| // SPDX-License-Identifier: GPL-2.0 |
| /* Copyright(c) 2013 - 2018 Intel Corporation. */ |
| |
| #include <linux/prefetch.h> |
| |
| #include "iavf.h" |
| #include "iavf_trace.h" |
| #include "iavf_prototype.h" |
| |
| static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size, |
| u32 td_tag) |
| { |
| return cpu_to_le64(IAVF_TX_DESC_DTYPE_DATA | |
| ((u64)td_cmd << IAVF_TXD_QW1_CMD_SHIFT) | |
| ((u64)td_offset << IAVF_TXD_QW1_OFFSET_SHIFT) | |
| ((u64)size << IAVF_TXD_QW1_TX_BUF_SZ_SHIFT) | |
| ((u64)td_tag << IAVF_TXD_QW1_L2TAG1_SHIFT)); |
| } |
| |
| #define IAVF_TXD_CMD (IAVF_TX_DESC_CMD_EOP | IAVF_TX_DESC_CMD_RS) |
| |
| /** |
| * iavf_unmap_and_free_tx_resource - Release a Tx buffer |
| * @ring: the ring that owns the buffer |
| * @tx_buffer: the buffer to free |
| **/ |
| static void iavf_unmap_and_free_tx_resource(struct iavf_ring *ring, |
| struct iavf_tx_buffer *tx_buffer) |
| { |
| if (tx_buffer->skb) { |
| if (tx_buffer->tx_flags & IAVF_TX_FLAGS_FD_SB) |
| kfree(tx_buffer->raw_buf); |
| else |
| dev_kfree_skb_any(tx_buffer->skb); |
| if (dma_unmap_len(tx_buffer, len)) |
| dma_unmap_single(ring->dev, |
| dma_unmap_addr(tx_buffer, dma), |
| dma_unmap_len(tx_buffer, len), |
| DMA_TO_DEVICE); |
| } else if (dma_unmap_len(tx_buffer, len)) { |
| dma_unmap_page(ring->dev, |
| dma_unmap_addr(tx_buffer, dma), |
| dma_unmap_len(tx_buffer, len), |
| DMA_TO_DEVICE); |
| } |
| |
| tx_buffer->next_to_watch = NULL; |
| tx_buffer->skb = NULL; |
| dma_unmap_len_set(tx_buffer, len, 0); |
| /* tx_buffer must be completely set up in the transmit path */ |
| } |
| |
| /** |
| * iavf_clean_tx_ring - Free any empty Tx buffers |
| * @tx_ring: ring to be cleaned |
| **/ |
| void iavf_clean_tx_ring(struct iavf_ring *tx_ring) |
| { |
| unsigned long bi_size; |
| u16 i; |
| |
| /* ring already cleared, nothing to do */ |
| if (!tx_ring->tx_bi) |
| return; |
| |
| /* Free all the Tx ring sk_buffs */ |
| for (i = 0; i < tx_ring->count; i++) |
| iavf_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]); |
| |
| bi_size = sizeof(struct iavf_tx_buffer) * tx_ring->count; |
| memset(tx_ring->tx_bi, 0, bi_size); |
| |
| /* Zero out the descriptor ring */ |
| memset(tx_ring->desc, 0, tx_ring->size); |
| |
| tx_ring->next_to_use = 0; |
| tx_ring->next_to_clean = 0; |
| |
| if (!tx_ring->netdev) |
| return; |
| |
| /* cleanup Tx queue statistics */ |
| netdev_tx_reset_queue(txring_txq(tx_ring)); |
| } |
| |
| /** |
| * iavf_free_tx_resources - Free Tx resources per queue |
| * @tx_ring: Tx descriptor ring for a specific queue |
| * |
| * Free all transmit software resources |
| **/ |
| void iavf_free_tx_resources(struct iavf_ring *tx_ring) |
| { |
| iavf_clean_tx_ring(tx_ring); |
| kfree(tx_ring->tx_bi); |
| tx_ring->tx_bi = NULL; |
| |
| if (tx_ring->desc) { |
| dma_free_coherent(tx_ring->dev, tx_ring->size, |
| tx_ring->desc, tx_ring->dma); |
| tx_ring->desc = NULL; |
| } |
| } |
| |
| /** |
| * iavf_get_tx_pending - how many Tx descriptors not processed |
| * @ring: the ring of descriptors |
| * @in_sw: is tx_pending being checked in SW or HW |
| * |
| * Since there is no access to the ring head register |
| * in XL710, we need to use our local copies |
| **/ |
| u32 iavf_get_tx_pending(struct iavf_ring *ring, bool in_sw) |
| { |
| u32 head, tail; |
| |
| /* underlying hardware might not allow access and/or always return |
| * 0 for the head/tail registers so just use the cached values |
| */ |
| head = ring->next_to_clean; |
| tail = ring->next_to_use; |
| |
| if (head != tail) |
| return (head < tail) ? |
| tail - head : (tail + ring->count - head); |
| |
| return 0; |
| } |
| |
| /** |
| * iavf_detect_recover_hung - Function to detect and recover hung_queues |
| * @vsi: pointer to vsi struct with tx queues |
| * |
| * VSI has netdev and netdev has TX queues. This function is to check each of |
| * those TX queues if they are hung, trigger recovery by issuing SW interrupt. |
| **/ |
| void iavf_detect_recover_hung(struct iavf_vsi *vsi) |
| { |
| struct iavf_ring *tx_ring = NULL; |
| struct net_device *netdev; |
| unsigned int i; |
| int packets; |
| |
| if (!vsi) |
| return; |
| |
| if (test_bit(__IAVF_VSI_DOWN, vsi->state)) |
| return; |
| |
| netdev = vsi->netdev; |
| if (!netdev) |
| return; |
| |
| if (!netif_carrier_ok(netdev)) |
| return; |
| |
| for (i = 0; i < vsi->back->num_active_queues; i++) { |
| tx_ring = &vsi->back->tx_rings[i]; |
| if (tx_ring && tx_ring->desc) { |
| /* If packet counter has not changed the queue is |
| * likely stalled, so force an interrupt for this |
| * queue. |
| * |
| * prev_pkt_ctr would be negative if there was no |
| * pending work. |
| */ |
| packets = tx_ring->stats.packets & INT_MAX; |
| if (tx_ring->tx_stats.prev_pkt_ctr == packets) { |
| iavf_force_wb(vsi, tx_ring->q_vector); |
| continue; |
| } |
| |
| /* Memory barrier between read of packet count and call |
| * to iavf_get_tx_pending() |
| */ |
| smp_rmb(); |
| tx_ring->tx_stats.prev_pkt_ctr = |
| iavf_get_tx_pending(tx_ring, true) ? packets : -1; |
| } |
| } |
| } |
| |
| #define WB_STRIDE 4 |
| |
| /** |
| * iavf_clean_tx_irq - Reclaim resources after transmit completes |
| * @vsi: the VSI we care about |
| * @tx_ring: Tx ring to clean |
| * @napi_budget: Used to determine if we are in netpoll |
| * |
| * Returns true if there's any budget left (e.g. the clean is finished) |
| **/ |
| static bool iavf_clean_tx_irq(struct iavf_vsi *vsi, |
| struct iavf_ring *tx_ring, int napi_budget) |
| { |
| int i = tx_ring->next_to_clean; |
| struct iavf_tx_buffer *tx_buf; |
| struct iavf_tx_desc *tx_desc; |
| unsigned int total_bytes = 0, total_packets = 0; |
| unsigned int budget = IAVF_DEFAULT_IRQ_WORK; |
| |
| tx_buf = &tx_ring->tx_bi[i]; |
| tx_desc = IAVF_TX_DESC(tx_ring, i); |
| i -= tx_ring->count; |
| |
| do { |
| struct iavf_tx_desc *eop_desc = tx_buf->next_to_watch; |
| |
| /* if next_to_watch is not set then there is no work pending */ |
| if (!eop_desc) |
| break; |
| |
| /* prevent any other reads prior to eop_desc */ |
| smp_rmb(); |
| |
| iavf_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf); |
| /* if the descriptor isn't done, no work yet to do */ |
| if (!(eop_desc->cmd_type_offset_bsz & |
| cpu_to_le64(IAVF_TX_DESC_DTYPE_DESC_DONE))) |
| break; |
| |
| /* clear next_to_watch to prevent false hangs */ |
| tx_buf->next_to_watch = NULL; |
| |
| /* update the statistics for this packet */ |
| total_bytes += tx_buf->bytecount; |
| total_packets += tx_buf->gso_segs; |
| |
| /* free the skb */ |
| napi_consume_skb(tx_buf->skb, napi_budget); |
| |
| /* unmap skb header data */ |
| dma_unmap_single(tx_ring->dev, |
| dma_unmap_addr(tx_buf, dma), |
| dma_unmap_len(tx_buf, len), |
| DMA_TO_DEVICE); |
| |
| /* clear tx_buffer data */ |
| tx_buf->skb = NULL; |
| dma_unmap_len_set(tx_buf, len, 0); |
| |
| /* unmap remaining buffers */ |
| while (tx_desc != eop_desc) { |
| iavf_trace(clean_tx_irq_unmap, |
| tx_ring, tx_desc, tx_buf); |
| |
| tx_buf++; |
| tx_desc++; |
| i++; |
| if (unlikely(!i)) { |
| i -= tx_ring->count; |
| tx_buf = tx_ring->tx_bi; |
| tx_desc = IAVF_TX_DESC(tx_ring, 0); |
| } |
| |
| /* unmap any remaining paged data */ |
| if (dma_unmap_len(tx_buf, len)) { |
| dma_unmap_page(tx_ring->dev, |
| dma_unmap_addr(tx_buf, dma), |
| dma_unmap_len(tx_buf, len), |
| DMA_TO_DEVICE); |
| dma_unmap_len_set(tx_buf, len, 0); |
| } |
| } |
| |
| /* move us one more past the eop_desc for start of next pkt */ |
| tx_buf++; |
| tx_desc++; |
| i++; |
| if (unlikely(!i)) { |
| i -= tx_ring->count; |
| tx_buf = tx_ring->tx_bi; |
| tx_desc = IAVF_TX_DESC(tx_ring, 0); |
| } |
| |
| prefetch(tx_desc); |
| |
| /* update budget accounting */ |
| budget--; |
| } while (likely(budget)); |
| |
| i += tx_ring->count; |
| tx_ring->next_to_clean = i; |
| u64_stats_update_begin(&tx_ring->syncp); |
| tx_ring->stats.bytes += total_bytes; |
| tx_ring->stats.packets += total_packets; |
| u64_stats_update_end(&tx_ring->syncp); |
| tx_ring->q_vector->tx.total_bytes += total_bytes; |
| tx_ring->q_vector->tx.total_packets += total_packets; |
| |
| if (tx_ring->flags & IAVF_TXR_FLAGS_WB_ON_ITR) { |
| /* check to see if there are < 4 descriptors |
| * waiting to be written back, then kick the hardware to force |
| * them to be written back in case we stay in NAPI. |
| * In this mode on X722 we do not enable Interrupt. |
| */ |
| unsigned int j = iavf_get_tx_pending(tx_ring, false); |
| |
| if (budget && |
| ((j / WB_STRIDE) == 0) && (j > 0) && |
| !test_bit(__IAVF_VSI_DOWN, vsi->state) && |
| (IAVF_DESC_UNUSED(tx_ring) != tx_ring->count)) |
| tx_ring->arm_wb = true; |
| } |
| |
| /* notify netdev of completed buffers */ |
| netdev_tx_completed_queue(txring_txq(tx_ring), |
| total_packets, total_bytes); |
| |
| #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2)) |
| if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && |
| (IAVF_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) { |
| /* Make sure that anybody stopping the queue after this |
| * sees the new next_to_clean. |
| */ |
| smp_mb(); |
| if (__netif_subqueue_stopped(tx_ring->netdev, |
| tx_ring->queue_index) && |
| !test_bit(__IAVF_VSI_DOWN, vsi->state)) { |
| netif_wake_subqueue(tx_ring->netdev, |
| tx_ring->queue_index); |
| ++tx_ring->tx_stats.restart_queue; |
| } |
| } |
| |
| return !!budget; |
| } |
| |
| /** |
| * iavf_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled |
| * @vsi: the VSI we care about |
| * @q_vector: the vector on which to enable writeback |
| * |
| **/ |
| static void iavf_enable_wb_on_itr(struct iavf_vsi *vsi, |
| struct iavf_q_vector *q_vector) |
| { |
| u16 flags = q_vector->tx.ring[0].flags; |
| u32 val; |
| |
| if (!(flags & IAVF_TXR_FLAGS_WB_ON_ITR)) |
| return; |
| |
| if (q_vector->arm_wb_state) |
| return; |
| |
| val = IAVF_VFINT_DYN_CTLN1_WB_ON_ITR_MASK | |
| IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK; /* set noitr */ |
| |
| wr32(&vsi->back->hw, |
| IAVF_VFINT_DYN_CTLN1(q_vector->reg_idx), val); |
| q_vector->arm_wb_state = true; |
| } |
| |
| /** |
| * iavf_force_wb - Issue SW Interrupt so HW does a wb |
| * @vsi: the VSI we care about |
| * @q_vector: the vector on which to force writeback |
| * |
| **/ |
| void iavf_force_wb(struct iavf_vsi *vsi, struct iavf_q_vector *q_vector) |
| { |
| u32 val = IAVF_VFINT_DYN_CTLN1_INTENA_MASK | |
| IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK | /* set noitr */ |
| IAVF_VFINT_DYN_CTLN1_SWINT_TRIG_MASK | |
| IAVF_VFINT_DYN_CTLN1_SW_ITR_INDX_ENA_MASK |
| /* allow 00 to be written to the index */; |
| |
| wr32(&vsi->back->hw, |
| IAVF_VFINT_DYN_CTLN1(q_vector->reg_idx), |
| val); |
| } |
| |
| static inline bool iavf_container_is_rx(struct iavf_q_vector *q_vector, |
| struct iavf_ring_container *rc) |
| { |
| return &q_vector->rx == rc; |
| } |
| |
| #define IAVF_AIM_MULTIPLIER_100G 2560 |
| #define IAVF_AIM_MULTIPLIER_50G 1280 |
| #define IAVF_AIM_MULTIPLIER_40G 1024 |
| #define IAVF_AIM_MULTIPLIER_20G 512 |
| #define IAVF_AIM_MULTIPLIER_10G 256 |
| #define IAVF_AIM_MULTIPLIER_1G 32 |
| |
| static unsigned int iavf_mbps_itr_multiplier(u32 speed_mbps) |
| { |
| switch (speed_mbps) { |
| case SPEED_100000: |
| return IAVF_AIM_MULTIPLIER_100G; |
| case SPEED_50000: |
| return IAVF_AIM_MULTIPLIER_50G; |
| case SPEED_40000: |
| return IAVF_AIM_MULTIPLIER_40G; |
| case SPEED_25000: |
| case SPEED_20000: |
| return IAVF_AIM_MULTIPLIER_20G; |
| case SPEED_10000: |
| default: |
| return IAVF_AIM_MULTIPLIER_10G; |
| case SPEED_1000: |
| case SPEED_100: |
| return IAVF_AIM_MULTIPLIER_1G; |
| } |
| } |
| |
| static unsigned int |
| iavf_virtchnl_itr_multiplier(enum virtchnl_link_speed speed_virtchnl) |
| { |
| switch (speed_virtchnl) { |
| case VIRTCHNL_LINK_SPEED_40GB: |
| return IAVF_AIM_MULTIPLIER_40G; |
| case VIRTCHNL_LINK_SPEED_25GB: |
| case VIRTCHNL_LINK_SPEED_20GB: |
| return IAVF_AIM_MULTIPLIER_20G; |
| case VIRTCHNL_LINK_SPEED_10GB: |
| default: |
| return IAVF_AIM_MULTIPLIER_10G; |
| case VIRTCHNL_LINK_SPEED_1GB: |
| case VIRTCHNL_LINK_SPEED_100MB: |
| return IAVF_AIM_MULTIPLIER_1G; |
| } |
| } |
| |
| static unsigned int iavf_itr_divisor(struct iavf_adapter *adapter) |
| { |
| if (ADV_LINK_SUPPORT(adapter)) |
| return IAVF_ITR_ADAPTIVE_MIN_INC * |
| iavf_mbps_itr_multiplier(adapter->link_speed_mbps); |
| else |
| return IAVF_ITR_ADAPTIVE_MIN_INC * |
| iavf_virtchnl_itr_multiplier(adapter->link_speed); |
| } |
| |
| /** |
| * iavf_update_itr - update the dynamic ITR value based on statistics |
| * @q_vector: structure containing interrupt and ring information |
| * @rc: structure containing ring performance data |
| * |
| * Stores a new ITR value based on packets and byte |
| * counts during the last interrupt. The advantage of per interrupt |
| * computation is faster updates and more accurate ITR for the current |
| * traffic pattern. Constants in this function were computed |
| * based on theoretical maximum wire speed and thresholds were set based |
| * on testing data as well as attempting to minimize response time |
| * while increasing bulk throughput. |
| **/ |
| static void iavf_update_itr(struct iavf_q_vector *q_vector, |
| struct iavf_ring_container *rc) |
| { |
| unsigned int avg_wire_size, packets, bytes, itr; |
| unsigned long next_update = jiffies; |
| |
| /* If we don't have any rings just leave ourselves set for maximum |
| * possible latency so we take ourselves out of the equation. |
| */ |
| if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting)) |
| return; |
| |
| /* For Rx we want to push the delay up and default to low latency. |
| * for Tx we want to pull the delay down and default to high latency. |
| */ |
| itr = iavf_container_is_rx(q_vector, rc) ? |
| IAVF_ITR_ADAPTIVE_MIN_USECS | IAVF_ITR_ADAPTIVE_LATENCY : |
| IAVF_ITR_ADAPTIVE_MAX_USECS | IAVF_ITR_ADAPTIVE_LATENCY; |
| |
| /* If we didn't update within up to 1 - 2 jiffies we can assume |
| * that either packets are coming in so slow there hasn't been |
| * any work, or that there is so much work that NAPI is dealing |
| * with interrupt moderation and we don't need to do anything. |
| */ |
| if (time_after(next_update, rc->next_update)) |
| goto clear_counts; |
| |
| /* If itr_countdown is set it means we programmed an ITR within |
| * the last 4 interrupt cycles. This has a side effect of us |
| * potentially firing an early interrupt. In order to work around |
| * this we need to throw out any data received for a few |
| * interrupts following the update. |
| */ |
| if (q_vector->itr_countdown) { |
| itr = rc->target_itr; |
| goto clear_counts; |
| } |
| |
| packets = rc->total_packets; |
| bytes = rc->total_bytes; |
| |
| if (iavf_container_is_rx(q_vector, rc)) { |
| /* If Rx there are 1 to 4 packets and bytes are less than |
| * 9000 assume insufficient data to use bulk rate limiting |
| * approach unless Tx is already in bulk rate limiting. We |
| * are likely latency driven. |
| */ |
| if (packets && packets < 4 && bytes < 9000 && |
| (q_vector->tx.target_itr & IAVF_ITR_ADAPTIVE_LATENCY)) { |
| itr = IAVF_ITR_ADAPTIVE_LATENCY; |
| goto adjust_by_size; |
| } |
| } else if (packets < 4) { |
| /* If we have Tx and Rx ITR maxed and Tx ITR is running in |
| * bulk mode and we are receiving 4 or fewer packets just |
| * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so |
| * that the Rx can relax. |
| */ |
| if (rc->target_itr == IAVF_ITR_ADAPTIVE_MAX_USECS && |
| (q_vector->rx.target_itr & IAVF_ITR_MASK) == |
| IAVF_ITR_ADAPTIVE_MAX_USECS) |
| goto clear_counts; |
| } else if (packets > 32) { |
| /* If we have processed over 32 packets in a single interrupt |
| * for Tx assume we need to switch over to "bulk" mode. |
| */ |
| rc->target_itr &= ~IAVF_ITR_ADAPTIVE_LATENCY; |
| } |
| |
| /* We have no packets to actually measure against. This means |
| * either one of the other queues on this vector is active or |
| * we are a Tx queue doing TSO with too high of an interrupt rate. |
| * |
| * Between 4 and 56 we can assume that our current interrupt delay |
| * is only slightly too low. As such we should increase it by a small |
| * fixed amount. |
| */ |
| if (packets < 56) { |
| itr = rc->target_itr + IAVF_ITR_ADAPTIVE_MIN_INC; |
| if ((itr & IAVF_ITR_MASK) > IAVF_ITR_ADAPTIVE_MAX_USECS) { |
| itr &= IAVF_ITR_ADAPTIVE_LATENCY; |
| itr += IAVF_ITR_ADAPTIVE_MAX_USECS; |
| } |
| goto clear_counts; |
| } |
| |
| if (packets <= 256) { |
| itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr); |
| itr &= IAVF_ITR_MASK; |
| |
| /* Between 56 and 112 is our "goldilocks" zone where we are |
| * working out "just right". Just report that our current |
| * ITR is good for us. |
| */ |
| if (packets <= 112) |
| goto clear_counts; |
| |
| /* If packet count is 128 or greater we are likely looking |
| * at a slight overrun of the delay we want. Try halving |
| * our delay to see if that will cut the number of packets |
| * in half per interrupt. |
| */ |
| itr /= 2; |
| itr &= IAVF_ITR_MASK; |
| if (itr < IAVF_ITR_ADAPTIVE_MIN_USECS) |
| itr = IAVF_ITR_ADAPTIVE_MIN_USECS; |
| |
| goto clear_counts; |
| } |
| |
| /* The paths below assume we are dealing with a bulk ITR since |
| * number of packets is greater than 256. We are just going to have |
| * to compute a value and try to bring the count under control, |
| * though for smaller packet sizes there isn't much we can do as |
| * NAPI polling will likely be kicking in sooner rather than later. |
| */ |
| itr = IAVF_ITR_ADAPTIVE_BULK; |
| |
| adjust_by_size: |
| /* If packet counts are 256 or greater we can assume we have a gross |
| * overestimation of what the rate should be. Instead of trying to fine |
| * tune it just use the formula below to try and dial in an exact value |
| * give the current packet size of the frame. |
| */ |
| avg_wire_size = bytes / packets; |
| |
| /* The following is a crude approximation of: |
| * wmem_default / (size + overhead) = desired_pkts_per_int |
| * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate |
| * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value |
| * |
| * Assuming wmem_default is 212992 and overhead is 640 bytes per |
| * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the |
| * formula down to |
| * |
| * (170 * (size + 24)) / (size + 640) = ITR |
| * |
| * We first do some math on the packet size and then finally bitshift |
| * by 8 after rounding up. We also have to account for PCIe link speed |
| * difference as ITR scales based on this. |
| */ |
| if (avg_wire_size <= 60) { |
| /* Start at 250k ints/sec */ |
| avg_wire_size = 4096; |
| } else if (avg_wire_size <= 380) { |
| /* 250K ints/sec to 60K ints/sec */ |
| avg_wire_size *= 40; |
| avg_wire_size += 1696; |
| } else if (avg_wire_size <= 1084) { |
| /* 60K ints/sec to 36K ints/sec */ |
| avg_wire_size *= 15; |
| avg_wire_size += 11452; |
| } else if (avg_wire_size <= 1980) { |
| /* 36K ints/sec to 30K ints/sec */ |
| avg_wire_size *= 5; |
| avg_wire_size += 22420; |
| } else { |
| /* plateau at a limit of 30K ints/sec */ |
| avg_wire_size = 32256; |
| } |
| |
| /* If we are in low latency mode halve our delay which doubles the |
| * rate to somewhere between 100K to 16K ints/sec |
| */ |
| if (itr & IAVF_ITR_ADAPTIVE_LATENCY) |
| avg_wire_size /= 2; |
| |
| /* Resultant value is 256 times larger than it needs to be. This |
| * gives us room to adjust the value as needed to either increase |
| * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc. |
| * |
| * Use addition as we have already recorded the new latency flag |
| * for the ITR value. |
| */ |
| itr += DIV_ROUND_UP(avg_wire_size, |
| iavf_itr_divisor(q_vector->adapter)) * |
| IAVF_ITR_ADAPTIVE_MIN_INC; |
| |
| if ((itr & IAVF_ITR_MASK) > IAVF_ITR_ADAPTIVE_MAX_USECS) { |
| itr &= IAVF_ITR_ADAPTIVE_LATENCY; |
| itr += IAVF_ITR_ADAPTIVE_MAX_USECS; |
| } |
| |
| clear_counts: |
| /* write back value */ |
| rc->target_itr = itr; |
| |
| /* next update should occur within next jiffy */ |
| rc->next_update = next_update + 1; |
| |
| rc->total_bytes = 0; |
| rc->total_packets = 0; |
| } |
| |
| /** |
| * iavf_setup_tx_descriptors - Allocate the Tx descriptors |
| * @tx_ring: the tx ring to set up |
| * |
| * Return 0 on success, negative on error |
| **/ |
| int iavf_setup_tx_descriptors(struct iavf_ring *tx_ring) |
| { |
| struct device *dev = tx_ring->dev; |
| int bi_size; |
| |
| if (!dev) |
| return -ENOMEM; |
| |
| /* warn if we are about to overwrite the pointer */ |
| WARN_ON(tx_ring->tx_bi); |
| bi_size = sizeof(struct iavf_tx_buffer) * tx_ring->count; |
| tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL); |
| if (!tx_ring->tx_bi) |
| goto err; |
| |
| /* round up to nearest 4K */ |
| tx_ring->size = tx_ring->count * sizeof(struct iavf_tx_desc); |
| tx_ring->size = ALIGN(tx_ring->size, 4096); |
| tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, |
| &tx_ring->dma, GFP_KERNEL); |
| if (!tx_ring->desc) { |
| dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n", |
| tx_ring->size); |
| goto err; |
| } |
| |
| tx_ring->next_to_use = 0; |
| tx_ring->next_to_clean = 0; |
| tx_ring->tx_stats.prev_pkt_ctr = -1; |
| return 0; |
| |
| err: |
| kfree(tx_ring->tx_bi); |
| tx_ring->tx_bi = NULL; |
| return -ENOMEM; |
| } |
| |
| /** |
| * iavf_clean_rx_ring - Free Rx buffers |
| * @rx_ring: ring to be cleaned |
| **/ |
| void iavf_clean_rx_ring(struct iavf_ring *rx_ring) |
| { |
| unsigned long bi_size; |
| u16 i; |
| |
| /* ring already cleared, nothing to do */ |
| if (!rx_ring->rx_bi) |
| return; |
| |
| if (rx_ring->skb) { |
| dev_kfree_skb(rx_ring->skb); |
| rx_ring->skb = NULL; |
| } |
| |
| /* Free all the Rx ring sk_buffs */ |
| for (i = 0; i < rx_ring->count; i++) { |
| struct iavf_rx_buffer *rx_bi = &rx_ring->rx_bi[i]; |
| |
| if (!rx_bi->page) |
| continue; |
| |
| /* Invalidate cache lines that may have been written to by |
| * device so that we avoid corrupting memory. |
| */ |
| dma_sync_single_range_for_cpu(rx_ring->dev, |
| rx_bi->dma, |
| rx_bi->page_offset, |
| rx_ring->rx_buf_len, |
| DMA_FROM_DEVICE); |
| |
| /* free resources associated with mapping */ |
| dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma, |
| iavf_rx_pg_size(rx_ring), |
| DMA_FROM_DEVICE, |
| IAVF_RX_DMA_ATTR); |
| |
| __page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias); |
| |
| rx_bi->page = NULL; |
| rx_bi->page_offset = 0; |
| } |
| |
| bi_size = sizeof(struct iavf_rx_buffer) * rx_ring->count; |
| memset(rx_ring->rx_bi, 0, bi_size); |
| |
| /* Zero out the descriptor ring */ |
| memset(rx_ring->desc, 0, rx_ring->size); |
| |
| rx_ring->next_to_alloc = 0; |
| rx_ring->next_to_clean = 0; |
| rx_ring->next_to_use = 0; |
| } |
| |
| /** |
| * iavf_free_rx_resources - Free Rx resources |
| * @rx_ring: ring to clean the resources from |
| * |
| * Free all receive software resources |
| **/ |
| void iavf_free_rx_resources(struct iavf_ring *rx_ring) |
| { |
| iavf_clean_rx_ring(rx_ring); |
| kfree(rx_ring->rx_bi); |
| rx_ring->rx_bi = NULL; |
| |
| if (rx_ring->desc) { |
| dma_free_coherent(rx_ring->dev, rx_ring->size, |
| rx_ring->desc, rx_ring->dma); |
| rx_ring->desc = NULL; |
| } |
| } |
| |
| /** |
| * iavf_setup_rx_descriptors - Allocate Rx descriptors |
| * @rx_ring: Rx descriptor ring (for a specific queue) to setup |
| * |
| * Returns 0 on success, negative on failure |
| **/ |
| int iavf_setup_rx_descriptors(struct iavf_ring *rx_ring) |
| { |
| struct device *dev = rx_ring->dev; |
| int bi_size; |
| |
| /* warn if we are about to overwrite the pointer */ |
| WARN_ON(rx_ring->rx_bi); |
| bi_size = sizeof(struct iavf_rx_buffer) * rx_ring->count; |
| rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL); |
| if (!rx_ring->rx_bi) |
| goto err; |
| |
| u64_stats_init(&rx_ring->syncp); |
| |
| /* Round up to nearest 4K */ |
| rx_ring->size = rx_ring->count * sizeof(union iavf_32byte_rx_desc); |
| rx_ring->size = ALIGN(rx_ring->size, 4096); |
| rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, |
| &rx_ring->dma, GFP_KERNEL); |
| |
| if (!rx_ring->desc) { |
| dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n", |
| rx_ring->size); |
| goto err; |
| } |
| |
| rx_ring->next_to_alloc = 0; |
| rx_ring->next_to_clean = 0; |
| rx_ring->next_to_use = 0; |
| |
| return 0; |
| err: |
| kfree(rx_ring->rx_bi); |
| rx_ring->rx_bi = NULL; |
| return -ENOMEM; |
| } |
| |
| /** |
| * iavf_release_rx_desc - Store the new tail and head values |
| * @rx_ring: ring to bump |
| * @val: new head index |
| **/ |
| static inline void iavf_release_rx_desc(struct iavf_ring *rx_ring, u32 val) |
| { |
| rx_ring->next_to_use = val; |
| |
| /* update next to alloc since we have filled the ring */ |
| rx_ring->next_to_alloc = val; |
| |
| /* Force memory writes to complete before letting h/w |
| * know there are new descriptors to fetch. (Only |
| * applicable for weak-ordered memory model archs, |
| * such as IA-64). |
| */ |
| wmb(); |
| writel(val, rx_ring->tail); |
| } |
| |
| /** |
| * iavf_rx_offset - Return expected offset into page to access data |
| * @rx_ring: Ring we are requesting offset of |
| * |
| * Returns the offset value for ring into the data buffer. |
| */ |
| static inline unsigned int iavf_rx_offset(struct iavf_ring *rx_ring) |
| { |
| return ring_uses_build_skb(rx_ring) ? IAVF_SKB_PAD : 0; |
| } |
| |
| /** |
| * iavf_alloc_mapped_page - recycle or make a new page |
| * @rx_ring: ring to use |
| * @bi: rx_buffer struct to modify |
| * |
| * Returns true if the page was successfully allocated or |
| * reused. |
| **/ |
| static bool iavf_alloc_mapped_page(struct iavf_ring *rx_ring, |
| struct iavf_rx_buffer *bi) |
| { |
| struct page *page = bi->page; |
| dma_addr_t dma; |
| |
| /* since we are recycling buffers we should seldom need to alloc */ |
| if (likely(page)) { |
| rx_ring->rx_stats.page_reuse_count++; |
| return true; |
| } |
| |
| /* alloc new page for storage */ |
| page = dev_alloc_pages(iavf_rx_pg_order(rx_ring)); |
| if (unlikely(!page)) { |
| rx_ring->rx_stats.alloc_page_failed++; |
| return false; |
| } |
| |
| /* map page for use */ |
| dma = dma_map_page_attrs(rx_ring->dev, page, 0, |
| iavf_rx_pg_size(rx_ring), |
| DMA_FROM_DEVICE, |
| IAVF_RX_DMA_ATTR); |
| |
| /* if mapping failed free memory back to system since |
| * there isn't much point in holding memory we can't use |
| */ |
| if (dma_mapping_error(rx_ring->dev, dma)) { |
| __free_pages(page, iavf_rx_pg_order(rx_ring)); |
| rx_ring->rx_stats.alloc_page_failed++; |
| return false; |
| } |
| |
| bi->dma = dma; |
| bi->page = page; |
| bi->page_offset = iavf_rx_offset(rx_ring); |
| |
| /* initialize pagecnt_bias to 1 representing we fully own page */ |
| bi->pagecnt_bias = 1; |
| |
| return true; |
| } |
| |
| /** |
| * iavf_receive_skb - Send a completed packet up the stack |
| * @rx_ring: rx ring in play |
| * @skb: packet to send up |
| * @vlan_tag: vlan tag for packet |
| **/ |
| static void iavf_receive_skb(struct iavf_ring *rx_ring, |
| struct sk_buff *skb, u16 vlan_tag) |
| { |
| struct iavf_q_vector *q_vector = rx_ring->q_vector; |
| |
| if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) && |
| (vlan_tag & VLAN_VID_MASK)) |
| __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag); |
| else if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_STAG_RX) && |
| vlan_tag & VLAN_VID_MASK) |
| __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021AD), vlan_tag); |
| |
| napi_gro_receive(&q_vector->napi, skb); |
| } |
| |
| /** |
| * iavf_alloc_rx_buffers - Replace used receive buffers |
| * @rx_ring: ring to place buffers on |
| * @cleaned_count: number of buffers to replace |
| * |
| * Returns false if all allocations were successful, true if any fail |
| **/ |
| bool iavf_alloc_rx_buffers(struct iavf_ring *rx_ring, u16 cleaned_count) |
| { |
| u16 ntu = rx_ring->next_to_use; |
| union iavf_rx_desc *rx_desc; |
| struct iavf_rx_buffer *bi; |
| |
| /* do nothing if no valid netdev defined */ |
| if (!rx_ring->netdev || !cleaned_count) |
| return false; |
| |
| rx_desc = IAVF_RX_DESC(rx_ring, ntu); |
| bi = &rx_ring->rx_bi[ntu]; |
| |
| do { |
| if (!iavf_alloc_mapped_page(rx_ring, bi)) |
| goto no_buffers; |
| |
| /* sync the buffer for use by the device */ |
| dma_sync_single_range_for_device(rx_ring->dev, bi->dma, |
| bi->page_offset, |
| rx_ring->rx_buf_len, |
| DMA_FROM_DEVICE); |
| |
| /* Refresh the desc even if buffer_addrs didn't change |
| * because each write-back erases this info. |
| */ |
| rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); |
| |
| rx_desc++; |
| bi++; |
| ntu++; |
| if (unlikely(ntu == rx_ring->count)) { |
| rx_desc = IAVF_RX_DESC(rx_ring, 0); |
| bi = rx_ring->rx_bi; |
| ntu = 0; |
| } |
| |
| /* clear the status bits for the next_to_use descriptor */ |
| rx_desc->wb.qword1.status_error_len = 0; |
| |
| cleaned_count--; |
| } while (cleaned_count); |
| |
| if (rx_ring->next_to_use != ntu) |
| iavf_release_rx_desc(rx_ring, ntu); |
| |
| return false; |
| |
| no_buffers: |
| if (rx_ring->next_to_use != ntu) |
| iavf_release_rx_desc(rx_ring, ntu); |
| |
| /* make sure to come back via polling to try again after |
| * allocation failure |
| */ |
| return true; |
| } |
| |
| /** |
| * iavf_rx_checksum - Indicate in skb if hw indicated a good cksum |
| * @vsi: the VSI we care about |
| * @skb: skb currently being received and modified |
| * @rx_desc: the receive descriptor |
| **/ |
| static inline void iavf_rx_checksum(struct iavf_vsi *vsi, |
| struct sk_buff *skb, |
| union iavf_rx_desc *rx_desc) |
| { |
| struct iavf_rx_ptype_decoded decoded; |
| u32 rx_error, rx_status; |
| bool ipv4, ipv6; |
| u8 ptype; |
| u64 qword; |
| |
| qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); |
| ptype = (qword & IAVF_RXD_QW1_PTYPE_MASK) >> IAVF_RXD_QW1_PTYPE_SHIFT; |
| rx_error = (qword & IAVF_RXD_QW1_ERROR_MASK) >> |
| IAVF_RXD_QW1_ERROR_SHIFT; |
| rx_status = (qword & IAVF_RXD_QW1_STATUS_MASK) >> |
| IAVF_RXD_QW1_STATUS_SHIFT; |
| decoded = decode_rx_desc_ptype(ptype); |
| |
| skb->ip_summed = CHECKSUM_NONE; |
| |
| skb_checksum_none_assert(skb); |
| |
| /* Rx csum enabled and ip headers found? */ |
| if (!(vsi->netdev->features & NETIF_F_RXCSUM)) |
| return; |
| |
| /* did the hardware decode the packet and checksum? */ |
| if (!(rx_status & BIT(IAVF_RX_DESC_STATUS_L3L4P_SHIFT))) |
| return; |
| |
| /* both known and outer_ip must be set for the below code to work */ |
| if (!(decoded.known && decoded.outer_ip)) |
| return; |
| |
| ipv4 = (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP) && |
| (decoded.outer_ip_ver == IAVF_RX_PTYPE_OUTER_IPV4); |
| ipv6 = (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP) && |
| (decoded.outer_ip_ver == IAVF_RX_PTYPE_OUTER_IPV6); |
| |
| if (ipv4 && |
| (rx_error & (BIT(IAVF_RX_DESC_ERROR_IPE_SHIFT) | |
| BIT(IAVF_RX_DESC_ERROR_EIPE_SHIFT)))) |
| goto checksum_fail; |
| |
| /* likely incorrect csum if alternate IP extension headers found */ |
| if (ipv6 && |
| rx_status & BIT(IAVF_RX_DESC_STATUS_IPV6EXADD_SHIFT)) |
| /* don't increment checksum err here, non-fatal err */ |
| return; |
| |
| /* there was some L4 error, count error and punt packet to the stack */ |
| if (rx_error & BIT(IAVF_RX_DESC_ERROR_L4E_SHIFT)) |
| goto checksum_fail; |
| |
| /* handle packets that were not able to be checksummed due |
| * to arrival speed, in this case the stack can compute |
| * the csum. |
| */ |
| if (rx_error & BIT(IAVF_RX_DESC_ERROR_PPRS_SHIFT)) |
| return; |
| |
| /* Only report checksum unnecessary for TCP, UDP, or SCTP */ |
| switch (decoded.inner_prot) { |
| case IAVF_RX_PTYPE_INNER_PROT_TCP: |
| case IAVF_RX_PTYPE_INNER_PROT_UDP: |
| case IAVF_RX_PTYPE_INNER_PROT_SCTP: |
| skb->ip_summed = CHECKSUM_UNNECESSARY; |
| fallthrough; |
| default: |
| break; |
| } |
| |
| return; |
| |
| checksum_fail: |
| vsi->back->hw_csum_rx_error++; |
| } |
| |
| /** |
| * iavf_ptype_to_htype - get a hash type |
| * @ptype: the ptype value from the descriptor |
| * |
| * Returns a hash type to be used by skb_set_hash |
| **/ |
| static inline int iavf_ptype_to_htype(u8 ptype) |
| { |
| struct iavf_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype); |
| |
| if (!decoded.known) |
| return PKT_HASH_TYPE_NONE; |
| |
| if (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP && |
| decoded.payload_layer == IAVF_RX_PTYPE_PAYLOAD_LAYER_PAY4) |
| return PKT_HASH_TYPE_L4; |
| else if (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP && |
| decoded.payload_layer == IAVF_RX_PTYPE_PAYLOAD_LAYER_PAY3) |
| return PKT_HASH_TYPE_L3; |
| else |
| return PKT_HASH_TYPE_L2; |
| } |
| |
| /** |
| * iavf_rx_hash - set the hash value in the skb |
| * @ring: descriptor ring |
| * @rx_desc: specific descriptor |
| * @skb: skb currently being received and modified |
| * @rx_ptype: Rx packet type |
| **/ |
| static inline void iavf_rx_hash(struct iavf_ring *ring, |
| union iavf_rx_desc *rx_desc, |
| struct sk_buff *skb, |
| u8 rx_ptype) |
| { |
| u32 hash; |
| const __le64 rss_mask = |
| cpu_to_le64((u64)IAVF_RX_DESC_FLTSTAT_RSS_HASH << |
| IAVF_RX_DESC_STATUS_FLTSTAT_SHIFT); |
| |
| if (ring->netdev->features & NETIF_F_RXHASH) |
| return; |
| |
| if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) { |
| hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss); |
| skb_set_hash(skb, hash, iavf_ptype_to_htype(rx_ptype)); |
| } |
| } |
| |
| /** |
| * iavf_process_skb_fields - Populate skb header fields from Rx descriptor |
| * @rx_ring: rx descriptor ring packet is being transacted on |
| * @rx_desc: pointer to the EOP Rx descriptor |
| * @skb: pointer to current skb being populated |
| * @rx_ptype: the packet type decoded by hardware |
| * |
| * This function checks the ring, descriptor, and packet information in |
| * order to populate the hash, checksum, VLAN, protocol, and |
| * other fields within the skb. |
| **/ |
| static inline |
| void iavf_process_skb_fields(struct iavf_ring *rx_ring, |
| union iavf_rx_desc *rx_desc, struct sk_buff *skb, |
| u8 rx_ptype) |
| { |
| iavf_rx_hash(rx_ring, rx_desc, skb, rx_ptype); |
| |
| iavf_rx_checksum(rx_ring->vsi, skb, rx_desc); |
| |
| skb_record_rx_queue(skb, rx_ring->queue_index); |
| |
| /* modifies the skb - consumes the enet header */ |
| skb->protocol = eth_type_trans(skb, rx_ring->netdev); |
| } |
| |
| /** |
| * iavf_cleanup_headers - Correct empty headers |
| * @rx_ring: rx descriptor ring packet is being transacted on |
| * @skb: pointer to current skb being fixed |
| * |
| * Also address the case where we are pulling data in on pages only |
| * and as such no data is present in the skb header. |
| * |
| * In addition if skb is not at least 60 bytes we need to pad it so that |
| * it is large enough to qualify as a valid Ethernet frame. |
| * |
| * Returns true if an error was encountered and skb was freed. |
| **/ |
| static bool iavf_cleanup_headers(struct iavf_ring *rx_ring, struct sk_buff *skb) |
| { |
| /* if eth_skb_pad returns an error the skb was freed */ |
| if (eth_skb_pad(skb)) |
| return true; |
| |
| return false; |
| } |
| |
| /** |
| * iavf_reuse_rx_page - page flip buffer and store it back on the ring |
| * @rx_ring: rx descriptor ring to store buffers on |
| * @old_buff: donor buffer to have page reused |
| * |
| * Synchronizes page for reuse by the adapter |
| **/ |
| static void iavf_reuse_rx_page(struct iavf_ring *rx_ring, |
| struct iavf_rx_buffer *old_buff) |
| { |
| struct iavf_rx_buffer *new_buff; |
| u16 nta = rx_ring->next_to_alloc; |
| |
| new_buff = &rx_ring->rx_bi[nta]; |
| |
| /* update, and store next to alloc */ |
| nta++; |
| rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; |
| |
| /* transfer page from old buffer to new buffer */ |
| new_buff->dma = old_buff->dma; |
| new_buff->page = old_buff->page; |
| new_buff->page_offset = old_buff->page_offset; |
| new_buff->pagecnt_bias = old_buff->pagecnt_bias; |
| } |
| |
| /** |
| * iavf_can_reuse_rx_page - Determine if this page can be reused by |
| * the adapter for another receive |
| * |
| * @rx_buffer: buffer containing the page |
| * |
| * If page is reusable, rx_buffer->page_offset is adjusted to point to |
| * an unused region in the page. |
| * |
| * For small pages, @truesize will be a constant value, half the size |
| * of the memory at page. We'll attempt to alternate between high and |
| * low halves of the page, with one half ready for use by the hardware |
| * and the other half being consumed by the stack. We use the page |
| * ref count to determine whether the stack has finished consuming the |
| * portion of this page that was passed up with a previous packet. If |
| * the page ref count is >1, we'll assume the "other" half page is |
| * still busy, and this page cannot be reused. |
| * |
| * For larger pages, @truesize will be the actual space used by the |
| * received packet (adjusted upward to an even multiple of the cache |
| * line size). This will advance through the page by the amount |
| * actually consumed by the received packets while there is still |
| * space for a buffer. Each region of larger pages will be used at |
| * most once, after which the page will not be reused. |
| * |
| * In either case, if the page is reusable its refcount is increased. |
| **/ |
| static bool iavf_can_reuse_rx_page(struct iavf_rx_buffer *rx_buffer) |
| { |
| unsigned int pagecnt_bias = rx_buffer->pagecnt_bias; |
| struct page *page = rx_buffer->page; |
| |
| /* Is any reuse possible? */ |
| if (!dev_page_is_reusable(page)) |
| return false; |
| |
| #if (PAGE_SIZE < 8192) |
| /* if we are only owner of page we can reuse it */ |
| if (unlikely((page_count(page) - pagecnt_bias) > 1)) |
| return false; |
| #else |
| #define IAVF_LAST_OFFSET \ |
| (SKB_WITH_OVERHEAD(PAGE_SIZE) - IAVF_RXBUFFER_2048) |
| if (rx_buffer->page_offset > IAVF_LAST_OFFSET) |
| return false; |
| #endif |
| |
| /* If we have drained the page fragment pool we need to update |
| * the pagecnt_bias and page count so that we fully restock the |
| * number of references the driver holds. |
| */ |
| if (unlikely(!pagecnt_bias)) { |
| page_ref_add(page, USHRT_MAX); |
| rx_buffer->pagecnt_bias = USHRT_MAX; |
| } |
| |
| return true; |
| } |
| |
| /** |
| * iavf_add_rx_frag - Add contents of Rx buffer to sk_buff |
| * @rx_ring: rx descriptor ring to transact packets on |
| * @rx_buffer: buffer containing page to add |
| * @skb: sk_buff to place the data into |
| * @size: packet length from rx_desc |
| * |
| * This function will add the data contained in rx_buffer->page to the skb. |
| * It will just attach the page as a frag to the skb. |
| * |
| * The function will then update the page offset. |
| **/ |
| static void iavf_add_rx_frag(struct iavf_ring *rx_ring, |
| struct iavf_rx_buffer *rx_buffer, |
| struct sk_buff *skb, |
| unsigned int size) |
| { |
| #if (PAGE_SIZE < 8192) |
| unsigned int truesize = iavf_rx_pg_size(rx_ring) / 2; |
| #else |
| unsigned int truesize = SKB_DATA_ALIGN(size + iavf_rx_offset(rx_ring)); |
| #endif |
| |
| if (!size) |
| return; |
| |
| skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page, |
| rx_buffer->page_offset, size, truesize); |
| |
| /* page is being used so we must update the page offset */ |
| #if (PAGE_SIZE < 8192) |
| rx_buffer->page_offset ^= truesize; |
| #else |
| rx_buffer->page_offset += truesize; |
| #endif |
| } |
| |
| /** |
| * iavf_get_rx_buffer - Fetch Rx buffer and synchronize data for use |
| * @rx_ring: rx descriptor ring to transact packets on |
| * @size: size of buffer to add to skb |
| * |
| * This function will pull an Rx buffer from the ring and synchronize it |
| * for use by the CPU. |
| */ |
| static struct iavf_rx_buffer *iavf_get_rx_buffer(struct iavf_ring *rx_ring, |
| const unsigned int size) |
| { |
| struct iavf_rx_buffer *rx_buffer; |
| |
| rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean]; |
| prefetchw(rx_buffer->page); |
| if (!size) |
| return rx_buffer; |
| |
| /* we are reusing so sync this buffer for CPU use */ |
| dma_sync_single_range_for_cpu(rx_ring->dev, |
| rx_buffer->dma, |
| rx_buffer->page_offset, |
| size, |
| DMA_FROM_DEVICE); |
| |
| /* We have pulled a buffer for use, so decrement pagecnt_bias */ |
| rx_buffer->pagecnt_bias--; |
| |
| return rx_buffer; |
| } |
| |
| /** |
| * iavf_construct_skb - Allocate skb and populate it |
| * @rx_ring: rx descriptor ring to transact packets on |
| * @rx_buffer: rx buffer to pull data from |
| * @size: size of buffer to add to skb |
| * |
| * This function allocates an skb. It then populates it with the page |
| * data from the current receive descriptor, taking care to set up the |
| * skb correctly. |
| */ |
| static struct sk_buff *iavf_construct_skb(struct iavf_ring *rx_ring, |
| struct iavf_rx_buffer *rx_buffer, |
| unsigned int size) |
| { |
| void *va; |
| #if (PAGE_SIZE < 8192) |
| unsigned int truesize = iavf_rx_pg_size(rx_ring) / 2; |
| #else |
| unsigned int truesize = SKB_DATA_ALIGN(size); |
| #endif |
| unsigned int headlen; |
| struct sk_buff *skb; |
| |
| if (!rx_buffer) |
| return NULL; |
| /* prefetch first cache line of first page */ |
| va = page_address(rx_buffer->page) + rx_buffer->page_offset; |
| net_prefetch(va); |
| |
| /* allocate a skb to store the frags */ |
| skb = __napi_alloc_skb(&rx_ring->q_vector->napi, |
| IAVF_RX_HDR_SIZE, |
| GFP_ATOMIC | __GFP_NOWARN); |
| if (unlikely(!skb)) |
| return NULL; |
| |
| /* Determine available headroom for copy */ |
| headlen = size; |
| if (headlen > IAVF_RX_HDR_SIZE) |
| headlen = eth_get_headlen(skb->dev, va, IAVF_RX_HDR_SIZE); |
| |
| /* align pull length to size of long to optimize memcpy performance */ |
| memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long))); |
| |
| /* update all of the pointers */ |
| size -= headlen; |
| if (size) { |
| skb_add_rx_frag(skb, 0, rx_buffer->page, |
| rx_buffer->page_offset + headlen, |
| size, truesize); |
| |
| /* buffer is used by skb, update page_offset */ |
| #if (PAGE_SIZE < 8192) |
| rx_buffer->page_offset ^= truesize; |
| #else |
| rx_buffer->page_offset += truesize; |
| #endif |
| } else { |
| /* buffer is unused, reset bias back to rx_buffer */ |
| rx_buffer->pagecnt_bias++; |
| } |
| |
| return skb; |
| } |
| |
| /** |
| * iavf_build_skb - Build skb around an existing buffer |
| * @rx_ring: Rx descriptor ring to transact packets on |
| * @rx_buffer: Rx buffer to pull data from |
| * @size: size of buffer to add to skb |
| * |
| * This function builds an skb around an existing Rx buffer, taking care |
| * to set up the skb correctly and avoid any memcpy overhead. |
| */ |
| static struct sk_buff *iavf_build_skb(struct iavf_ring *rx_ring, |
| struct iavf_rx_buffer *rx_buffer, |
| unsigned int size) |
| { |
| void *va; |
| #if (PAGE_SIZE < 8192) |
| unsigned int truesize = iavf_rx_pg_size(rx_ring) / 2; |
| #else |
| unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + |
| SKB_DATA_ALIGN(IAVF_SKB_PAD + size); |
| #endif |
| struct sk_buff *skb; |
| |
| if (!rx_buffer || !size) |
| return NULL; |
| /* prefetch first cache line of first page */ |
| va = page_address(rx_buffer->page) + rx_buffer->page_offset; |
| net_prefetch(va); |
| |
| /* build an skb around the page buffer */ |
| skb = napi_build_skb(va - IAVF_SKB_PAD, truesize); |
| if (unlikely(!skb)) |
| return NULL; |
| |
| /* update pointers within the skb to store the data */ |
| skb_reserve(skb, IAVF_SKB_PAD); |
| __skb_put(skb, size); |
| |
| /* buffer is used by skb, update page_offset */ |
| #if (PAGE_SIZE < 8192) |
| rx_buffer->page_offset ^= truesize; |
| #else |
| rx_buffer->page_offset += truesize; |
| #endif |
| |
| return skb; |
| } |
| |
| /** |
| * iavf_put_rx_buffer - Clean up used buffer and either recycle or free |
| * @rx_ring: rx descriptor ring to transact packets on |
| * @rx_buffer: rx buffer to pull data from |
| * |
| * This function will clean up the contents of the rx_buffer. It will |
| * either recycle the buffer or unmap it and free the associated resources. |
| */ |
| static void iavf_put_rx_buffer(struct iavf_ring *rx_ring, |
| struct iavf_rx_buffer *rx_buffer) |
| { |
| if (!rx_buffer) |
| return; |
| |
| if (iavf_can_reuse_rx_page(rx_buffer)) { |
| /* hand second half of page back to the ring */ |
| iavf_reuse_rx_page(rx_ring, rx_buffer); |
| rx_ring->rx_stats.page_reuse_count++; |
| } else { |
| /* we are not reusing the buffer so unmap it */ |
| dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma, |
| iavf_rx_pg_size(rx_ring), |
| DMA_FROM_DEVICE, IAVF_RX_DMA_ATTR); |
| __page_frag_cache_drain(rx_buffer->page, |
| rx_buffer->pagecnt_bias); |
| } |
| |
| /* clear contents of buffer_info */ |
| rx_buffer->page = NULL; |
| } |
| |
| /** |
| * iavf_is_non_eop - process handling of non-EOP buffers |
| * @rx_ring: Rx ring being processed |
| * @rx_desc: Rx descriptor for current buffer |
| * @skb: Current socket buffer containing buffer in progress |
| * |
| * This function updates next to clean. If the buffer is an EOP buffer |
| * this function exits returning false, otherwise it will place the |
| * sk_buff in the next buffer to be chained and return true indicating |
| * that this is in fact a non-EOP buffer. |
| **/ |
| static bool iavf_is_non_eop(struct iavf_ring *rx_ring, |
| union iavf_rx_desc *rx_desc, |
| struct sk_buff *skb) |
| { |
| u32 ntc = rx_ring->next_to_clean + 1; |
| |
| /* fetch, update, and store next to clean */ |
| ntc = (ntc < rx_ring->count) ? ntc : 0; |
| rx_ring->next_to_clean = ntc; |
| |
| prefetch(IAVF_RX_DESC(rx_ring, ntc)); |
| |
| /* if we are the last buffer then there is nothing else to do */ |
| #define IAVF_RXD_EOF BIT(IAVF_RX_DESC_STATUS_EOF_SHIFT) |
| if (likely(iavf_test_staterr(rx_desc, IAVF_RXD_EOF))) |
| return false; |
| |
| rx_ring->rx_stats.non_eop_descs++; |
| |
| return true; |
| } |
| |
| /** |
| * iavf_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf |
| * @rx_ring: rx descriptor ring to transact packets on |
| * @budget: Total limit on number of packets to process |
| * |
| * This function provides a "bounce buffer" approach to Rx interrupt |
| * processing. The advantage to this is that on systems that have |
| * expensive overhead for IOMMU access this provides a means of avoiding |
| * it by maintaining the mapping of the page to the system. |
| * |
| * Returns amount of work completed |
| **/ |
| static int iavf_clean_rx_irq(struct iavf_ring *rx_ring, int budget) |
| { |
| unsigned int total_rx_bytes = 0, total_rx_packets = 0; |
| struct sk_buff *skb = rx_ring->skb; |
| u16 cleaned_count = IAVF_DESC_UNUSED(rx_ring); |
| bool failure = false; |
| |
| while (likely(total_rx_packets < (unsigned int)budget)) { |
| struct iavf_rx_buffer *rx_buffer; |
| union iavf_rx_desc *rx_desc; |
| unsigned int size; |
| u16 vlan_tag = 0; |
| u8 rx_ptype; |
| u64 qword; |
| |
| /* return some buffers to hardware, one at a time is too slow */ |
| if (cleaned_count >= IAVF_RX_BUFFER_WRITE) { |
| failure = failure || |
| iavf_alloc_rx_buffers(rx_ring, cleaned_count); |
| cleaned_count = 0; |
| } |
| |
| rx_desc = IAVF_RX_DESC(rx_ring, rx_ring->next_to_clean); |
| |
| /* status_error_len will always be zero for unused descriptors |
| * because it's cleared in cleanup, and overlaps with hdr_addr |
| * which is always zero because packet split isn't used, if the |
| * hardware wrote DD then the length will be non-zero |
| */ |
| qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); |
| |
| /* This memory barrier is needed to keep us from reading |
| * any other fields out of the rx_desc until we have |
| * verified the descriptor has been written back. |
| */ |
| dma_rmb(); |
| #define IAVF_RXD_DD BIT(IAVF_RX_DESC_STATUS_DD_SHIFT) |
| if (!iavf_test_staterr(rx_desc, IAVF_RXD_DD)) |
| break; |
| |
| size = (qword & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >> |
| IAVF_RXD_QW1_LENGTH_PBUF_SHIFT; |
| |
| iavf_trace(clean_rx_irq, rx_ring, rx_desc, skb); |
| rx_buffer = iavf_get_rx_buffer(rx_ring, size); |
| |
| /* retrieve a buffer from the ring */ |
| if (skb) |
| iavf_add_rx_frag(rx_ring, rx_buffer, skb, size); |
| else if (ring_uses_build_skb(rx_ring)) |
| skb = iavf_build_skb(rx_ring, rx_buffer, size); |
| else |
| skb = iavf_construct_skb(rx_ring, rx_buffer, size); |
| |
| /* exit if we failed to retrieve a buffer */ |
| if (!skb) { |
| rx_ring->rx_stats.alloc_buff_failed++; |
| if (rx_buffer && size) |
| rx_buffer->pagecnt_bias++; |
| break; |
| } |
| |
| iavf_put_rx_buffer(rx_ring, rx_buffer); |
| cleaned_count++; |
| |
| if (iavf_is_non_eop(rx_ring, rx_desc, skb)) |
| continue; |
| |
| /* ERR_MASK will only have valid bits if EOP set, and |
| * what we are doing here is actually checking |
| * IAVF_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in |
| * the error field |
| */ |
| if (unlikely(iavf_test_staterr(rx_desc, BIT(IAVF_RXD_QW1_ERROR_SHIFT)))) { |
| dev_kfree_skb_any(skb); |
| skb = NULL; |
| continue; |
| } |
| |
| if (iavf_cleanup_headers(rx_ring, skb)) { |
| skb = NULL; |
| continue; |
| } |
| |
| /* probably a little skewed due to removing CRC */ |
| total_rx_bytes += skb->len; |
| |
| qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); |
| rx_ptype = (qword & IAVF_RXD_QW1_PTYPE_MASK) >> |
| IAVF_RXD_QW1_PTYPE_SHIFT; |
| |
| /* populate checksum, VLAN, and protocol */ |
| iavf_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype); |
| |
| if (qword & BIT(IAVF_RX_DESC_STATUS_L2TAG1P_SHIFT) && |
| rx_ring->flags & IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1) |
| vlan_tag = le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1); |
| if (rx_desc->wb.qword2.ext_status & |
| cpu_to_le16(BIT(IAVF_RX_DESC_EXT_STATUS_L2TAG2P_SHIFT)) && |
| rx_ring->flags & IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2) |
| vlan_tag = le16_to_cpu(rx_desc->wb.qword2.l2tag2_2); |
| |
| iavf_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb); |
| iavf_receive_skb(rx_ring, skb, vlan_tag); |
| skb = NULL; |
| |
| /* update budget accounting */ |
| total_rx_packets++; |
| } |
| |
| rx_ring->skb = skb; |
| |
| u64_stats_update_begin(&rx_ring->syncp); |
| rx_ring->stats.packets += total_rx_packets; |
| rx_ring->stats.bytes += total_rx_bytes; |
| u64_stats_update_end(&rx_ring->syncp); |
| rx_ring->q_vector->rx.total_packets += total_rx_packets; |
| rx_ring->q_vector->rx.total_bytes += total_rx_bytes; |
| |
| /* guarantee a trip back through this routine if there was a failure */ |
| return failure ? budget : (int)total_rx_packets; |
| } |
| |
| static inline u32 iavf_buildreg_itr(const int type, u16 itr) |
| { |
| u32 val; |
| |
| /* We don't bother with setting the CLEARPBA bit as the data sheet |
| * points out doing so is "meaningless since it was already |
| * auto-cleared". The auto-clearing happens when the interrupt is |
| * asserted. |
| * |
| * Hardware errata 28 for also indicates that writing to a |
| * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear |
| * an event in the PBA anyway so we need to rely on the automask |
| * to hold pending events for us until the interrupt is re-enabled |
| * |
| * The itr value is reported in microseconds, and the register |
| * value is recorded in 2 microsecond units. For this reason we |
| * only need to shift by the interval shift - 1 instead of the |
| * full value. |
| */ |
| itr &= IAVF_ITR_MASK; |
| |
| val = IAVF_VFINT_DYN_CTLN1_INTENA_MASK | |
| (type << IAVF_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) | |
| (itr << (IAVF_VFINT_DYN_CTLN1_INTERVAL_SHIFT - 1)); |
| |
| return val; |
| } |
| |
| /* a small macro to shorten up some long lines */ |
| #define INTREG IAVF_VFINT_DYN_CTLN1 |
| |
| /* The act of updating the ITR will cause it to immediately trigger. In order |
| * to prevent this from throwing off adaptive update statistics we defer the |
| * update so that it can only happen so often. So after either Tx or Rx are |
| * updated we make the adaptive scheme wait until either the ITR completely |
| * expires via the next_update expiration or we have been through at least |
| * 3 interrupts. |
| */ |
| #define ITR_COUNTDOWN_START 3 |
| |
| /** |
| * iavf_update_enable_itr - Update itr and re-enable MSIX interrupt |
| * @vsi: the VSI we care about |
| * @q_vector: q_vector for which itr is being updated and interrupt enabled |
| * |
| **/ |
| static inline void iavf_update_enable_itr(struct iavf_vsi *vsi, |
| struct iavf_q_vector *q_vector) |
| { |
| struct iavf_hw *hw = &vsi->back->hw; |
| u32 intval; |
| |
| /* These will do nothing if dynamic updates are not enabled */ |
| iavf_update_itr(q_vector, &q_vector->tx); |
| iavf_update_itr(q_vector, &q_vector->rx); |
| |
| /* This block of logic allows us to get away with only updating |
| * one ITR value with each interrupt. The idea is to perform a |
| * pseudo-lazy update with the following criteria. |
| * |
| * 1. Rx is given higher priority than Tx if both are in same state |
| * 2. If we must reduce an ITR that is given highest priority. |
| * 3. We then give priority to increasing ITR based on amount. |
| */ |
| if (q_vector->rx.target_itr < q_vector->rx.current_itr) { |
| /* Rx ITR needs to be reduced, this is highest priority */ |
| intval = iavf_buildreg_itr(IAVF_RX_ITR, |
| q_vector->rx.target_itr); |
| q_vector->rx.current_itr = q_vector->rx.target_itr; |
| q_vector->itr_countdown = ITR_COUNTDOWN_START; |
| } else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) || |
| ((q_vector->rx.target_itr - q_vector->rx.current_itr) < |
| (q_vector->tx.target_itr - q_vector->tx.current_itr))) { |
| /* Tx ITR needs to be reduced, this is second priority |
| * Tx ITR needs to be increased more than Rx, fourth priority |
| */ |
| intval = iavf_buildreg_itr(IAVF_TX_ITR, |
| q_vector->tx.target_itr); |
| q_vector->tx.current_itr = q_vector->tx.target_itr; |
| q_vector->itr_countdown = ITR_COUNTDOWN_START; |
| } else if (q_vector->rx.current_itr != q_vector->rx.target_itr) { |
| /* Rx ITR needs to be increased, third priority */ |
| intval = iavf_buildreg_itr(IAVF_RX_ITR, |
| q_vector->rx.target_itr); |
| q_vector->rx.current_itr = q_vector->rx.target_itr; |
| q_vector->itr_countdown = ITR_COUNTDOWN_START; |
| } else { |
| /* No ITR update, lowest priority */ |
| intval = iavf_buildreg_itr(IAVF_ITR_NONE, 0); |
| if (q_vector->itr_countdown) |
| q_vector->itr_countdown--; |
| } |
| |
| if (!test_bit(__IAVF_VSI_DOWN, vsi->state)) |
| wr32(hw, INTREG(q_vector->reg_idx), intval); |
| } |
| |
| /** |
| * iavf_napi_poll - NAPI polling Rx/Tx cleanup routine |
| * @napi: napi struct with our devices info in it |
| * @budget: amount of work driver is allowed to do this pass, in packets |
| * |
| * This function will clean all queues associated with a q_vector. |
| * |
| * Returns the amount of work done |
| **/ |
| int iavf_napi_poll(struct napi_struct *napi, int budget) |
| { |
| struct iavf_q_vector *q_vector = |
| container_of(napi, struct iavf_q_vector, napi); |
| struct iavf_vsi *vsi = q_vector->vsi; |
| struct iavf_ring *ring; |
| bool clean_complete = true; |
| bool arm_wb = false; |
| int budget_per_ring; |
| int work_done = 0; |
| |
| if (test_bit(__IAVF_VSI_DOWN, vsi->state)) { |
| napi_complete(napi); |
| return 0; |
| } |
| |
| /* Since the actual Tx work is minimal, we can give the Tx a larger |
| * budget and be more aggressive about cleaning up the Tx descriptors. |
| */ |
| iavf_for_each_ring(ring, q_vector->tx) { |
| if (!iavf_clean_tx_irq(vsi, ring, budget)) { |
| clean_complete = false; |
| continue; |
| } |
| arm_wb |= ring->arm_wb; |
| ring->arm_wb = false; |
| } |
| |
| /* Handle case where we are called by netpoll with a budget of 0 */ |
| if (budget <= 0) |
| goto tx_only; |
| |
| /* We attempt to distribute budget to each Rx queue fairly, but don't |
| * allow the budget to go below 1 because that would exit polling early. |
| */ |
| budget_per_ring = max(budget/q_vector->num_ringpairs, 1); |
| |
| iavf_for_each_ring(ring, q_vector->rx) { |
| int cleaned = iavf_clean_rx_irq(ring, budget_per_ring); |
| |
| work_done += cleaned; |
| /* if we clean as many as budgeted, we must not be done */ |
| if (cleaned >= budget_per_ring) |
| clean_complete = false; |
| } |
| |
| /* If work not completed, return budget and polling will return */ |
| if (!clean_complete) { |
| int cpu_id = smp_processor_id(); |
| |
| /* It is possible that the interrupt affinity has changed but, |
| * if the cpu is pegged at 100%, polling will never exit while |
| * traffic continues and the interrupt will be stuck on this |
| * cpu. We check to make sure affinity is correct before we |
| * continue to poll, otherwise we must stop polling so the |
| * interrupt can move to the correct cpu. |
| */ |
| if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) { |
| /* Tell napi that we are done polling */ |
| napi_complete_done(napi, work_done); |
| |
| /* Force an interrupt */ |
| iavf_force_wb(vsi, q_vector); |
| |
| /* Return budget-1 so that polling stops */ |
| return budget - 1; |
| } |
| tx_only: |
| if (arm_wb) { |
| q_vector->tx.ring[0].tx_stats.tx_force_wb++; |
| iavf_enable_wb_on_itr(vsi, q_vector); |
| } |
| return budget; |
| } |
| |
| if (vsi->back->flags & IAVF_TXR_FLAGS_WB_ON_ITR) |
| q_vector->arm_wb_state = false; |
| |
| /* Exit the polling mode, but don't re-enable interrupts if stack might |
| * poll us due to busy-polling |
| */ |
| if (likely(napi_complete_done(napi, work_done))) |
| iavf_update_enable_itr(vsi, q_vector); |
| |
| return min_t(int, work_done, budget - 1); |
| } |
| |
| /** |
| * iavf_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW |
| * @skb: send buffer |
| * @tx_ring: ring to send buffer on |
| * @flags: the tx flags to be set |
| * |
| * Checks the skb and set up correspondingly several generic transmit flags |
| * related to VLAN tagging for the HW, such as VLAN, DCB, etc. |
| * |
| * Returns error code indicate the frame should be dropped upon error and the |
| * otherwise returns 0 to indicate the flags has been set properly. |
| **/ |
| static void iavf_tx_prepare_vlan_flags(struct sk_buff *skb, |
| struct iavf_ring *tx_ring, u32 *flags) |
| { |
| u32 tx_flags = 0; |
| |
| |
| /* stack will only request hardware VLAN insertion offload for protocols |
| * that the driver supports and has enabled |
| */ |
| if (!skb_vlan_tag_present(skb)) |
| return; |
| |
| tx_flags |= skb_vlan_tag_get(skb) << IAVF_TX_FLAGS_VLAN_SHIFT; |
| if (tx_ring->flags & IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2) { |
| tx_flags |= IAVF_TX_FLAGS_HW_OUTER_SINGLE_VLAN; |
| } else if (tx_ring->flags & IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1) { |
| tx_flags |= IAVF_TX_FLAGS_HW_VLAN; |
| } else { |
| dev_dbg(tx_ring->dev, "Unsupported Tx VLAN tag location requested\n"); |
| return; |
| } |
| |
| *flags = tx_flags; |
| } |
| |
| /** |
| * iavf_tso - set up the tso context descriptor |
| * @first: pointer to first Tx buffer for xmit |
| * @hdr_len: ptr to the size of the packet header |
| * @cd_type_cmd_tso_mss: Quad Word 1 |
| * |
| * Returns 0 if no TSO can happen, 1 if tso is going, or error |
| **/ |
| static int iavf_tso(struct iavf_tx_buffer *first, u8 *hdr_len, |
| u64 *cd_type_cmd_tso_mss) |
| { |
| struct sk_buff *skb = first->skb; |
| u64 cd_cmd, cd_tso_len, cd_mss; |
| union { |
| struct iphdr *v4; |
| struct ipv6hdr *v6; |
| unsigned char *hdr; |
| } ip; |
| union { |
| struct tcphdr *tcp; |
| struct udphdr *udp; |
| unsigned char *hdr; |
| } l4; |
| u32 paylen, l4_offset; |
| u16 gso_segs, gso_size; |
| int err; |
| |
| if (skb->ip_summed != CHECKSUM_PARTIAL) |
| return 0; |
| |
| if (!skb_is_gso(skb)) |
| return 0; |
| |
| err = skb_cow_head(skb, 0); |
| if (err < 0) |
| return err; |
| |
| ip.hdr = skb_network_header(skb); |
| l4.hdr = skb_transport_header(skb); |
| |
| /* initialize outer IP header fields */ |
| if (ip.v4->version == 4) { |
| ip.v4->tot_len = 0; |
| ip.v4->check = 0; |
| } else { |
| ip.v6->payload_len = 0; |
| } |
| |
| if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE | |
| SKB_GSO_GRE_CSUM | |
| SKB_GSO_IPXIP4 | |
| SKB_GSO_IPXIP6 | |
| SKB_GSO_UDP_TUNNEL | |
| SKB_GSO_UDP_TUNNEL_CSUM)) { |
| if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) && |
| (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) { |
| l4.udp->len = 0; |
| |
| /* determine offset of outer transport header */ |
| l4_offset = l4.hdr - skb->data; |
| |
| /* remove payload length from outer checksum */ |
| paylen = skb->len - l4_offset; |
| csum_replace_by_diff(&l4.udp->check, |
| (__force __wsum)htonl(paylen)); |
| } |
| |
| /* reset pointers to inner headers */ |
| ip.hdr = skb_inner_network_header(skb); |
| l4.hdr = skb_inner_transport_header(skb); |
| |
| /* initialize inner IP header fields */ |
| if (ip.v4->version == 4) { |
| ip.v4->tot_len = 0; |
| ip.v4->check = 0; |
| } else { |
| ip.v6->payload_len = 0; |
| } |
| } |
| |
| /* determine offset of inner transport header */ |
| l4_offset = l4.hdr - skb->data; |
| /* remove payload length from inner checksum */ |
| paylen = skb->len - l4_offset; |
| |
| if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { |
| csum_replace_by_diff(&l4.udp->check, |
| (__force __wsum)htonl(paylen)); |
| /* compute length of UDP segmentation header */ |
| *hdr_len = (u8)sizeof(l4.udp) + l4_offset; |
| } else { |
| csum_replace_by_diff(&l4.tcp->check, |
| (__force __wsum)htonl(paylen)); |
| /* compute length of TCP segmentation header */ |
| *hdr_len = (u8)((l4.tcp->doff * 4) + l4_offset); |
| } |
| |
| /* pull values out of skb_shinfo */ |
| gso_size = skb_shinfo(skb)->gso_size; |
| gso_segs = skb_shinfo(skb)->gso_segs; |
| |
| /* update GSO size and bytecount with header size */ |
| first->gso_segs = gso_segs; |
| first->bytecount += (first->gso_segs - 1) * *hdr_len; |
| |
| /* find the field values */ |
| cd_cmd = IAVF_TX_CTX_DESC_TSO; |
| cd_tso_len = skb->len - *hdr_len; |
| cd_mss = gso_size; |
| *cd_type_cmd_tso_mss |= (cd_cmd << IAVF_TXD_CTX_QW1_CMD_SHIFT) | |
| (cd_tso_len << IAVF_TXD_CTX_QW1_TSO_LEN_SHIFT) | |
| (cd_mss << IAVF_TXD_CTX_QW1_MSS_SHIFT); |
| return 1; |
| } |
| |
| /** |
| * iavf_tx_enable_csum - Enable Tx checksum offloads |
| * @skb: send buffer |
| * @tx_flags: pointer to Tx flags currently set |
| * @td_cmd: Tx descriptor command bits to set |
| * @td_offset: Tx descriptor header offsets to set |
| * @tx_ring: Tx descriptor ring |
| * @cd_tunneling: ptr to context desc bits |
| **/ |
| static int iavf_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags, |
| u32 *td_cmd, u32 *td_offset, |
| struct iavf_ring *tx_ring, |
| u32 *cd_tunneling) |
| { |
| union { |
| struct iphdr *v4; |
| struct ipv6hdr *v6; |
| unsigned char *hdr; |
| } ip; |
| union { |
| struct tcphdr *tcp; |
| struct udphdr *udp; |
| unsigned char *hdr; |
| } l4; |
| unsigned char *exthdr; |
| u32 offset, cmd = 0; |
| __be16 frag_off; |
| u8 l4_proto = 0; |
| |
| if (skb->ip_summed != CHECKSUM_PARTIAL) |
| return 0; |
| |
| ip.hdr = skb_network_header(skb); |
| l4.hdr = skb_transport_header(skb); |
| |
| /* compute outer L2 header size */ |
| offset = ((ip.hdr - skb->data) / 2) << IAVF_TX_DESC_LENGTH_MACLEN_SHIFT; |
| |
| if (skb->encapsulation) { |
| u32 tunnel = 0; |
| /* define outer network header type */ |
| if (*tx_flags & IAVF_TX_FLAGS_IPV4) { |
| tunnel |= (*tx_flags & IAVF_TX_FLAGS_TSO) ? |
| IAVF_TX_CTX_EXT_IP_IPV4 : |
| IAVF_TX_CTX_EXT_IP_IPV4_NO_CSUM; |
| |
| l4_proto = ip.v4->protocol; |
| } else if (*tx_flags & IAVF_TX_FLAGS_IPV6) { |
| tunnel |= IAVF_TX_CTX_EXT_IP_IPV6; |
| |
| exthdr = ip.hdr + sizeof(*ip.v6); |
| l4_proto = ip.v6->nexthdr; |
| if (l4.hdr != exthdr) |
| ipv6_skip_exthdr(skb, exthdr - skb->data, |
| &l4_proto, &frag_off); |
| } |
| |
| /* define outer transport */ |
| switch (l4_proto) { |
| case IPPROTO_UDP: |
| tunnel |= IAVF_TXD_CTX_UDP_TUNNELING; |
| *tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL; |
| break; |
| case IPPROTO_GRE: |
| tunnel |= IAVF_TXD_CTX_GRE_TUNNELING; |
| *tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL; |
| break; |
| case IPPROTO_IPIP: |
| case IPPROTO_IPV6: |
| *tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL; |
| l4.hdr = skb_inner_network_header(skb); |
| break; |
| default: |
| if (*tx_flags & IAVF_TX_FLAGS_TSO) |
| return -1; |
| |
| skb_checksum_help(skb); |
| return 0; |
| } |
| |
| /* compute outer L3 header size */ |
| tunnel |= ((l4.hdr - ip.hdr) / 4) << |
| IAVF_TXD_CTX_QW0_EXT_IPLEN_SHIFT; |
| |
| /* switch IP header pointer from outer to inner header */ |
| ip.hdr = skb_inner_network_header(skb); |
| |
| /* compute tunnel header size */ |
| tunnel |= ((ip.hdr - l4.hdr) / 2) << |
| IAVF_TXD_CTX_QW0_NATLEN_SHIFT; |
| |
| /* indicate if we need to offload outer UDP header */ |
| if ((*tx_flags & IAVF_TX_FLAGS_TSO) && |
| !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) && |
| (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) |
| tunnel |= IAVF_TXD_CTX_QW0_L4T_CS_MASK; |
| |
| /* record tunnel offload values */ |
| *cd_tunneling |= tunnel; |
| |
| /* switch L4 header pointer from outer to inner */ |
| l4.hdr = skb_inner_transport_header(skb); |
| l4_proto = 0; |
| |
| /* reset type as we transition from outer to inner headers */ |
| *tx_flags &= ~(IAVF_TX_FLAGS_IPV4 | IAVF_TX_FLAGS_IPV6); |
| if (ip.v4->version == 4) |
| *tx_flags |= IAVF_TX_FLAGS_IPV4; |
| if (ip.v6->version == 6) |
| *tx_flags |= IAVF_TX_FLAGS_IPV6; |
| } |
| |
| /* Enable IP checksum offloads */ |
| if (*tx_flags & IAVF_TX_FLAGS_IPV4) { |
| l4_proto = ip.v4->protocol; |
| /* the stack computes the IP header already, the only time we |
| * need the hardware to recompute it is in the case of TSO. |
| */ |
| cmd |= (*tx_flags & IAVF_TX_FLAGS_TSO) ? |
| IAVF_TX_DESC_CMD_IIPT_IPV4_CSUM : |
| IAVF_TX_DESC_CMD_IIPT_IPV4; |
| } else if (*tx_flags & IAVF_TX_FLAGS_IPV6) { |
| cmd |= IAVF_TX_DESC_CMD_IIPT_IPV6; |
| |
| exthdr = ip.hdr + sizeof(*ip.v6); |
| l4_proto = ip.v6->nexthdr; |
| if (l4.hdr != exthdr) |
| ipv6_skip_exthdr(skb, exthdr - skb->data, |
| &l4_proto, &frag_off); |
| } |
| |
| /* compute inner L3 header size */ |
| offset |= ((l4.hdr - ip.hdr) / 4) << IAVF_TX_DESC_LENGTH_IPLEN_SHIFT; |
| |
| /* Enable L4 checksum offloads */ |
| switch (l4_proto) { |
| case IPPROTO_TCP: |
| /* enable checksum offloads */ |
| cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_TCP; |
| offset |= l4.tcp->doff << IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; |
| break; |
| case IPPROTO_SCTP: |
| /* enable SCTP checksum offload */ |
| cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_SCTP; |
| offset |= (sizeof(struct sctphdr) >> 2) << |
| IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; |
| break; |
| case IPPROTO_UDP: |
| /* enable UDP checksum offload */ |
| cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_UDP; |
| offset |= (sizeof(struct udphdr) >> 2) << |
| IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; |
| break; |
| default: |
| if (*tx_flags & IAVF_TX_FLAGS_TSO) |
| return -1; |
| skb_checksum_help(skb); |
| return 0; |
| } |
| |
| *td_cmd |= cmd; |
| *td_offset |= offset; |
| |
| return 1; |
| } |
| |
| /** |
| * iavf_create_tx_ctx - Build the Tx context descriptor |
| * @tx_ring: ring to create the descriptor on |
| * @cd_type_cmd_tso_mss: Quad Word 1 |
| * @cd_tunneling: Quad Word 0 - bits 0-31 |
| * @cd_l2tag2: Quad Word 0 - bits 32-63 |
| **/ |
| static void iavf_create_tx_ctx(struct iavf_ring *tx_ring, |
| const u64 cd_type_cmd_tso_mss, |
| const u32 cd_tunneling, const u32 cd_l2tag2) |
| { |
| struct iavf_tx_context_desc *context_desc; |
| int i = tx_ring->next_to_use; |
| |
| if ((cd_type_cmd_tso_mss == IAVF_TX_DESC_DTYPE_CONTEXT) && |
| !cd_tunneling && !cd_l2tag2) |
| return; |
| |
| /* grab the next descriptor */ |
| context_desc = IAVF_TX_CTXTDESC(tx_ring, i); |
| |
| i++; |
| tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; |
| |
| /* cpu_to_le32 and assign to struct fields */ |
| context_desc->tunneling_params = cpu_to_le32(cd_tunneling); |
| context_desc->l2tag2 = cpu_to_le16(cd_l2tag2); |
| context_desc->rsvd = cpu_to_le16(0); |
| context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss); |
| } |
| |
| /** |
| * __iavf_chk_linearize - Check if there are more than 8 buffers per packet |
| * @skb: send buffer |
| * |
| * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire |
| * and so we need to figure out the cases where we need to linearize the skb. |
| * |
| * For TSO we need to count the TSO header and segment payload separately. |
| * As such we need to check cases where we have 7 fragments or more as we |
| * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for |
| * the segment payload in the first descriptor, and another 7 for the |
| * fragments. |
| **/ |
| bool __iavf_chk_linearize(struct sk_buff *skb) |
| { |
| const skb_frag_t *frag, *stale; |
| int nr_frags, sum; |
| |
| /* no need to check if number of frags is less than 7 */ |
| nr_frags = skb_shinfo(skb)->nr_frags; |
| if (nr_frags < (IAVF_MAX_BUFFER_TXD - 1)) |
| return false; |
| |
| /* We need to walk through the list and validate that each group |
| * of 6 fragments totals at least gso_size. |
| */ |
| nr_frags -= IAVF_MAX_BUFFER_TXD - 2; |
| frag = &skb_shinfo(skb)->frags[0]; |
| |
| /* Initialize size to the negative value of gso_size minus 1. We |
| * use this as the worst case scenerio in which the frag ahead |
| * of us only provides one byte which is why we are limited to 6 |
| * descriptors for a single transmit as the header and previous |
| * fragment are already consuming 2 descriptors. |
| */ |
| sum = 1 - skb_shinfo(skb)->gso_size; |
| |
| /* Add size of frags 0 through 4 to create our initial sum */ |
| sum += skb_frag_size(frag++); |
| sum += skb_frag_size(frag++); |
| sum += skb_frag_size(frag++); |
| sum += skb_frag_size(frag++); |
| sum += skb_frag_size(frag++); |
| |
| /* Walk through fragments adding latest fragment, testing it, and |
| * then removing stale fragments from the sum. |
| */ |
| for (stale = &skb_shinfo(skb)->frags[0];; stale++) { |
| int stale_size = skb_frag_size(stale); |
| |
| sum += skb_frag_size(frag++); |
| |
| /* The stale fragment may present us with a smaller |
| * descriptor than the actual fragment size. To account |
| * for that we need to remove all the data on the front and |
| * figure out what the remainder would be in the last |
| * descriptor associated with the fragment. |
| */ |
| if (stale_size > IAVF_MAX_DATA_PER_TXD) { |
| int align_pad = -(skb_frag_off(stale)) & |
| (IAVF_MAX_READ_REQ_SIZE - 1); |
| |
| sum -= align_pad; |
| stale_size -= align_pad; |
| |
| do { |
| sum -= IAVF_MAX_DATA_PER_TXD_ALIGNED; |
| stale_size -= IAVF_MAX_DATA_PER_TXD_ALIGNED; |
| } while (stale_size > IAVF_MAX_DATA_PER_TXD); |
| } |
| |
| /* if sum is negative we failed to make sufficient progress */ |
| if (sum < 0) |
| return true; |
| |
| if (!nr_frags--) |
| break; |
| |
| sum -= stale_size; |
| } |
| |
| return false; |
| } |
| |
| /** |
| * __iavf_maybe_stop_tx - 2nd level check for tx stop conditions |
| * @tx_ring: the ring to be checked |
| * @size: the size buffer we want to assure is available |
| * |
| * Returns -EBUSY if a stop is needed, else 0 |
| **/ |
| int __iavf_maybe_stop_tx(struct iavf_ring *tx_ring, int size) |
| { |
| netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); |
| /* Memory barrier before checking head and tail */ |
| smp_mb(); |
| |
| /* Check again in a case another CPU has just made room available. */ |
| if (likely(IAVF_DESC_UNUSED(tx_ring) < size)) |
| return -EBUSY; |
| |
| /* A reprieve! - use start_queue because it doesn't call schedule */ |
| netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index); |
| ++tx_ring->tx_stats.restart_queue; |
| return 0; |
| } |
| |
| /** |
| * iavf_tx_map - Build the Tx descriptor |
| * @tx_ring: ring to send buffer on |
| * @skb: send buffer |
| * @first: first buffer info buffer to use |
| * @tx_flags: collected send information |
| * @hdr_len: size of the packet header |
| * @td_cmd: the command field in the descriptor |
| * @td_offset: offset for checksum or crc |
| **/ |
| static inline void iavf_tx_map(struct iavf_ring *tx_ring, struct sk_buff *skb, |
| struct iavf_tx_buffer *first, u32 tx_flags, |
| const u8 hdr_len, u32 td_cmd, u32 td_offset) |
| { |
| unsigned int data_len = skb->data_len; |
| unsigned int size = skb_headlen(skb); |
| skb_frag_t *frag; |
| struct iavf_tx_buffer *tx_bi; |
| struct iavf_tx_desc *tx_desc; |
| u16 i = tx_ring->next_to_use; |
| u32 td_tag = 0; |
| dma_addr_t dma; |
| |
| if (tx_flags & IAVF_TX_FLAGS_HW_VLAN) { |
| td_cmd |= IAVF_TX_DESC_CMD_IL2TAG1; |
| td_tag = (tx_flags & IAVF_TX_FLAGS_VLAN_MASK) >> |
| IAVF_TX_FLAGS_VLAN_SHIFT; |
| } |
| |
| first->tx_flags = tx_flags; |
| |
| dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); |
| |
| tx_desc = IAVF_TX_DESC(tx_ring, i); |
| tx_bi = first; |
| |
| for (frag = &skb_shinfo(skb)->frags[0];; frag++) { |
| unsigned int max_data = IAVF_MAX_DATA_PER_TXD_ALIGNED; |
| |
| if (dma_mapping_error(tx_ring->dev, dma)) |
| goto dma_error; |
| |
| /* record length, and DMA address */ |
| dma_unmap_len_set(tx_bi, len, size); |
| dma_unmap_addr_set(tx_bi, dma, dma); |
| |
| /* align size to end of page */ |
| max_data += -dma & (IAVF_MAX_READ_REQ_SIZE - 1); |
| tx_desc->buffer_addr = cpu_to_le64(dma); |
| |
| while (unlikely(size > IAVF_MAX_DATA_PER_TXD)) { |
| tx_desc->cmd_type_offset_bsz = |
| build_ctob(td_cmd, td_offset, |
| max_data, td_tag); |
| |
| tx_desc++; |
| i++; |
| |
| if (i == tx_ring->count) { |
| tx_desc = IAVF_TX_DESC(tx_ring, 0); |
| i = 0; |
| } |
| |
| dma += max_data; |
| size -= max_data; |
| |
| max_data = IAVF_MAX_DATA_PER_TXD_ALIGNED; |
| tx_desc->buffer_addr = cpu_to_le64(dma); |
| } |
| |
| if (likely(!data_len)) |
| break; |
| |
| tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset, |
| size, td_tag); |
| |
| tx_desc++; |
| i++; |
| |
| if (i == tx_ring->count) { |
| tx_desc = IAVF_TX_DESC(tx_ring, 0); |
| i = 0; |
| } |
| |
| size = skb_frag_size(frag); |
| data_len -= size; |
| |
| dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, |
| DMA_TO_DEVICE); |
| |
| tx_bi = &tx_ring->tx_bi[i]; |
| } |
| |
| netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); |
| |
| i++; |
| if (i == tx_ring->count) |
| i = 0; |
| |
| tx_ring->next_to_use = i; |
| |
| iavf_maybe_stop_tx(tx_ring, DESC_NEEDED); |
| |
| /* write last descriptor with RS and EOP bits */ |
| td_cmd |= IAVF_TXD_CMD; |
| tx_desc->cmd_type_offset_bsz = |
| build_ctob(td_cmd, td_offset, size, td_tag); |
| |
| skb_tx_timestamp(skb); |
| |
| /* Force memory writes to complete before letting h/w know there |
| * are new descriptors to fetch. |
| * |
| * We also use this memory barrier to make certain all of the |
| * status bits have been updated before next_to_watch is written. |
| */ |
| wmb(); |
| |
| /* set next_to_watch value indicating a packet is present */ |
| first->next_to_watch = tx_desc; |
| |
| /* notify HW of packet */ |
| if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) { |
| writel(i, tx_ring->tail); |
| } |
| |
| return; |
| |
| dma_error: |
| dev_info(tx_ring->dev, "TX DMA map failed\n"); |
| |
| /* clear dma mappings for failed tx_bi map */ |
| for (;;) { |
| tx_bi = &tx_ring->tx_bi[i]; |
| iavf_unmap_and_free_tx_resource(tx_ring, tx_bi); |
| if (tx_bi == first) |
| break; |
| if (i == 0) |
| i = tx_ring->count; |
| i--; |
| } |
| |
| tx_ring->next_to_use = i; |
| } |
| |
| /** |
| * iavf_xmit_frame_ring - Sends buffer on Tx ring |
| * @skb: send buffer |
| * @tx_ring: ring to send buffer on |
| * |
| * Returns NETDEV_TX_OK if sent, else an error code |
| **/ |
| static netdev_tx_t iavf_xmit_frame_ring(struct sk_buff *skb, |
| struct iavf_ring *tx_ring) |
| { |
| u64 cd_type_cmd_tso_mss = IAVF_TX_DESC_DTYPE_CONTEXT; |
| u32 cd_tunneling = 0, cd_l2tag2 = 0; |
| struct iavf_tx_buffer *first; |
| u32 td_offset = 0; |
| u32 tx_flags = 0; |
| __be16 protocol; |
| u32 td_cmd = 0; |
| u8 hdr_len = 0; |
| int tso, count; |
| |
| /* prefetch the data, we'll need it later */ |
| prefetch(skb->data); |
| |
| iavf_trace(xmit_frame_ring, skb, tx_ring); |
| |
| count = iavf_xmit_descriptor_count(skb); |
| if (iavf_chk_linearize(skb, count)) { |
| if (__skb_linearize(skb)) { |
| dev_kfree_skb_any(skb); |
| return NETDEV_TX_OK; |
| } |
| count = iavf_txd_use_count(skb->len); |
| tx_ring->tx_stats.tx_linearize++; |
| } |
| |
| /* need: 1 descriptor per page * PAGE_SIZE/IAVF_MAX_DATA_PER_TXD, |
| * + 1 desc for skb_head_len/IAVF_MAX_DATA_PER_TXD, |
| * + 4 desc gap to avoid the cache line where head is, |
| * + 1 desc for context descriptor, |
| * otherwise try next time |
| */ |
| if (iavf_maybe_stop_tx(tx_ring, count + 4 + 1)) { |
| tx_ring->tx_stats.tx_busy++; |
| return NETDEV_TX_BUSY; |
| } |
| |
| /* record the location of the first descriptor for this packet */ |
| first = &tx_ring->tx_bi[tx_ring->next_to_use]; |
| first->skb = skb; |
| first->bytecount = skb->len; |
| first->gso_segs = 1; |
| |
| /* prepare the xmit flags */ |
| iavf_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags); |
| if (tx_flags & IAVF_TX_FLAGS_HW_OUTER_SINGLE_VLAN) { |
| cd_type_cmd_tso_mss |= IAVF_TX_CTX_DESC_IL2TAG2 << |
| IAVF_TXD_CTX_QW1_CMD_SHIFT; |
| cd_l2tag2 = (tx_flags & IAVF_TX_FLAGS_VLAN_MASK) >> |
| IAVF_TX_FLAGS_VLAN_SHIFT; |
| } |
| |
| /* obtain protocol of skb */ |
| protocol = vlan_get_protocol(skb); |
| |
| /* setup IPv4/IPv6 offloads */ |
| if (protocol == htons(ETH_P_IP)) |
| tx_flags |= IAVF_TX_FLAGS_IPV4; |
| else if (protocol == htons(ETH_P_IPV6)) |
| tx_flags |= IAVF_TX_FLAGS_IPV6; |
| |
| tso = iavf_tso(first, &hdr_len, &cd_type_cmd_tso_mss); |
| |
| if (tso < 0) |
| goto out_drop; |
| else if (tso) |
| tx_flags |= IAVF_TX_FLAGS_TSO; |
| |
| /* Always offload the checksum, since it's in the data descriptor */ |
| tso = iavf_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset, |
| tx_ring, &cd_tunneling); |
| if (tso < 0) |
| goto out_drop; |
| |
| /* always enable CRC insertion offload */ |
| td_cmd |= IAVF_TX_DESC_CMD_ICRC; |
| |
| iavf_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss, |
| cd_tunneling, cd_l2tag2); |
| |
| iavf_tx_map(tx_ring, skb, first, tx_flags, hdr_len, |
| td_cmd, td_offset); |
| |
| return NETDEV_TX_OK; |
| |
| out_drop: |
| iavf_trace(xmit_frame_ring_drop, first->skb, tx_ring); |
| dev_kfree_skb_any(first->skb); |
| first->skb = NULL; |
| return NETDEV_TX_OK; |
| } |
| |
| /** |
| * iavf_xmit_frame - Selects the correct VSI and Tx queue to send buffer |
| * @skb: send buffer |
| * @netdev: network interface device structure |
| * |
| * Returns NETDEV_TX_OK if sent, else an error code |
| **/ |
| netdev_tx_t iavf_xmit_frame(struct sk_buff *skb, struct net_device *netdev) |
| { |
| struct iavf_adapter *adapter = netdev_priv(netdev); |
| struct iavf_ring *tx_ring = &adapter->tx_rings[skb->queue_mapping]; |
| |
| /* hardware can't handle really short frames, hardware padding works |
| * beyond this point |
| */ |
| if (unlikely(skb->len < IAVF_MIN_TX_LEN)) { |
| if (skb_pad(skb, IAVF_MIN_TX_LEN - skb->len)) |
| return NETDEV_TX_OK; |
| skb->len = IAVF_MIN_TX_LEN; |
| skb_set_tail_pointer(skb, IAVF_MIN_TX_LEN); |
| } |
| |
| return iavf_xmit_frame_ring(skb, tx_ring); |
| } |