| // SPDX-License-Identifier: GPL-2.0-only |
| #include <linux/export.h> |
| #include <linux/bvec.h> |
| #include <linux/fault-inject-usercopy.h> |
| #include <linux/uio.h> |
| #include <linux/pagemap.h> |
| #include <linux/highmem.h> |
| #include <linux/slab.h> |
| #include <linux/vmalloc.h> |
| #include <linux/splice.h> |
| #include <linux/compat.h> |
| #include <linux/scatterlist.h> |
| #include <linux/instrumented.h> |
| #include <linux/iov_iter.h> |
| |
| static __always_inline |
| size_t copy_to_user_iter(void __user *iter_to, size_t progress, |
| size_t len, void *from, void *priv2) |
| { |
| if (should_fail_usercopy()) |
| return len; |
| if (access_ok(iter_to, len)) { |
| from += progress; |
| instrument_copy_to_user(iter_to, from, len); |
| len = raw_copy_to_user(iter_to, from, len); |
| } |
| return len; |
| } |
| |
| static __always_inline |
| size_t copy_to_user_iter_nofault(void __user *iter_to, size_t progress, |
| size_t len, void *from, void *priv2) |
| { |
| ssize_t res; |
| |
| if (should_fail_usercopy()) |
| return len; |
| |
| from += progress; |
| res = copy_to_user_nofault(iter_to, from, len); |
| return res < 0 ? len : res; |
| } |
| |
| static __always_inline |
| size_t copy_from_user_iter(void __user *iter_from, size_t progress, |
| size_t len, void *to, void *priv2) |
| { |
| size_t res = len; |
| |
| if (should_fail_usercopy()) |
| return len; |
| if (access_ok(iter_from, len)) { |
| to += progress; |
| instrument_copy_from_user_before(to, iter_from, len); |
| res = raw_copy_from_user(to, iter_from, len); |
| instrument_copy_from_user_after(to, iter_from, len, res); |
| } |
| return res; |
| } |
| |
| static __always_inline |
| size_t memcpy_to_iter(void *iter_to, size_t progress, |
| size_t len, void *from, void *priv2) |
| { |
| memcpy(iter_to, from + progress, len); |
| return 0; |
| } |
| |
| static __always_inline |
| size_t memcpy_from_iter(void *iter_from, size_t progress, |
| size_t len, void *to, void *priv2) |
| { |
| memcpy(to + progress, iter_from, len); |
| return 0; |
| } |
| |
| /* |
| * fault_in_iov_iter_readable - fault in iov iterator for reading |
| * @i: iterator |
| * @size: maximum length |
| * |
| * Fault in one or more iovecs of the given iov_iter, to a maximum length of |
| * @size. For each iovec, fault in each page that constitutes the iovec. |
| * |
| * Returns the number of bytes not faulted in (like copy_to_user() and |
| * copy_from_user()). |
| * |
| * Always returns 0 for non-userspace iterators. |
| */ |
| size_t fault_in_iov_iter_readable(const struct iov_iter *i, size_t size) |
| { |
| if (iter_is_ubuf(i)) { |
| size_t n = min(size, iov_iter_count(i)); |
| n -= fault_in_readable(i->ubuf + i->iov_offset, n); |
| return size - n; |
| } else if (iter_is_iovec(i)) { |
| size_t count = min(size, iov_iter_count(i)); |
| const struct iovec *p; |
| size_t skip; |
| |
| size -= count; |
| for (p = iter_iov(i), skip = i->iov_offset; count; p++, skip = 0) { |
| size_t len = min(count, p->iov_len - skip); |
| size_t ret; |
| |
| if (unlikely(!len)) |
| continue; |
| ret = fault_in_readable(p->iov_base + skip, len); |
| count -= len - ret; |
| if (ret) |
| break; |
| } |
| return count + size; |
| } |
| return 0; |
| } |
| EXPORT_SYMBOL(fault_in_iov_iter_readable); |
| |
| /* |
| * fault_in_iov_iter_writeable - fault in iov iterator for writing |
| * @i: iterator |
| * @size: maximum length |
| * |
| * Faults in the iterator using get_user_pages(), i.e., without triggering |
| * hardware page faults. This is primarily useful when we already know that |
| * some or all of the pages in @i aren't in memory. |
| * |
| * Returns the number of bytes not faulted in, like copy_to_user() and |
| * copy_from_user(). |
| * |
| * Always returns 0 for non-user-space iterators. |
| */ |
| size_t fault_in_iov_iter_writeable(const struct iov_iter *i, size_t size) |
| { |
| if (iter_is_ubuf(i)) { |
| size_t n = min(size, iov_iter_count(i)); |
| n -= fault_in_safe_writeable(i->ubuf + i->iov_offset, n); |
| return size - n; |
| } else if (iter_is_iovec(i)) { |
| size_t count = min(size, iov_iter_count(i)); |
| const struct iovec *p; |
| size_t skip; |
| |
| size -= count; |
| for (p = iter_iov(i), skip = i->iov_offset; count; p++, skip = 0) { |
| size_t len = min(count, p->iov_len - skip); |
| size_t ret; |
| |
| if (unlikely(!len)) |
| continue; |
| ret = fault_in_safe_writeable(p->iov_base + skip, len); |
| count -= len - ret; |
| if (ret) |
| break; |
| } |
| return count + size; |
| } |
| return 0; |
| } |
| EXPORT_SYMBOL(fault_in_iov_iter_writeable); |
| |
| void iov_iter_init(struct iov_iter *i, unsigned int direction, |
| const struct iovec *iov, unsigned long nr_segs, |
| size_t count) |
| { |
| WARN_ON(direction & ~(READ | WRITE)); |
| *i = (struct iov_iter) { |
| .iter_type = ITER_IOVEC, |
| .copy_mc = false, |
| .nofault = false, |
| .data_source = direction, |
| .__iov = iov, |
| .nr_segs = nr_segs, |
| .iov_offset = 0, |
| .count = count |
| }; |
| } |
| EXPORT_SYMBOL(iov_iter_init); |
| |
| size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i) |
| { |
| if (WARN_ON_ONCE(i->data_source)) |
| return 0; |
| if (user_backed_iter(i)) |
| might_fault(); |
| return iterate_and_advance(i, bytes, (void *)addr, |
| copy_to_user_iter, memcpy_to_iter); |
| } |
| EXPORT_SYMBOL(_copy_to_iter); |
| |
| #ifdef CONFIG_ARCH_HAS_COPY_MC |
| static __always_inline |
| size_t copy_to_user_iter_mc(void __user *iter_to, size_t progress, |
| size_t len, void *from, void *priv2) |
| { |
| if (access_ok(iter_to, len)) { |
| from += progress; |
| instrument_copy_to_user(iter_to, from, len); |
| len = copy_mc_to_user(iter_to, from, len); |
| } |
| return len; |
| } |
| |
| static __always_inline |
| size_t memcpy_to_iter_mc(void *iter_to, size_t progress, |
| size_t len, void *from, void *priv2) |
| { |
| return copy_mc_to_kernel(iter_to, from + progress, len); |
| } |
| |
| /** |
| * _copy_mc_to_iter - copy to iter with source memory error exception handling |
| * @addr: source kernel address |
| * @bytes: total transfer length |
| * @i: destination iterator |
| * |
| * The pmem driver deploys this for the dax operation |
| * (dax_copy_to_iter()) for dax reads (bypass page-cache and the |
| * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes |
| * successfully copied. |
| * |
| * The main differences between this and typical _copy_to_iter(). |
| * |
| * * Typical tail/residue handling after a fault retries the copy |
| * byte-by-byte until the fault happens again. Re-triggering machine |
| * checks is potentially fatal so the implementation uses source |
| * alignment and poison alignment assumptions to avoid re-triggering |
| * hardware exceptions. |
| * |
| * * ITER_KVEC and ITER_BVEC can return short copies. Compare to |
| * copy_to_iter() where only ITER_IOVEC attempts might return a short copy. |
| * |
| * Return: number of bytes copied (may be %0) |
| */ |
| size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i) |
| { |
| if (WARN_ON_ONCE(i->data_source)) |
| return 0; |
| if (user_backed_iter(i)) |
| might_fault(); |
| return iterate_and_advance(i, bytes, (void *)addr, |
| copy_to_user_iter_mc, memcpy_to_iter_mc); |
| } |
| EXPORT_SYMBOL_GPL(_copy_mc_to_iter); |
| #endif /* CONFIG_ARCH_HAS_COPY_MC */ |
| |
| static __always_inline |
| size_t memcpy_from_iter_mc(void *iter_from, size_t progress, |
| size_t len, void *to, void *priv2) |
| { |
| return copy_mc_to_kernel(to + progress, iter_from, len); |
| } |
| |
| static size_t __copy_from_iter_mc(void *addr, size_t bytes, struct iov_iter *i) |
| { |
| if (unlikely(i->count < bytes)) |
| bytes = i->count; |
| if (unlikely(!bytes)) |
| return 0; |
| return iterate_bvec(i, bytes, addr, NULL, memcpy_from_iter_mc); |
| } |
| |
| static __always_inline |
| size_t __copy_from_iter(void *addr, size_t bytes, struct iov_iter *i) |
| { |
| if (unlikely(iov_iter_is_copy_mc(i))) |
| return __copy_from_iter_mc(addr, bytes, i); |
| return iterate_and_advance(i, bytes, addr, |
| copy_from_user_iter, memcpy_from_iter); |
| } |
| |
| size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i) |
| { |
| if (WARN_ON_ONCE(!i->data_source)) |
| return 0; |
| |
| if (user_backed_iter(i)) |
| might_fault(); |
| return __copy_from_iter(addr, bytes, i); |
| } |
| EXPORT_SYMBOL(_copy_from_iter); |
| |
| static __always_inline |
| size_t copy_from_user_iter_nocache(void __user *iter_from, size_t progress, |
| size_t len, void *to, void *priv2) |
| { |
| return __copy_from_user_inatomic_nocache(to + progress, iter_from, len); |
| } |
| |
| size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i) |
| { |
| if (WARN_ON_ONCE(!i->data_source)) |
| return 0; |
| |
| return iterate_and_advance(i, bytes, addr, |
| copy_from_user_iter_nocache, |
| memcpy_from_iter); |
| } |
| EXPORT_SYMBOL(_copy_from_iter_nocache); |
| |
| #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE |
| static __always_inline |
| size_t copy_from_user_iter_flushcache(void __user *iter_from, size_t progress, |
| size_t len, void *to, void *priv2) |
| { |
| return __copy_from_user_flushcache(to + progress, iter_from, len); |
| } |
| |
| static __always_inline |
| size_t memcpy_from_iter_flushcache(void *iter_from, size_t progress, |
| size_t len, void *to, void *priv2) |
| { |
| memcpy_flushcache(to + progress, iter_from, len); |
| return 0; |
| } |
| |
| /** |
| * _copy_from_iter_flushcache - write destination through cpu cache |
| * @addr: destination kernel address |
| * @bytes: total transfer length |
| * @i: source iterator |
| * |
| * The pmem driver arranges for filesystem-dax to use this facility via |
| * dax_copy_from_iter() for ensuring that writes to persistent memory |
| * are flushed through the CPU cache. It is differentiated from |
| * _copy_from_iter_nocache() in that guarantees all data is flushed for |
| * all iterator types. The _copy_from_iter_nocache() only attempts to |
| * bypass the cache for the ITER_IOVEC case, and on some archs may use |
| * instructions that strand dirty-data in the cache. |
| * |
| * Return: number of bytes copied (may be %0) |
| */ |
| size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i) |
| { |
| if (WARN_ON_ONCE(!i->data_source)) |
| return 0; |
| |
| return iterate_and_advance(i, bytes, addr, |
| copy_from_user_iter_flushcache, |
| memcpy_from_iter_flushcache); |
| } |
| EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache); |
| #endif |
| |
| static inline bool page_copy_sane(struct page *page, size_t offset, size_t n) |
| { |
| struct page *head; |
| size_t v = n + offset; |
| |
| /* |
| * The general case needs to access the page order in order |
| * to compute the page size. |
| * However, we mostly deal with order-0 pages and thus can |
| * avoid a possible cache line miss for requests that fit all |
| * page orders. |
| */ |
| if (n <= v && v <= PAGE_SIZE) |
| return true; |
| |
| head = compound_head(page); |
| v += (page - head) << PAGE_SHIFT; |
| |
| if (WARN_ON(n > v || v > page_size(head))) |
| return false; |
| return true; |
| } |
| |
| size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes, |
| struct iov_iter *i) |
| { |
| size_t res = 0; |
| if (!page_copy_sane(page, offset, bytes)) |
| return 0; |
| if (WARN_ON_ONCE(i->data_source)) |
| return 0; |
| page += offset / PAGE_SIZE; // first subpage |
| offset %= PAGE_SIZE; |
| while (1) { |
| void *kaddr = kmap_local_page(page); |
| size_t n = min(bytes, (size_t)PAGE_SIZE - offset); |
| n = _copy_to_iter(kaddr + offset, n, i); |
| kunmap_local(kaddr); |
| res += n; |
| bytes -= n; |
| if (!bytes || !n) |
| break; |
| offset += n; |
| if (offset == PAGE_SIZE) { |
| page++; |
| offset = 0; |
| } |
| } |
| return res; |
| } |
| EXPORT_SYMBOL(copy_page_to_iter); |
| |
| size_t copy_page_to_iter_nofault(struct page *page, unsigned offset, size_t bytes, |
| struct iov_iter *i) |
| { |
| size_t res = 0; |
| |
| if (!page_copy_sane(page, offset, bytes)) |
| return 0; |
| if (WARN_ON_ONCE(i->data_source)) |
| return 0; |
| page += offset / PAGE_SIZE; // first subpage |
| offset %= PAGE_SIZE; |
| while (1) { |
| void *kaddr = kmap_local_page(page); |
| size_t n = min(bytes, (size_t)PAGE_SIZE - offset); |
| |
| n = iterate_and_advance(i, n, kaddr + offset, |
| copy_to_user_iter_nofault, |
| memcpy_to_iter); |
| kunmap_local(kaddr); |
| res += n; |
| bytes -= n; |
| if (!bytes || !n) |
| break; |
| offset += n; |
| if (offset == PAGE_SIZE) { |
| page++; |
| offset = 0; |
| } |
| } |
| return res; |
| } |
| EXPORT_SYMBOL(copy_page_to_iter_nofault); |
| |
| size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes, |
| struct iov_iter *i) |
| { |
| size_t res = 0; |
| if (!page_copy_sane(page, offset, bytes)) |
| return 0; |
| page += offset / PAGE_SIZE; // first subpage |
| offset %= PAGE_SIZE; |
| while (1) { |
| void *kaddr = kmap_local_page(page); |
| size_t n = min(bytes, (size_t)PAGE_SIZE - offset); |
| n = _copy_from_iter(kaddr + offset, n, i); |
| kunmap_local(kaddr); |
| res += n; |
| bytes -= n; |
| if (!bytes || !n) |
| break; |
| offset += n; |
| if (offset == PAGE_SIZE) { |
| page++; |
| offset = 0; |
| } |
| } |
| return res; |
| } |
| EXPORT_SYMBOL(copy_page_from_iter); |
| |
| static __always_inline |
| size_t zero_to_user_iter(void __user *iter_to, size_t progress, |
| size_t len, void *priv, void *priv2) |
| { |
| return clear_user(iter_to, len); |
| } |
| |
| static __always_inline |
| size_t zero_to_iter(void *iter_to, size_t progress, |
| size_t len, void *priv, void *priv2) |
| { |
| memset(iter_to, 0, len); |
| return 0; |
| } |
| |
| size_t iov_iter_zero(size_t bytes, struct iov_iter *i) |
| { |
| return iterate_and_advance(i, bytes, NULL, |
| zero_to_user_iter, zero_to_iter); |
| } |
| EXPORT_SYMBOL(iov_iter_zero); |
| |
| size_t copy_page_from_iter_atomic(struct page *page, size_t offset, |
| size_t bytes, struct iov_iter *i) |
| { |
| size_t n, copied = 0; |
| |
| if (!page_copy_sane(page, offset, bytes)) |
| return 0; |
| if (WARN_ON_ONCE(!i->data_source)) |
| return 0; |
| |
| do { |
| char *p; |
| |
| n = bytes - copied; |
| if (PageHighMem(page)) { |
| page += offset / PAGE_SIZE; |
| offset %= PAGE_SIZE; |
| n = min_t(size_t, n, PAGE_SIZE - offset); |
| } |
| |
| p = kmap_atomic(page) + offset; |
| n = __copy_from_iter(p, n, i); |
| kunmap_atomic(p); |
| copied += n; |
| offset += n; |
| } while (PageHighMem(page) && copied != bytes && n > 0); |
| |
| return copied; |
| } |
| EXPORT_SYMBOL(copy_page_from_iter_atomic); |
| |
| static void iov_iter_bvec_advance(struct iov_iter *i, size_t size) |
| { |
| const struct bio_vec *bvec, *end; |
| |
| if (!i->count) |
| return; |
| i->count -= size; |
| |
| size += i->iov_offset; |
| |
| for (bvec = i->bvec, end = bvec + i->nr_segs; bvec < end; bvec++) { |
| if (likely(size < bvec->bv_len)) |
| break; |
| size -= bvec->bv_len; |
| } |
| i->iov_offset = size; |
| i->nr_segs -= bvec - i->bvec; |
| i->bvec = bvec; |
| } |
| |
| static void iov_iter_iovec_advance(struct iov_iter *i, size_t size) |
| { |
| const struct iovec *iov, *end; |
| |
| if (!i->count) |
| return; |
| i->count -= size; |
| |
| size += i->iov_offset; // from beginning of current segment |
| for (iov = iter_iov(i), end = iov + i->nr_segs; iov < end; iov++) { |
| if (likely(size < iov->iov_len)) |
| break; |
| size -= iov->iov_len; |
| } |
| i->iov_offset = size; |
| i->nr_segs -= iov - iter_iov(i); |
| i->__iov = iov; |
| } |
| |
| void iov_iter_advance(struct iov_iter *i, size_t size) |
| { |
| if (unlikely(i->count < size)) |
| size = i->count; |
| if (likely(iter_is_ubuf(i)) || unlikely(iov_iter_is_xarray(i))) { |
| i->iov_offset += size; |
| i->count -= size; |
| } else if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) { |
| /* iovec and kvec have identical layouts */ |
| iov_iter_iovec_advance(i, size); |
| } else if (iov_iter_is_bvec(i)) { |
| iov_iter_bvec_advance(i, size); |
| } else if (iov_iter_is_discard(i)) { |
| i->count -= size; |
| } |
| } |
| EXPORT_SYMBOL(iov_iter_advance); |
| |
| void iov_iter_revert(struct iov_iter *i, size_t unroll) |
| { |
| if (!unroll) |
| return; |
| if (WARN_ON(unroll > MAX_RW_COUNT)) |
| return; |
| i->count += unroll; |
| if (unlikely(iov_iter_is_discard(i))) |
| return; |
| if (unroll <= i->iov_offset) { |
| i->iov_offset -= unroll; |
| return; |
| } |
| unroll -= i->iov_offset; |
| if (iov_iter_is_xarray(i) || iter_is_ubuf(i)) { |
| BUG(); /* We should never go beyond the start of the specified |
| * range since we might then be straying into pages that |
| * aren't pinned. |
| */ |
| } else if (iov_iter_is_bvec(i)) { |
| const struct bio_vec *bvec = i->bvec; |
| while (1) { |
| size_t n = (--bvec)->bv_len; |
| i->nr_segs++; |
| if (unroll <= n) { |
| i->bvec = bvec; |
| i->iov_offset = n - unroll; |
| return; |
| } |
| unroll -= n; |
| } |
| } else { /* same logics for iovec and kvec */ |
| const struct iovec *iov = iter_iov(i); |
| while (1) { |
| size_t n = (--iov)->iov_len; |
| i->nr_segs++; |
| if (unroll <= n) { |
| i->__iov = iov; |
| i->iov_offset = n - unroll; |
| return; |
| } |
| unroll -= n; |
| } |
| } |
| } |
| EXPORT_SYMBOL(iov_iter_revert); |
| |
| /* |
| * Return the count of just the current iov_iter segment. |
| */ |
| size_t iov_iter_single_seg_count(const struct iov_iter *i) |
| { |
| if (i->nr_segs > 1) { |
| if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) |
| return min(i->count, iter_iov(i)->iov_len - i->iov_offset); |
| if (iov_iter_is_bvec(i)) |
| return min(i->count, i->bvec->bv_len - i->iov_offset); |
| } |
| return i->count; |
| } |
| EXPORT_SYMBOL(iov_iter_single_seg_count); |
| |
| void iov_iter_kvec(struct iov_iter *i, unsigned int direction, |
| const struct kvec *kvec, unsigned long nr_segs, |
| size_t count) |
| { |
| WARN_ON(direction & ~(READ | WRITE)); |
| *i = (struct iov_iter){ |
| .iter_type = ITER_KVEC, |
| .copy_mc = false, |
| .data_source = direction, |
| .kvec = kvec, |
| .nr_segs = nr_segs, |
| .iov_offset = 0, |
| .count = count |
| }; |
| } |
| EXPORT_SYMBOL(iov_iter_kvec); |
| |
| void iov_iter_bvec(struct iov_iter *i, unsigned int direction, |
| const struct bio_vec *bvec, unsigned long nr_segs, |
| size_t count) |
| { |
| WARN_ON(direction & ~(READ | WRITE)); |
| *i = (struct iov_iter){ |
| .iter_type = ITER_BVEC, |
| .copy_mc = false, |
| .data_source = direction, |
| .bvec = bvec, |
| .nr_segs = nr_segs, |
| .iov_offset = 0, |
| .count = count |
| }; |
| } |
| EXPORT_SYMBOL(iov_iter_bvec); |
| |
| /** |
| * iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray |
| * @i: The iterator to initialise. |
| * @direction: The direction of the transfer. |
| * @xarray: The xarray to access. |
| * @start: The start file position. |
| * @count: The size of the I/O buffer in bytes. |
| * |
| * Set up an I/O iterator to either draw data out of the pages attached to an |
| * inode or to inject data into those pages. The pages *must* be prevented |
| * from evaporation, either by taking a ref on them or locking them by the |
| * caller. |
| */ |
| void iov_iter_xarray(struct iov_iter *i, unsigned int direction, |
| struct xarray *xarray, loff_t start, size_t count) |
| { |
| BUG_ON(direction & ~1); |
| *i = (struct iov_iter) { |
| .iter_type = ITER_XARRAY, |
| .copy_mc = false, |
| .data_source = direction, |
| .xarray = xarray, |
| .xarray_start = start, |
| .count = count, |
| .iov_offset = 0 |
| }; |
| } |
| EXPORT_SYMBOL(iov_iter_xarray); |
| |
| /** |
| * iov_iter_discard - Initialise an I/O iterator that discards data |
| * @i: The iterator to initialise. |
| * @direction: The direction of the transfer. |
| * @count: The size of the I/O buffer in bytes. |
| * |
| * Set up an I/O iterator that just discards everything that's written to it. |
| * It's only available as a READ iterator. |
| */ |
| void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count) |
| { |
| BUG_ON(direction != READ); |
| *i = (struct iov_iter){ |
| .iter_type = ITER_DISCARD, |
| .copy_mc = false, |
| .data_source = false, |
| .count = count, |
| .iov_offset = 0 |
| }; |
| } |
| EXPORT_SYMBOL(iov_iter_discard); |
| |
| static bool iov_iter_aligned_iovec(const struct iov_iter *i, unsigned addr_mask, |
| unsigned len_mask) |
| { |
| size_t size = i->count; |
| size_t skip = i->iov_offset; |
| unsigned k; |
| |
| for (k = 0; k < i->nr_segs; k++, skip = 0) { |
| const struct iovec *iov = iter_iov(i) + k; |
| size_t len = iov->iov_len - skip; |
| |
| if (len > size) |
| len = size; |
| if (len & len_mask) |
| return false; |
| if ((unsigned long)(iov->iov_base + skip) & addr_mask) |
| return false; |
| |
| size -= len; |
| if (!size) |
| break; |
| } |
| return true; |
| } |
| |
| static bool iov_iter_aligned_bvec(const struct iov_iter *i, unsigned addr_mask, |
| unsigned len_mask) |
| { |
| size_t size = i->count; |
| unsigned skip = i->iov_offset; |
| unsigned k; |
| |
| for (k = 0; k < i->nr_segs; k++, skip = 0) { |
| size_t len = i->bvec[k].bv_len - skip; |
| |
| if (len > size) |
| len = size; |
| if (len & len_mask) |
| return false; |
| if ((unsigned long)(i->bvec[k].bv_offset + skip) & addr_mask) |
| return false; |
| |
| size -= len; |
| if (!size) |
| break; |
| } |
| return true; |
| } |
| |
| /** |
| * iov_iter_is_aligned() - Check if the addresses and lengths of each segments |
| * are aligned to the parameters. |
| * |
| * @i: &struct iov_iter to restore |
| * @addr_mask: bit mask to check against the iov element's addresses |
| * @len_mask: bit mask to check against the iov element's lengths |
| * |
| * Return: false if any addresses or lengths intersect with the provided masks |
| */ |
| bool iov_iter_is_aligned(const struct iov_iter *i, unsigned addr_mask, |
| unsigned len_mask) |
| { |
| if (likely(iter_is_ubuf(i))) { |
| if (i->count & len_mask) |
| return false; |
| if ((unsigned long)(i->ubuf + i->iov_offset) & addr_mask) |
| return false; |
| return true; |
| } |
| |
| if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) |
| return iov_iter_aligned_iovec(i, addr_mask, len_mask); |
| |
| if (iov_iter_is_bvec(i)) |
| return iov_iter_aligned_bvec(i, addr_mask, len_mask); |
| |
| if (iov_iter_is_xarray(i)) { |
| if (i->count & len_mask) |
| return false; |
| if ((i->xarray_start + i->iov_offset) & addr_mask) |
| return false; |
| } |
| |
| return true; |
| } |
| EXPORT_SYMBOL_GPL(iov_iter_is_aligned); |
| |
| static unsigned long iov_iter_alignment_iovec(const struct iov_iter *i) |
| { |
| unsigned long res = 0; |
| size_t size = i->count; |
| size_t skip = i->iov_offset; |
| unsigned k; |
| |
| for (k = 0; k < i->nr_segs; k++, skip = 0) { |
| const struct iovec *iov = iter_iov(i) + k; |
| size_t len = iov->iov_len - skip; |
| if (len) { |
| res |= (unsigned long)iov->iov_base + skip; |
| if (len > size) |
| len = size; |
| res |= len; |
| size -= len; |
| if (!size) |
| break; |
| } |
| } |
| return res; |
| } |
| |
| static unsigned long iov_iter_alignment_bvec(const struct iov_iter *i) |
| { |
| unsigned res = 0; |
| size_t size = i->count; |
| unsigned skip = i->iov_offset; |
| unsigned k; |
| |
| for (k = 0; k < i->nr_segs; k++, skip = 0) { |
| size_t len = i->bvec[k].bv_len - skip; |
| res |= (unsigned long)i->bvec[k].bv_offset + skip; |
| if (len > size) |
| len = size; |
| res |= len; |
| size -= len; |
| if (!size) |
| break; |
| } |
| return res; |
| } |
| |
| unsigned long iov_iter_alignment(const struct iov_iter *i) |
| { |
| if (likely(iter_is_ubuf(i))) { |
| size_t size = i->count; |
| if (size) |
| return ((unsigned long)i->ubuf + i->iov_offset) | size; |
| return 0; |
| } |
| |
| /* iovec and kvec have identical layouts */ |
| if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) |
| return iov_iter_alignment_iovec(i); |
| |
| if (iov_iter_is_bvec(i)) |
| return iov_iter_alignment_bvec(i); |
| |
| if (iov_iter_is_xarray(i)) |
| return (i->xarray_start + i->iov_offset) | i->count; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(iov_iter_alignment); |
| |
| unsigned long iov_iter_gap_alignment(const struct iov_iter *i) |
| { |
| unsigned long res = 0; |
| unsigned long v = 0; |
| size_t size = i->count; |
| unsigned k; |
| |
| if (iter_is_ubuf(i)) |
| return 0; |
| |
| if (WARN_ON(!iter_is_iovec(i))) |
| return ~0U; |
| |
| for (k = 0; k < i->nr_segs; k++) { |
| const struct iovec *iov = iter_iov(i) + k; |
| if (iov->iov_len) { |
| unsigned long base = (unsigned long)iov->iov_base; |
| if (v) // if not the first one |
| res |= base | v; // this start | previous end |
| v = base + iov->iov_len; |
| if (size <= iov->iov_len) |
| break; |
| size -= iov->iov_len; |
| } |
| } |
| return res; |
| } |
| EXPORT_SYMBOL(iov_iter_gap_alignment); |
| |
| static int want_pages_array(struct page ***res, size_t size, |
| size_t start, unsigned int maxpages) |
| { |
| unsigned int count = DIV_ROUND_UP(size + start, PAGE_SIZE); |
| |
| if (count > maxpages) |
| count = maxpages; |
| WARN_ON(!count); // caller should've prevented that |
| if (!*res) { |
| *res = kvmalloc_array(count, sizeof(struct page *), GFP_KERNEL); |
| if (!*res) |
| return 0; |
| } |
| return count; |
| } |
| |
| static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa, |
| pgoff_t index, unsigned int nr_pages) |
| { |
| XA_STATE(xas, xa, index); |
| struct page *page; |
| unsigned int ret = 0; |
| |
| rcu_read_lock(); |
| for (page = xas_load(&xas); page; page = xas_next(&xas)) { |
| if (xas_retry(&xas, page)) |
| continue; |
| |
| /* Has the page moved or been split? */ |
| if (unlikely(page != xas_reload(&xas))) { |
| xas_reset(&xas); |
| continue; |
| } |
| |
| pages[ret] = find_subpage(page, xas.xa_index); |
| get_page(pages[ret]); |
| if (++ret == nr_pages) |
| break; |
| } |
| rcu_read_unlock(); |
| return ret; |
| } |
| |
| static ssize_t iter_xarray_get_pages(struct iov_iter *i, |
| struct page ***pages, size_t maxsize, |
| unsigned maxpages, size_t *_start_offset) |
| { |
| unsigned nr, offset, count; |
| pgoff_t index; |
| loff_t pos; |
| |
| pos = i->xarray_start + i->iov_offset; |
| index = pos >> PAGE_SHIFT; |
| offset = pos & ~PAGE_MASK; |
| *_start_offset = offset; |
| |
| count = want_pages_array(pages, maxsize, offset, maxpages); |
| if (!count) |
| return -ENOMEM; |
| nr = iter_xarray_populate_pages(*pages, i->xarray, index, count); |
| if (nr == 0) |
| return 0; |
| |
| maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize); |
| i->iov_offset += maxsize; |
| i->count -= maxsize; |
| return maxsize; |
| } |
| |
| /* must be done on non-empty ITER_UBUF or ITER_IOVEC one */ |
| static unsigned long first_iovec_segment(const struct iov_iter *i, size_t *size) |
| { |
| size_t skip; |
| long k; |
| |
| if (iter_is_ubuf(i)) |
| return (unsigned long)i->ubuf + i->iov_offset; |
| |
| for (k = 0, skip = i->iov_offset; k < i->nr_segs; k++, skip = 0) { |
| const struct iovec *iov = iter_iov(i) + k; |
| size_t len = iov->iov_len - skip; |
| |
| if (unlikely(!len)) |
| continue; |
| if (*size > len) |
| *size = len; |
| return (unsigned long)iov->iov_base + skip; |
| } |
| BUG(); // if it had been empty, we wouldn't get called |
| } |
| |
| /* must be done on non-empty ITER_BVEC one */ |
| static struct page *first_bvec_segment(const struct iov_iter *i, |
| size_t *size, size_t *start) |
| { |
| struct page *page; |
| size_t skip = i->iov_offset, len; |
| |
| len = i->bvec->bv_len - skip; |
| if (*size > len) |
| *size = len; |
| skip += i->bvec->bv_offset; |
| page = i->bvec->bv_page + skip / PAGE_SIZE; |
| *start = skip % PAGE_SIZE; |
| return page; |
| } |
| |
| static ssize_t __iov_iter_get_pages_alloc(struct iov_iter *i, |
| struct page ***pages, size_t maxsize, |
| unsigned int maxpages, size_t *start) |
| { |
| unsigned int n, gup_flags = 0; |
| |
| if (maxsize > i->count) |
| maxsize = i->count; |
| if (!maxsize) |
| return 0; |
| if (maxsize > MAX_RW_COUNT) |
| maxsize = MAX_RW_COUNT; |
| |
| if (likely(user_backed_iter(i))) { |
| unsigned long addr; |
| int res; |
| |
| if (iov_iter_rw(i) != WRITE) |
| gup_flags |= FOLL_WRITE; |
| if (i->nofault) |
| gup_flags |= FOLL_NOFAULT; |
| |
| addr = first_iovec_segment(i, &maxsize); |
| *start = addr % PAGE_SIZE; |
| addr &= PAGE_MASK; |
| n = want_pages_array(pages, maxsize, *start, maxpages); |
| if (!n) |
| return -ENOMEM; |
| res = get_user_pages_fast(addr, n, gup_flags, *pages); |
| if (unlikely(res <= 0)) |
| return res; |
| maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - *start); |
| iov_iter_advance(i, maxsize); |
| return maxsize; |
| } |
| if (iov_iter_is_bvec(i)) { |
| struct page **p; |
| struct page *page; |
| |
| page = first_bvec_segment(i, &maxsize, start); |
| n = want_pages_array(pages, maxsize, *start, maxpages); |
| if (!n) |
| return -ENOMEM; |
| p = *pages; |
| for (int k = 0; k < n; k++) |
| get_page(p[k] = page + k); |
| maxsize = min_t(size_t, maxsize, n * PAGE_SIZE - *start); |
| i->count -= maxsize; |
| i->iov_offset += maxsize; |
| if (i->iov_offset == i->bvec->bv_len) { |
| i->iov_offset = 0; |
| i->bvec++; |
| i->nr_segs--; |
| } |
| return maxsize; |
| } |
| if (iov_iter_is_xarray(i)) |
| return iter_xarray_get_pages(i, pages, maxsize, maxpages, start); |
| return -EFAULT; |
| } |
| |
| ssize_t iov_iter_get_pages2(struct iov_iter *i, struct page **pages, |
| size_t maxsize, unsigned maxpages, size_t *start) |
| { |
| if (!maxpages) |
| return 0; |
| BUG_ON(!pages); |
| |
| return __iov_iter_get_pages_alloc(i, &pages, maxsize, maxpages, start); |
| } |
| EXPORT_SYMBOL(iov_iter_get_pages2); |
| |
| ssize_t iov_iter_get_pages_alloc2(struct iov_iter *i, |
| struct page ***pages, size_t maxsize, size_t *start) |
| { |
| ssize_t len; |
| |
| *pages = NULL; |
| |
| len = __iov_iter_get_pages_alloc(i, pages, maxsize, ~0U, start); |
| if (len <= 0) { |
| kvfree(*pages); |
| *pages = NULL; |
| } |
| return len; |
| } |
| EXPORT_SYMBOL(iov_iter_get_pages_alloc2); |
| |
| static int iov_npages(const struct iov_iter *i, int maxpages) |
| { |
| size_t skip = i->iov_offset, size = i->count; |
| const struct iovec *p; |
| int npages = 0; |
| |
| for (p = iter_iov(i); size; skip = 0, p++) { |
| unsigned offs = offset_in_page(p->iov_base + skip); |
| size_t len = min(p->iov_len - skip, size); |
| |
| if (len) { |
| size -= len; |
| npages += DIV_ROUND_UP(offs + len, PAGE_SIZE); |
| if (unlikely(npages > maxpages)) |
| return maxpages; |
| } |
| } |
| return npages; |
| } |
| |
| static int bvec_npages(const struct iov_iter *i, int maxpages) |
| { |
| size_t skip = i->iov_offset, size = i->count; |
| const struct bio_vec *p; |
| int npages = 0; |
| |
| for (p = i->bvec; size; skip = 0, p++) { |
| unsigned offs = (p->bv_offset + skip) % PAGE_SIZE; |
| size_t len = min(p->bv_len - skip, size); |
| |
| size -= len; |
| npages += DIV_ROUND_UP(offs + len, PAGE_SIZE); |
| if (unlikely(npages > maxpages)) |
| return maxpages; |
| } |
| return npages; |
| } |
| |
| int iov_iter_npages(const struct iov_iter *i, int maxpages) |
| { |
| if (unlikely(!i->count)) |
| return 0; |
| if (likely(iter_is_ubuf(i))) { |
| unsigned offs = offset_in_page(i->ubuf + i->iov_offset); |
| int npages = DIV_ROUND_UP(offs + i->count, PAGE_SIZE); |
| return min(npages, maxpages); |
| } |
| /* iovec and kvec have identical layouts */ |
| if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) |
| return iov_npages(i, maxpages); |
| if (iov_iter_is_bvec(i)) |
| return bvec_npages(i, maxpages); |
| if (iov_iter_is_xarray(i)) { |
| unsigned offset = (i->xarray_start + i->iov_offset) % PAGE_SIZE; |
| int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE); |
| return min(npages, maxpages); |
| } |
| return 0; |
| } |
| EXPORT_SYMBOL(iov_iter_npages); |
| |
| const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags) |
| { |
| *new = *old; |
| if (iov_iter_is_bvec(new)) |
| return new->bvec = kmemdup(new->bvec, |
| new->nr_segs * sizeof(struct bio_vec), |
| flags); |
| else if (iov_iter_is_kvec(new) || iter_is_iovec(new)) |
| /* iovec and kvec have identical layout */ |
| return new->__iov = kmemdup(new->__iov, |
| new->nr_segs * sizeof(struct iovec), |
| flags); |
| return NULL; |
| } |
| EXPORT_SYMBOL(dup_iter); |
| |
| static __noclone int copy_compat_iovec_from_user(struct iovec *iov, |
| const struct iovec __user *uvec, unsigned long nr_segs) |
| { |
| const struct compat_iovec __user *uiov = |
| (const struct compat_iovec __user *)uvec; |
| int ret = -EFAULT, i; |
| |
| if (!user_access_begin(uiov, nr_segs * sizeof(*uiov))) |
| return -EFAULT; |
| |
| for (i = 0; i < nr_segs; i++) { |
| compat_uptr_t buf; |
| compat_ssize_t len; |
| |
| unsafe_get_user(len, &uiov[i].iov_len, uaccess_end); |
| unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end); |
| |
| /* check for compat_size_t not fitting in compat_ssize_t .. */ |
| if (len < 0) { |
| ret = -EINVAL; |
| goto uaccess_end; |
| } |
| iov[i].iov_base = compat_ptr(buf); |
| iov[i].iov_len = len; |
| } |
| |
| ret = 0; |
| uaccess_end: |
| user_access_end(); |
| return ret; |
| } |
| |
| static __noclone int copy_iovec_from_user(struct iovec *iov, |
| const struct iovec __user *uiov, unsigned long nr_segs) |
| { |
| int ret = -EFAULT; |
| |
| if (!user_access_begin(uiov, nr_segs * sizeof(*uiov))) |
| return -EFAULT; |
| |
| do { |
| void __user *buf; |
| ssize_t len; |
| |
| unsafe_get_user(len, &uiov->iov_len, uaccess_end); |
| unsafe_get_user(buf, &uiov->iov_base, uaccess_end); |
| |
| /* check for size_t not fitting in ssize_t .. */ |
| if (unlikely(len < 0)) { |
| ret = -EINVAL; |
| goto uaccess_end; |
| } |
| iov->iov_base = buf; |
| iov->iov_len = len; |
| |
| uiov++; iov++; |
| } while (--nr_segs); |
| |
| ret = 0; |
| uaccess_end: |
| user_access_end(); |
| return ret; |
| } |
| |
| struct iovec *iovec_from_user(const struct iovec __user *uvec, |
| unsigned long nr_segs, unsigned long fast_segs, |
| struct iovec *fast_iov, bool compat) |
| { |
| struct iovec *iov = fast_iov; |
| int ret; |
| |
| /* |
| * SuS says "The readv() function *may* fail if the iovcnt argument was |
| * less than or equal to 0, or greater than {IOV_MAX}. Linux has |
| * traditionally returned zero for zero segments, so... |
| */ |
| if (nr_segs == 0) |
| return iov; |
| if (nr_segs > UIO_MAXIOV) |
| return ERR_PTR(-EINVAL); |
| if (nr_segs > fast_segs) { |
| iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL); |
| if (!iov) |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| if (unlikely(compat)) |
| ret = copy_compat_iovec_from_user(iov, uvec, nr_segs); |
| else |
| ret = copy_iovec_from_user(iov, uvec, nr_segs); |
| if (ret) { |
| if (iov != fast_iov) |
| kfree(iov); |
| return ERR_PTR(ret); |
| } |
| |
| return iov; |
| } |
| |
| /* |
| * Single segment iovec supplied by the user, import it as ITER_UBUF. |
| */ |
| static ssize_t __import_iovec_ubuf(int type, const struct iovec __user *uvec, |
| struct iovec **iovp, struct iov_iter *i, |
| bool compat) |
| { |
| struct iovec *iov = *iovp; |
| ssize_t ret; |
| |
| if (compat) |
| ret = copy_compat_iovec_from_user(iov, uvec, 1); |
| else |
| ret = copy_iovec_from_user(iov, uvec, 1); |
| if (unlikely(ret)) |
| return ret; |
| |
| ret = import_ubuf(type, iov->iov_base, iov->iov_len, i); |
| if (unlikely(ret)) |
| return ret; |
| *iovp = NULL; |
| return i->count; |
| } |
| |
| ssize_t __import_iovec(int type, const struct iovec __user *uvec, |
| unsigned nr_segs, unsigned fast_segs, struct iovec **iovp, |
| struct iov_iter *i, bool compat) |
| { |
| ssize_t total_len = 0; |
| unsigned long seg; |
| struct iovec *iov; |
| |
| if (nr_segs == 1) |
| return __import_iovec_ubuf(type, uvec, iovp, i, compat); |
| |
| iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat); |
| if (IS_ERR(iov)) { |
| *iovp = NULL; |
| return PTR_ERR(iov); |
| } |
| |
| /* |
| * According to the Single Unix Specification we should return EINVAL if |
| * an element length is < 0 when cast to ssize_t or if the total length |
| * would overflow the ssize_t return value of the system call. |
| * |
| * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the |
| * overflow case. |
| */ |
| for (seg = 0; seg < nr_segs; seg++) { |
| ssize_t len = (ssize_t)iov[seg].iov_len; |
| |
| if (!access_ok(iov[seg].iov_base, len)) { |
| if (iov != *iovp) |
| kfree(iov); |
| *iovp = NULL; |
| return -EFAULT; |
| } |
| |
| if (len > MAX_RW_COUNT - total_len) { |
| len = MAX_RW_COUNT - total_len; |
| iov[seg].iov_len = len; |
| } |
| total_len += len; |
| } |
| |
| iov_iter_init(i, type, iov, nr_segs, total_len); |
| if (iov == *iovp) |
| *iovp = NULL; |
| else |
| *iovp = iov; |
| return total_len; |
| } |
| |
| /** |
| * import_iovec() - Copy an array of &struct iovec from userspace |
| * into the kernel, check that it is valid, and initialize a new |
| * &struct iov_iter iterator to access it. |
| * |
| * @type: One of %READ or %WRITE. |
| * @uvec: Pointer to the userspace array. |
| * @nr_segs: Number of elements in userspace array. |
| * @fast_segs: Number of elements in @iov. |
| * @iovp: (input and output parameter) Pointer to pointer to (usually small |
| * on-stack) kernel array. |
| * @i: Pointer to iterator that will be initialized on success. |
| * |
| * If the array pointed to by *@iov is large enough to hold all @nr_segs, |
| * then this function places %NULL in *@iov on return. Otherwise, a new |
| * array will be allocated and the result placed in *@iov. This means that |
| * the caller may call kfree() on *@iov regardless of whether the small |
| * on-stack array was used or not (and regardless of whether this function |
| * returns an error or not). |
| * |
| * Return: Negative error code on error, bytes imported on success |
| */ |
| ssize_t import_iovec(int type, const struct iovec __user *uvec, |
| unsigned nr_segs, unsigned fast_segs, |
| struct iovec **iovp, struct iov_iter *i) |
| { |
| return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i, |
| in_compat_syscall()); |
| } |
| EXPORT_SYMBOL(import_iovec); |
| |
| int import_ubuf(int rw, void __user *buf, size_t len, struct iov_iter *i) |
| { |
| if (len > MAX_RW_COUNT) |
| len = MAX_RW_COUNT; |
| if (unlikely(!access_ok(buf, len))) |
| return -EFAULT; |
| |
| iov_iter_ubuf(i, rw, buf, len); |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(import_ubuf); |
| |
| /** |
| * iov_iter_restore() - Restore a &struct iov_iter to the same state as when |
| * iov_iter_save_state() was called. |
| * |
| * @i: &struct iov_iter to restore |
| * @state: state to restore from |
| * |
| * Used after iov_iter_save_state() to bring restore @i, if operations may |
| * have advanced it. |
| * |
| * Note: only works on ITER_IOVEC, ITER_BVEC, and ITER_KVEC |
| */ |
| void iov_iter_restore(struct iov_iter *i, struct iov_iter_state *state) |
| { |
| if (WARN_ON_ONCE(!iov_iter_is_bvec(i) && !iter_is_iovec(i) && |
| !iter_is_ubuf(i)) && !iov_iter_is_kvec(i)) |
| return; |
| i->iov_offset = state->iov_offset; |
| i->count = state->count; |
| if (iter_is_ubuf(i)) |
| return; |
| /* |
| * For the *vec iters, nr_segs + iov is constant - if we increment |
| * the vec, then we also decrement the nr_segs count. Hence we don't |
| * need to track both of these, just one is enough and we can deduct |
| * the other from that. ITER_KVEC and ITER_IOVEC are the same struct |
| * size, so we can just increment the iov pointer as they are unionzed. |
| * ITER_BVEC _may_ be the same size on some archs, but on others it is |
| * not. Be safe and handle it separately. |
| */ |
| BUILD_BUG_ON(sizeof(struct iovec) != sizeof(struct kvec)); |
| if (iov_iter_is_bvec(i)) |
| i->bvec -= state->nr_segs - i->nr_segs; |
| else |
| i->__iov -= state->nr_segs - i->nr_segs; |
| i->nr_segs = state->nr_segs; |
| } |
| |
| /* |
| * Extract a list of contiguous pages from an ITER_XARRAY iterator. This does not |
| * get references on the pages, nor does it get a pin on them. |
| */ |
| static ssize_t iov_iter_extract_xarray_pages(struct iov_iter *i, |
| struct page ***pages, size_t maxsize, |
| unsigned int maxpages, |
| iov_iter_extraction_t extraction_flags, |
| size_t *offset0) |
| { |
| struct page *page, **p; |
| unsigned int nr = 0, offset; |
| loff_t pos = i->xarray_start + i->iov_offset; |
| pgoff_t index = pos >> PAGE_SHIFT; |
| XA_STATE(xas, i->xarray, index); |
| |
| offset = pos & ~PAGE_MASK; |
| *offset0 = offset; |
| |
| maxpages = want_pages_array(pages, maxsize, offset, maxpages); |
| if (!maxpages) |
| return -ENOMEM; |
| p = *pages; |
| |
| rcu_read_lock(); |
| for (page = xas_load(&xas); page; page = xas_next(&xas)) { |
| if (xas_retry(&xas, page)) |
| continue; |
| |
| /* Has the page moved or been split? */ |
| if (unlikely(page != xas_reload(&xas))) { |
| xas_reset(&xas); |
| continue; |
| } |
| |
| p[nr++] = find_subpage(page, xas.xa_index); |
| if (nr == maxpages) |
| break; |
| } |
| rcu_read_unlock(); |
| |
| maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize); |
| iov_iter_advance(i, maxsize); |
| return maxsize; |
| } |
| |
| /* |
| * Extract a list of contiguous pages from an ITER_BVEC iterator. This does |
| * not get references on the pages, nor does it get a pin on them. |
| */ |
| static ssize_t iov_iter_extract_bvec_pages(struct iov_iter *i, |
| struct page ***pages, size_t maxsize, |
| unsigned int maxpages, |
| iov_iter_extraction_t extraction_flags, |
| size_t *offset0) |
| { |
| struct page **p, *page; |
| size_t skip = i->iov_offset, offset, size; |
| int k; |
| |
| for (;;) { |
| if (i->nr_segs == 0) |
| return 0; |
| size = min(maxsize, i->bvec->bv_len - skip); |
| if (size) |
| break; |
| i->iov_offset = 0; |
| i->nr_segs--; |
| i->bvec++; |
| skip = 0; |
| } |
| |
| skip += i->bvec->bv_offset; |
| page = i->bvec->bv_page + skip / PAGE_SIZE; |
| offset = skip % PAGE_SIZE; |
| *offset0 = offset; |
| |
| maxpages = want_pages_array(pages, size, offset, maxpages); |
| if (!maxpages) |
| return -ENOMEM; |
| p = *pages; |
| for (k = 0; k < maxpages; k++) |
| p[k] = page + k; |
| |
| size = min_t(size_t, size, maxpages * PAGE_SIZE - offset); |
| iov_iter_advance(i, size); |
| return size; |
| } |
| |
| /* |
| * Extract a list of virtually contiguous pages from an ITER_KVEC iterator. |
| * This does not get references on the pages, nor does it get a pin on them. |
| */ |
| static ssize_t iov_iter_extract_kvec_pages(struct iov_iter *i, |
| struct page ***pages, size_t maxsize, |
| unsigned int maxpages, |
| iov_iter_extraction_t extraction_flags, |
| size_t *offset0) |
| { |
| struct page **p, *page; |
| const void *kaddr; |
| size_t skip = i->iov_offset, offset, len, size; |
| int k; |
| |
| for (;;) { |
| if (i->nr_segs == 0) |
| return 0; |
| size = min(maxsize, i->kvec->iov_len - skip); |
| if (size) |
| break; |
| i->iov_offset = 0; |
| i->nr_segs--; |
| i->kvec++; |
| skip = 0; |
| } |
| |
| kaddr = i->kvec->iov_base + skip; |
| offset = (unsigned long)kaddr & ~PAGE_MASK; |
| *offset0 = offset; |
| |
| maxpages = want_pages_array(pages, size, offset, maxpages); |
| if (!maxpages) |
| return -ENOMEM; |
| p = *pages; |
| |
| kaddr -= offset; |
| len = offset + size; |
| for (k = 0; k < maxpages; k++) { |
| size_t seg = min_t(size_t, len, PAGE_SIZE); |
| |
| if (is_vmalloc_or_module_addr(kaddr)) |
| page = vmalloc_to_page(kaddr); |
| else |
| page = virt_to_page(kaddr); |
| |
| p[k] = page; |
| len -= seg; |
| kaddr += PAGE_SIZE; |
| } |
| |
| size = min_t(size_t, size, maxpages * PAGE_SIZE - offset); |
| iov_iter_advance(i, size); |
| return size; |
| } |
| |
| /* |
| * Extract a list of contiguous pages from a user iterator and get a pin on |
| * each of them. This should only be used if the iterator is user-backed |
| * (IOBUF/UBUF). |
| * |
| * It does not get refs on the pages, but the pages must be unpinned by the |
| * caller once the transfer is complete. |
| * |
| * This is safe to be used where background IO/DMA *is* going to be modifying |
| * the buffer; using a pin rather than a ref makes forces fork() to give the |
| * child a copy of the page. |
| */ |
| static ssize_t iov_iter_extract_user_pages(struct iov_iter *i, |
| struct page ***pages, |
| size_t maxsize, |
| unsigned int maxpages, |
| iov_iter_extraction_t extraction_flags, |
| size_t *offset0) |
| { |
| unsigned long addr; |
| unsigned int gup_flags = 0; |
| size_t offset; |
| int res; |
| |
| if (i->data_source == ITER_DEST) |
| gup_flags |= FOLL_WRITE; |
| if (extraction_flags & ITER_ALLOW_P2PDMA) |
| gup_flags |= FOLL_PCI_P2PDMA; |
| if (i->nofault) |
| gup_flags |= FOLL_NOFAULT; |
| |
| addr = first_iovec_segment(i, &maxsize); |
| *offset0 = offset = addr % PAGE_SIZE; |
| addr &= PAGE_MASK; |
| maxpages = want_pages_array(pages, maxsize, offset, maxpages); |
| if (!maxpages) |
| return -ENOMEM; |
| res = pin_user_pages_fast(addr, maxpages, gup_flags, *pages); |
| if (unlikely(res <= 0)) |
| return res; |
| maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - offset); |
| iov_iter_advance(i, maxsize); |
| return maxsize; |
| } |
| |
| /** |
| * iov_iter_extract_pages - Extract a list of contiguous pages from an iterator |
| * @i: The iterator to extract from |
| * @pages: Where to return the list of pages |
| * @maxsize: The maximum amount of iterator to extract |
| * @maxpages: The maximum size of the list of pages |
| * @extraction_flags: Flags to qualify request |
| * @offset0: Where to return the starting offset into (*@pages)[0] |
| * |
| * Extract a list of contiguous pages from the current point of the iterator, |
| * advancing the iterator. The maximum number of pages and the maximum amount |
| * of page contents can be set. |
| * |
| * If *@pages is NULL, a page list will be allocated to the required size and |
| * *@pages will be set to its base. If *@pages is not NULL, it will be assumed |
| * that the caller allocated a page list at least @maxpages in size and this |
| * will be filled in. |
| * |
| * @extraction_flags can have ITER_ALLOW_P2PDMA set to request peer-to-peer DMA |
| * be allowed on the pages extracted. |
| * |
| * The iov_iter_extract_will_pin() function can be used to query how cleanup |
| * should be performed. |
| * |
| * Extra refs or pins on the pages may be obtained as follows: |
| * |
| * (*) If the iterator is user-backed (ITER_IOVEC/ITER_UBUF), pins will be |
| * added to the pages, but refs will not be taken. |
| * iov_iter_extract_will_pin() will return true. |
| * |
| * (*) If the iterator is ITER_KVEC, ITER_BVEC or ITER_XARRAY, the pages are |
| * merely listed; no extra refs or pins are obtained. |
| * iov_iter_extract_will_pin() will return 0. |
| * |
| * Note also: |
| * |
| * (*) Use with ITER_DISCARD is not supported as that has no content. |
| * |
| * On success, the function sets *@pages to the new pagelist, if allocated, and |
| * sets *offset0 to the offset into the first page. |
| * |
| * It may also return -ENOMEM and -EFAULT. |
| */ |
| ssize_t iov_iter_extract_pages(struct iov_iter *i, |
| struct page ***pages, |
| size_t maxsize, |
| unsigned int maxpages, |
| iov_iter_extraction_t extraction_flags, |
| size_t *offset0) |
| { |
| maxsize = min_t(size_t, min_t(size_t, maxsize, i->count), MAX_RW_COUNT); |
| if (!maxsize) |
| return 0; |
| |
| if (likely(user_backed_iter(i))) |
| return iov_iter_extract_user_pages(i, pages, maxsize, |
| maxpages, extraction_flags, |
| offset0); |
| if (iov_iter_is_kvec(i)) |
| return iov_iter_extract_kvec_pages(i, pages, maxsize, |
| maxpages, extraction_flags, |
| offset0); |
| if (iov_iter_is_bvec(i)) |
| return iov_iter_extract_bvec_pages(i, pages, maxsize, |
| maxpages, extraction_flags, |
| offset0); |
| if (iov_iter_is_xarray(i)) |
| return iov_iter_extract_xarray_pages(i, pages, maxsize, |
| maxpages, extraction_flags, |
| offset0); |
| return -EFAULT; |
| } |
| EXPORT_SYMBOL_GPL(iov_iter_extract_pages); |