case DECODE_TYPE_SIMULATE: |
| case DECODE_TYPE_EMULATE: |
| coverage_add_registers(entry, insn); |
| return; |
| |
| case DECODE_TYPE_OR: |
| matched = true; |
| break; |
| |
| case DECODE_TYPE_REJECT: |
| default: |
| return; |
| } |
| |
| } |
| } |
| |
| static void coverage_end(void) |
| { |
| struct coverage_entry *entry = coverage.base; |
| struct coverage_entry *end = coverage.base + coverage.num_entries; |
| |
| for (; entry < end; ++entry) { |
| u32 mask = entry->header->mask.bits; |
| u32 value = entry->header->value.bits; |
| |
| if (entry->regs) { |
| pr_err("FAIL: Register test coverage missing for %08x %08x (%05x)\n", |
| mask, value, entry->regs); |
| coverage_fail = true; |
| } |
| if (!entry->matched) { |
| pr_err("FAIL: Test coverage entry missing for %08x %08x\n", |
| mask, value); |
| coverage_fail = true; |
| } |
| } |
| |
| kfree(coverage.base); |
| } |
| |
| |
| /* |
| * Framework for instruction set test cases |
| */ |
| |
| void __naked __kprobes_test_case_start(void) |
| { |
| __asm__ __volatile__ ( |
| "mov r2, sp \n\t" |
| "bic r3, r2, #7 \n\t" |
| "mov sp, r3 \n\t" |
| "stmdb sp!, {r2-r11} \n\t" |
| "sub sp, sp, #"__stringify(TEST_MEMORY_SIZE)"\n\t" |
| "bic r0, lr, #1 @ r0 = inline data \n\t" |
| "mov r1, sp \n\t" |
| "bl kprobes_test_case_start \n\t" |
| RET(r0)" \n\t" |
| ); |
| } |
| |
| #ifndef CONFIG_THUMB2_KERNEL |
| |
| void __naked __kprobes_test_case_end_32(void) |
| { |
| __asm__ __volatile__ ( |
| "mov r4, lr \n\t" |
| "bl kprobes_test_case_end \n\t" |
| "cmp r0, #0 \n\t" |
| "movne pc, r0 \n\t" |
| "mov r0, r4 \n\t" |
| "add sp, sp, #"__stringify(TEST_MEMORY_SIZE)"\n\t" |
| "ldmia sp!, {r2-r11} \n\t" |
| "mov sp, r2 \n\t" |
| "mov pc, r0 \n\t" |
| ); |
| } |
| |
| #else /* CONFIG_THUMB2_KERNEL */ |
| |
| void __naked __kprobes_test_case_end_16(void) |
| { |
| __asm__ __volatile__ ( |
| "mov r4, lr \n\t" |
| "bl kprobes_test_case_end \n\t" |
| "cmp r0, #0 \n\t" |
| "bxne r0 \n\t" |
| "mov r0, r4 \n\t" |
| "add sp, sp, #"__stringify(TEST_MEMORY_SIZE)"\n\t" |
| "ldmia sp!, {r2-r11} \n\t" |
| "mov sp, r2 \n\t" |
| "bx r0 \n\t" |
| ); |
| } |
| |
| void __naked __kprobes_test_case_end_32(void) |
| { |
| __asm__ __volatile__ ( |
| ".arm \n\t" |
| "orr lr, lr, #1 @ will return to Thumb code \n\t" |
| "ldr pc, 1f \n\t" |
| "1: \n\t" |
| ".word __kprobes_test_case_end_16 \n\t" |
| ); |
| } |
| |
| #endif |
| |
| |
| int kprobe_test_flags; |
| int kprobe_test_cc_position; |
| |
| static int test_try_count; |
| static int test_pass_count; |
| static int test_fail_count; |
| |
| static struct pt_regs initial_regs; |
| static struct pt_regs expected_regs; |
| static struct pt_regs result_regs; |
| |
| static u32 expected_memory[TEST_MEMORY_SIZE/sizeof(u32)]; |
| |
| static const char *current_title; |
| static struct test_arg *current_args; |
| static u32 *current_stack; |
| static uintptr_t current_branch_target; |
| |
| static uintptr_t current_code_start; |
| static kprobe_opcode_t current_instruction; |
| |
| |
| #define TEST_CASE_PASSED -1 |
| #define TEST_CASE_FAILED -2 |
| |
| static int test_case_run_count; |
| static bool test_case_is_thumb; |
| static int test_instance; |
| |
| static unsigned long test_check_cc(int cc, unsigned long cpsr) |
| { |
| int ret = arm_check_condition(cc << 28, cpsr); |
| |
| return (ret != ARM_OPCODE_CONDTEST_FAIL); |
| } |
| |
| static int is_last_scenario; |
| static int probe_should_run; /* 0 = no, 1 = yes, -1 = unknown */ |
| static int memory_needs_checking; |
| |
| static unsigned long test_context_cpsr(int scenario) |
| { |
| unsigned long cpsr; |
| |
| probe_should_run = 1; |
| |
| /* Default case is that we cycle through 16 combinations of flags */ |
| cpsr = (scenario & 0xf) << 28; /* N,Z,C,V flags */ |
| cpsr |= (scenario & 0xf) << 16; /* GE flags */ |
| cpsr |= (scenario & 0x1) << 27; /* Toggle Q flag */ |
| |
| if (!test_case_is_thumb) { |
| /* Testing ARM code */ |
| int cc = current_instruction >> 28; |
| |
| probe_should_run = test_check_cc(cc, cpsr) != 0; |
| if (scenario == 15) |
| is_last_scenario = true; |
| |
| } else if (kprobe_test_flags & TEST_FLAG_NO_ITBLOCK) { |
| /* Testing Thumb code without setting ITSTATE */ |
| if (kprobe_test_cc_position) { |
| int cc = (current_instruction >> kprobe_test_cc_position) & 0xf; |
| probe_should_run = test_check_cc(cc, cpsr) != 0; |
| } |
| |
| if (scenario == 15) |
| is_last_scenario = true; |
| |
| } else if (kprobe_test_flags & TEST_FLAG_FULL_ITBLOCK) { |
| /* Testing Thumb code with all combinations of ITSTATE */ |
| unsigned x = (scenario >> 4); |
| unsigned cond_base = x % 7; /* ITSTATE<7:5> */ |
| unsigned mask = x / 7 + 2; /* ITSTATE<4:0>, bits reversed */ |
| |
| if (mask > 0x1f) { |
| /* Finish by testing state from instruction 'itt al' */ |
| cond_base = 7; |
| mask = 0x4; |
| if ((scenario & 0xf) == 0xf) |
| is_last_scenario = true; |
| } |
| |
| cpsr |= cond_base << 13; /* ITSTATE<7:5> */ |
| cpsr |= (mask & 0x1) << 12; /* ITSTATE<4> */ |
| cpsr |= (mask & 0x2) << 10; /* ITSTATE<3> */ |
| cpsr |= (mask & 0x4) << 8; /* ITSTATE<2> */ |
| cpsr |= (mask & 0x8) << 23; /* ITSTATE<1> */ |
| cpsr |= (mask & 0x10) << 21; /* ITSTATE<0> */ |
| |
| probe_should_run = test_check_cc((cpsr >> 12) & 0xf, cpsr) != 0; |
| |
| } else { |
| /* Testing Thumb code with several combinations of ITSTATE */ |
| switch (scenario) { |
| case 16: /* Clear NZCV flags and 'it eq' state (false as Z=0) */ |
| cpsr = 0x00000800; |
| probe_should_run = 0; |
| break; |
| case 17: /* Set NZCV flags and 'it vc' state (false as V=1) */ |
| cpsr = 0xf0007800; |
| probe_should_run = 0; |
| break; |
| case 18: /* Clear NZCV flags and 'it ls' state (true as C=0) */ |
| cpsr = 0x00009800; |
| break; |
| case 19: /* Set NZCV flags and 'it cs' state (true as C=1) */ |
| cpsr = 0xf0002800; |
| is_last_scenario = true; |
| break; |
| } |
| } |
| |
| return cpsr; |
| } |
| |
| static void setup_test_context(struct pt_regs *regs) |
| { |
| int scenario = test_case_run_count>>1; |
| unsigned long val; |
| struct test_arg *args; |
| int i; |
| |
| is_last_scenario = false; |
| memory_needs_checking = false; |
| |
| /* Initialise test memory on stack */ |
| val = (scenario & 1) ? VALM : ~VALM; |
| for (i = 0; i < TEST_MEMORY_SIZE / sizeof(current_stack[0]); ++i) |
| current_stack[i] = val + (i << 8); |
| /* Put target of branch on stack for tests which load PC from memory */ |
| if (current_branch_target) |
| current_stack[15] = current_branch_target; |
| /* Put a value for SP on stack for tests which load SP from memory */ |
| current_stack[13] = (u32)current_stack + 120; |
| |
| /* Initialise register values to their default state */ |
| val = (scenario & 2) ? VALR : ~VALR; |
| for (i = 0; i < 13; ++i) |
| regs->uregs[i] = val ^ (i << 8); |
| regs->ARM_lr = val ^ (14 << 8); |
| regs->ARM_cpsr &= ~(APSR_MASK | PSR_IT_MASK); |
| regs->ARM_cpsr |= test_context_cpsr(scenario); |
| |
| /* Perform testcase specific register setup */ |
| args = current_args; |
| for (; args[0].type != ARG_TYPE_END; ++args) |
| switch (args[0].type) { |
| case ARG_TYPE_REG: { |
| struct test_arg_regptr *arg = |
| (struct test_arg_regptr *)args; |
| regs->uregs[arg->reg] = arg->val; |
| break; |
| } |
| case ARG_TYPE_PTR: { |
| struct test_arg_regptr *arg = |
| (struct test_arg_regptr *)args; |
| regs->uregs[arg->reg] = |
| (unsigned long)current_stack + arg->val; |
| memory_needs_checking = true; |
| /* |
| * Test memory at an address below SP is in danger of |
| * being altered by an interrupt occurring and pushing |
| * data onto the stack. Disable interrupts to stop this. |
| */ |
| if (arg->reg == 13) |
| regs->ARM_cpsr |= PSR_I_BIT; |
| break; |
| } |
| case ARG_TYPE_MEM: { |
| struct test_arg_mem *arg = (struct test_arg_mem *)args; |
| current_stack[arg->index] = arg->val; |
| break; |
| } |
| default: |
| break; |
| } |
| } |
| |
| struct test_probe { |
| struct kprobe kprobe; |
| bool registered; |
| int hit; |
| }; |
| |
| static void unregister_test_probe(struct test_probe *probe) |
| { |
| if (probe->registered) { |
| unregister_kprobe(&probe->kprobe); |
| probe->kprobe.flags = 0; /* Clear disable flag to allow reuse */ |
| } |
| probe->registered = false; |
| } |
| |
| static int register_test_probe(struct test_probe *probe) |
| { |
| int ret; |
| |
| if (probe->registered) |
| BUG(); |
| |
| ret = register_kprobe(&probe->kprobe); |
| if (ret >= 0) { |
| probe->registered = true; |
| probe->hit = -1; |
| } |
| return ret; |
| } |
| |
| static int __kprobes |
| test_before_pre_handler(struct kprobe *p, struct pt_regs *regs) |
| { |
| container_of(p, struct test_probe, kprobe)->hit = test_instance; |
| return 0; |
| } |
| |
| static void __kprobes |
| test_before_post_handler(struct kprobe *p, struct pt_regs *regs, |
| unsigned long flags) |
| { |
| setup_test_context(regs); |
| initial_regs = *regs; |
| initial_regs.ARM_cpsr &= ~PSR_IGNORE_BITS; |
| } |
| |
| static int __kprobes |
| test_case_pre_handler(struct kprobe *p, struct pt_regs *regs) |
| { |
| container_of(p, struct test_probe, kprobe)->hit = test_instance; |
| return 0; |
| } |
| |
| static int __kprobes |
| test_after_pre_handler(struct kprobe *p, struct pt_regs *regs) |
| { |
| struct test_arg *args; |
| |
| if (container_of(p, struct test_probe, kprobe)->hit == test_instance) |
| return 0; /* Already run for this test instance */ |
| |
| result_regs = *regs; |
| |
| /* Mask out results which are indeterminate */ |
| result_regs.ARM_cpsr &= ~PSR_IGNORE_BITS; |
| for (args = current_args; args[0].type != ARG_TYPE_END; ++args) |
| if (args[0].type == ARG_TYPE_REG_MASKED) { |
| struct test_arg_regptr *arg = |
| (struct test_arg_regptr *)args; |
| result_regs.uregs[arg->reg] &= arg->val; |
| } |
| |
| /* Undo any changes done to SP by the test case */ |
| regs->ARM_sp = (unsigned long)current_stack; |
| /* Enable interrupts in case setup_test_context disabled them */ |
| regs->ARM_cpsr &= ~PSR_I_BIT; |
| |
| container_of(p, struct test_probe, kprobe)->hit = test_instance; |
| return 0; |
| } |
| |
| static struct test_probe test_before_probe = { |
| .kprobe.pre_handler = test_before_pre_handler, |
| .kprobe.post_handler = test_before_post_handler, |
| }; |
| |
| static struct test_probe test_case_probe = { |
| .kprobe.pre_handler = test_case_pre_handler, |
| }; |
| |
| static struct test_probe test_after_probe = { |
| .kprobe.pre_handler = test_after_pre_handler, |
| }; |
| |
| static struct test_probe test_after2_probe = { |
| .kprobe.pre_handler = test_after_pre_handler, |
| }; |
| |
| static void test_case_cleanup(void) |
| { |
| unregister_test_probe(&test_before_probe); |
| unregister_test_probe(&test_case_probe); |
| unregister_test_probe(&test_after_probe); |
| unregister_test_probe(&test_after2_probe); |
| } |
| |
| static void print_registers(struct pt_regs *regs) |
| { |
| pr_err("r0 %08lx | r1 %08lx | r2 %08lx | r3 %08lx\n", |
| regs->ARM_r0, regs->ARM_r1, regs->ARM_r2, regs->ARM_r3); |
| pr_err("r4 %08lx | r5 %08lx | r6 %08lx | r7 %08lx\n", |
| regs->ARM_r4, regs->ARM_r5, regs->ARM_r6, regs->ARM_r7); |
| pr_err("r8 %08lx | r9 %08lx | r10 %08lx | r11 %08lx\n", |
| regs->ARM_r8, regs->ARM_r9, regs->ARM_r10, regs->ARM_fp); |
| pr_err("r12 %08lx | sp %08lx | lr %08lx | pc %08lx\n", |
| regs->ARM_ip, regs->ARM_sp, regs->ARM_lr, regs->ARM_pc); |
| pr_err("cpsr %08lx\n", regs->ARM_cpsr); |
| } |
| |
| static void print_memory(u32 *mem, size_t size) |
| { |
| int i; |
| for (i = 0; i < size / sizeof(u32); i += 4) |
| pr_err("%08x %08x %08x %08x\n", mem[i], mem[i+1], |
| mem[i+2], mem[i+3]); |
| } |
| |
| static size_t expected_memory_size(u32 *sp) |
| { |
| size_t size = sizeof(expected_memory); |
| int offset = (uintptr_t)sp - (uintptr_t)current_stack; |
| if (offset > 0) |
| size -= offset; |
| return size; |
| } |
| |
| static void test_case_failed(const char *message) |
| { |
| test_case_cleanup(); |
| |
| pr_err("FAIL: %s\n", message); |
| pr_err("FAIL: Test %s\n", current_title); |
| pr_err("FAIL: Scenario %d\n", test_case_run_count >> 1); |
| } |
| |
| static unsigned long next_instruction(unsigned long pc) |
| { |
| #ifdef CONFIG_THUMB2_KERNEL |
| if ((pc & 1) && |
| !is_wide_instruction(__mem_to_opcode_thumb16(*(u16 *)(pc - 1)))) |
| return pc + 2; |
| else |
| #endif |
| return pc + 4; |
| } |
| |
| static uintptr_t __used kprobes_test_case_start(const char **title, void *stack) |
| { |
| struct test_arg *args; |
| struct test_arg_end *end_arg; |
| unsigned long test_code; |
| |
| current_title = *title++; |
| args = (struct test_arg *)title; |
| current_args = args; |
| current_stack = stack; |
| |
| ++test_try_count; |
| |
| while (args->type != ARG_TYPE_END) |
| ++args; |
| end_arg = (struct test_arg_end *)args; |
| |
| test_code = (unsigned long)(args + 1); /* Code starts after args */ |
| |
| test_case_is_thumb = end_arg->flags & ARG_FLAG_THUMB; |
| if (test_case_is_thumb) |
| test_code |= 1; |
| |
| current_code_start = test_code; |
| |
| current_branch_target = 0; |
| if (end_arg->branch_offset != end_arg->end_offset) |
| current_branch_target = test_code + end_arg->branch_offset; |
| |
| test_code += end_arg->code_offset; |
| test_before_probe.kprobe.addr = (kprobe_opcode_t *)test_code; |
| |
| test_code = next_instruction(test_code); |
| test_case_probe.kprobe.addr = (kprobe_opcode_t *)test_code; |
| |
| if (test_case_is_thumb) { |
| u16 *p = (u16 *)(test_code & ~1); |
| current_instruction = __mem_to_opcode_thumb16(p[0]); |
| if (is_wide_instruction(current_instruction)) { |
| u16 instr2 = __mem_to_opcode_thumb16(p[1]); |
| current_instruction = __opcode_thumb32_compose(current_instruction, instr2); |
| } |
| } else { |
| current_instruction = __mem_to_opcode_arm(*(u32 *)test_code); |
| } |
| |
| if (current_title[0] == '.') |
| verbose("%s\n", current_title); |
| else |
| verbose("%s\t@ %0*x\n", current_title, |
| test_case_is_thumb ? 4 : 8, |
| current_instruction); |
| |
| test_code = next_instruction(test_code); |
| test_after_probe.kprobe.addr = (kprobe_opcode_t *)test_code; |
| |
| if (kprobe_test_flags & TEST_FLAG_NARROW_INSTR) { |
| if (!test_case_is_thumb || |
| is_wide_instruction(current_instruction)) { |
| test_case_failed("expected 16-bit instruction"); |
| goto fail; |
| } |
| } else { |
| if (test_case_is_thumb && |
| !is_wide_instruction(current_instruction)) { |
| test_case_failed("expected 32-bit instruction"); |
| goto fail; |
| } |
| } |
| |
| coverage_add(current_instruction); |
| |
| if (end_arg->flags & ARG_FLAG_UNSUPPORTED) { |
| if (register_test_probe(&test_case_probe) < 0) |
| goto pass; |
| test_case_failed("registered probe for unsupported instruction"); |
| goto fail; |
| } |
| |
| if (end_arg->flags & ARG_FLAG_SUPPORTED) { |
| if (register_test_probe(&test_case_probe) >= 0) |
| goto pass; |
| test_case_failed("couldn't register probe for supported instruction"); |
| goto fail; |
| } |
| |
| if (register_test_probe(&test_before_probe) < 0) { |
| test_case_failed("register test_before_probe failed"); |
| goto fail; |
| } |
| if (register_test_probe(&test_after_probe) < 0) { |
| test_case_failed("register test_after_probe failed"); |
| goto fail; |
| } |
| if (current_branch_target) { |
| test_after2_probe.kprobe.addr = |
| (kprobe_opcode_t *)current_branch_target; |
| if (register_test_probe(&test_after2_probe) < 0) { |
| test_case_failed("register test_after2_probe failed"); |
| goto fail; |
| } |
| } |
| |
| /* Start first run of test case */ |
| test_case_run_count = 0; |
| ++test_instance; |
| return current_code_start; |
| pass: |
| test_case_run_count = TEST_CASE_PASSED; |
| return (uintptr_t)test_after_probe.kprobe.addr; |
| fail: |
| test_case_run_count = TEST_CASE_FAILED; |
| return (uintptr_t)test_after_probe.kprobe.addr; |
| } |
| |
| static bool check_test_results(void) |
| { |
| size_t mem_size = 0; |
| u32 *mem = 0; |
| |
| if (memcmp(&expected_regs, &result_regs, sizeof(expected_regs))) { |
| test_case_failed("registers differ"); |
| goto fail; |
| } |
| |
| if (memory_needs_checking) { |
| mem = (u32 *)result_regs.ARM_sp; |
| mem_size = expected_memory_size(mem); |
| if (memcmp(expected_memory, mem, mem_size)) { |
| test_case_failed("test memory differs"); |
| goto fail; |
| } |
| } |
| |
| return true; |
| |
| fail: |
| pr_err("initial_regs:\n"); |
| print_registers(&initial_regs); |
| pr_err("expected_regs:\n"); |
| print_registers(&expected_regs); |
| pr_err("result_regs:\n"); |
| print_registers(&result_regs); |
| |
| if (mem) { |
| pr_err("current_stack=%p\n", current_stack); |
| pr_err("expected_memory:\n"); |
| print_memory(expected_memory, mem_size); |
| pr_err("result_memory:\n"); |
| print_memory(mem, mem_size); |
| } |
| |
| return false; |
| } |
| |
| static uintptr_t __used kprobes_test_case_end(void) |
| { |
| if (test_case_run_count < 0) { |
| if (test_case_run_count == TEST_CASE_PASSED) |
| /* kprobes_test_case_start did all the needed testing */ |
| goto pass; |
| else |
| /* kprobes_test_case_start failed */ |
| goto fail; |
| } |
| |
| if (test_before_probe.hit != test_instance) { |
| test_case_failed("test_before_handler not run"); |
| goto fail; |
| } |
| |
| if (test_after_probe.hit != test_instance && |
| test_after2_probe.hit != test_instance) { |
| test_case_failed("test_after_handler not run"); |
| goto fail; |
| } |
| |
| /* |
| * Even numbered test runs ran without a probe on the test case so |
| * we can gather reference results. The subsequent odd numbered run |
| * will have the probe inserted. |
| */ |
| if ((test_case_run_count & 1) == 0) { |
| /* Save results from run without probe */ |
| u32 *mem = (u32 *)result_regs.ARM_sp; |
| expected_regs = result_regs; |
| memcpy(expected_memory, mem, expected_memory_size(mem)); |
| |
| /* Insert probe onto test case instruction */ |
| if (register_test_probe(&test_case_probe) < 0) { |
| test_case_failed("register test_case_probe failed"); |
| goto fail; |
| } |
| } else { |
| /* Check probe ran as expected */ |
| if (probe_should_run == 1) { |
| if (test_case_probe.hit != test_instance) { |
| test_case_failed("test_case_handler not run"); |
| goto fail; |
| } |
| } else if (probe_should_run == 0) { |
| if (test_case_probe.hit == test_instance) { |
| test_case_failed("test_case_handler ran"); |
| goto fail; |
| } |
| } |
| |
| /* Remove probe for any subsequent reference run */ |
| unregister_test_probe(&test_case_probe); |
| |
| if (!check_test_results()) |
| goto fail; |
| |
| if (is_last_scenario) |
| goto pass; |
| } |
| |
| /* Do next test run */ |
| ++test_case_run_count; |
| ++test_instance; |
| return current_code_start; |
| fail: |
| ++test_fail_count; |
| goto end; |
| pass: |
| ++test_pass_count; |
| end: |
| test_case_cleanup(); |
| return 0; |
| } |
| |
| |
| /* |
| * Top level test functions |
| */ |
| |
| static int run_test_cases(void (*tests)(void), const union decode_item *table) |
| { |
| int ret; |
| |
| pr_info(" Check decoding tables\n"); |
| ret = table_test(table); |
| if (ret) |
| return ret; |
| |
| pr_info(" Run test cases\n"); |
| ret = coverage_start(table); |
| if (ret) |
| return ret; |
| |
| tests(); |
| |
| coverage_end(); |
| return 0; |
| } |
| |
| |
| static int __init run_all_tests(void) |
| { |
| int ret = 0; |
| |
| pr_info("Beginning kprobe tests...\n"); |
| |
| #ifndef CONFIG_THUMB2_KERNEL |
| |
| pr_info("Probe ARM code\n"); |
| ret = run_api_tests(arm_func); |
| if (ret) |
| goto out; |
| |
| pr_info("ARM instruction simulation\n"); |
| ret = run_test_cases(kprobe_arm_test_cases, probes_decode_arm_table); |
| if (ret) |
| goto out; |
| |
| #else /* CONFIG_THUMB2_KERNEL */ |
| |
| pr_info("Probe 16-bit Thumb code\n"); |
| ret = run_api_tests(thumb16_func); |
| if (ret) |
| goto out; |
| |
| pr_info("Probe 32-bit Thumb code, even halfword\n"); |
| ret = run_api_tests(thumb32even_func); |
| if (ret) |
| goto out; |
| |
| pr_info("Probe 32-bit Thumb code, odd halfword\n"); |
| ret = run_api_tests(thumb32odd_func); |
| if (ret) |
| goto out; |
| |
| pr_info("16-bit Thumb instruction simulation\n"); |
| ret = run_test_cases(kprobe_thumb16_test_cases, |
| probes_decode_thumb16_table); |
| if (ret) |
| goto out; |
| |
| pr_info("32-bit Thumb instruction simulation\n"); |
| ret = run_test_cases(kprobe_thumb32_test_cases, |
| probes_decode_thumb32_table); |
| if (ret) |
| goto out; |
| #endif |
| |
| pr_info("Total instruction simulation tests=%d, pass=%d fail=%d\n", |
| test_try_count, test_pass_count, test_fail_count); |
| if (test_fail_count) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| #if BENCHMARKING |
| pr_info("Benchmarks\n"); |
| ret = run_benchmarks(); |
| if (ret) |
| goto out; |
| #endif |
| |
| #if __LINUX_ARM_ARCH__ >= 7 |
| /* We are able to run all test cases so coverage should be complete */ |
| if (coverage_fail) { |
| pr_err("FAIL: Test coverage checks failed\n"); |
| ret = -EINVAL; |
| goto out; |
| } |
| #endif |
| |
| out: |
| if (ret == 0) |
| ret = tests_failed; |
| if (ret == 0) |
| pr_info("Finished kprobe tests OK\n"); |
| else |
| pr_err("kprobe tests failed\n"); |
| |
| return ret; |
| } |
| |
| |
| /* |
| * Module setup |
| */ |
| |
| #ifdef MODULE |
| |
| static void __exit kprobe_test_exit(void) |
| { |
| } |
| |
| module_init(run_all_tests) |
| module_exit(kprobe_test_exit) |
| MODULE_LICENSE("GPL"); |
| |
| #else /* !MODULE */ |
| |
| late_initcall(run_all_tests); |
| |
| #endif |