| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * linux/arch/arm/mm/flush.c |
| * |
| * Copyright (C) 1995-2002 Russell King |
| */ |
| #include <linux/module.h> |
| #include <linux/mm.h> |
| #include <linux/pagemap.h> |
| #include <linux/highmem.h> |
| |
| #include <asm/cacheflush.h> |
| #include <asm/cachetype.h> |
| #include <asm/highmem.h> |
| #include <asm/smp_plat.h> |
| #include <asm/tlbflush.h> |
| #include <linux/hugetlb.h> |
| |
| #include "mm.h" |
| |
| #ifdef CONFIG_ARM_HEAVY_MB |
| void (*soc_mb)(void); |
| |
| void arm_heavy_mb(void) |
| { |
| #ifdef CONFIG_OUTER_CACHE_SYNC |
| if (outer_cache.sync) |
| outer_cache.sync(); |
| #endif |
| if (soc_mb) |
| soc_mb(); |
| } |
| EXPORT_SYMBOL(arm_heavy_mb); |
| #endif |
| |
| #ifdef CONFIG_CPU_CACHE_VIPT |
| |
| static void flush_pfn_alias(unsigned long pfn, unsigned long vaddr) |
| { |
| unsigned long to = FLUSH_ALIAS_START + (CACHE_COLOUR(vaddr) << PAGE_SHIFT); |
| const int zero = 0; |
| |
| set_top_pte(to, pfn_pte(pfn, PAGE_KERNEL)); |
| |
| asm( "mcrr p15, 0, %1, %0, c14\n" |
| " mcr p15, 0, %2, c7, c10, 4" |
| : |
| : "r" (to), "r" (to + PAGE_SIZE - 1), "r" (zero) |
| : "cc"); |
| } |
| |
| static void flush_icache_alias(unsigned long pfn, unsigned long vaddr, unsigned long len) |
| { |
| unsigned long va = FLUSH_ALIAS_START + (CACHE_COLOUR(vaddr) << PAGE_SHIFT); |
| unsigned long offset = vaddr & (PAGE_SIZE - 1); |
| unsigned long to; |
| |
| set_top_pte(va, pfn_pte(pfn, PAGE_KERNEL)); |
| to = va + offset; |
| flush_icache_range(to, to + len); |
| } |
| |
| void flush_cache_mm(struct mm_struct *mm) |
| { |
| if (cache_is_vivt()) { |
| vivt_flush_cache_mm(mm); |
| return; |
| } |
| |
| if (cache_is_vipt_aliasing()) { |
| asm( "mcr p15, 0, %0, c7, c14, 0\n" |
| " mcr p15, 0, %0, c7, c10, 4" |
| : |
| : "r" (0) |
| : "cc"); |
| } |
| } |
| |
| void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) |
| { |
| if (cache_is_vivt()) { |
| vivt_flush_cache_range(vma, start, end); |
| return; |
| } |
| |
| if (cache_is_vipt_aliasing()) { |
| asm( "mcr p15, 0, %0, c7, c14, 0\n" |
| " mcr p15, 0, %0, c7, c10, 4" |
| : |
| : "r" (0) |
| : "cc"); |
| } |
| |
| if (vma->vm_flags & VM_EXEC) |
| __flush_icache_all(); |
| } |
| |
| void flush_cache_pages(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn, unsigned int nr) |
| { |
| if (cache_is_vivt()) { |
| vivt_flush_cache_pages(vma, user_addr, pfn, nr); |
| return; |
| } |
| |
| if (cache_is_vipt_aliasing()) { |
| flush_pfn_alias(pfn, user_addr); |
| __flush_icache_all(); |
| } |
| |
| if (vma->vm_flags & VM_EXEC && icache_is_vivt_asid_tagged()) |
| __flush_icache_all(); |
| } |
| |
| #else |
| #define flush_pfn_alias(pfn,vaddr) do { } while (0) |
| #define flush_icache_alias(pfn,vaddr,len) do { } while (0) |
| #endif |
| |
| #define FLAG_PA_IS_EXEC 1 |
| #define FLAG_PA_CORE_IN_MM 2 |
| |
| static void flush_ptrace_access_other(void *args) |
| { |
| __flush_icache_all(); |
| } |
| |
| static inline |
| void __flush_ptrace_access(struct page *page, unsigned long uaddr, void *kaddr, |
| unsigned long len, unsigned int flags) |
| { |
| if (cache_is_vivt()) { |
| if (flags & FLAG_PA_CORE_IN_MM) { |
| unsigned long addr = (unsigned long)kaddr; |
| __cpuc_coherent_kern_range(addr, addr + len); |
| } |
| return; |
| } |
| |
| if (cache_is_vipt_aliasing()) { |
| flush_pfn_alias(page_to_pfn(page), uaddr); |
| __flush_icache_all(); |
| return; |
| } |
| |
| /* VIPT non-aliasing D-cache */ |
| if (flags & FLAG_PA_IS_EXEC) { |
| unsigned long addr = (unsigned long)kaddr; |
| if (icache_is_vipt_aliasing()) |
| flush_icache_alias(page_to_pfn(page), uaddr, len); |
| else |
| __cpuc_coherent_kern_range(addr, addr + len); |
| if (cache_ops_need_broadcast()) |
| smp_call_function(flush_ptrace_access_other, |
| NULL, 1); |
| } |
| } |
| |
| static |
| void flush_ptrace_access(struct vm_area_struct *vma, struct page *page, |
| unsigned long uaddr, void *kaddr, unsigned long len) |
| { |
| unsigned int flags = 0; |
| if (cpumask_test_cpu(smp_processor_id(), mm_cpumask(vma->vm_mm))) |
| flags |= FLAG_PA_CORE_IN_MM; |
| if (vma->vm_flags & VM_EXEC) |
| flags |= FLAG_PA_IS_EXEC; |
| __flush_ptrace_access(page, uaddr, kaddr, len, flags); |
| } |
| |
| void flush_uprobe_xol_access(struct page *page, unsigned long uaddr, |
| void *kaddr, unsigned long len) |
| { |
| unsigned int flags = FLAG_PA_CORE_IN_MM|FLAG_PA_IS_EXEC; |
| |
| __flush_ptrace_access(page, uaddr, kaddr, len, flags); |
| } |
| |
| /* |
| * Copy user data from/to a page which is mapped into a different |
| * processes address space. Really, we want to allow our "user |
| * space" model to handle this. |
| * |
| * Note that this code needs to run on the current CPU. |
| */ |
| void copy_to_user_page(struct vm_area_struct *vma, struct page *page, |
| unsigned long uaddr, void *dst, const void *src, |
| unsigned long len) |
| { |
| #ifdef CONFIG_SMP |
| preempt_disable(); |
| #endif |
| memcpy(dst, src, len); |
| flush_ptrace_access(vma, page, uaddr, dst, len); |
| #ifdef CONFIG_SMP |
| preempt_enable(); |
| #endif |
| } |
| |
| void __flush_dcache_folio(struct address_space *mapping, struct folio *folio) |
| { |
| /* |
| * Writeback any data associated with the kernel mapping of this |
| * page. This ensures that data in the physical page is mutually |
| * coherent with the kernels mapping. |
| */ |
| if (!folio_test_highmem(folio)) { |
| __cpuc_flush_dcache_area(folio_address(folio), |
| folio_size(folio)); |
| } else { |
| unsigned long i; |
| if (cache_is_vipt_nonaliasing()) { |
| for (i = 0; i < folio_nr_pages(folio); i++) { |
| void *addr = kmap_local_folio(folio, |
| i * PAGE_SIZE); |
| __cpuc_flush_dcache_area(addr, PAGE_SIZE); |
| kunmap_local(addr); |
| } |
| } else { |
| for (i = 0; i < folio_nr_pages(folio); i++) { |
| void *addr = kmap_high_get(folio_page(folio, i)); |
| if (addr) { |
| __cpuc_flush_dcache_area(addr, PAGE_SIZE); |
| kunmap_high(folio_page(folio, i)); |
| } |
| } |
| } |
| } |
| |
| /* |
| * If this is a page cache page, and we have an aliasing VIPT cache, |
| * we only need to do one flush - which would be at the relevant |
| * userspace colour, which is congruent with page->index. |
| */ |
| if (mapping && cache_is_vipt_aliasing()) |
| flush_pfn_alias(folio_pfn(folio), folio_pos(folio)); |
| } |
| |
| static void __flush_dcache_aliases(struct address_space *mapping, struct folio *folio) |
| { |
| struct mm_struct *mm = current->active_mm; |
| struct vm_area_struct *vma; |
| pgoff_t pgoff, pgoff_end; |
| |
| /* |
| * There are possible user space mappings of this page: |
| * - VIVT cache: we need to also write back and invalidate all user |
| * data in the current VM view associated with this page. |
| * - aliasing VIPT: we only need to find one mapping of this page. |
| */ |
| pgoff = folio->index; |
| pgoff_end = pgoff + folio_nr_pages(folio) - 1; |
| |
| flush_dcache_mmap_lock(mapping); |
| vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff_end) { |
| unsigned long start, offset, pfn; |
| unsigned int nr; |
| |
| /* |
| * If this VMA is not in our MM, we can ignore it. |
| */ |
| if (vma->vm_mm != mm) |
| continue; |
| if (!(vma->vm_flags & VM_MAYSHARE)) |
| continue; |
| |
| start = vma->vm_start; |
| pfn = folio_pfn(folio); |
| nr = folio_nr_pages(folio); |
| offset = pgoff - vma->vm_pgoff; |
| if (offset > -nr) { |
| pfn -= offset; |
| nr += offset; |
| } else { |
| start += offset * PAGE_SIZE; |
| } |
| if (start + nr * PAGE_SIZE > vma->vm_end) |
| nr = (vma->vm_end - start) / PAGE_SIZE; |
| |
| flush_cache_pages(vma, start, pfn, nr); |
| } |
| flush_dcache_mmap_unlock(mapping); |
| } |
| |
| #if __LINUX_ARM_ARCH__ >= 6 |
| void __sync_icache_dcache(pte_t pteval) |
| { |
| unsigned long pfn; |
| struct folio *folio; |
| struct address_space *mapping; |
| |
| if (cache_is_vipt_nonaliasing() && !pte_exec(pteval)) |
| /* only flush non-aliasing VIPT caches for exec mappings */ |
| return; |
| pfn = pte_pfn(pteval); |
| if (!pfn_valid(pfn)) |
| return; |
| |
| folio = page_folio(pfn_to_page(pfn)); |
| if (cache_is_vipt_aliasing()) |
| mapping = folio_flush_mapping(folio); |
| else |
| mapping = NULL; |
| |
| if (!test_and_set_bit(PG_dcache_clean, &folio->flags)) |
| __flush_dcache_folio(mapping, folio); |
| |
| if (pte_exec(pteval)) |
| __flush_icache_all(); |
| } |
| #endif |
| |
| /* |
| * Ensure cache coherency between kernel mapping and userspace mapping |
| * of this page. |
| * |
| * We have three cases to consider: |
| * - VIPT non-aliasing cache: fully coherent so nothing required. |
| * - VIVT: fully aliasing, so we need to handle every alias in our |
| * current VM view. |
| * - VIPT aliasing: need to handle one alias in our current VM view. |
| * |
| * If we need to handle aliasing: |
| * If the page only exists in the page cache and there are no user |
| * space mappings, we can be lazy and remember that we may have dirty |
| * kernel cache lines for later. Otherwise, we assume we have |
| * aliasing mappings. |
| * |
| * Note that we disable the lazy flush for SMP configurations where |
| * the cache maintenance operations are not automatically broadcasted. |
| */ |
| void flush_dcache_folio(struct folio *folio) |
| { |
| struct address_space *mapping; |
| |
| /* |
| * The zero page is never written to, so never has any dirty |
| * cache lines, and therefore never needs to be flushed. |
| */ |
| if (is_zero_pfn(folio_pfn(folio))) |
| return; |
| |
| if (!cache_ops_need_broadcast() && cache_is_vipt_nonaliasing()) { |
| if (test_bit(PG_dcache_clean, &folio->flags)) |
| clear_bit(PG_dcache_clean, &folio->flags); |
| return; |
| } |
| |
| mapping = folio_flush_mapping(folio); |
| |
| if (!cache_ops_need_broadcast() && |
| mapping && !folio_mapped(folio)) |
| clear_bit(PG_dcache_clean, &folio->flags); |
| else { |
| __flush_dcache_folio(mapping, folio); |
| if (mapping && cache_is_vivt()) |
| __flush_dcache_aliases(mapping, folio); |
| else if (mapping) |
| __flush_icache_all(); |
| set_bit(PG_dcache_clean, &folio->flags); |
| } |
| } |
| EXPORT_SYMBOL(flush_dcache_folio); |
| |
| void flush_dcache_page(struct page *page) |
| { |
| flush_dcache_folio(page_folio(page)); |
| } |
| EXPORT_SYMBOL(flush_dcache_page); |
| /* |
| * Flush an anonymous page so that users of get_user_pages() |
| * can safely access the data. The expected sequence is: |
| * |
| * get_user_pages() |
| * -> flush_anon_page |
| * memcpy() to/from page |
| * if written to page, flush_dcache_page() |
| */ |
| void __flush_anon_page(struct vm_area_struct *vma, struct page *page, unsigned long vmaddr); |
| void __flush_anon_page(struct vm_area_struct *vma, struct page *page, unsigned long vmaddr) |
| { |
| unsigned long pfn; |
| |
| /* VIPT non-aliasing caches need do nothing */ |
| if (cache_is_vipt_nonaliasing()) |
| return; |
| |
| /* |
| * Write back and invalidate userspace mapping. |
| */ |
| pfn = page_to_pfn(page); |
| if (cache_is_vivt()) { |
| flush_cache_page(vma, vmaddr, pfn); |
| } else { |
| /* |
| * For aliasing VIPT, we can flush an alias of the |
| * userspace address only. |
| */ |
| flush_pfn_alias(pfn, vmaddr); |
| __flush_icache_all(); |
| } |
| |
| /* |
| * Invalidate kernel mapping. No data should be contained |
| * in this mapping of the page. FIXME: this is overkill |
| * since we actually ask for a write-back and invalidate. |
| */ |
| __cpuc_flush_dcache_area(page_address(page), PAGE_SIZE); |
| } |