| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) 2016 Linaro Ltd; <ard.biesheuvel@linaro.org> |
| */ |
| |
| #include <linux/efi.h> |
| #include <linux/log2.h> |
| #include <asm/efi.h> |
| |
| #include "efistub.h" |
| |
| /* |
| * Return the number of slots covered by this entry, i.e., the number of |
| * addresses it covers that are suitably aligned and supply enough room |
| * for the allocation. |
| */ |
| static unsigned long get_entry_num_slots(efi_memory_desc_t *md, |
| unsigned long size, |
| unsigned long align_shift) |
| { |
| unsigned long align = 1UL << align_shift; |
| u64 first_slot, last_slot, region_end; |
| |
| if (md->type != EFI_CONVENTIONAL_MEMORY) |
| return 0; |
| |
| if (efi_soft_reserve_enabled() && |
| (md->attribute & EFI_MEMORY_SP)) |
| return 0; |
| |
| region_end = min(md->phys_addr + md->num_pages * EFI_PAGE_SIZE - 1, |
| (u64)EFI_ALLOC_LIMIT); |
| if (region_end < size) |
| return 0; |
| |
| first_slot = round_up(md->phys_addr, align); |
| last_slot = round_down(region_end - size + 1, align); |
| |
| if (first_slot > last_slot) |
| return 0; |
| |
| return ((unsigned long)(last_slot - first_slot) >> align_shift) + 1; |
| } |
| |
| /* |
| * The UEFI memory descriptors have a virtual address field that is only used |
| * when installing the virtual mapping using SetVirtualAddressMap(). Since it |
| * is unused here, we can reuse it to keep track of each descriptor's slot |
| * count. |
| */ |
| #define MD_NUM_SLOTS(md) ((md)->virt_addr) |
| |
| efi_status_t efi_random_alloc(unsigned long size, |
| unsigned long align, |
| unsigned long *addr, |
| unsigned long random_seed, |
| int memory_type) |
| { |
| unsigned long total_slots = 0, target_slot; |
| unsigned long total_mirrored_slots = 0; |
| struct efi_boot_memmap *map; |
| efi_status_t status; |
| int map_offset; |
| |
| status = efi_get_memory_map(&map, false); |
| if (status != EFI_SUCCESS) |
| return status; |
| |
| if (align < EFI_ALLOC_ALIGN) |
| align = EFI_ALLOC_ALIGN; |
| |
| size = round_up(size, EFI_ALLOC_ALIGN); |
| |
| /* count the suitable slots in each memory map entry */ |
| for (map_offset = 0; map_offset < map->map_size; map_offset += map->desc_size) { |
| efi_memory_desc_t *md = (void *)map->map + map_offset; |
| unsigned long slots; |
| |
| slots = get_entry_num_slots(md, size, ilog2(align)); |
| MD_NUM_SLOTS(md) = slots; |
| total_slots += slots; |
| if (md->attribute & EFI_MEMORY_MORE_RELIABLE) |
| total_mirrored_slots += slots; |
| } |
| |
| /* consider only mirrored slots for randomization if any exist */ |
| if (total_mirrored_slots > 0) |
| total_slots = total_mirrored_slots; |
| |
| /* find a random number between 0 and total_slots */ |
| target_slot = (total_slots * (u64)(random_seed & U32_MAX)) >> 32; |
| |
| /* |
| * target_slot is now a value in the range [0, total_slots), and so |
| * it corresponds with exactly one of the suitable slots we recorded |
| * when iterating over the memory map the first time around. |
| * |
| * So iterate over the memory map again, subtracting the number of |
| * slots of each entry at each iteration, until we have found the entry |
| * that covers our chosen slot. Use the residual value of target_slot |
| * to calculate the randomly chosen address, and allocate it directly |
| * using EFI_ALLOCATE_ADDRESS. |
| */ |
| for (map_offset = 0; map_offset < map->map_size; map_offset += map->desc_size) { |
| efi_memory_desc_t *md = (void *)map->map + map_offset; |
| efi_physical_addr_t target; |
| unsigned long pages; |
| |
| if (total_mirrored_slots > 0 && |
| !(md->attribute & EFI_MEMORY_MORE_RELIABLE)) |
| continue; |
| |
| if (target_slot >= MD_NUM_SLOTS(md)) { |
| target_slot -= MD_NUM_SLOTS(md); |
| continue; |
| } |
| |
| target = round_up(md->phys_addr, align) + target_slot * align; |
| pages = size / EFI_PAGE_SIZE; |
| |
| status = efi_bs_call(allocate_pages, EFI_ALLOCATE_ADDRESS, |
| memory_type, pages, &target); |
| if (status == EFI_SUCCESS) |
| *addr = target; |
| break; |
| } |
| |
| efi_bs_call(free_pool, map); |
| |
| return status; |
| } |