| /* SPDX-License-Identifier: GPL-2.0 */ |
| #ifndef _ASM_X86_MWAIT_H |
| #define _ASM_X86_MWAIT_H |
| |
| #include <linux/sched.h> |
| #include <linux/sched/idle.h> |
| |
| #include <asm/cpufeature.h> |
| #include <asm/nospec-branch.h> |
| |
| #define MWAIT_SUBSTATE_MASK 0xf |
| #define MWAIT_CSTATE_MASK 0xf |
| #define MWAIT_SUBSTATE_SIZE 4 |
| #define MWAIT_HINT2CSTATE(hint) (((hint) >> MWAIT_SUBSTATE_SIZE) & MWAIT_CSTATE_MASK) |
| #define MWAIT_HINT2SUBSTATE(hint) ((hint) & MWAIT_CSTATE_MASK) |
| #define MWAIT_C1_SUBSTATE_MASK 0xf0 |
| |
| #define CPUID_MWAIT_LEAF 5 |
| #define CPUID5_ECX_EXTENSIONS_SUPPORTED 0x1 |
| #define CPUID5_ECX_INTERRUPT_BREAK 0x2 |
| |
| #define MWAIT_ECX_INTERRUPT_BREAK 0x1 |
| #define MWAITX_ECX_TIMER_ENABLE BIT(1) |
| #define MWAITX_MAX_WAIT_CYCLES UINT_MAX |
| #define MWAITX_DISABLE_CSTATES 0xf0 |
| #define TPAUSE_C01_STATE 1 |
| #define TPAUSE_C02_STATE 0 |
| |
| static __always_inline void __monitor(const void *eax, unsigned long ecx, |
| unsigned long edx) |
| { |
| /* "monitor %eax, %ecx, %edx;" */ |
| asm volatile(".byte 0x0f, 0x01, 0xc8;" |
| :: "a" (eax), "c" (ecx), "d"(edx)); |
| } |
| |
| static __always_inline void __monitorx(const void *eax, unsigned long ecx, |
| unsigned long edx) |
| { |
| /* "monitorx %eax, %ecx, %edx;" */ |
| asm volatile(".byte 0x0f, 0x01, 0xfa;" |
| :: "a" (eax), "c" (ecx), "d"(edx)); |
| } |
| |
| static __always_inline void __mwait(unsigned long eax, unsigned long ecx) |
| { |
| mds_idle_clear_cpu_buffers(); |
| |
| /* "mwait %eax, %ecx;" */ |
| asm volatile(".byte 0x0f, 0x01, 0xc9;" |
| :: "a" (eax), "c" (ecx)); |
| } |
| |
| /* |
| * MWAITX allows for a timer expiration to get the core out a wait state in |
| * addition to the default MWAIT exit condition of a store appearing at a |
| * monitored virtual address. |
| * |
| * Registers: |
| * |
| * MWAITX ECX[1]: enable timer if set |
| * MWAITX EBX[31:0]: max wait time expressed in SW P0 clocks. The software P0 |
| * frequency is the same as the TSC frequency. |
| * |
| * Below is a comparison between MWAIT and MWAITX on AMD processors: |
| * |
| * MWAIT MWAITX |
| * opcode 0f 01 c9 | 0f 01 fb |
| * ECX[0] value of RFLAGS.IF seen by instruction |
| * ECX[1] unused/#GP if set | enable timer if set |
| * ECX[31:2] unused/#GP if set |
| * EAX unused (reserve for hint) |
| * EBX[31:0] unused | max wait time (P0 clocks) |
| * |
| * MONITOR MONITORX |
| * opcode 0f 01 c8 | 0f 01 fa |
| * EAX (logical) address to monitor |
| * ECX #GP if not zero |
| */ |
| static __always_inline void __mwaitx(unsigned long eax, unsigned long ebx, |
| unsigned long ecx) |
| { |
| /* No MDS buffer clear as this is AMD/HYGON only */ |
| |
| /* "mwaitx %eax, %ebx, %ecx;" */ |
| asm volatile(".byte 0x0f, 0x01, 0xfb;" |
| :: "a" (eax), "b" (ebx), "c" (ecx)); |
| } |
| |
| /* |
| * Re-enable interrupts right upon calling mwait in such a way that |
| * no interrupt can fire _before_ the execution of mwait, ie: no |
| * instruction must be placed between "sti" and "mwait". |
| * |
| * This is necessary because if an interrupt queues a timer before |
| * executing mwait, it would otherwise go unnoticed and the next tick |
| * would not be reprogrammed accordingly before mwait ever wakes up. |
| */ |
| static __always_inline void __sti_mwait(unsigned long eax, unsigned long ecx) |
| { |
| mds_idle_clear_cpu_buffers(); |
| /* "mwait %eax, %ecx;" */ |
| asm volatile("sti; .byte 0x0f, 0x01, 0xc9;" |
| :: "a" (eax), "c" (ecx)); |
| } |
| |
| /* |
| * This uses new MONITOR/MWAIT instructions on P4 processors with PNI, |
| * which can obviate IPI to trigger checking of need_resched. |
| * We execute MONITOR against need_resched and enter optimized wait state |
| * through MWAIT. Whenever someone changes need_resched, we would be woken |
| * up from MWAIT (without an IPI). |
| * |
| * New with Core Duo processors, MWAIT can take some hints based on CPU |
| * capability. |
| */ |
| static __always_inline void mwait_idle_with_hints(unsigned long eax, unsigned long ecx) |
| { |
| if (static_cpu_has_bug(X86_BUG_MONITOR) || !current_set_polling_and_test()) { |
| if (static_cpu_has_bug(X86_BUG_CLFLUSH_MONITOR)) { |
| mb(); |
| clflush((void *)¤t_thread_info()->flags); |
| mb(); |
| } |
| |
| __monitor((void *)¤t_thread_info()->flags, 0, 0); |
| |
| if (!need_resched()) { |
| if (ecx & 1) { |
| __mwait(eax, ecx); |
| } else { |
| __sti_mwait(eax, ecx); |
| raw_local_irq_disable(); |
| } |
| } |
| } |
| current_clr_polling(); |
| } |
| |
| /* |
| * Caller can specify whether to enter C0.1 (low latency, less |
| * power saving) or C0.2 state (saves more power, but longer wakeup |
| * latency). This may be overridden by the IA32_UMWAIT_CONTROL MSR |
| * which can force requests for C0.2 to be downgraded to C0.1. |
| */ |
| static inline void __tpause(u32 ecx, u32 edx, u32 eax) |
| { |
| /* "tpause %ecx, %edx, %eax;" */ |
| #ifdef CONFIG_AS_TPAUSE |
| asm volatile("tpause %%ecx\n" |
| : |
| : "c"(ecx), "d"(edx), "a"(eax)); |
| #else |
| asm volatile(".byte 0x66, 0x0f, 0xae, 0xf1\t\n" |
| : |
| : "c"(ecx), "d"(edx), "a"(eax)); |
| #endif |
| } |
| |
| #endif /* _ASM_X86_MWAIT_H */ |