blob: 532bc95a83736f94e8299e244ff289840655c24a [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/* Copyright (C) 2012-2019 ARM Limited or its affiliates. */
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/crypto.h>
#include <linux/moduleparam.h>
#include <linux/types.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/of.h>
#include <linux/clk.h>
#include <linux/of_address.h>
#include "cc_driver.h"
#include "cc_request_mgr.h"
#include "cc_buffer_mgr.h"
#include "cc_debugfs.h"
#include "cc_cipher.h"
#include "cc_aead.h"
#include "cc_hash.h"
#include "cc_sram_mgr.h"
#include "cc_pm.h"
#include "cc_fips.h"
bool cc_dump_desc;
module_param_named(dump_desc, cc_dump_desc, bool, 0600);
MODULE_PARM_DESC(cc_dump_desc, "Dump descriptors to kernel log as debugging aid");
bool cc_dump_bytes;
module_param_named(dump_bytes, cc_dump_bytes, bool, 0600);
MODULE_PARM_DESC(cc_dump_bytes, "Dump buffers to kernel log as debugging aid");
static bool cc_sec_disable;
module_param_named(sec_disable, cc_sec_disable, bool, 0600);
MODULE_PARM_DESC(cc_sec_disable, "Disable security functions");
struct cc_hw_data {
char *name;
enum cc_hw_rev rev;
u32 sig;
u32 cidr_0123;
u32 pidr_0124;
int std_bodies;
};
#define CC_NUM_IDRS 4
#define CC_HW_RESET_LOOP_COUNT 10
/* Note: PIDR3 holds CMOD/Rev so ignored for HW identification purposes */
static const u32 pidr_0124_offsets[CC_NUM_IDRS] = {
CC_REG(PERIPHERAL_ID_0), CC_REG(PERIPHERAL_ID_1),
CC_REG(PERIPHERAL_ID_2), CC_REG(PERIPHERAL_ID_4)
};
static const u32 cidr_0123_offsets[CC_NUM_IDRS] = {
CC_REG(COMPONENT_ID_0), CC_REG(COMPONENT_ID_1),
CC_REG(COMPONENT_ID_2), CC_REG(COMPONENT_ID_3)
};
/* Hardware revisions defs. */
/* The 703 is a OSCCA only variant of the 713 */
static const struct cc_hw_data cc703_hw = {
.name = "703", .rev = CC_HW_REV_713, .cidr_0123 = 0xB105F00DU,
.pidr_0124 = 0x040BB0D0U, .std_bodies = CC_STD_OSCCA
};
static const struct cc_hw_data cc713_hw = {
.name = "713", .rev = CC_HW_REV_713, .cidr_0123 = 0xB105F00DU,
.pidr_0124 = 0x040BB0D0U, .std_bodies = CC_STD_ALL
};
static const struct cc_hw_data cc712_hw = {
.name = "712", .rev = CC_HW_REV_712, .sig = 0xDCC71200U,
.std_bodies = CC_STD_ALL
};
static const struct cc_hw_data cc710_hw = {
.name = "710", .rev = CC_HW_REV_710, .sig = 0xDCC63200U,
.std_bodies = CC_STD_ALL
};
static const struct cc_hw_data cc630p_hw = {
.name = "630P", .rev = CC_HW_REV_630, .sig = 0xDCC63000U,
.std_bodies = CC_STD_ALL
};
static const struct of_device_id arm_ccree_dev_of_match[] = {
{ .compatible = "arm,cryptocell-703-ree", .data = &cc703_hw },
{ .compatible = "arm,cryptocell-713-ree", .data = &cc713_hw },
{ .compatible = "arm,cryptocell-712-ree", .data = &cc712_hw },
{ .compatible = "arm,cryptocell-710-ree", .data = &cc710_hw },
{ .compatible = "arm,cryptocell-630p-ree", .data = &cc630p_hw },
{}
};
MODULE_DEVICE_TABLE(of, arm_ccree_dev_of_match);
static u32 cc_read_idr(struct cc_drvdata *drvdata, const u32 *idr_offsets)
{
int i;
union {
u8 regs[CC_NUM_IDRS];
__le32 val;
} idr;
for (i = 0; i < CC_NUM_IDRS; ++i)
idr.regs[i] = cc_ioread(drvdata, idr_offsets[i]);
return le32_to_cpu(idr.val);
}
void __dump_byte_array(const char *name, const u8 *buf, size_t len)
{
char prefix[64];
if (!buf)
return;
snprintf(prefix, sizeof(prefix), "%s[%zu]: ", name, len);
print_hex_dump(KERN_DEBUG, prefix, DUMP_PREFIX_ADDRESS, 16, 1, buf,
len, false);
}
static irqreturn_t cc_isr(int irq, void *dev_id)
{
struct cc_drvdata *drvdata = (struct cc_drvdata *)dev_id;
struct device *dev = drvdata_to_dev(drvdata);
u32 irr;
u32 imr;
/* STAT_OP_TYPE_GENERIC STAT_PHASE_0: Interrupt */
/* if driver suspended return, probably shared interrupt */
if (cc_pm_is_dev_suspended(dev))
return IRQ_NONE;
/* read the interrupt status */
irr = cc_ioread(drvdata, CC_REG(HOST_IRR));
dev_dbg(dev, "Got IRR=0x%08X\n", irr);
if (irr == 0) /* Probably shared interrupt line */
return IRQ_NONE;
imr = cc_ioread(drvdata, CC_REG(HOST_IMR));
/* clear interrupt - must be before processing events */
cc_iowrite(drvdata, CC_REG(HOST_ICR), irr);
drvdata->irq = irr;
/* Completion interrupt - most probable */
if (irr & drvdata->comp_mask) {
/* Mask all completion interrupts - will be unmasked in
* deferred service handler
*/
cc_iowrite(drvdata, CC_REG(HOST_IMR), imr | drvdata->comp_mask);
irr &= ~drvdata->comp_mask;
complete_request(drvdata);
}
#ifdef CONFIG_CRYPTO_FIPS
/* TEE FIPS interrupt */
if (irr & CC_GPR0_IRQ_MASK) {
/* Mask interrupt - will be unmasked in Deferred service
* handler
*/
cc_iowrite(drvdata, CC_REG(HOST_IMR), imr | CC_GPR0_IRQ_MASK);
irr &= ~CC_GPR0_IRQ_MASK;
fips_handler(drvdata);
}
#endif
/* AXI error interrupt */
if (irr & CC_AXI_ERR_IRQ_MASK) {
u32 axi_err;
/* Read the AXI error ID */
axi_err = cc_ioread(drvdata, CC_REG(AXIM_MON_ERR));
dev_dbg(dev, "AXI completion error: axim_mon_err=0x%08X\n",
axi_err);
irr &= ~CC_AXI_ERR_IRQ_MASK;
}
if (irr) {
dev_dbg_ratelimited(dev, "IRR includes unknown cause bits (0x%08X)\n",
irr);
/* Just warning */
}
return IRQ_HANDLED;
}
bool cc_wait_for_reset_completion(struct cc_drvdata *drvdata)
{
unsigned int val;
unsigned int i;
/* 712/710/63 has no reset completion indication, always return true */
if (drvdata->hw_rev <= CC_HW_REV_712)
return true;
for (i = 0; i < CC_HW_RESET_LOOP_COUNT; i++) {
/* in cc7x3 NVM_IS_IDLE indicates that CC reset is
* completed and device is fully functional
*/
val = cc_ioread(drvdata, CC_REG(NVM_IS_IDLE));
if (val & CC_NVM_IS_IDLE_MASK) {
/* hw indicate reset completed */
return true;
}
/* allow scheduling other process on the processor */
schedule();
}
/* reset not completed */
return false;
}
int init_cc_regs(struct cc_drvdata *drvdata, bool is_probe)
{
unsigned int val, cache_params;
struct device *dev = drvdata_to_dev(drvdata);
/* Unmask all AXI interrupt sources AXI_CFG1 register */
/* AXI interrupt config are obsoleted startign at cc7x3 */
if (drvdata->hw_rev <= CC_HW_REV_712) {
val = cc_ioread(drvdata, CC_REG(AXIM_CFG));
cc_iowrite(drvdata, CC_REG(AXIM_CFG), val & ~CC_AXI_IRQ_MASK);
dev_dbg(dev, "AXIM_CFG=0x%08X\n",
cc_ioread(drvdata, CC_REG(AXIM_CFG)));
}
/* Clear all pending interrupts */
val = cc_ioread(drvdata, CC_REG(HOST_IRR));
dev_dbg(dev, "IRR=0x%08X\n", val);
cc_iowrite(drvdata, CC_REG(HOST_ICR), val);
/* Unmask relevant interrupt cause */
val = drvdata->comp_mask | CC_AXI_ERR_IRQ_MASK;
if (drvdata->hw_rev >= CC_HW_REV_712)
val |= CC_GPR0_IRQ_MASK;
cc_iowrite(drvdata, CC_REG(HOST_IMR), ~val);
cache_params = (drvdata->coherent ? CC_COHERENT_CACHE_PARAMS : 0x0);
val = cc_ioread(drvdata, CC_REG(AXIM_CACHE_PARAMS));
if (is_probe)
dev_dbg(dev, "Cache params previous: 0x%08X\n", val);
cc_iowrite(drvdata, CC_REG(AXIM_CACHE_PARAMS), cache_params);
val = cc_ioread(drvdata, CC_REG(AXIM_CACHE_PARAMS));
if (is_probe)
dev_dbg(dev, "Cache params current: 0x%08X (expect: 0x%08X)\n",
val, cache_params);
return 0;
}
static int init_cc_resources(struct platform_device *plat_dev)
{
struct resource *req_mem_cc_regs = NULL;
struct cc_drvdata *new_drvdata;
struct device *dev = &plat_dev->dev;
struct device_node *np = dev->of_node;
u32 val, hw_rev_pidr, sig_cidr;
u64 dma_mask;
const struct cc_hw_data *hw_rev;
const struct of_device_id *dev_id;
struct clk *clk;
int irq;
int rc = 0;
new_drvdata = devm_kzalloc(dev, sizeof(*new_drvdata), GFP_KERNEL);
if (!new_drvdata)
return -ENOMEM;
dev_id = of_match_node(arm_ccree_dev_of_match, np);
if (!dev_id)
return -ENODEV;
hw_rev = (struct cc_hw_data *)dev_id->data;
new_drvdata->hw_rev_name = hw_rev->name;
new_drvdata->hw_rev = hw_rev->rev;
new_drvdata->std_bodies = hw_rev->std_bodies;
if (hw_rev->rev >= CC_HW_REV_712) {
new_drvdata->axim_mon_offset = CC_REG(AXIM_MON_COMP);
new_drvdata->sig_offset = CC_REG(HOST_SIGNATURE_712);
new_drvdata->ver_offset = CC_REG(HOST_VERSION_712);
} else {
new_drvdata->axim_mon_offset = CC_REG(AXIM_MON_COMP8);
new_drvdata->sig_offset = CC_REG(HOST_SIGNATURE_630);
new_drvdata->ver_offset = CC_REG(HOST_VERSION_630);
}
new_drvdata->comp_mask = CC_COMP_IRQ_MASK;
platform_set_drvdata(plat_dev, new_drvdata);
new_drvdata->plat_dev = plat_dev;
clk = devm_clk_get(dev, NULL);
if (IS_ERR(clk))
switch (PTR_ERR(clk)) {
/* Clock is optional so this might be fine */
case -ENOENT:
break;
/* Clock not available, let's try again soon */
case -EPROBE_DEFER:
return -EPROBE_DEFER;
default:
dev_err(dev, "Error getting clock: %ld\n",
PTR_ERR(clk));
return PTR_ERR(clk);
}
new_drvdata->clk = clk;
new_drvdata->coherent = of_dma_is_coherent(np);
/* Get device resources */
/* First CC registers space */
req_mem_cc_regs = platform_get_resource(plat_dev, IORESOURCE_MEM, 0);
/* Map registers space */
new_drvdata->cc_base = devm_ioremap_resource(dev, req_mem_cc_regs);
if (IS_ERR(new_drvdata->cc_base)) {
dev_err(dev, "Failed to ioremap registers");
return PTR_ERR(new_drvdata->cc_base);
}
dev_dbg(dev, "Got MEM resource (%s): %pR\n", req_mem_cc_regs->name,
req_mem_cc_regs);
dev_dbg(dev, "CC registers mapped from %pa to 0x%p\n",
&req_mem_cc_regs->start, new_drvdata->cc_base);
/* Then IRQ */
irq = platform_get_irq(plat_dev, 0);
if (irq < 0)
return irq;
init_completion(&new_drvdata->hw_queue_avail);
if (!plat_dev->dev.dma_mask)
plat_dev->dev.dma_mask = &plat_dev->dev.coherent_dma_mask;
dma_mask = DMA_BIT_MASK(DMA_BIT_MASK_LEN);
while (dma_mask > 0x7fffffffUL) {
if (dma_supported(&plat_dev->dev, dma_mask)) {
rc = dma_set_coherent_mask(&plat_dev->dev, dma_mask);
if (!rc)
break;
}
dma_mask >>= 1;
}
if (rc) {
dev_err(dev, "Failed in dma_set_mask, mask=%llx\n", dma_mask);
return rc;
}
rc = cc_clk_on(new_drvdata);
if (rc) {
dev_err(dev, "Failed to enable clock");
return rc;
}
new_drvdata->sec_disabled = cc_sec_disable;
/* wait for Crytpcell reset completion */
if (!cc_wait_for_reset_completion(new_drvdata)) {
dev_err(dev, "Cryptocell reset not completed");
}
if (hw_rev->rev <= CC_HW_REV_712) {
/* Verify correct mapping */
val = cc_ioread(new_drvdata, new_drvdata->sig_offset);
if (val != hw_rev->sig) {
dev_err(dev, "Invalid CC signature: SIGNATURE=0x%08X != expected=0x%08X\n",
val, hw_rev->sig);
rc = -EINVAL;
goto post_clk_err;
}
sig_cidr = val;
hw_rev_pidr = cc_ioread(new_drvdata, new_drvdata->ver_offset);
} else {
/* Verify correct mapping */
val = cc_read_idr(new_drvdata, pidr_0124_offsets);
if (val != hw_rev->pidr_0124) {
dev_err(dev, "Invalid CC PIDR: PIDR0124=0x%08X != expected=0x%08X\n",
val, hw_rev->pidr_0124);
rc = -EINVAL;
goto post_clk_err;
}
hw_rev_pidr = val;
val = cc_read_idr(new_drvdata, cidr_0123_offsets);
if (val != hw_rev->cidr_0123) {
dev_err(dev, "Invalid CC CIDR: CIDR0123=0x%08X != expected=0x%08X\n",
val, hw_rev->cidr_0123);
rc = -EINVAL;
goto post_clk_err;
}
sig_cidr = val;
/* Check HW engine configuration */
val = cc_ioread(new_drvdata, CC_REG(HOST_REMOVE_INPUT_PINS));
switch (val) {
case CC_PINS_FULL:
/* This is fine */
break;
case CC_PINS_SLIM:
if (new_drvdata->std_bodies & CC_STD_NIST) {
dev_warn(dev, "703 mode forced due to HW configuration.\n");
new_drvdata->std_bodies = CC_STD_OSCCA;
}
break;
default:
dev_err(dev, "Unsupported engines configuration.\n");
rc = -EINVAL;
goto post_clk_err;
}
/* Check security disable state */
val = cc_ioread(new_drvdata, CC_REG(SECURITY_DISABLED));
val &= CC_SECURITY_DISABLED_MASK;
new_drvdata->sec_disabled |= !!val;
if (!new_drvdata->sec_disabled) {
new_drvdata->comp_mask |= CC_CPP_SM4_ABORT_MASK;
if (new_drvdata->std_bodies & CC_STD_NIST)
new_drvdata->comp_mask |= CC_CPP_AES_ABORT_MASK;
}
}
if (new_drvdata->sec_disabled)
dev_info(dev, "Security Disabled mode is in effect. Security functions disabled.\n");
/* Display HW versions */
dev_info(dev, "ARM CryptoCell %s Driver: HW version 0x%08X/0x%8X, Driver version %s\n",
hw_rev->name, hw_rev_pidr, sig_cidr, DRV_MODULE_VERSION);
/* register the driver isr function */
rc = devm_request_irq(dev, irq, cc_isr, IRQF_SHARED, "ccree",
new_drvdata);
if (rc) {
dev_err(dev, "Could not register to interrupt %d\n", irq);
goto post_clk_err;
}
dev_dbg(dev, "Registered to IRQ: %d\n", irq);
rc = init_cc_regs(new_drvdata, true);
if (rc) {
dev_err(dev, "init_cc_regs failed\n");
goto post_clk_err;
}
rc = cc_debugfs_init(new_drvdata);
if (rc) {
dev_err(dev, "Failed registering debugfs interface\n");
goto post_regs_err;
}
rc = cc_fips_init(new_drvdata);
if (rc) {
dev_err(dev, "cc_fips_init failed 0x%x\n", rc);
goto post_debugfs_err;
}
rc = cc_sram_mgr_init(new_drvdata);
if (rc) {
dev_err(dev, "cc_sram_mgr_init failed\n");
goto post_fips_init_err;
}
new_drvdata->mlli_sram_addr =
cc_sram_alloc(new_drvdata, MAX_MLLI_BUFF_SIZE);
if (new_drvdata->mlli_sram_addr == NULL_SRAM_ADDR) {
dev_err(dev, "Failed to alloc MLLI Sram buffer\n");
rc = -ENOMEM;
goto post_sram_mgr_err;
}
rc = cc_req_mgr_init(new_drvdata);
if (rc) {
dev_err(dev, "cc_req_mgr_init failed\n");
goto post_sram_mgr_err;
}
rc = cc_buffer_mgr_init(new_drvdata);
if (rc) {
dev_err(dev, "cc_buffer_mgr_init failed\n");
goto post_req_mgr_err;
}
rc = cc_pm_init(new_drvdata);
if (rc) {
dev_err(dev, "cc_pm_init failed\n");
goto post_buf_mgr_err;
}
/* Allocate crypto algs */
rc = cc_cipher_alloc(new_drvdata);
if (rc) {
dev_err(dev, "cc_cipher_alloc failed\n");
goto post_buf_mgr_err;
}
/* hash must be allocated before aead since hash exports APIs */
rc = cc_hash_alloc(new_drvdata);
if (rc) {
dev_err(dev, "cc_hash_alloc failed\n");
goto post_cipher_err;
}
rc = cc_aead_alloc(new_drvdata);
if (rc) {
dev_err(dev, "cc_aead_alloc failed\n");
goto post_hash_err;
}
/* All set, we can allow autosuspend */
cc_pm_go(new_drvdata);
/* If we got here and FIPS mode is enabled
* it means all FIPS test passed, so let TEE
* know we're good.
*/
cc_set_ree_fips_status(new_drvdata, true);
return 0;
post_hash_err:
cc_hash_free(new_drvdata);
post_cipher_err:
cc_cipher_free(new_drvdata);
post_buf_mgr_err:
cc_buffer_mgr_fini(new_drvdata);
post_req_mgr_err:
cc_req_mgr_fini(new_drvdata);
post_sram_mgr_err:
cc_sram_mgr_fini(new_drvdata);
post_fips_init_err:
cc_fips_fini(new_drvdata);
post_debugfs_err:
cc_debugfs_fini(new_drvdata);
post_regs_err:
fini_cc_regs(new_drvdata);
post_clk_err:
cc_clk_off(new_drvdata);
return rc;
}
void fini_cc_regs(struct cc_drvdata *drvdata)
{
/* Mask all interrupts */
cc_iowrite(drvdata, CC_REG(HOST_IMR), 0xFFFFFFFF);
}
static void cleanup_cc_resources(struct platform_device *plat_dev)
{
struct cc_drvdata *drvdata =
(struct cc_drvdata *)platform_get_drvdata(plat_dev);
cc_aead_free(drvdata);
cc_hash_free(drvdata);
cc_cipher_free(drvdata);
cc_pm_fini(drvdata);
cc_buffer_mgr_fini(drvdata);
cc_req_mgr_fini(drvdata);
cc_sram_mgr_fini(drvdata);
cc_fips_fini(drvdata);
cc_debugfs_fini(drvdata);
fini_cc_regs(drvdata);
cc_clk_off(drvdata);
}
int cc_clk_on(struct cc_drvdata *drvdata)
{
struct clk *clk = drvdata->clk;
int rc;
if (IS_ERR(clk))
/* Not all devices have a clock associated with CCREE */
return 0;
rc = clk_prepare_enable(clk);
if (rc)
return rc;
return 0;
}
unsigned int cc_get_default_hash_len(struct cc_drvdata *drvdata)
{
if (drvdata->hw_rev >= CC_HW_REV_712)
return HASH_LEN_SIZE_712;
else
return HASH_LEN_SIZE_630;
}
void cc_clk_off(struct cc_drvdata *drvdata)
{
struct clk *clk = drvdata->clk;
if (IS_ERR(clk))
/* Not all devices have a clock associated with CCREE */
return;
clk_disable_unprepare(clk);
}
static int ccree_probe(struct platform_device *plat_dev)
{
int rc;
struct device *dev = &plat_dev->dev;
/* Map registers space */
rc = init_cc_resources(plat_dev);
if (rc)
return rc;
dev_info(dev, "ARM ccree device initialized\n");
return 0;
}
static int ccree_remove(struct platform_device *plat_dev)
{
struct device *dev = &plat_dev->dev;
dev_dbg(dev, "Releasing ccree resources...\n");
cleanup_cc_resources(plat_dev);
dev_info(dev, "ARM ccree device terminated\n");
return 0;
}
static struct platform_driver ccree_driver = {
.driver = {
.name = "ccree",
.of_match_table = arm_ccree_dev_of_match,
#ifdef CONFIG_PM
.pm = &ccree_pm,
#endif
},
.probe = ccree_probe,
.remove = ccree_remove,
};
static int __init ccree_init(void)
{
cc_hash_global_init();
cc_debugfs_global_init();
return platform_driver_register(&ccree_driver);
}
module_init(ccree_init);
static void __exit ccree_exit(void)
{
platform_driver_unregister(&ccree_driver);
cc_debugfs_global_fini();
}
module_exit(ccree_exit);
/* Module description */
MODULE_DESCRIPTION("ARM TrustZone CryptoCell REE Driver");
MODULE_VERSION(DRV_MODULE_VERSION);
MODULE_AUTHOR("ARM");
MODULE_LICENSE("GPL v2");